The Huckel Model for Small Metal Clusters. III. Anion Structures and HMO Electron Affinities

By

D. M. Lindsay, Lin Chu, Youqi Wang and Thomas F. George

Prepared for Publication

in

Journal of Chemical Physics

Departments of Chemistry and Physics
State University of New York at Buffalo
Buffalo, New York 14260

April 1987

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
The most stable structures for the alkali-like clusters $M_n^- - M_1^-$ are calculated within the framework of the simple Hückel model. The Hückel geometries are, on average, slightly "less compact" than those of the neutral and cation clusters, a phenomenon which may be related to the additional electronic kinetic energy of the anions. Cluster compactness is quantified by an estimation of "soft sphere" volumes, which also allows for a comparison of classical and experimental polarizabilities. The Hückel model gives electron affinities which compare favorably with the experimental results for Cu$^+-Cu^0$. To our knowledge, the Hückel results in this paper represent the first systematic search for the stable structures of small alkali-like anion clusters.
THE HÜCKEL MODEL FOR SMALL METAL CLUSTERS. III. ANION STRUCTURES AND HMO ELECTRON AFFINITIES.

D. M. Lindsay and Lin Chu
Department of Chemistry
City University of New York, The City College
New York, New York 10031

Youqi Wang
Department of Chemistry
California Institute of Technology
Pasadena, California 91125

Thomas F. George
Departments of Chemistry and Physics & Astronomy
State University of New York at Buffalo
Buffalo, New York 14260
ABSTRACT

The most stable structures for the alkali-like clusters, $M_3^- - M_8^-$, are calculated within the framework of the simple Hückel model. The Hückel geometries are, on average, slightly "less compact" than those of the neutral and cation clusters, a phenomenon which may be related to the additional electronic kinetic energy of the anions. Cluster compactness is quantified by an estimation of "soft sphere" volumes, which also allows for a comparison of classical and experimental polarizabilities. The Hückel model gives electron affinities which compare favorably with the experimental results for $Cu_2 - Cu_8$. To our knowledge, the Hückel results in this paper represent the first systematic search for the stable structures of small alkali-like anion clusters.
I. INTRODUCTION

In previous work, we reported Hückel molecular orbital (HMO) structures for alkali-like clusters M_n and M_n^+ with $2 \leq n \leq 9$. The most stable Hückel geometries were found to be the same (except for M_5^+ and M_6^+) as those predicted by local spin density (LSD) and configuration interaction (CI) calculations for the alkali metals. The Hückel results are also in accord with the experimentally determined structures of the ground state Group IA and Group IB trimer and heptamer molecules. Moreover, when specialized to neutral Na clusters, the relative agreement between HMO and LSD atomization energies was less than 4%. For cation clusters, the discrepancy between LSD atomization energies and the Hückel values, modified by the addition of a classical charge term, was (on average) only 2%. Hückel ionization potentials (IP's) give a good fit to the measured IP's for both Na and K clusters, reproducing both the observed odd < even alternation in this parameter and the average, or classical, decrease towards the bulk work function.

Recently, two groups have made extensive electron affinity (EA) measurements on copper clusters. These data show an odd > even alternation superimposed on a gradual increase towards the bulk work function. In this paper, we present simple Hückel calculations for alkali-like anion clusters M_n^-. As in the earlier analysis of M_n and M_n^+, we determine the most stable anion structures amongst all possible Hückel bonding arrangements. Cluster atomization energies are computed by combining HMO binding energies with a classical charge-correlation term similar to that introduced in Ref. 2. Using these energies plus the neutral cluster results of Ref. 3, the Hückel model gives electron affinities which reproduce quite well the experimental data for Cu$_2$-Cu$_8$.

II. CLUSTER ANIONS

The HMO stability of an n atom (neutral or ionic) metal cluster is determined by the eigenvalues (ε_i) of the Hückel matrix whose elements are given by ($1 \leq i \neq j \leq n$):

\[H_{ij} = \begin{cases}
\alpha, & \text{if } i \text{ and } j \text{ are bonded} \\
-\beta, & \text{if } i \text{ is bonded to } j \\
0, & \text{otherwise}
\end{cases} \]

In Eq. (1), α and β denote the empirical Hückel Coulomb and resonance integrals, respectively.

For the anionic clusters of interest here, the binding energy of a particular bonding arrangement is

\[E^-(n) = (n + 1)\alpha + \sum \varepsilon_i \]

where the summations extend over all occupied ($n_i = 2$) or partially occupied ($n_i = 1$) molecular orbitals. It is most convenient to choose energy units for which $\alpha = 0$ and $\beta = 1$. As in two previous studies,\(^1,^2\) we term these "Hückel units", abbreviated to hu.

In order to determine relative HMO stabilities, it is necessary to diagonalize the Hückel matrices for all the physically realizable bonding arrangements of a particular sized cluster. As described in detail in Ref. 1, this procedure is facilitated by using certain concepts from Graph Theory. Briefly, there is a 1-1 correspondence between the Hückel matrix of an n atom cluster containing q bonds and the adjacency matrix of a simple (n,q) graph. It is relatively straightforward to generate all (n,q) graphs and then to eliminate those that are isomorphic by making comparisons with "standard graphs" stored in the form of their incidence matrices. The validity of this procedure can be checked by Polya's
Enumeration Theorem, which can predict the number of distinct and also connected \((n,q)\) graphs. The graphs may be arranged in order of decreasing stability, as defined by Eq.(2), eliminating those for which no hard sphere packing arrangement exists. In order to accomplish this last step, it was mathematically convenient (and physically plausible) to require a maximum separation between all non-bonded atoms.

Figure 1 shows the structures found for the most stable anions, \(M_3^-\) - \(M_9^-\). The corresponding binding energies are given in column 3 of Table 1. While the geometries of \(M_4^-\) and \(M_7^-\) are the same as those found for the neutral (and cation) tetramer and heptamer,\(^1\) this is not the case for the remaining anions. Thus, linear \(M_5^-\) is 0.8 hu more stable than the \(D_{3h}\) arrangement favoured by the neutral and cationic species. It is interesting to note that SCF–CI calculations on \(Li_3\)\(^{18}\) and \(Ag_3\)\(^{19}\) also find that the anion geometry is \(D_{\infty h}\). Two isoergic structures were found for \(M_5^-\). One of these, the square pyramid as shown in Fig.1c, is (by 0.2 hu) the second most stable HMO neutral.\(^1\) While the "less compact" \(D_{5h}\) structure is as stable as the square pyramid for \(M_5^-\), it is 0.6 hu less stable for neutral \(M_5\). The most stable \(M_6^-\) structure, Fig.1d, has very low symmetry and is best described as a capped, distorted square pyramid. The second (by only 0.02 hu) most stable \(M_6^-\) is much more compact. The structure shown in Fig.1e may be derived from \(M_7^-\) (Fig.1f) by removing one ring atom. The most stable \(M_8^-\) cluster is very similar to that found for neutral \(M_8\).\(^1\) The Fig.1g structure differs from that of Ref.1 by the breaking of a single bond, which lowers the anion energy by 0.1 hu but raises that of the neutral octamer by 0.4 hu.

Aside from \(M_3^-\) (we exclude the dimer), there have been no \textit{ab-initio} calculations on the Group IA and IB cluster anions. The stabilities of a few selected structures for silver cluster anions up to about \(Ag_{20}^-\) have been explored by semi-empirical methods, mainly as an aid to interpreting electron affinity and ionization potential data.\(^{21,22}\) To our knowledge, the HMO results presented here represent the first comprehensive attempt to understand the structures of small anion clusters.
III. ELECTRON AFFINITIES

The thermodynamic EA of a cluster is given by

\[EA(n) = EA(1) + \Delta E^-(n) - \Delta E^0(n) \]

(3)

where \(\Delta E^0(n) \) and \(\Delta E^-(n) \) are the atomization energies of the neutral and anion cluster, respectively. The neutral cluster atomization energy is the endoergicity for

\[M_n = nM \]

(4)

and, in the HMO model, is numerically equal to the neutral cluster binding energy, \(E^0(n) \) in hu. Table I gives \(E^0(n) \) obtained from Ref. 1. Table I also gives \(\Delta E^0(n) \) for copper clusters. These data pertain to \(\langle \beta \rangle = 1.06 \pm 0.07 \) eV, which is an average obtained from the experimental cohesive energy of the bulk plus the dimer and trimer atomization energies. 25

The anion atomization energy is the energy change for the process

\[M_n^- = (n-1)M + M^- \]

(5)

and this is composed of a bond breaking term, numerically equal to \(E^-(n) \) expressed in hu, plus an electrostatic term, \(\xi^-(n) \). The latter represents the change in self-energy arising from the relocalization of negative charge implied in Eq. (5). Similarly to the previously discussed cation example, we write \(\xi^-(n) \) as

\[\xi^-(n) = \frac{5}{8} e^2 \{ 1/r_1 - 1/r_n \} \]

(6)

where \(e \) is the electron charge and \(r_n \) is the radius of an \(n \) atom anion cluster. In terms of an atomic radius, here taken to be the Wigner-Seitz radius \(r_s \),

\[r_n = r_s (n^{1/3} + \varepsilon) \]

(7)
where ε^- is a "charge spillout" parameter $^2, ^{17}$ for anions. We adopt $\varepsilon^- = 1$, which is in agreement with the atom–bulk interpolation discussed in the next paragraph. The choice $\varepsilon^- = 1$ is also in accord with the expected relative (compared to the neutral and cation) diffusiveness of an anion cluster, but is somewhat larger than that used in Ref.17.

The numerical factor of $5/8$ in Eq. (6) is chosen to give agreement with the expression for the EA of a classical, conducting drop $^{26, 27}$

\[
EA(n) = W(\infty) - \frac{5}{8} e^2 / r_n
\]

where $W(\infty)$ is the work function of the bulk metal.28 The correspondence between these two viewpoints may be seen as follows. For a "classical cluster", the bond energies of the neutral and anion species are identical, so that

\[
EA(n) = EA(1) + \xi^-(n)
\]

For this situation, Eq. (6) together with the identity $EA(\infty) = W(\infty)$, leads directly to Eq.(8). For $\varepsilon^- = 1$, Eqs. (7) and (8) imply

\[
W(\infty) - EA(1) = \frac{5e^2}{16r_s}
\]

Table II makes a comparison between $W(\infty) - EA(1)$ and $5e^2/16r_s$ for both the Group IA and Group IB elements.29 Except for Li, the average deviation between these two parameters is less than 5%.

As in the case of M_n^+, we use modified simple Hückel atomization energies for the anions. These employ the HMO energies, column 2 of Table I, plus the charge-correlation term, Eq. (6) with $r_n = r_s(n^{1/3} + 1)$. Column 5 of Table I gives $\Delta E^-(n)/n$ for Cu$_n^-$ assuming $\beta = 1.06$ eV and $r_s = 1.41$ Å.24 The HMO results for Cu$_2^-$ and Cu$_3^-$ (0.72 eV and 1.20 eV, respectively) are about 10-15% smaller than the corresponding experimental data, namely
0.79 (3) eV and 1.4 (12) eV, from Ref. 17. Table I also gives Hückel electron affinities obtained from Eq. (1) using $EA(1) = 1.24$ eV. The HMO electron affinities are compared with the corresponding experimental values16,17 in Figure 2. The agreement between the two data sets is quite good. Both show an odd > even alternation in EA, superimposed on a smoothly increasing classical result.31 The occurrence of an odd-even alternation, which also appears in IP data, has a straightforward explanation.16,17,21,22 Roughly speaking, an even numbered neutral cluster possesses a set of filled bonding orbitals plus an equal number of empty antibonding (AB) orbitals. The IP of such a cluster is (again, roughly speaking) the energy of the highest bonding orbital. Odd n clusters possess an additional, half filled nonbonding (NB) orbital, lying in between the bonding and AB manifolds. The lower energy of this orbital gives rise to the low IP of an odd atom neutral cluster. For anions, the lowest energy AB orbital is partially filled for n even, but is empty for n odd. As a consequence, the anion IP's are, in general, lower for even numbered cluster sizes. That there is a reasonable correspondence between this simple orbital picture and the more realistic HMO results is evident from the orbital diagram, Fig. 2 of Ref. 2.

IV. DISCUSSION

Within the framework of the HMO model, at least, there is a tendency for anion clusters to adopt structures which are somewhat less compact20 than those found for the neutrals. One possible cause for this behaviour is the additional kinetic energy (KE) associated with the extra electron of the anions. A close packing arrangement minimizes the potential energy (PE) of a cluster by maximizing the number of bonds between atoms. For rare gas clusters, in which the electrons are confined to the atomic cores, this interaction is dominant and so the most compact arrangement of atoms is generally predicted to be the most stable one.32 The stability of a metal cluster is determined not only by the pairwise potential interaction between nearest neighbor atoms, but also by the KE of the valence electrons which are delocalized over the molecular framework. In the HMO model, there is a strong correspondence between the energy (E_{15}, in hu) of the lowest
1s-molecular orbital and \(<q>\), the average number of bonds (i.e. nearest neighbours) per atom in the cluster. Table III shows some representative examples. Included in this Table are the most stable neutral cluster structures found by HMO calculations in Ref.1, plus some additional geometries (D_{inh}, T_d for \(n = 3\) and \(4\); C_{4v} and D_{5h} for \(n = 5\); which compare differing packing arrangements and dimensionalities. For the data of Table II the average difference between \(E_{1s}\) and \(<q>\) is only 2%.

A similar correspondence pertains to macroscopic samples.\(^2\)\(^2\)\(^4\) The 1s level in HMO theory correlates with the \(k = 0\) position (\(k = \text{wavevector}\)) of a metal in the bulk limit.\(^2\) In the tight binding model, which is the macroscopic counterpart of Hückel theory, the electronic energy of a metal may be expanded near \(k = 0\) to give a PE term plus a KE term.\(^2\)\(^4\) The latter is the same as the energy expression obtained from the Fermi gas model for free electrons. The PE (in hu) is numerically identical to the number (6, 8 or 12) of nearest neighbours in a (simple, body centered or face centered) cubic lattice.

Thus for an HMO cluster, the total energy may be considered to be approximately partitioned into two competing components: a negative potential contribution, nearly equal in magnitude to the energy of the 1s level, and a positive KE associated with the delocalized valence electrons. This implies that any stabilization of less compact structures originates in a reduction of the electronic KE, suggesting that more compact structures confine the valence electrons to a smaller volume. This should give rise to larger KE’s which would be of relatively greater importance for negatively charged clusters. A similar competition might explain why, for the neutral tetramer and pentamer, the less compact planar structures are predicted \(^2\)-\(^6\) to be more stable than the three-dimensional arrangements favored by rare gas clusters.

It is straightforward to compute packing fractions for differing, but regular, arrangements of atoms in a macroscopic sample.\(^4\) For a cluster composed of hard sphere (eg. argon) atoms, then the volume occupied by the electrons is independent of structure. For the case of alkali-like atoms, however, the valence electrons presumably occupy a
volume defined by the shape and bonding arrangement of the individual cluster. This volume was estimated using a soft sphere model. Each atom was assigned a unit charge occupying a spherical volume larger than the hard sphere volume which determines nearest neighbour distances. The soft sphere radius was chosen as the distance where the electron density for an atomic (for example Na) Slater orbital has fallen to about 90% (say) of its maximum value. The total size of a particular arrangement of \(n \) atoms is the volume enclosed by \(n \) overlapping soft spheres, and this may be estimated by Monte Carlo integration.

Some pertinent soft sphere cluster volumes are given in column 5 of Table III. The data pertain to neutral Na clusters, with estimated errors (1 standard deviation uncertainty) given in parentheses and a total of 50,000 integration points except for \(n = 2-5 \) for which \(10^6 \) points were employed. Cluster volumes are displayed as total volumes, \(V(n) \), divided by the volume of \(n \) individual atoms. For \(n = 6-9 \), the data correspond to the most stable HMO neutral structures (point group given in column 2) as discussed in Ref. 1. The data for \(n = 3, 4 \) and \(5 \) compare the soft sphere volumes of clusters having different degrees of compactness. Thus the \(D_{3h} \) trimer has an approximately 4% smaller volume than the linear \(D_{\infty h} \) arrangement. Similarly, the three-dimensional tetrahedral cluster is approximately 2.5% smaller in total volume than the planar (but more stable \(2-6 \)) rhombus. The variation amongst pentamer structures is somewhat greater. The pentagonal arrangement is 5% larger than the most stable \(2-6 \) neutral (\(C_{2v} \) point group), and 7.5% larger than the three-dimensional square pyramid (\(C_{4v} \) point group).

While small, these differences in soft sphere volumes are both statistically and physically significant. The volume of an \(n \) atom cluster is proportional to its classical polarizability, \(\alpha(n) \), implying

\[
\frac{\alpha(n)}{n\alpha(1)} = \frac{V(n)}{nV(1)} \quad (11)
\]
Figure 3 compares soft sphere $V(n)/nV(1)$ data from Table III with the experimental polarizabilities for Na$_2$ - Na$_9$. The experimental polarizabilities decrease slowly to a bulk value of $\alpha(n)/n\alpha(1) \sim 0.4 - 0.5$, but oscillate about the soft sphere average particularly at small n. These oscillations arise from quantum effects and have been partially accounted for by jellium calculations. The soft sphere model does not (of course) include quantum effects and the slight discontinuity at $n \sim 6$ is a manifestation of the transition from two-dimensional to three-dimensional geometries.

Also shown in Fig.3 is a cruder classical approximation:

$$\frac{\alpha(n)}{n\alpha(1)} = \frac{(n^{1/3} + e_0)^3}{n(1 + e_0)^3}$$

Eq. (12) assumes that the cluster is a spherical classical drop whose radius is related to an atomic radius (r_o) by

$$r = r_o (n^{1/3} + e_0)$$

This expression is similar to Eq. (7), but here e_0 is the "charge spillout" parameter appropriate to a neutral cluster. The classical drop curve shown in Fig. 3 pertains to $e_0 = 0.23$, which was obtained by fitting all the polarizability data ($n = 2 - 40$) in Ref. 36. The agreement between the two classical results is surprisingly good, especially in view of the differing and independent parameterizations for each model and so lends additional authority to the classical drop model invoked in this work and elsewhere.

In conclusion, we have determined the most stable HMO structures for the alkali-like metal cluster anions, M$_3^-$ - M$_9^-$. The HMO geometries are somewhat less "compact" than those of the neutral and cation clusters, and it is suggested that this may be related to the additional electronic KE of the anions. The cluster compactness is quantified not only by bond enumeration, but also through an estimation of soft sphere volumes, the latter
being directly related to cluster polarizabilities. The Hückel model gives electron affinities which compare favorably with the experimental results for Cu$_2$ - Cu$_8$.

ACKNOWLEDGMENTS

One of us (DML) acknowledges the support of this work by the National Science Foundation under Grants No. CHE 83-07164 and RII 83-05241 and by The City University of New York PSC-BHE Faculty Research Award Program. This work was supported in part by the CRS Program, The City College. TFG acknowledges research support by the Office of Naval Research and the Air Force Office of Scientific Research (AFSC), United States Air Force, under Contract No. F49620-86-C-0009. The United States Government is authorized to reproduce and distribute reprints notwithstanding any copyright notation hereon.
REFERENCES

20. One measure of a structure's compactness is the total number of bonds \(q \). Thus, for example, the \(C_4V \) geometry for \(M_5 \) with \(q = 8 \) is significantly more compact than the \(D_{5h} \) arrangement for which \(q = 5 \). A three-dimensional model provides a less objective but more enlightening gauge of compactness. We have found a balloon containing ping-pong balls to be particularly helpful in visualizing cluster shapes. In Section IV, we relate cluster compactness to cluster volume.

23. The molecular \(\beta \) values (0.98 eV and 1.01 eV) were obtained by dividing the measured dimer and trimer atomization energies, 1.97 ± 0.06 eV and 3.05 ± 0.13 eV respectively (see Ref. 25), by the corresponding Hückel values. The bulk parameter (\(\beta = 1.16 \) eV) pertains to the experimental cohesive energy (Ref. 24) divided by the HMO value (see Ref. 2) of 3.00\(\beta \). A similar analysis gives \(\langle \beta \rangle = 0.89 \pm 0.06 \) eV for Ag, and \(\langle \beta \rangle = 1.23 \pm 0.06 \) for Au.

29. In Ref. 2 we showed a similar correspondence between \(W(-) - W(1) \) and \(3e^2/8r_g \) for the alkali metals. For the Group IB elements, however, these two parameters can differ by as much as 20%.

31. Since \(|E^- (n)| \leq |E^0(n)| \) for \(n = 2 - 8 \), the HMO electron affinities all fall below or on a classical curve defined by Eq.(9). The classical IP, by contrast, is more nearly a smooth parameterization of the HMO data (see Ref. 2).

33. In practice we chose a soft sphere radius, $r_c = 0.75$ in units of the nearest-neighbour distance. If the latter is taken to be twice the Wigner-Seitz radius, then for Li \rightarrow Cs the Slater orbital electron density at $r_c = 0.75$ is approximately 10 - 15% of its maximum value.

TABLE I. Hückel binding energies, atomization energies and electron affinities. Data in eV pertain to Cu, using β = 1.06(7) eV (see text). Neutral cluster energies from Ref.1.

<table>
<thead>
<tr>
<th>n</th>
<th>$E^0(n)$</th>
<th>$E^-(n)$</th>
<th>$\Delta E^0(n)/n$</th>
<th>$\Delta E^-(n)/n$</th>
<th>$EA(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.00</td>
<td>0.00</td>
<td>1.24</td>
</tr>
<tr>
<td>2</td>
<td>-2.0000</td>
<td>-1.0000</td>
<td>1.06</td>
<td>0.72</td>
<td>0.56</td>
</tr>
<tr>
<td>3</td>
<td>-3.0000</td>
<td>-2.8284</td>
<td>1.06</td>
<td>1.20</td>
<td>1.65</td>
</tr>
<tr>
<td>4</td>
<td>-5.1231</td>
<td>-4.1231</td>
<td>1.36</td>
<td>1.28</td>
<td>0.93</td>
</tr>
<tr>
<td>5</td>
<td>-6.6443</td>
<td>-6.4721</td>
<td>1.41</td>
<td>1.54</td>
<td>1.91</td>
</tr>
<tr>
<td>6</td>
<td>-9.3711</td>
<td>-8.2005</td>
<td>1.66</td>
<td>1.61</td>
<td>0.95</td>
</tr>
<tr>
<td>7</td>
<td>-11.1054</td>
<td>-11.1054</td>
<td>1.68</td>
<td>1.83</td>
<td>2.26</td>
</tr>
<tr>
<td>8</td>
<td>-14.1604</td>
<td>-12.7268</td>
<td>1.88</td>
<td>1.82</td>
<td>0.82</td>
</tr>
</tbody>
</table>
TABLE II. Atomic electron affinities, $EA(1)$, bulk work functions, $W(\infty)$, and Wigner-Seitz radii (r_s, in Å) for the Group IA and IB metals. Columns 5 and 6 compare $W(\infty) - EA(1)$ with $5e^2/16r_s$. Energy units are eV.

<table>
<thead>
<tr>
<th></th>
<th>$EA(1)$</th>
<th>$W(\infty)$</th>
<th>r_s</th>
<th>$W(\infty) - EA(1)$</th>
<th>$4.5/r_s$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>0.62</td>
<td>2.32</td>
<td>1.72</td>
<td>1.70</td>
<td>2.62</td>
</tr>
<tr>
<td>Na</td>
<td>0.55</td>
<td>2.75</td>
<td>2.08</td>
<td>2.20</td>
<td>2.16</td>
</tr>
<tr>
<td>K</td>
<td>0.50</td>
<td>2.30</td>
<td>2.57</td>
<td>1.80</td>
<td>1.75</td>
</tr>
<tr>
<td>Rb</td>
<td>0.49</td>
<td>2.09</td>
<td>2.75</td>
<td>1.60</td>
<td>1.64</td>
</tr>
<tr>
<td>Cs</td>
<td>0.47</td>
<td>2.14</td>
<td>2.98</td>
<td>1.67</td>
<td>1.51</td>
</tr>
<tr>
<td>Cu</td>
<td>1.24</td>
<td>4.65</td>
<td>1.41</td>
<td>3.41</td>
<td>3.19</td>
</tr>
<tr>
<td>Ag</td>
<td>1.30</td>
<td>4.26</td>
<td>1.60</td>
<td>2.96</td>
<td>2.81</td>
</tr>
<tr>
<td>Au</td>
<td>2.31</td>
<td>5.1</td>
<td>1.59</td>
<td>2.8</td>
<td>2.83</td>
</tr>
</tbody>
</table>

* From Ref. 30.
* From Ref. 28.
* From Ref. 24.
TABLE III. Comparison of the average number of bonds/atom \(<q>\) with the lowest Hückel orbital energy (\(E_{1s}\) in \(\text{hu}\)), and of soft sphere volume polarizabilities \(V(n)\) with the experimental \(\alpha(n)\) for \(\text{Na}_n\).

| \(n\) | Point Group | \(<q>\) \(^a\) | \(|E_{1s}|\) | \(V(n)/nV(1)\) \(^b\) | \(\alpha(n)/n\alpha(1)\) \(^c\) |
|------|-------------|----------------|-------------|----------------|----------------|
| 2 | \(D_{\infty h}\) | 1.00 | 1.00 | 0.920 | 0.800 |
| 3 | \(D_{3h}\) | 2.00 | 2.00 | 0.862 | 0.980 |
| 3 | \(D_{\infty h}\) | 1.33 | 1.41 | 0.896 | |
| 4 | \(T_d\) | 3.00 | 3.00 | 0.814 | |
| 4 | \(D_{2h}\) | 2.50 | 2.56 | 0.835 | 0.856 |
| 5 | \(C_{d\infty v}\) | 3.20 | 3.24 | 0.798 | |
| 5 | \(C_{2v}\) | 2.80 | 2.94 | 0.819 | 0.907 |
| 5 | \(D_{5h}\) | 2.00 | 2.00 | 0.859 | |
| 6 | \(C_{5v}\) | 3.33 | 3.45 | 0.781 | 0.857 |
| 7 | \(D_{5h}\) | 4.29 | 4.32 | 0.742 | 0.723 |
| 8 | \(D_{2d}\) | 4.50 | 4.54 | 0.726 | 0.687 |
| 9 | \(D_{3h}\) | 4.67 | 4.70 | 0.717 | 0.738 |

\(^a\) From Ref. 1.
\(^b\) Estimated error \(\pm 0.003\) for \(n = 2 - 5\); \(\pm 0.013\) for \(n = 6 - 9\).
\(^c\) From Ref. 36.
FIGURE CAPTIONS

Fig. 1. Geometries for the most stable HMO clusters, M_3^- - M_8^-.

Fig. 2. Comparision of Hückel and experimental electron affinities for Cu^- - Cu_8^-. Open circles pertain to this work. Triangles and full circles are EA data from Refs.16 and 17, respectively.

Fig. 3. Comparison of experimental polarizabilities (Na data from Ref. 36) with soft sphere (see text) and classical drop approximations.
(a) M_3^-

(b) M_4^-

(c) ISOERGIC M_5^- STRUCTURES

(d) M_6^- (FIRST)

(e) M_6^- (SECOND)

(f) M_7^-

(g) M_8^-

FIG. 1
TECHNICAL REPORT DISTRIBUTION LIST, GEN

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research</td>
<td>2</td>
</tr>
<tr>
<td>Attn: Code 1113</td>
<td></td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia 22217-5000</td>
<td></td>
</tr>
<tr>
<td>Dr. Bernard Douda</td>
<td>1</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td></td>
</tr>
<tr>
<td>Code 50C</td>
<td></td>
</tr>
<tr>
<td>Crane, Indiana 47522-5050</td>
<td></td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko, Code LS2</td>
<td></td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td></td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>12</td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td></td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td></td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. H. Singerman</td>
<td></td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td></td>
</tr>
<tr>
<td>Dr. William Tolles</td>
<td>1</td>
</tr>
<tr>
<td>Superintendent</td>
<td></td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td></td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20375-5000</td>
<td></td>
</tr>
<tr>
<td>Dr. David Young</td>
<td>1</td>
</tr>
<tr>
<td>Code 334</td>
<td></td>
</tr>
<tr>
<td>NORDA</td>
<td></td>
</tr>
<tr>
<td>NSTL, Mississippi 39529</td>
<td></td>
</tr>
<tr>
<td>Naval Weapons Center</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. Ron Atkins</td>
<td></td>
</tr>
<tr>
<td>Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>China Lake, California 93555</td>
<td></td>
</tr>
<tr>
<td>Scientific Advisor</td>
<td>1</td>
</tr>
<tr>
<td>Commandant of the Marine Corps</td>
<td></td>
</tr>
<tr>
<td>Code RD-1</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20380</td>
<td></td>
</tr>
<tr>
<td>U.S. Army Research Office</td>
<td>1</td>
</tr>
<tr>
<td>Attn: CRD-AA-IP</td>
<td></td>
</tr>
<tr>
<td>P.O. Box 12211</td>
<td></td>
</tr>
<tr>
<td>Research Triangle Park, NC 27709</td>
<td></td>
</tr>
<tr>
<td>Mr. John Boyle</td>
<td>1</td>
</tr>
<tr>
<td>Materials Branch</td>
<td></td>
</tr>
<tr>
<td>Naval Ship Engineering Center</td>
<td></td>
</tr>
<tr>
<td>Philadelphia, Pennsylvania 19112</td>
<td></td>
</tr>
<tr>
<td>Naval Ocean Systems Center</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. S. Yamamoto</td>
<td></td>
</tr>
<tr>
<td>Marine Sciences Division</td>
<td></td>
</tr>
<tr>
<td>San Diego, California 91232</td>
<td></td>
</tr>
<tr>
<td>Dr. David L. Nelson</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>800 North Quincy Street</td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Address</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Dr. J. E. Jensen</td>
<td>Hughes Research Laboratory, 3011 Malibu Canyon Road, Malibu, California 90265</td>
</tr>
<tr>
<td>Dr. J. H. Weaver</td>
<td>Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455</td>
</tr>
<tr>
<td>Dr. A. Reisman</td>
<td>Microelectronics Center of North Carolina Research Triangle Park, North Carolina 27709</td>
</tr>
<tr>
<td>Dr. M. Grunze</td>
<td>Laboratory for Surface Science and Technology, University of Maine, Orono, Maine 04469</td>
</tr>
<tr>
<td>Dr. J. Butler</td>
<td>Naval Research Laboratory, Code 6115, Washington D.C. 20375-5000</td>
</tr>
<tr>
<td>Dr. L. Interante</td>
<td>Chemistry Department, Rensselaer Polytechnic Institute, Troy, New York 12181</td>
</tr>
<tr>
<td>Dr. Irvin Heard</td>
<td>Chemistry and Physics Department, Lincoln University, Lincoln University, Pennsylvania 19352</td>
</tr>
<tr>
<td>Dr. K.J. Klaubunde</td>
<td>Department of Chemistry, Kansas State University, Manhattan, Kansas 66506</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. C. B. Harris</td>
<td>Department of Chemistry, University of California, Berkeley, California 94720</td>
</tr>
<tr>
<td>Dr. F. Kutzler</td>
<td>Department of Chemistry, Box 5055, Tennessee Technological University, Cookeville, Tennessee 38501</td>
</tr>
<tr>
<td>Dr. D. DiLeiia</td>
<td>Chemistry Department, George Washington University, Washington D.C. 20052</td>
</tr>
<tr>
<td>Dr. R. Reeves</td>
<td>Chemistry Department, Rensselaer Polytechnic Institute, Troy, New York 12181</td>
</tr>
<tr>
<td>Dr. Steven M. George</td>
<td>Stanford University, Department of Chemistry, Stanford, CA 94305</td>
</tr>
<tr>
<td>Dr. Mark Johnson</td>
<td>Yale University, Department of Chemistry, New Haven, CT 06511-8118</td>
</tr>
<tr>
<td>Dr. W. Knauer</td>
<td>Hughes Research Laboratory, 3011 Malibu Canyon Road, Malibu, California 90265</td>
</tr>
</tbody>
</table>
Cr. G. A. Somorjai
Department of Chemistry
University of California
Berkeley, California 94720

Dr. J. Murday
Naval Research Laboratory
Code 6170
Washington, D.C. 20375-5000

Dr. J. B. Hudson
Materials Division
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Theodore E. Madey
Surface Chemistry Section
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234

Dr. J. E. Demuth
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. M. G. Lagally
Department of Metallurgical and Mining Engineering
University of Wisconsin
Madison, Wisconsin 53706

Dr. R. P. Van Duyne
Chemistry Department
Northwestern University
Evanston, Illinois 60637

Dr. J. M. White
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. O. E. Harrison
Department of Physics
Naval Postgraduate School
Monterey, California 93940

Dr. R. L. Park
Director, Center of Materials Research
University of Maryland
College Park, Maryland 20742

Dr. W. T. Perla
Electrical Engineering Department
University of Minnesota
Minneapolis, Minnesota 55455

Dr. Keith H. Johnson
Department of Metallurgy and Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. S. Sibener
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Arnold Green
Quantum Surface Dynamics Branch
Code 3817
Naval Weapons Center
China Lake, California 93555

Dr. A. Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02912

Dr. S. L. Bernasot
Department of Chemistry
Princeton University
Princeton, New Jersey 08544

Dr. W. Kohn
Department of Physics
University of California, San Diego
La Jolla, California 92037
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. R. G. Wallis
Department of Physics
University of California
Irvine, California 92664

Dr. J. T. Kelser
Department of Chemistry
University of Richmond
Richmond, Virginia 23173

Dr. D. Ramaker
Chemistry Department
George Washington University
Washington, D.C. 20052

Dr. R. W. Plummer
Department of Physics
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. J. C. Hemminger
Chemistry Department
University of California
Irvine, California 92717

Dr. E. Yeager
Chemistry Department
Case Western Reserve University
Cleveland, Ohio 44106

Dr. T. F. George
Chemistry Department
University of Rochester
Rochester, New York 14627

Dr. N. Winograd
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Dr. G. Rubloff
IBM
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. Roald Hoffmann
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. Horia Metiu
Chemistry Department
University of California
Santa Barbara, California 93106

Dr. A. Steckl
Department of Electrical and
Systems Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. W. Goddard
Department of Chemistry and Chemical
Engineering
California Institute of Technology
Pasadena, California 91125

Dr. G. H. Morrison
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. P. Hansma
Department of Physics
University of California
Santa Barbara, California 93106

Dr. J. Baldeschwieler
Department of Chemistry and
Chemical Engineering
California Institute of Technology
Pasadena, California 91125