NEW AND IMPROVED TESTS FOR ADHESION(U) AKRON UNIV OH
INST OF POLYMER SCIENCE A N GENT MAY 87 TR-9
N00014-85-K-0222
UNCLASSIFIED
OFFICE OF NAVAL RESEARCH
Contract N00014-85-K-0222
Project NR 092-555

Technical Report No. 9

NEW AND IMPROVED TESTS FOR ADHESION

by

A. N. Gent

Institute of Polymer Science
The University of Akron
 Akron, Ohio 44325

May, 1987

Reproduction in whole or in part is permitted for
any purpose of the United States Government
Approved for Public Release; Distribution Unrestricted
Three methods are discussed for measuring the work ΔW required to break a bond: Outwater's double-torsion test for long plates, bonded together; a pull-off test for an elastic strip adhering to a rigid surface; and a "blister" test for an adhering elastic layer. The pull-off force F...
or blow-off pressure P is given by: F_3^4 (or P_4^4) $K G_3^3$ where K is the tensile stiffness of the detaching layer. This unusual dependence arises from the non-linear (cubic) relation between force or pressure and pull-off angle Θ or blister height y. However, the products F_3 and P_3 give direct measures of G_3, independent of stiffness and the extent of detachment.
NEW AND IMPROVED TESTS FOR ADHESION

A N Gent

SUMMARY

Three methods are discussed for measuring the work \(G_a \) required to break a bond: Outwater's double-torsion test for long plates, bonded together; a pull-off test for an elastic strip adhering to a rigid surface; and a "blister" test for an adhering elastic layer. The pull-off force \(F \) or blow-off pressure \(P \) is given by:

\[
F = K G_a^3
\]

(or similar equation involving \(P \))

where \(K \) is the tensile stiffness of the detaching layer. This unusual dependence arises from the non-linear (cubic) relation between force or pressure and pull-off angle \(\phi \) or blister height \(y \). However, the products \(F \phi \) and \(Py \) give direct measures of \(G_a \), independent of stiffness and the extent of detachment.

INTRODUCTION

Ideally, a test method for adhesion should have the following features. First, it should employ simple specimens. Secondly, the failure force should remain constant, at least in principle, while the line of detachment is driven forwards over long distances, so that the average strength of adhesion can be readily determined. And, finally, the fracture energy \(G_a \) should be obtained directly in terms of the specimen dimensions, its stiffness during loading and the critical load at which the process of detachment takes place. No other measurements are needed then to determine the energy \(G_a \) of separation per unit of bonded area.

Three such test methods are reviewed here. The first is particularly suitable for relatively stiff adhesives and adherends while the other two can be used with materials having a wide range of stiffness.

THE OUTWATER TORSION TEST (1,2)

A sketch of a suitable bonded specimen is given in Figure 1. It consists of two long rectangular plates, bonded together along one edge. An initial crack of length \(c_0 \) is made between them. The specimen is then clamped, as shown in Figure 2, and subjected to a steadily increasing angular rotation \(\phi \) of one arm with respect to the other. The corresponding torque \(M \) is measured by means of a long rigid moment arm, as shown in Figure 2.
At a critical value of the applied torque, denoted M_c, the crack will advance. At this point elastic energy stored in the twisted arms of the specimen begins to be expended in fracture. Assuming that the arms are linearly-elastic in torsion and that the torsional stiffness M/γ is inversely proportional to the length c of the arms, we can deduce that the fracture energy G_a is given by

$$G_a = \frac{M_c^2}{2} \kappa t$$... (1)

where

$$\kappa = \frac{M_c}{\gamma}$$.. (2)

k denotes the torsional stiffness of the specimen for a crack of unit length and t is the thickness of the specimen. The value of κ can be obtained from the experimental relation between torque M and rotation γ up to the onset of fracture, Figure 3, and the mean value of M_c can be measured thereafter, over long distances for long test pieces. Thus, the mean fracture energy G_a can be measured with some confidence, using a single specimen of simple design.

PULL-OFF TEST FOR ADHERING STRIPS (3)

This simple test arrangement is shown in Figure 4. An adhesive strip of width w is pulled away from a rigid substrate at an angle ϕ by a force F. Work is done both in stretching the strip as it detaches and in fracturing the interfacial bond. Assuming that the strip is linearly-elastic and the angle ϕ is small, the relation between F and ϕ is as follows:

$$F = K\phi^3$$.. (3)

where K is the tensile stiffness coefficient of the strip (force per unit of tensile strain). In terms of the fracture energy G_a (3),

$$wG_a = \frac{3}{8} (F^4/K)^{1/3}$$... (4)

Thus, if measurements of the pull-off force F only are made, an independent measurement of the stiffness of the strip is required in order to determine the strength of adhesion. However, a simple relation is obtained in terms of the product of the force F and detachment angle ϕ, both of which remain constant, at least in principle, during continued detachment (3):

$$G_a = 3 \frac{F\phi}{8w}$$.. (5)

Thus, the mean value of the fracture energy can be obtained from simple measurements on a single specimen.

Values of the product $F\phi/w$ are shown in Figure 5 for an adhesive tape detaching from glass and Teflon substrates. A number N of layers were adhered one on top of another to give a composite tape having N times the stiffness of a single layer, but the same level of adhesion. Correspondingly, the pull-off force F was greater and the angle ϕ was smaller than for a single layer. But the
product F was quite independent of N, as the theory predicts. It thus provides a measure of the strength of adhesion G_a, independent of the stiffness of the tape. (G_a is, of course, different for the different substrates, as would be expected.)

BLOW-OFF ("BLISTER") TEST FOR ADHERING LAYERS (4-7)

This test, shown schematically in Figure 6, was proposed by Dannenberg (4) and applied by Williams (5) and Andrews and Stevenson (6) to the study of adhesion. But the latter authors focussed on the bending deformation of a relatively thick layer, with a blister of relatively small radius a underneath it. When the blister is large in radius, and the layer is relatively thin, then the principal deformation is a biaxial stretching of the layer, rather than bending. In this case the relation between inflating pressure P and height y of the center of the blister is given by

$$P = 4.75 K' y^3 / a^4$$.. (6)

for small degrees of inflation of the layer, again assumed to be linearly-elastic, where K' denotes the tensile stiffness coefficient for a strip of unit width; $K' = E t$, where E is the effective tensile (Young's) modulus and t is the layer thickness.

At a critical pressure the blister will grow in size by further detachment. By considering an energy balance, in which the work of inflation is expended partly in stretching a larger portion of the layer and partly in detaching it, we deduce that (7)

$$G_a = 0.39 (P^4 a^4 / K')^{1/3}$$.. (7)

or

$$G_a = 0.65 Py.$$... (8)

Although in this case the pressure required to cause detachment does not stay constant as the blister increases in radius, but decreases continuously, nevertheless the product of the momentary pressure P and corresponding blister height y gives a direct measure of the characteristic fracture energy G_a for the adhesive bond.

Measured values of P and y are shown in Figure 7 for a layer of a polypropylene-backed packing tape adhering to a Plexiglas substrate, with an initially debonded circular patch of radius $a = 25$ mm. On inflation, the pressure increased in proportion to y^3, in agreement with equation 6, until further debonding started at the edge of the initial circular debond. Thereafter, as the blister propagated, the pressure decreased in inverse proportion to the blister height y, in accordance with equation 8.

Thus, even though the blow-off pressure is not constant, it can be employed with the corresponding blister height to obtain mean values of the strength of adhesion over large areas of the interface. And no other parameters are required.
LIMITATIONS

The first method discussed above, involving the torsion of rectangular plates, is only applicable to materials which deform elastically up to the debonding stress. They must not undergo plastic yielding or flow. Also, they must not be so soft that the plates would twist through angles greater than 180° before detaching.

The other methods require, at least for the simple relations given in equations 5 and 8 to hold, that the imposed deflections be small. In practice, this restriction is not a severe one. Values of pull-off angle of up to 25°, and blister height approaching the magnitude of the blister radius, yield results in good agreement with the theoretical relations based on the assumption that the deflections are small (3, 7). But, again, plastic yielding or flow of the adhering strip or layer would invalidate the analyses, which require linear relations to hold between stress and strain. Small departures from linearity seem to be acceptable, however, yielding results for G_a that are approximately correct. And it is noteworthy that reversibility of the stress-strain relations is not required at all, because the deformations remain constant or increase as debonding proceeds.

ACKNOWLEDGEMENTS

This work forms part of a program of adhesion research at The University of Akron supported by the Adhesive and Sealant Council and the Office of Naval Research (Contract N00014-85-K-0222). It was first presented at the International Meeting of The Adhesion Society, held at Williamsburg, Virginia, February 22-27, 1987, and will be published in the Journal of Adhesion as part of the proceedings of that meeting.

REFERENCES

1 Outwater J O and Gerry D J, J Adhesion 1 (1969) 290
7 Gent A N and Lewandowski L, J Appl Polym Sci, in press
Figure 1 Sketch of specimen for double-torsion test

Figure 2 Method of applying large rotations and measuring the corresponding torque

Figure 3 Relation between applied torque M and pulley rotation θ
Figure 4 Pull-off test for an adhering strip

Figure 5 Product of pull-off force F and angle θ vs the number N of layers of an adhesive tape pulled off together. \circ, from glass; \bullet, from Teflon
Figure 6 Blister test for an adhering layer

Figure 7 Blow-off pressure P vs height y of the blister for a polypropylene-backed packing tape. P_c denotes the pressure at which further detachment started
DISTRIBUTION LIST

Dr. R.S. Miller
Office of Naval Research
Code 432P
Arlington, VA 22217
(10 copies)

Dr. J. Pastine
Naval Sea Systems Command
Code 06R
Washington, DC 20362

Dr. Kenneth D. Hartman
Hercules Aerospace Division
Hercules Incorporated
Alleghany Ballistic Lab
P.O. Box 210
Cumberland, MD 20502

Mr. Otto K. Heiney
AFATL-DLJG
Elgin AFB, FL 32542

Dr. Merrill K. King
Atlantic Research Corp.
5390 Cherokee Avenue
Alexandria, VA 22312

Dr. R.L. Lou
Aerojet Strategic Propulsion Co.
Bldg. 05025 - Dept 5400 - MS 167
P.O. Box 15699C
Sacramento, CA 95813

Dr. R. Olsen
Aerojet Strategic Propulsion Co.
Bldg. 05025 - Dept 5400 - MS 167
P.O. Box 15699C
Sacramento, CA 95813

Dr. Randy Peters
Aerojet Strategic Propulsion Co.
Bldg. 05025 - Dept 5400 - MS 167
P.O. Box 15699C
Sacramento, CA 95813

Dr. D. Mann
U.S. Army Research Office
Engineering Division
Box 12211
Research Triangle Park, NC 27709-1221

Dr. L.V. Schmidt
Office of Naval Technology
Code 07CT
Arlington, VA 22217

JHU Applied Physics Laboratory
ATTN: CPIA (Mr. T.W. Christian)
Johns Hopkins Rd.
Laurel, MD 20707

Dr. D.C. Sayles
Ballistic Missile Defense
Advanced Technology Center
P.O. Box 1560
Huntsville, AL 35807
DISTRIBUTION LIST

Mr. R. Geisler
ATTN: DY/MS-24
AFRPL
Edwards AFB, CA 93523

Naval Air Systems Command
ATTN: Mr. Bertram P. Sobers
NAVAIR-320G
Jefferson Plaza 1, RM 472
Washington, DC 20361

R.B. Steele
Aerojet Strategic Propulsion Co.
P.O. Box 15699C
Sacramento, CA 95813

Mr. M. Stosz
Naval Surface Weapons Center
Code R108
White Oak
Silver Spring, MD 20910

Mr. E.S. Sutton
Thiokol Corporation
Elkton Division
P.O. Box 241
Elkton, MD 21921

Dr. Grant Thompson
Morton Thiokol, Inc.
Wasatch Division
MS 240 P.O. Box 524
Brigham City, UT 84302

Dr. R.S. Valentini
United Technologies Chemical Systems
P.O. Box 50015
San Jose, CA 95150-0015

Dr. R.F. Walker
Chief, Energetic Materials Division
DRSMC-LCE (D), B-3022
USA ARDC
Dover, NJ 07801

Dr. Janet Wall
Code 012
Director, Research Administration
Naval Postgraduate School
Monterey, CA 93943

Director
US Army Ballistic Research Lab.
ATTN: DRXBR-IBD
Aberdeen Proving Ground, MD 21005

Commander
US Army Missile Command
ATTN: DRSMI-RKL
Walter W. Wharton
Redstone Arsenal, AL 35898

Dr. Ingo W. May
Army Ballistic Research Lab.
ARRADCOM
Code DRXBR-1BD
Aberdeen Proving Ground, MD 21005

Dr. E. Zimet
Office of Naval Technology
Code 071
Arlington, VA 22217

Dr. Ronald L. Derr
Naval Weapons Center
Code 389
China Lake, CA 93555

T. Boggs
Naval Weapons Center
Code 389
China Lake, CA 93555

Lee C. Estabrook, P.E.
Morton Thiokol, Inc.
P.O. Box 30058
Shreveport, Louisiana 71130

Dr. J.R. West
Morton Thiokol, Inc.
P.O. Box 30058
Shreveport, Louisiana 71130

Dr. D.D. Dillehay
Morton Thiokol, Inc.
Longhorn Division
Marshall, TX 75670

C.T. Bowman
Atlantic Research Corp.
7511 Wellington Road
Gainesville, VA 22065
DISTRIBUTION LIST

R.E. Shenton
Atlantic Research Corp.
7511 Wellington Road
Gainesville, VA 22065

Mike Barnes
Atlantic Research Corp.
7511 Wellington Road
Gainesville, VA 22065

Dr. Lionel Dickinson
Naval Explosive Ordinance Disposal Tech. Center
Code D
Indian Head, MD 20340

Prof. J.T. Dickinson
Washington State University
Dept. of Physics 4
Pullman, WA 99164-2814

M.H. Miles
Dept. of Physics
Washington State University
Pullman, WA 99164-2814

Dr. T.F. Davidson
Vice President, Technical
Morton Thiokol, Inc.
Aerospace Group
3340 Airport Rd.
Ogden, UT 84405

Mr. J. Consaga
Naval Surface Weapons Center
Code R-16
Indian Head, MD 20640

Mr. R. Beauregard
Naval Sea Systems Command
SEA 64E
Washington, DC 20362

Brian Wheatley
Atlantic Research Corp.
7511 Wellington Road
Gainesville, VA 22065

Mr. G. Edwards
Naval Sea Systems Command
Code 62R32
Washington, DC 20362

C. Dickinson
Naval Surface Weapons Center
White Oak, Code R-13
Silver Spring, MD 20910

Prof. John Deutch
MIT
Department of Chemistry
Cambridge, MA 02139

Dr. E.H. deButts
Hercules Aerospace Co.
P.O. Box 27408
Salt Lake City, UT 84127

David A. Flanigan
Director, Advanced Technology
Morton Thiokol, Inc.
Aerospace Group
3340 Airport Rd.
Ogden, UT 84405

Dr. L.H. Caveny
Air Force Office of Scientific Research
Directorate of Aerospace Sciences
Bolling Air Force Base
Washington, DC 20332

W.G. Roger
Code 5253
Naval Ordnance Station
Indian Head, MD 20640

Dr. Donald L. Ball
Air Force Office of Scientific Research
Directorate of Chemical & Atmospheric Sciences
Bolling Air Force Base
Washington, DC 20332
DISTRIBUTION LIST

Dr. Anthony J. Matzko
Air Force Office of Scientific Research
Directorate of Chemical & Atmospheric Sciences
Bolling Air Force Base
Washington, DC 20332

Dr. Michael Chaykovsky
Naval Surface Weapons Center
Code R11
White Oak
Silver Spring, MD 20910

J.J. Rocchio
USA Ballistic Research Lab.
Aberdeen Proving Ground, MD 21005-5066

B. Swanson
INC-4 MS C-346
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Dr. James T. Bryant
Naval Weapons Center
Code 3205B
China Lake, CA 93555

Dr. L. Rothstein
Assistant Director
Naval Explosives Dev. Engineering Dept.
Naval Weapons Station
Yorktown, VA 23691

Dr. M.J. Kamlet
Naval Surface Weapons Center
Code R11
White Oak, Silver Spring, MD 20910

Dr. Henry Webster, III
Manager, Chemical Sciences Branch
ATTN: Code 5063
Crane, IN 47522

Dr. A.L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps
Code RD-1
Washington, DC 20380

Dr. H.G. Adolph
Naval Surface Weapons Center
Code R11
White Oak
Silver Spring, MD 20910

U.S. Army Research Office
Chemical & Biological Sciences Division
P.O. Box 12211
Research Triangle Park, NC 27709

Dr. John S. Wilkes, Jr.
FJSRL/NC
USAF Academy, CO 80840

Dr. H. Rosenwasser
AIR-320R
Naval Air Systems Command
Washington, DC 20361

Dr. Joyce J. Kaufman
The Johns Hopkins University
Department of Chemistry
Baltimore, MD 21218

Dr. A. Nielsen
Naval Weapons Center
Code 385
China Lake, CA 93555

Dr. L. Rothstein
Assistant Director
Naval Explosives Dev. Engineering Dept.
Naval Weapons Station
Yorktown, VA 23691

Dr. M.J. Kamlet
Naval Surface Weapons Center
Code R11
White Oak, Silver Spring, MD 20910

Dr. Henry Webster, III
Manager, Chemical Sciences Branch
ATTN: Code 5063
Crane, IN 47522

Dr. A.L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps
Code RD-1
Washington, DC 20380
DISTRIBUTION LIST

K.D. Pae
High Pressure Materials Research Lab.
Rutgers University
P.O. Box 909
Piscataway, NJ 08854

Dr. John K. Dienes
T-3, B216
Los Alamos National Lab.
P.O. Box 1663
Los Alamos, NM 87544

A.N. Gent
Institute Polymer Science
University of Akron
Akron, OH 44325

Dr. D.A. Shockey
SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025

Dr. R.B. Kruse
Morton Thiokol, Inc.
Huntsville Division
Huntsville, AL 35807-7501

G. Butcher
Hercules, Inc.
P.O. Box 98
Magna, UT 84044

W. Waesche
Atlantic Research Corp.
7511 Wellington Road
Gainesville, VA 22065

Dr. R. Bernecker
Naval Surface Weapons Center
Code R13
White Oak
Silver Spring, MD 20910

Prof. Edward Price
Georgia Institute of Tech.
School of Aerospace Engineering
Atlanta, CA 30332

J.A. Birkett
Naval Ordnance Station
Code 5253K
Indian Head, MD 20640

Prof. R.W. Armstrong
University of Maryland
Dept. of Mechanical Engineering
College Park, MD 20742

Herb Richter
Code 385
Naval Weapons Center
China Lake, CA 93555

J.T. Rosenberg
SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025

G.A. Zimmerman
Aeroject Tactical Systems
P.O. Box 13400
Sacramento, CA 95813

Prof. Kenneth Kuo
Pennsylvania State University
Dept. of Mechanical Engineering
University Park, PA 16802

T.L. Boggs
Naval Weapons Center
Code 3891
China Lake, CA 93555
DISTRIBUTION LIST

J.M. Culver
Strategic Systems Projects Office
SSPO/SP-2731
Crystal Mall #3, RM 1048
Washington, DC 20376

Prof. G.D. Duvall
Washington State University
Department of Physics
Pullman, WA 99163

Dr. E. Martin
Naval Weapons Center
Code 3858
China Lake, CA 93555

Dr. M. Farber
135 W. Maple Avenue
Monnovia, CA 91016

W.L. Elban
Naval Surface Weapons Center
White Oak, Bldg. 343
Silver Spring, MD 20910

Defense Technical Information Center
Bldg. 5, Cameron Station
Alexandria, VA 22314
(12 copies)

Dr. Robert Polvani
National Bureau of Standards
Metallurgy Division
Washington, D.C. 20234

Director
Naval Research Laboratory
Attn: Code 2627
Washington, DC 20375
(5 copies)

Administrative Contracting
Officer (see contract for address)
(1 copy)
END
5-81
DTIC