A Mathematical Framework for Segmentation and Object Detection

V. P. van Stur, Geman, Stuart; Geman, Donald; Grenander, Ulf

ABSTRACT

The view, opinions and/or findings contained in this report are those of the authors and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

The main goal of the work reported here is to devise and analyze alternative image models for digitized FLIR images. The approach is to develop statistical models for digitized FLIR images and to use the new models to elucidate statistical properties of FLIR images. In particular, this approach allows us to exploit existing mathematical models for signal detection and to extend them to the realm of image analysis.

An important area of interest is the development of robust and general image models for segmentation and object detection. This involves the use of advanced mathematical techniques, such as statistical inference and Bayesian methods, to model the underlying processes that generate FLIR images. The resulting models can then be used to extract meaningful information from the images, such as the presence of objects or changes in the environment.

The new models described in this report are applicable to a wide range of FLIR images, including those with varying illumination conditions, backgrounds, and object sizes. The models are also robust to noise and other image degradation effects, making them suitable for real-world applications.

The work reported in this report is part of an ongoing collaboration between the authors and the Advanced Modeling Team of the U.S. Army Research Laboratory, Fort Belvoir, Virginia. The authors are grateful for the support and encouragement provided by the team during the course of this project.
Image Modeling:
A Mathematical Framework for Segmentation
and Object Detection

FINAL TECHNICAL REPORT

Donald Geman
Stuart Geman
Ulf Grenander
Donald E. McClure

20 March 1987

U.S. Army Research Office

Contract No. DAAG29-83-C-0031

Statistical Consulting Associates, Inc.
P.O. Box 2476 (148 Waterman Street)
Providence, Rhode Island 02906-0476

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

VIEWS, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE THOSE OF THE AUTHOR(S) AND
SHOULD NOT BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION, POLICY, OR
DECISION UNLESS SO DESIGNATED BY OTHER OFFICIAL DOCUMENTATION.
Abstract

Decision rules for segmenting scenes and for detecting the presence of distinguished objects in digital images can be based on classical principles of statistical inference if appropriate mathematical models are developed for observable pictures. The main goal of this research was to devise and analyze alternative image models for digitized FLIR images. The work has been done in close cooperation with the Advanced Modeling Team of the U.S. Army Night Vision and Electro-Optics Laboratory, Ft. Belvoir, Virginia. This report concentrates on hierarchical Markov Random Field models and their application to restoration and segmentation of FLIR images.
Contents

1 INTRODUCTION. 3

2 BAYESIAN PARADIGM. 5
 2.1 Image Models. ... 5
 2.2 Degradation Model. ... 7
 2.3 Posterior Distribution. 8
 2.4 MAP Estimate. .. 9
 2.5 Computing. ... 10

3 A GENERIC OBJECT/BACKGROUND MODEL. 13
 3.1 Scene Model. .. 13
 3.2 Degradations. .. 16

4 IMPLEMENTATION OF THE RESTORATION ALGORITHM. 18
 4.1 Main Program RESTOR. 18
 4.2 Include File COMMON. 20
 4.3 Subroutine READIN. 21
 4.4 Subroutine WRITEO. 25
 4.5 Subroutine ITXP. ... 26
 4.6 Subroutine PIXEN. 28
 4.7 Subroutine PIXENO. 30
 4.8 Subroutine ITXE. ... 31
 4.9 Subroutine DEE. .. 32
 4.10 Function Subprogram GGUBFS. 37

5 FLIR EXAMPLES. 39

6 REFERENCES. 40

A COMPLEX SYSTEMS WORKING PAPERS. 42

B FIGURES. 44
1 INTRODUCTION.

Our primary goal has been to construct a mathematical foundation for the rational choice of decision functions for image analysis. This has included structured models for the background against which certain objects, such as tanks, trucks, or armored personnel carriers, appear. The backgrounds are "complex" in that their composition is highly variable and cannot be known in advance. The objects are "simple" in that they can be characterized by a small number of parameters. While the emphasis has been placed on the logical and mathematical foundations, considerable effort has been given to the construction of algorithms. It is important to keep the algorithmic issues in mind so that we arrive at decision procedures that work and that can be computed with reasonable resources.

This report focuses on a strategy for image modeling that has been developed for a number of practical settings. Here we develop it for the analysis of FLIR images. Indeed, this project—while it is immediately concerned with problems suggested by the U.S. Army Night Vision and Electro-Optics Laboratory—has had a tremendous impact on the development of a general Bayesian methodology for automatic analysis of digital images. Today that methodology is successfully addressing practical problems in medical imaging (computed tomography, ultrasound), remote sensing (interpretation of SAR images), automatic inspection (analysis of textured optical images of silicon wafers), and image understanding (optical character recognition, boundary finding, segmentation).

In the interest of presenting a self-contained and coherent report on mathematical models for FLIR images, we shall concentrate this paper on the general Bayesian model and its adaptation to FLIR imagery. Our interactions with the Advanced Modeling Team at NV&EOL have had many other facets, including frequent on-site working sessions, supervision of the development of computer algorithms, direction for the formation of a data base of features of FLIR images, statistical analyses, and assistance with providing information on other mathematical modeling efforts. These interactions are all directly related to the overall project on image modeling, and are documented elsewhere. In particular, the internal working memoranda listed in Appendix A provide additional details on both theoretical and practical aspects of the effort.

Section 2 of this paper gives an overview and basic examples of the Bayesian modeling strategy. It covers the range of issues from specification of the probabilistic framework to the design of computational algorithms.

Section 3 describes the adaptation of the general Bayesian paradigm to digitized FLIR images. Here we describe a specific hierarchy of probabilistic model which is useful for FLIR image restoration and segmentation.

Section 4 presents a FORTRAN implementation of the image restoration algorithm.
Program listings are included.

Section 5 briefly describes the application of the restoration algorithm to eight examples of FLIR images provided to us by NV&EOL.

Finally, two appendices include, respectively, (i) a list of internal working papers developed during the project and previously shared with the Advanced Modeling Team at NV&EOL and (ii) pictures illustrating the examples cited in Section 5.

We gratefully acknowledge the contributions made to this research effort by Frank Shields and Vince Mirelli of the Advanced Modeling Team at NV&EOL. The discussions of the fundamental mathematical issues with Dr. Mirelli have provided a tremendous stimulus for focusing our efforts on meaningful ways of bringing mathematics to bear on challenging practical problems.
2 BAYESIAN PARADIGM.

In real scenes, neighboring pixels typically have similar intensities, boundaries are usually smooth and often straight, textures, although sometimes random locally, define spatially homogeneous regions, and objects, such as grass, tree trunks, branches and leaves, have preferred relations and orientations. Our approach to picture processing is to articulate such regularities mathematically, and then to exploit them in a statistical framework to make inferences. The regularities are rarely deterministic; instead, they describe correlations and likelihoods. This leads us to the Bayesian formulation, in which prior expectations are formally represented by a probability distribution. Thus we design a distribution (a "prior") on relevant scene attributes to capture the tendencies and constraints that characterize the scenes of interest. Picture processing is then guided by this prior distribution, which, if properly conceived, enormously limits the plausible restorations and interpretations.

The approach involves five steps, which we shall briefly review here (see [4] and [9] for more details). This will define the general framework, and then, in the following sections, we will concentrate on the analysis of samples of FLIR images, as an illustrative application.

2.1 Image Models.

These are probability distributions on relevant image attributes. Both for reasons of mathematical and computational convenience, we use Markov random fields (MRF) as prior probability distributions. Let us suppose that we index all of the relevant attributes by the index set S. S is application specific. It typically includes indices for each of the pixels (about 512x512 in the usual video digitization) and may have other indices for such attributes as boundary elements, texture labels, object labels and so-on. Associated with each "site" $s \in S$ is a real-valued random variable X_s, representing the state of the corresponding attribute. Thus X_s may be the measured intensity at pixel s (typically, $X_s \in \{0, \ldots, 255\}$), or simply 1 or 0 as a boundary element at location s is present or absent.

The kind of knowledge we represent by the prior distribution is usually "local," which is to say that we articulate regularities in terms of small local collections of variables. In the end, this leads to a distribution on $X = \{X_s\}_{s \in S}$ with a more or less "local neighborhood structure" (again, we refer to [4] and [9] for details). Specifically, our priors are Markov random fields: there exists a (symmetric) neighborhood relation $G = \{G_s\}_{s \in S}$, wherein $G_s \subseteq S$ is the set of neighbors of s, such that

$$
\Pi(X_s = x_s | X_r = x_r, r \in S, r \neq s) = \Pi(X_s = x_s | X_r = x_r, r \in G_s)
$$
\(\Pi(a|b) \) is conditional probability, and, by convention, \(s \notin G_s \). \(G \) symmetric means \(s \in G_s \iff r \in G_r \). (Here, we assume that the range of the random vector \(X \) is discrete; there are obvious modifications for the continuous or mixed case.)

It is well-known, and very convenient, that a distribution \(\Pi \) defines a MRF on \(S \) with neighborhood relation \(G \) if and only if it is Gibbs with respect to the same graph, \((S, G)\). The latter means that \(\Pi \) has the representation

\[
\Pi(x) = \frac{1}{z} e^{-U(x)}
\]

where

\[
U(x) = \sum_{c \in C} V_c(x)
\]

\(C \) is the collection of all cliques in \((S, G)\) (collections of sites such that every two sites are neighbors), and \(V_c(x) \) is a function depending only on \(\{x_s\}_{s \in c} \). \(U \) is known as the “energy,” and has the intuitive property that the low energy states are the more likely states under \(\Pi \). The normalizing constant, \(z \), is known as the “partition function”. The Gibbs distribution arises in statistical mechanics as the equilibrium distribution of a system with energy function \(U \).

As a simple example (too simple to be of much use for real pictures) suppose the pixel intensities are known, a priori, to be one of two levels, minus one (“black”) or plus one (“white”). Let \(S \) be the \(N \times N \) square lattice, and let \(G \) be the neighborhood system that corresponds to nearest horizontal and vertical neighbors:

\[
\begin{array}{cccccc}
 o & o & o & \cdots \\
 | & | & | \\
 o & o & o & \cdots \\
 | & | & | \\
 o & o & o & \cdots \\
 \vdots & \vdots & \vdots \\
\end{array}
\]

For picture processing, think of \(N \) as typically 512. Suppose that the only relevant regularity is that neighboring pixels tend to have the same intensities. An “energy” consistent with this regularity is the “Ising” potential:

\[
U(x) = -\beta \sum_{(s,t) \in E} x_s x_t \quad \beta > 0
\]

where \(\sum_{(s,t)} \) means summation over all neighboring pairs \(s, t \in S \). The minimum of \(U \) is achieved when \(x_s = x_t \) \(\forall s, t \in S \). Under (2.1), the likely pictures are therefore the ones
that respect our prior expectations; they segment into regions of constant intensities. The larger β, the larger the typical region. Later we will discuss the issue of estimating model parameters such as β. (With energy (2.2), Π in (2.1) is called the Ising model. It models the equilibrium distribution of the spin states of the atoms in a ferromagnet. These spins tend to “line up,” and hence the favored configurations contain connected regions of constant spins.)

One very good reason for using MRF priors is their Gibbs representations. Gibbs distributions are characterized by their energy functions, and these are more convenient and intuitive for modelling than working directly with probabilities. See, for example, \cite{3}, \cite{4}, \cite{5}, \cite{9}, and \cite{13} for many more examples, and Section 3 below for a more complex and useful MRF model.

2.2 Degradation Model.

The image model is a distribution $\Pi(\cdot)$ on the vector of image attributes $X = \{X_s\}_{s \in S}$. By design, the components of this vector contain all of the relevant information for the image processing task at hand. Hence, the goal is to estimate X. This estimation will be based upon partial or corrupted observations, and based upon the prior information. In emission tomography, X represents the spatial distribution of isotope in a target region of the body. What is actually observed is a collection of photon counts whose probability law is Poisson, with a mean function that is an attenuated radon transform of X. In the texture labelling problem, X is the pixel intensity array and a corresponding array of texture labels. Each label gives the texture type of the associated pixel. The observation is only partial: we observe the pixels, which are just the digitized picture, but not the labels. The purpose is then to estimate the labels from the picture. In a generic model for FLIR images described in Section 3, X is a hierarchical model built from the pixel intensity array and from a superimposed array of unobservable edge elements. Again, the observation is only partial: we observe the pixels, degraded as they are by atmospheric effects and the sensor, but not the edge elements that are combined to form boundaries between objects and background. A purpose of image segmentation is to estimate the boundaries from the observed picture.

The observations are related to the image process (X) by a degradation model. This models the relation between X and the observation process, say $Y = \{Y_s\}_{s \in T}$. For texture analysis, we will define $X = (X^P, X^L)$, where X^P is the usual grey-level pixel intensity process, and X^L is an associated array of texture labels. The observed picture is just X^P, and hence $Y = X^P$: the degradation is a projection. More typically, the degradation involves a random component, as in the tomography setting where the observations are Poisson variables whose means are related to the image process X. A more simple, and
widely studied (if unrealistic) example is additive "white" noise. Let \(X = \{X_s\}_{s \in S} \) be just the basic pixel process. In this case, \(T = S \), and for each \(s \in S \) we observe

\[
Y_s = X_s + \eta_s,
\]

where, for example, \(\{\eta_s\}_{s \in S} \) is Gaussian with independent components, having means 0 and variances \(\sigma^2 \).

Formally, the degradation model is a conditional probability distribution, or density, for \(Y \) given \(X \): \(\Pi(y|x) \). If the degradation is just added "white noise," as in the above example, then

\[
\Pi(y|x) = \left(\frac{1}{2\pi\sigma^2} \right)^{\frac{|S|}{2}} \exp\left\{ -\frac{1}{2\sigma^2} \sum_{s \in S} (y_s - x_s)^2 \right\}
\]

For labelling textures, the degradation is deterministic: \(\Pi(y|x) \) is concentrated on \(y = x^P \), where \(x = (x^P, x^L) \) has both pixel and label components.

2.3 Posterior Distribution.

This is the conditional distribution on the image process \(X \) given the observation process \(Y \). This "posterior" or "a posteriori" distribution contains the information relevant to the image restoration or image analysis task. Given an observation \(Y = y \), and assuming the image model \(\Pi(x) \) and degradation model \(\Pi(y|x) \), the posterior distribution reveals the likely and unlikely states of the "true" (unobserved) image \(X \). Having constructed \(X \) to contain all relevant image attributes, such as locations of boundaries, labels of objects or textures, and so-on, the posterior distribution comes to play the fundamental role in our approach to image processing.

The posterior distribution is easily derived from "Bayes' rule"

\[
\Pi(x|y) = \frac{\Pi(y|x)\Pi(x)}{\Pi(y)}
\]

The denominator, \(\Pi(y) \), is difficult to evaluate. It derives from the prior and degradation models by integration: \(\Pi(y) = \int \Pi(y|x)\Pi(dx) \), but the formula is computationally intractable. Happily, our analysis of the posterior distribution will require only ratios, not absolute probabilities. Since \(y \) is fixed by observation, \(\frac{1}{\Pi(y)} \) is a constant that can be ignored (see paragraph below on "computing").

As an example we consider the simple "Ising model" prior, with observations corrupted by additive white noise. Then

\[
\Pi(x) = \frac{1}{Z} \exp\{ -\beta \sum_{(s,t)} x_s x_t \}
\]
and

\[\Pi(y|x) = \left(\frac{1}{2\pi\sigma^2} \right)^{n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{s \in S} (y_s - x_s)^2 \right) \]

The posterior distribution is then

\[\Pi(x|y) = \frac{1}{z_p} \exp\left(-\beta \sum_{(s,t)} x_s x_t - \frac{1}{2\sigma^2} \sum_{s \in S} (y_s - x_s)^2 \right) \]

We denote by \(z_p \) the normalizing constant for the posterior distribution. Of course, it depends upon \(y \), but the latter is fixed. Notice that the posterior distribution is again a MRF. In the case of additive white noise, the neighborhood system of the posterior distribution is that of the prior, and hence local. For a wide class of useful degradation models, including combinations of blur, added or multiplicative "colored noise," and a variety of nonlinear transformations, the posterior distribution is a MRF with a more or less local graph structure. This is convenient for our computational schemes, as we shall see shortly. We should note, however, that exceptions occur. In tomography, for example, the posterior distribution is associated with a highly non-local graph. This situation incurs a high computational cost (see [5] for more details).

2.4 MAP Estimate.

In our framework, image processing amounts to choosing a particular image \(x \), given an observation \(Y = y \). A sensible, and suitably-defined optimal, choice is the "maximum a posteriori," or "MAP" estimate:

choose \(x \) to maximize \(\Pi(x|y) \)

The MAP estimate chooses the most likely \(x \), given the observation. In most applications, our goal is to identify the MAP estimate, or a suitable approximation. However, in some settings other estimators are more appropriate. We have found, for example, that the posterior mean (\(\mathbb{E}[x|y] \)) is more effective for tomography, at least in our experiments. Here, we concentrate on MAP estimation.

In most applications we can not hope to identify the true maximum a posteriori image vector \(x \). To appreciate the computational difficulty, consider again the Ising model with added white noise:

\[\Pi(x|y) = \frac{1}{z_p} \exp\left(-\beta \sum_{(s,t)} x_s x_t - \frac{1}{2\sigma^2} \sum_{s \in S} (y_s - x_s)^2 \right) \]
This is to be maximized over all possible vectors $z = \{x_s\}_{s \in S} \in \{-1,1\}^{|S|}$. With $S \sim 10^6$, brute force approaches are intractable; instead, we will employ a Monte Carlo algorithm which gives adequate approximations.

Maximizing (2.3) amounts to minimizing

$$U_p(x) = -\beta \sum_{s,t} x_s x_t - \frac{1}{2\sigma^2} \sum_{s \in S} (y_s - x_t)^2$$

which might be thought of as the “posterior energy”. (As with z_p, the fixed observation y is suppressed in the notation $U_p(x)$.) More generally, we write the posterior distribution as

$$\frac{1}{z_p} \exp\{-U_p(x)\}$$

and characterize the MAP estimator as the solution to the problem

choose x to minimize $U_p(x)$

The utility of this point of view is that it suggests a further analogy to statistical mechanics, and a computation scheme for approximating the MAP estimate, which we shall now describe.

2.5 Computing.

Pretend that (2.4) is the equilibrium Gibbs distribution of a real system. Recall that MAP estimation amounts to finding a minimal energy state. For many physical systems the low energy states are the most ordered, and these often have desirable properties. The state of silicon suitable for wafer manufacturing, for example, is a low energy state. Physical chemists achieve low energy states by heating and then slowly cooling a substance. This procedure is called annealing. Cerný [1] and Kirkpatrick [12] suggest searching for good minimizers of $U(\cdot)$ by simulating the dynamics of annealing, with U playing the role of energy for an (imagined) physical system. In our image processing experiments, we often use "simulated annealing" to find an approximation to the MAP estimator.

Dynamics are simulated by producing a Markov chain, $X(1), X(2), \ldots$ with transition probabilities chosen so that the equilibrium distribution is the posterior (Gibbs) distribution (2.4). One way to do this is with the “Metropolis algorithm” [14]. More convenient for image processing is a variation we call stochastic relaxation. The full story can be found in [4] and [9]. Briefly, in stochastic relaxation we choose a sequence of sites
s(1), s(2), ... ∈ S such that each site in S is "visited" infinitely often. If \(X(t) = x \), say, then \(X_r(t + 1) = x_r \) ∀ \(r \neq s(t), r \in S \), and \(X_s(t + 1) \) is a sample from

\[
\Pi(X_s(t) = \cdot | X_r = x_r, r \neq s(t)),
\]

the conditional distribution on \(X_s(t) \) given \(X_r = x_r \) ∀ \(r \neq s(t) \). By the Markov property,

\[
\Pi(X_s(t) = \cdot | X_r = x_r, r \neq s(t)) = \Pi(X_s(t) = \cdot | X_r = x_r, r \in G^p_s(t))
\]

where \(\{G^p_s\}_{s \in S} \) is the posterior neighborhood system, determined by the posterior energy \(U_p(\cdot) \). The prior distributions that we have experimented with have mostly had local neighborhood systems, and usually the posterior neighborhood system is also more or less local as well. This means that \(|G^p_s(t)| \) is small, and this makes it relatively easy to generate, Monte Carlo, \(X(t + 1) \) from \(X(t) \). In fact, if \(\Omega \) is the range of \(X_s(t) \), then

\[
(2.5) \quad \Pi(X_s(t) = \alpha | X_r = x_r, r \in G^p_s(t)) = \frac{\Pi(\alpha, s(t) x)}{\sum_{\delta \in \Omega} \Pi(\alpha, s(t) x)}
\]

where

\[
(\alpha, s(t) x)_r = \begin{cases} \alpha & \text{if } r = s(t) \\ x_r & \text{if } r \neq s(t) \end{cases}
\]

Notice that (fortunately!) there is no need to compute the posterior partition function \(z_p \). Also, the expression on the right hand side of (2.5) involves only those potential terms associated with cliques containing \(s(t) \), since all other terms are the same in the numerator and the denominator.

To simulate annealing, we introduce an artificial "temperature" into the posterior distribution:

\[
\Pi_T(x) = \frac{exp(-\frac{T U_p(\cdot)}{T})}{Z_p(T)}
\]

As \(T \to 0 \), \(\Pi_T(\cdot) \) concentrates on low energy states of \(U_p \). To actually find these states, we run the stochastic relaxation algorithm while slowly lowering the temperature. Thus \(T = T(t) \), and \(T(t) \downarrow 0 \). \(\Pi_T(\cdot) \) replaces \(\Pi(\cdot) \) in computing the transition \(X(t) \to X(t + 1) \). In [4], we showed that, under suitable hypotheses on the sequence of site visits, \(s(1), s(2), ... \):

If \(T(t) > \frac{1}{1 + \log(1 + e)}, T(t) \downarrow 0 \), then for all \(c \) sufficiently large \(X(t) \) converges weakly to the distribution concentrating uniformly on \(\{x : U(x) = \min_y U(y)\} \).

More recently, our theorem has been improved upon by many authors. In particular, the smallest constant \(c \) which guarantees convergence of the annealing algorithm to a
global minimum can be specified in terms of the energy function U_p (see 6 and 10). Also, see Gidas '7' for some ideas about faster annealing via "renormalization group" methods.

In the experiments with FLIR images to be described here, MAP estimates are approximated by using the annealing algorithm. This involves Monte Carlo computer-generation of the sequence $X(1), X(2), \ldots$, terminating when the state ceases to change substantially.
3 A GENERIC OBJECT/BACKGROUND MODEL.

The general modeling strategy described in Section 2 has been implemented for FLIR images with immediate objectives of image restoration (i) to "smooth" and enhance homogeneous subregions corresponding, for example, to an object or to a large component of an object of interest, and (ii) to highlight boundaries between separate homogeneous subregions as a precurser to object detection and recognition. We have designed and implemented a two-level hierarchical MRF model combining the directly observable pixel process and a linked unobservable binary process indicating the presence or absence of edge elements. Models like the one described here were suggested and illustrated in [2].

3.1 Scene Model.

The image process \(X \) comprises the pixel process \(X^p \) and the edge process \(X^e \), \(X = \{X^p, X^e\} \). As usual, the pixel sites form an \(R \times C \) array of points (\(R \) rows and \(C \) columns) in a square lattice arrangement. We denote this \(R \times C \) array by \(S^p \). The sites for the edge process, collectively denoted \(S^e \), also form a regular graph structure, envisioned as fitting between the sites in \(S^p \). Let \(u, v \) denote pixel sites in the square lattice \(S^p \). For each pair \(u, v \) of horizontally or vertically adjacent pixels, there exists an "edge site" denoted \(<u, v> \) in \(S^e \). The edge site \(s = <u, v> \) corresponds to the location of possible edge or boundary element between pixels \(u \) and \(v \). The edge variables are binary, with \(X^e_{<u,v>} \) equalling 1 or 0 to indicate the presence or absence of an edge element at \(<u, v> \). The process \(X^e \) consists of \(R(C - 1) + C(R - 1) \) variables \(X^e_{<u,v>} \).

The totality of edge and pixel sites is denoted by \(S \). (The generic point \(s \) may refer to a pixel or to an edge site \(<u, v> \).) The neighborhood system \(G = \{G_s, s \in S\} \) governs the Markovian dependence structure of \(X = \{X^p, X^e\} \). The size of the neighborhood determines the range of interactions. We restrict our design of the process to "small" or "local" neighborhood sets \(G_s \), to keep the mathematical models as simple as possible and to assure feasibility of computational procedures.

We adopt the following neighborhood system. Each pixel site has eight pixel neighbors, the nearest ones, and four edge neighbors. Each edge site \(<u, v> \) has six edge neighbors—corresponding to possible continuations of a boundary from \(<u, v> \)—and the two pixel neighbors \(u \) and \(v \). Sites near the boundary of the lattice have fewer neighbors. The canonical pixel neighborhood \(G_p \), and edge neighborhood \(G_{<u,v>} \) are depicted in the figure below, where circles represent pixels and pluses represent edge
sites. (We believe this edge graph originated in [11].)

\[
\begin{array}{cccccc}
& & & + & & \\
& + & + & + & & \\
& + & + & & & \\
\end{array}
\]

To illustrate the functional form of the models, suppose first that we are only interested in modeling "smoothness" or "regularity" in the intensity array \(X^P \), i.e., the tendency of nearby pixels to have similar intensities. Then a suitable model might be \(X = X^P \) with

\[\Pi(X = x) = Z^{-1} \exp\{\theta \sum_{(s,t)} C_{(s,t)} \phi(x_s - x_t)\} \]

where the sum extends over all neighboring pairs \((s,t)\) of pixels. (Thus each interior pixel is included in eight terms in the summation.) Here \(\phi = \phi(\delta) \) is an even function, decreasing for \(\delta > 0 \); \(\theta \) is a parameter which corresponds to "inverse temperature" and it governs the degree of regularity. It is distinct from the "artificial temperature" \(T \) introduced for the annealing algorithm (Section 2.5). The coefficient \(C_{(s,t)} \) is introduced to allow different weighting of pixel pairs oriented in different directions. We commonly fix \(C_{(s,t)} = 1 \) for the horizontal and vertical pairs and \(C_{(s,t)} = 1/\sqrt{2} \) for diagonally adjacent pairs. A renormalization argument shows that this weighting is "asymptotically correct" in order for the discrete digital images \(X^P \) to approximate rotationally invariant (isotropic) images on a continuous background [8]. The weights also permit accurate modeling of anisotropic FLIR images.

A flexible and well-tested choice for \(\phi \) is of the form

\[\phi(\delta) = \left(1 + \frac{\delta^2}{B} \right)^{-1} \]

where \(B \) is a parameter depending on the dynamic range of the image. An attractive feature of this \(\phi \)-function—in contrast to one that decreases without bound—is that it does not attach ever increasing penalties to larger differences \(\delta \), and thus it will allow sharp gradients in intensity across region boundaries. A choice such as \(\phi(\delta) = -\delta^2 \) would \textit{a priori} inhibit, indeed prohibit, adjacent, internally homogeneous subregions with highly separated intensities.

With the inclusion of the edge process \(X^E \) we incorporate our expectations about both the interactions between intensities and edges—i.e., where the edges belong—and about clusters of nearby edges. We are not exactly modeling entire boundaries with this
two-level model, but rather segments of boundaries; except in the simplest imagery and with larger neighborhoods, it is essentially impossible to distinguish actual boundary segments from intensity gradients due to lighting, texture, etc.

For the pixel-edge process, the complete energy function \(U = U(X^P, X^E) \) is decomposed into two components:

\[
U(X^P, X^E) = U^1(X^P, X^E) + U^2(X^E).
\]

We construct \(U^1 \) so that the most likely configurations will have \(X^E_{s,t} = 1 \) (respectively 0) when the intensity difference \(|x^P_s - x^P_t| \) between neighboring pixels is large (resp. small). Put differently, we want to "break" the bond between pixels \(s \) and \(t \) when their values are "far" apart. Thus we choose

\[
U^1(x^P, x^E) = -\sum_{(s,t)} \theta_1 C_{(s,t)}(\delta(x^P_s - x^P_t) - \theta_2) \times (1 - I_{(s,t)}(X^E))
\]

where \(\theta_1 > \theta_2 > 0 \). The value of \(\delta \) for which \(\theta_1 C_{(s,t)}(\delta) = \theta_2 \) represents an intensity difference for which we have "no preference" in regard to the on-off state of an edge; such interpretations of the model parameters are helpful when one is setting or estimating values of the parameters. Finally, in equation (3.2), \(I_{(s,t)}(X^E) = 1 \) when the \(X^E \) process "breaks" the bond between pixels \(s \) and \(t \), and \(I_{(s,t)}(X^E) = 0 \) otherwise. In particular, if \(s \) and \(t \) are horizontal or vertical neighbors, then \(I_{(s,t)}(X^E) = X^E_{s,t} \) and if \(s \) and \(t \) are diagonal neighbors, then \(I_{(s,t)}(X^E) \) is a Boolean function of four edge elements between \(s \) and \(t \) requiring, for its value to be 1, that at least two of the edge elements are "on" and that they connect to form a segment separating \(s \) from \(t \).

The remaining component \(U^2 \) of the total energy function governs the organization of nearby edges. We define

\[
U^2(x^E) = -\theta_3 \sum_D V_D(x^E)
\]

where \(\theta_3 > 0 \) and where the sum extends over all subsets \(D \) of four neighboring edge sites—the maximal "cliques" in the edge graph. The clique function \(V_D \) assigns weights in accordance with our expectations about edge behavior. More specifically, there are six possible clique states, up to rotational equivalence:

\[
\begin{align*}
0 & | 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & | 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{align*}
\]

Here the bars indicate that the edge variable at the indicated site is "on". Let \(V_D = \xi_i \), for \(i = 1, \ldots, 6 \), denote the weights assigned to the six configurations above. If we
assume that most pixels are not next to boundaries, that edges should continue, and that boundary congestion is unlikely, then we might choose $\xi_1 \leq \xi_2 \leq \xi_3 \leq \xi_4 \leq \xi_5 \leq \xi_6$. A specific image-dependent choice is made in the experiment described in Section 5.

One final point about the scene model: it is useful to write the total energy, up to an additive constant, as

\[
-U(x) = \theta_1 \sum_{(s,t)} C_{(s,t)} \phi(x_s^P - x_t^P)(1 - I_{(s,t)}(x^E)) + \theta_2 \sum_{(s,t)} I_{(s,t)}(x^E) + \theta_3 \sum_D V_D(x^E)
\]

For inferential purposes, this shows that our model is an exponential family in $\theta = (\theta_1, \theta_2, \theta_3)$. In addition, the form in (3.3) is useful for parameter interpretation; for instance, it becomes clear that θ_2 is a "reward" for edges.

3.2 Degradations.

The Gibbs distribution determined by the energy function U in equation (3.3) models the ideal scenes. There are several types of degradations that corrupt an ideal scene before it is observed. Most of these effects are well understood and can be modeled accurately in terms of the physical processes that underlie them. In the end, the first approximation of the degraded observed image Y will reduce to the pixel process X^P plus additive noise. The approximation is a gross simplification, even if it is reasonably effective as a basis for restoration algorithms. Ongoing research is exploring the use of more accurate degradation models which incorporate degradations modeled by convolutions; as we describe below, these latter degradations include atmospheric absorption and scattering, diffraction from geometric optics, and blurring from signal averaging and sampling by the IR sensor.

Two useful references for understanding degradations of IR images are the NV&EOL Technical Report [16] by J.A. Ratches et. al. and the NV&EOL internal working paper [15] prepared for our project by V. Mirelli. Some of the basic physics of IR radiation and detection is described in [17].

The primary sources of IR image degradation are:

- The actual thermal radiation from the ideal scene is random and additive to X^P. The random component has mean value 0 and has signal-dependent variance proportional to X^P. The exact distribution of the emitted radiation is well-modeled by a Poisson process and a Gaussian approximation is justified by convergence of the Poisson Law to the Normal.

- During atmospheric transmission of the radiation, there is absorption—dependent on air temperature and relative humidity—and scattering—dependent on visibility.
The scattering is normally modeled by Beer's Law [16]. The effects of absorption and scattering enter the mathematical model in the form of a convolution of the signal with a kernel depending on atmospheric parameters and range-to-target.

- At the sensor, the first degradation stems from optical diffraction. The geometrical optical effect is modeled by a convolution of the signal with a kernel depending on parameters of the optical system (lens diameter, focal lengths) and on the wavelength of the electromagnetic radiation.

- Black-body radiation from the positive temperature of the detector corrupts the image incident at the detector. This effect enters the model as additive "noise" on top of the signal.

- The electromagnetic energy in the IR radiation is converted to an electrical response by the sensor. The response is a random process subordinated on the input. This can be represented mathematically as signal-dependent additive noise, again with a Poisson distribution, where both the conditional mean and variance of the response (given the input) equals the input.

- The electrical response is digitized through a combination of averaging and sampling. Conceptually, a scanning detector returns a continuous response which is averaged in the direction of the scan and which is discretely sampled in the direction orthogonal to the scan. The combination of averaging and sampling implies that the observed process will not be isotropic. Digitization is described mathematically through a convolution of the continuous signal with a singular kernel.

- Finally, electronic noise may enter at the last stage of actually observing the digitized signal. The noise enters as an additive effect, independent of the signal.
4 IMPLEMENTATION OF THE RESTORATION ALGORITHM.

The following subsections give a complete listing of a standard FORTRAN77 program that implements stochastic relaxation, with optional annealing, for the model described in Section 3. The subroutine that computes the dependence of the total energy on the edge process (SUBROUTINE DEE) actually implements a model that is slightly more general than equation (3.3). It incorporates a parameter (CE2C) which inhibits the occurrence of nearby parallel edges. The model of Section 3 is implemented by this program when CE2C=0.

This program has been delivered to the Advanced Modeling Team at NV&EOL and has been used there for experiments with restoration of FLIR images. The presumptions about formats of input and output files are best documented by the input and output subroutines READIN and WRITEO, which are listed below. Experiments with the use of this program are described in Section 5.

4.1 Main Program RESTOR.

The main program guides input, output and stochastic relaxation of the pixel and edge processes.

```fortran
PROGRAM RESTOR
   C SET UP DATA STRUCTURES
   INCLUDE (COMMON)
   C TYPES
      INTEGER NIT
   C GET INPUT
      CALL READIN
   C ITERATE
      DO 10 NIT=NSTART,NSTOP
         PRINT *, 'ITERATION ', NIT
         IF (NIT.LE.NO) THEN
            T=TO
         ELSE
            T=TO/(1.0+LOG(FLOAT(NIT-NO)))
         ENDIF
         PRINT *, 'TEMPERATURE ', T
         IF (IXP.EQ.1) CALL ITXP
         IF (IXE.EQ.1) CALL ITXE
      10 CONTINUE
   C OUTPUT RESULTS
```

RES00010 RES00020 RES00030 RES00040 RES00050 RES00060 RES00070 RES00080 RES00090 RES00100 RES00110 RES00120 RES00130 RES00140 RES00150 RES00160 RES00170 RES00180 RES00190 RES00200
CALL WRITEO
END

RES00210
RES00220
4.2 Include File COMMON.

The “include” file declares global variables, sets parameter values, and defines COMMON blocks.

CE1A is the model parameter θ_1 (equation 3.3).
CE1B is the model parameter B (equation 3.1).
CE2A is the model parameter θ_3 (equation 3.3).
CE2B is the model parameter θ_2 (equation 3.3).
CE2C is not used in model (3.3) and is set to 0.

PMIN is the minimum value of the range of the pixel process x_p^P.
PMAX is the maximum value of the range of the pixel process x_p^P.
SIGMA is the standard deviation of the additive noise corrupting the observed process Y.

MAXDA is the maximum number of equally spaced discrete levels used to quantize the range $[\text{PMIN}, \text{PMAX}]$ of x_p^P.

NDA is the actual number of equally spaced discrete levels used to quantize the range $[\text{PMIN}, \text{PMAX}]$ of x_p^P.

C CONSTANTS

INTEGER NX, NY, MAXDA
REAL DIAG
PARAMETER (NX=64, NY=64, MAXDA=100, DIAG=.707)

C DECLARE PARAMETERS, WHICH WILL BE READ FROM UNIT 7
REAL CE1A, CE1B, CE2A, CE2B, CE2C, PMIN, PMAX, SIGMA

C VARIABLES AND ARRAYS

INTEGER IS, ID, IP, IXP, IXE, NO, NSTART, NSTOP,
M NDA
REAL TO, T, XP(O: NX+1, 0: NY+1), XE(-1: NX+2, -1: NY+2, 2), XPO(NX, NY),
M ADSIG, SIGSQD
DOUBLE PRECISION SEED

C COMMON GLOBAL DATA STRUCTURES

COMMON SEED, CE1A, CE1B, CE2A, CE2B, CE2C, PMIN, PMAX, SIGMA,
M TO, T, XP, XE, XPO, ADSIG, SIGSQD,
M IS, ID, IP, IXP, IXE, NO, NSTART, NSTOP, NDA
4.3 Subroutine READIN.

The input routine READIN prompts the user for interactive input of program and model parameters and reads in files containing images, including the observed image and any results that may be available from previous processing by the relaxation algorithm.

```
SUBROUTINE READIN
C SET UP DATA STRUCTURES
   INCLUDE (COMMON)
C TYPES
   INTEGER I, J, K
C EXTERNAL FUNCTIONS CALLED
   REAL GGUBFS
C READ PARAMETER VALUES FROM UNIT 7
   READ(7,*), CE1A
   READ(7,*), CE1B
   READ(7,*), CE2A
   READ(7,*), CE2B
   READ(7,*), CE2C
   READ(7,*), PMIN
   READ(7,*), PMAX
   READ(7,*), SIGMA
   CLOSE(UNIT=7)
C DETERMINE IF GOAL IS IMAGE SAMPLING
   IS=0
   WRITE(8,*), 'ENTER 1 IF A SAMPLE IMAGE IS DESIRED, 0 IF PURPOSE'
   WRITE(6,*), 'IS RESTORATION'
   READ(5,*), IS
C DETERMINE IF GOAL IS RESTORATION, DETERMINE IF ORIGINAL IMAGE IS RESULT OF
C A DEGRADATION
   ID=0
   IF (IS.EQ.0) THEN
      WRITE(6,*), 'ENTER 1 IF THERE IS A DEGRADATION, 0 OTHERWISE'
      READ(5,*), ID
   ENDIF
C DETERMINE IF IMAGE HAS ALREADY BEEN PARTIALLY PROCESSED
   IP=0
   WRITE(6,*), 'ENTER 1 IF PROCESSING BEGAN WITH A PREVIOUS RUN,'
   WRITE(6,*), 'O OTHERWISE'
   READ(5,*), IP
C DETERMINE WHICH LEVELS OF HIERARCHY ARE TO BE ACTIVE
   IPX=0
```

21
IXE=0
WRITE(6,*), 'ENTER 1 IF PIXEL PROCESS WILL BE ACTIVE, 0 OTHERWISE' REAO0370
READ(5,*), IXP REAO0380
WRITE(6,*), 'ENTER 1 IF EDGE PROCESS WILL BE ACTIVE, 0 OTHERWISE' REAO0400
READ(5,*), IXE REAO0410
C DETERMINE NUMBER OF DISCRETE VALUES
WRITE(6,*), 'ENTER NUMBER OF GREY LEVELS' REAO0420
WRITE(6,*), '(NO MORE THAN',MAXDA,')' REAO0430
READ(5,*), NDA REAO0440
C DETERMINE TEMPERATURE CONTROL PARAMETERS
WRITE(6,*), 'ENTER STARTING TEMPERATURE, EVEN IF' REAO0460
WRITE(6,*), 'THIS IS FROM A PREVIOUS RUN' REAO0470
READ(5,*), TO REAO0480
WRITE(6,*), 'ENTER NUMBER OF ITERATIONS BEFORE INITIATION' REAO0500
WRITE(6,*), 'OF ANNEALING' REAO0510
READ(6,*), NO REAO0520
C DETERMINE STARTING AND STOPPING ITERATIONS
WRITE(6,*), 'ENTER NUMBER OF FIRST ITERATION FOR THIS RUN' REAO0530
READ(5,*), NSTART REAO0540
WRITE(6,*), 'ENTER NUMBER OF LAST ITERATION FOR THIS RUN' REAO0560
READ(5,*), NSTOP REAO0570
C GET SEED FOR RANDOM NUMBER GENERATOR
WRITE(6,*), 'ENTER SEED FOR RANDOM NUMBER GENERATOR' REAO0580
READ(6,*), SEED REAO0590
C IF GOAL IS RESTORATION, AND THERE IS A DEGRADATION, THEN
C DETERMINE THE STANDARD ERROR OF ANY NOISE THAT HAS BEEN ADDED TO
C THE IMAGE AND COMPUTE THE TOTAL SIGMA SQUARED ('SIGSQD')
IF (IS.EQ.0.AND.ID.EQ.1) THEN
WRITE(6,*), 'ENTER STANDARD ERROR OF ADDED NOISE (0 IF NO' REAO0640
WRITE(6,*), 'NOISE HAS BEEN INTRODUCED)' REAO0650
READ(5,*), ADSIG REAO0660
SIGSQD=ADSIG**2+SIGMA**2 REAO0670
ENDIF
C READ IN DATA
IF (IP.EQ.1) THEN
DO 1 J=1,NY
READ(1,6) (XP(I,J),I=1,NX) REAO0700
CONTINUE
DO 3 K=1,2
DO 4 J=1,NY
READ(1,6) (XE(I,J,K),I=1,NX) REAO0770
CONTINUE
CONTINUE
FORMAT(10F7.2)
CLOSE(UNIT=1)
ENDIF
IF (ID.EQ.1) THEN
 DO 7 J=1,NY
 READ(2,6) (XPO(I,J),I=1,NX)
 CONTINUE
 CLOSE(UNIT=2)
ENDIF
IF (IS.EQ.0.AND.ID.EQ.0.AND.IP.EQ.0) THEN
 DO 9 J=1,NY
 READ(3,6) (XP(I,J),I=1,NX)
 CONTINUE
 CLOSE(UNIT=3)
ENDIF
C INITIALIZE DATA ARRAYS. ALL NONPIXEL STRUCTURES ARE
C INITIALIZED TO "NOT PRESENT", UNLESS THERE WAS
C PREVIOUS PROCESSING.
 IF (ID.EQ.1.AND.IP.EQ.0) THEN
 DO 15 I=1,NX
 DO 20 J=1,NY
 XP(I,J)=XPO(I,J)
 CONTINUE
 CONTINUE
 ENDIF
 IF (IS.EQ.1.AND.IP.EQ.0) THEN
 DO 60 I=1,NX
 DO 70 J=1,NY
 XP(I,J)=PMIN+(PMAX-PMIN)*GGUBFS(SEED)
 CONTINUE
 CONTINUE
 ENDIF
 IF (IP.EQ.0) THEN
 DO 75 K=1,2
 DO 80 J=1,NY
 DO 90 I=1,NX
 XE(I,J,K)=0.0
 CONTINUE
 CONTINUE
 CONTINUE
 ENDIF
75 CONTINUE
ENDIF
C INITIALIZE DUMMY BOUNDARIES
 DO 100 J=0,NY+1
 XP(0,J)=1000.0
 XP(NX+1,J)=1000.0
 100 CONTINUE
 DO 110 I=1,NX
 XP(I,0)=1000.0
 XP(I,NY+1)=1000.0
 110 CONTINUE
 DO 120 I=-1,NX+2
 XE(I,-1,1)=0.0
 XE(I,-1,2)=0.0
 XE(I,0,1)=0.0
 XE(I,0,2)=0.0
 XE(I,NY,2)=0.0
 XE(I,NY+1,1)=0.0
 XE(I,NY+1,2)=0.0
 XE(I,NY+2,1)=0.0
 XE(I,NY+2,2)=0.0
 120 CONTINUE
 DO 130 J=-1,NY+2
 XE(-1,J,1)=0.0
 XE(-1,J,2)=0.0
 XE(0,J,1)=0.0
 XE(0,J,2)=0.0
 XE(NX,J,2)=0.0
 XE(NX+1,J,1)=0.0
 XE(NX+1,J,2)=0.0
 XE(NX+2,J,1)=0.0
 XE(NX+2,J,2)=0.0
 130 CONTINUE
END
4.4 Subroutine WRITEO.

The output routine WRITEO writes the output image file to the disk.

```plaintext
SUBROUTINE WRITEO
   C SET UP DATA STRUCTURES
   INCLUDE (COMMON)
   C TYPES
      INTEGER I, J, K
   C WRITE OUTPUT TO UNIT 4
      DO 1 J=1,NY
         WRITE(4,6) (XP(I,J),I=1,NX)
      1 CONTINUE
      DO 3 K=1,2
      DO 4 J=1,NY
         WRITE(4,6) (XE(I,J,K),I=1,NX)
      4 CONTINUE
      3 CONTINUE
      6 FORMAT(10F7.2)
   CLOSE(UNIT=4)
END
```
4.5 Subroutine ITXP.

The subroutine ITXP guides the execution of the relaxation algorithm for the pixel process X^P.

```fortran
SUBROUTINE ITXP
C SET UP DATA STRUCTURES
  INCLUDE (COMMON)
C TYPES
  INTEGER I,J,K
  REAL EP(MAXDA). SUM(MAXDA). TOT. EMIN. EMAX. NRAND
C EXTERNAL FUNCTIONS CALLED
  REAL GGBDFS
C ITERATE PIXEL VALUES
  DO 10 J=1,NY
    DO 20 I=1,NX
      C COMPUTE ENERGY VECTOR FOR PIXEL (I,J) AND STORE IN EP. EP(K)
      C IS THE RELATIVE ENERGY FOR XP(I,J) AT THE K'TH DISCRETE VALUE
      CALL PIXEN(I,J,EP)
      C PREVENT OVERFLOWS AND UNDERFLOWS BY RESCALING AND TRUNCATING EP
      EMIN =EP(1)
      DO 5 K=2,NDA
        IF (EP(K).LT.EMIN) THEN
          EMIN=EP(K)
        ENDIF
      CONTINUE
      EMAX=T*20.0
      DO 6 K=1,NDA
        EP(K)=MIN(EMAX,EP(K)-EMIN)
      CONTINUE
      C UPDATE VALUE OF XP(I,J)
      SUM(1)=EXP(-EP(1)/T)
      DO 30 K=2,NDA
        SUM(K)=SUM(K-1)*EXP(-EP(K)/T)
      CONTINUE
      NRAND=GGBDFS(SEED)
      TOT=SUM(NDA)
      DO 40 K=1,NDA
        IF (NRAND.LE.(SUM(K)/TOT)) THEN
          XP(I,J)=PMIN+((PMAX-PMIN)*(K-1))/NDA
        ENDIF
      CONTINUE
  10 CONTINUE
  20 CONTINUE
  30 CONTINUE
  40 CONTINUE
END SUBROUTINE ITXP
```
40 CONTINUE
20 CONTINUE
10 CONTINUE
END

ITX00380
ITX00390
ITX00400
ITX00410
4.6 Subroutine PIXEN.

The subroutine PIXEN is called by ITXP and returns the vector of (relative) energies that determine the local conditional distribution of the possible values for the pixel process at an arbitrary site.

SUBROUTINE PIXEN(I,J,EP)
C SET UP DATA STRUCTURES
INCLUDE (COMMON)
C TYPES
INTEGER I, J, K
REAL EP(MAXDA), ADIFF, XPTEMP, INC
C INITIALIZE EP
DO 10 K=1,NDA
 EP(K)=0.0
10 CONTINUE
C COMPUTE DEGRADATION CONTRIBUTION TO ENERGY (IF ANY)
 IF (ID.EQ.1) THEN
 CALL PIXENO(IJ,EP)
 ENDIF
C COMPUTE PURE PIXEL CONTRIBUTION TO ENERGY
 INC=(PMAX-PMIN)/(NDA-1)
 DO 20 K=1,NDA
 XPTEMP=PMIN+INC*(K-I)
 C PIXEL TO UPPER LEFT:
 IF ((XE(I-1,J,1)+XE(I-1,J-1,2))*M (XE(I-1,J-1,1)+XE(I,J-1,2)).LT..5) THEN
 ADIFF=ABS((XPTEMP-XP(I-1,J-1))/CEIB)
 EP(K)=EP(K)-CE1A*DIAG/(1.0+ADIFF*ADIFF)
 ENDIF
 C PIXEL ABOVE:
 IF (XE(I,J-1,2).LE..5) THEN
 ADIFF=ABS((XPTEMP-XP(I,J-1))/CEIB)
 EP(K)=EP(K)-CE1A/(1.0+ADIFF*ADIFF)
 ENDIF
 C PIXEL TO UPPER RIGHT:
 IF ((XE(I,J-1,2)+XE(I,J-1,1))*M (XE(I,J,1)+XE(I+1,J-1,2)).LT..5) THEN
 ADIFF=ABS((XPTEMP-XP(I+1,J-1))/CEIB)
 EP(K)=EP(K)-CE1A*DIAG/(1.0+ADIFF*ADIFF)
 ENDIF
 ENDIF
ENDIF
C PIXEL TO LEFT:
 IF (XE(I-1,J,1) LE .5) THEN
 ADIFF=ABS((XPTMP-XP(I-1,J))/CE1B)
 EP(K)=EP(K)-CE1A/(1.0+ADIFF*ADIFF)
 ENDIF
C PIXEL TO RIGHT:
 IF (XE(I,J,1) LE .5) THEN
 ADIFF=ABS((XPTMP-XP(I+1,J))/CE1B)
 EP(K)=EP(K)-CE1A/(1.0+ADIFF*ADIFF)
 ENDIF
C PIXEL TO LOWER LEFT:
 IF ((XE(I-1,J,1)+XE(I,J,1))*M (XE(I-1,J+1,1)+XE(I,J,2)).LT .5) THEN
 ADIFF=ABS((XPTMP-XP(I-1,J+1))/CE1B)
 EP(K)=EP(K)-CE1A*DIAG/(1.0+ADIFF*ADIFF)
 ENDIF
C PIXEL BELOW:
 IF (XE(I,J,2) LE .5) THEN
 ADIFF=ABS((XPTMP-XP(I+1,J))/CE1B)
 EP(K)=EP(K)-CE1A/(1.0+ADIFF*ADIFF)
 ENDIF
C PIXEL TO LOWER RIGHT:
 IF ((XE(I,J,2)+XE(I,J+1,1))*M (XE(I,J,1)+XE(I+1,J,2)).LT .5) THEN
 ADIFF=ABS((XPTMP-XP(I+1,J+1))/CE1B)
 EP(K)=EP(K)-CE1A*DIAG/(1.0+ADIFF*ADIFF)
 ENDIF
20 CONTINUE
END
4.7 Subroutine PIXENO.

The subroutine PIXENO is called by PIXEN and returns that part of the local energy vector attributable to the difference between the observed image and the current state of the restoration.

```fortran
SUBROUTINE PIXENO(I,J,EP) PIX0010
SUBROUTINE PIXENO(I,J,EP) PIX0020
C SET UP DATA STRUCTURES
INCLUDE (COMMON) PIX0030
C TYPES
INTEGER I, J, K PIX0040
REAL EP(MAXDA), XTEMP, INC, TSIGSQ PIX0050
C COMPUTE DEGREDATION CONTRIBUTION TO ENERGY
INC=(PMAX-PMIN)/(NDA-1) PIX0060
TSIGSQ=2*SIGSQD PIX0070
DO 10 K=1,NDA PIX0080
  XTEMP=PMIN+INC*(K-1) PIX0090
  EP(K)=EP(K)+(XTEMP-XPO(I,J))**2/TSIGSQ PIX0100
10 CONTINUE PIX0110
END PIX0120
```

30
4.8 Subroutine ITXE.

The subroutine ITXE guides the execution of the relaxation algorithm for the edge process X^E.

```plaintext
SUBROUTINE ITXE
C SET UP DATA STRUCTURES
  INCLUDE (COMMON)
C TYPES
  INTEGER I, J, K
  REAL PON, EXPO
C EXTERNAL FUNCTIONS CALLED
  REAL DEE
C ITERATE EDGE PROCESS
  DO 10 K=1,2
  DO 20 J=1,NY+1-K
  DO 30 I=1,NX-2+K
     EXPO=MIN(10.0,MAX(-10.0,DEE(I,J,K)/T))
     PON=1/(1+EXP(EXPO))
     IF (GGUBFS(SEED).LE.PON) THEN
        XE(I,J,K)=1.0
     ELSE
        XE(I,J,K)=0.0
     ENDIF
  30 CONTINUE
  20 CONTINUE
  10 CONTINUE
END
```
4.9 Subroutine DEE.

The subroutine DEE is called by ITXE and computes the energy difference between the states "on" and "off" for the edge element at an arbitrary edge site.

C DEE calculates the energy difference (delta energy) between
C edge element (I,J,K) in state 1 (on) and edge element (I,J,K)
C in state 0 (off).
REAL FUNCTION DEE(I,J,K)
C set up data structures
INCLUDE (COMMON)
C types
INTEGER I, J, K, NON
REAL HOLD, RON, ADIFF
C initialize DEE
DEE=0.0
C compute non-diagonal pixel/edge contribution
ADIFF=ABS((XP(I,J)-XP(I+2-K,J+K-1))/CE1B)
DEE=DEE+CE1A/(1.0+ADIFF*ADIFF)
C compute non-diagonal "bond-breaking" penalty
DEE=DEE+CE2B
C compute 4-clique terms, including diagonal pixel/edge
C terms and diagonal bond-breaking terms
HOLD=XE(I,J,K)
XE(I,J,K)=1.0
IF (K.EQ.1.AND.J.GT.1) THEN
RON=XE(I,J-1,1)+XE(I+1,J-1,2)+XE(I,J,1)+XE(I,J-1,2)
NON=NINT(RON)
IF (NON.EQ.1) THEN
DEE=DEE+3*CE2A
ELSEIF (NON.EQ.2) THEN
DEE=DEE-2*CE2A
ELSEIF (XE(I,J-1,2).GT.5) THEN
DEE=DEE-CE2B
ADIFF=ABS((XP(I,J)-XP(I+1,J-1))/CE1B)
DEE=DEE+CE1A+DIAG/(1.0+ADIFF*ADIFF)
ELSEIF (XE(I+1,J-1,2).GT.5) THEN
DEE=DEE-CE2B
ADIFF=ABS((XP(I,J-1)-XP(I+1,J))/CE1B)
DEE=DEE+CE1A+DIAG/(1.0+ADIFF*ADIFF)
ELSE
DEE=DEE-2*CE2B
ADIFF = \frac{|X_P(I,J) - X_P(I+1,J-1)|}{C_E B}

\text{DEE = DEE + } C_E A \times \text{DIAG}(1.0 + \text{ADIFF}^2)

ADIFF = \frac{|X_P(I,J-1) - X_P(I+1,J)|}{C_E B}

\text{DEE = DEE + } C_E A \times \text{DIAG}(1.0 + \text{ADIFF}^2)

\text{ENDIF}

\text{ELSEIF (NON.EQ.3) THEN}

\text{DEE = DEE + } C_E A

\text{IF (XE(I+1,J-1,2,L) .LT. .5) THEN}

\text{DEE = DEE - } C_E B

\text{ADIFF = } \frac{|X_P(I,J) - X_P(I+1,J-1)|}{C_E B}

\text{DEE = DEE + } C_E A \times \text{DIAG}(1.0 + \text{ADIFF}^2)

\text{ELSEIF (XE(I,J-1,2,L) .LT. .5) THEN}

\text{DEE = DEE - } C_E B

\text{ADIFF = } \frac{|X_P(I,J-1) - X_P(I+1,J)|}{C_E B}

\text{DEE = DEE + } C_E A \times \text{DIAG}(1.0 + \text{ADIFF}^2)

\text{ENDIF}

\text{ELSEIF (NON.EQ.4) THEN}

\text{DEE = DEE + } C_E A

\text{ENDIF}

\text{ENDIF}

\text{IF (K.EQ.1.AND.J.LT.NY) THEN}

\text{RAN = X_E(I,J,1)+X_E(I+1,J,2)+X_E(I,J+1,1)+X_E(I,J,2)}

\text{NON = NINT(RAN)}

\text{IF (NON.EQ.1) THEN}

\text{DEE = DEE + } 3 \times C_E A

\text{ELSEIF (NON.EQ.2) THEN}

\text{DEE = DEE - } 2 \times C_E A

\text{IF (XE(I,J,2,L) .GT. .5) THEN}

\text{DEE = DEE - } C_E B

\text{ADIFF = } \frac{|X_P(I,J) - X_P(I+1,J,1)|}{C_E B}

\text{DEE = DEE + } C_E A \times \text{DIAG}(1.0 + \text{ADIFF}^2)

\text{ELSEIF (XE(I+1,J,2,L) .GT. .5) THEN}

\text{DEE = DEE - } C_E B

\text{ADIFF = } \frac{|X_P(I,J) - X_P(I+1,J)|}{C_E B}

\text{DEE = DEE + } C_E A \times \text{DIAG}(1.0 + \text{ADIFF}^2)

\text{ELSE}

\text{DEE = DEE - } 2 \times C_E B

\text{ADIFF = } \frac{|X_P(I,J) - X_P(I+1,J+1)|}{C_E B}

\text{DEE = DEE + } C_E A \times \text{DIAG}(1.0 + \text{ADIFF}^2)

\text{ADIFF = } \frac{|X_P(I,J+1) - X_P(I+1,J)|}{C_E B}

\text{DEE = DEE + } C_E A \times \text{DIAG}(1.0 + \text{ADIFF}^2)

\text{DEE = DEE + } C_E A \times \text{DIAG}(1.0 + \text{ADIFF}^2)

\text{DEE = DEE + } C_E A \times \text{DIAG}(1.0 + \text{ADIFF}^2)

\text{ELSE}

\text{DEE = DEE - } 2 \times C_E B

\text{ADIFF = } \frac{|X_P(I,J) - X_P(I+1,J+1)|}{C_E B}

\text{DEE = DEE + } C_E A \times \text{DIAG}(1.0 + \text{ADIFF}^2)

\text{ADIFF = } \frac{|X_P(I,J+1) - X_P(I+1,J)|}{C_E B}

\text{DEE = DEE + } C_E A \times \text{DIAG}(1.0 + \text{ADIFF}^2)
ENDIF
ELSEIF (NON.EQ.3) THEN
DEE=DEE+CE2A
IF (XE(I+1,J,2).LT.5) THEN
DEE=DEE-CE2B
ADIFF=ABS((XP(I,J)-XP(I+1,J,1))/CE1B)
DEE=DEE+CE1A*DIAG/(1.0+ADIFF*ADIFF)
ELSEIF (XE(I,J,2).LT.5) THEN
DEE=DEE-CE2B
ADIFF=ABS((XP(I,J+1)-XP(I+1,J))/CE1B)
DEE=DEE+CE1A*DIAG/(1.0+ADIFF*ADIFF)
ENDIF
ELSEIF (NON.EQ.4) THEN
DEE=DEE+CE2A
ENDIF
ELSEIF (NON.EQ.3) THEN
DEE=DEE+CE2A
IF (XE(I-1,J,1).LT.5) THEN
NON=NINT(RON)
IF (NON.EQ.1) THEN
DEE=DEE+3*CE2A
ELSEIF (NON.EQ.2) THEN
DEE=DEE-2*CE2A
IF (XE(I-1,J,1).GT.5) THEN
DEE=DEE-CE2B
ADIFF=ABS((XP(I,J)-XP(I-1,J,1))/CE1B)
DEE=DEE+CE1A*DIAG/(1.0+ADIFF*ADIFF)
ELSEIF (XE(I-1,J+1,1).GT.5) THEN
DEE=DEE-CE2B
ADIFF=ABS((XP(I-1,J)-XP(I+1,J,1))/CE1B)
DEE=DEE+CE1A*DIAG/(1.0+ADIFF*ADIFF)
ELSE
DEE=DEE-2*CE2B
ADIFF=ABS((XP(I,J)-XP(I-1,J,1))/CE1B)
DEE=DEE+CE1A*DIAG/(1.0+ADIFF*ADIFF)
ADIFF=ABS((XP(I-1,J)-XP(I,J,1))/CE1B)
DEE=DEE+CE1A*DIAG/(1.0+ADIFF*ADIFF)
ENDIF
ELSEIF (NON.EQ.3) THEN
DEE=DEE+CE2A
IF (XE(I-1,J+1,1).LT.5) THEN
34
DEE = DEE - CE2B
ADIFF = ABS((XP(I,J) - XP(I-1,J+1))/CE1B)
DEE = DEE + CE1A * DIAG / (1.0 + ADIFF * ADIFF)
ELSEIF (XE(I-1,J,1).LT.0.5) THEN
DEE = DEE - CE2B
ADIFF = ABS((XP(I-1,J) - XP(I,J+1))/CE1B)
DEE = DEE + CE1A * DIAG / (1.0 + ADIFF * ADIFF)
ENDIF
ELSEIF (NON.EQ.4) THEN
DEE = DEE + CE2A
ENDIF
ENDIF
IF (K.EQ.2 .AND. I.LT.NX) THEN
RON = XE(I,J) + XE(I+1,J,2) * XE(I,J+1,1) * XE(I,J,2)
NON = NINT(RON)
ENDIF
ELSEIF (NON.EQ.1) THEN
DEE = DEE + 3 * CE2A
ELSEIF (NON.EQ.2) THEN
DEE = DEE - 2 * CE2A
ENDIF
ELSEIF (NON.EQ.3) THEN
DEE = DEE + CE2A
ENDIF
IF (XE(I,J,1).GT.0.5) THEN
DEE = DEE - CE2B
ADIFF = ABS((XP(I,J) - XP(I+1,J+1))/CE1B)
DEE = DEE + CE1A * DIAG / (1.0 + ADIFF * ADIFF)
ELSEIF (XE(I,J+1,1).GT.0.5) THEN
DEE = DEE - CE2B
ADIFF = ABS((XP(I,J+1) - XP(I+1,J))/CE1B)
DEE = DEE + CE1A * DIAG / (1.0 + ADIFF * ADIFF)
ELSE
DEE = DEE - 2 * CE2B
ADIFF = ABS((XP(I,J) - XP(I+1,J+1))/CE1B)
DEE = DEE + CE1A * DIAG / (1.0 + ADIFF * ADIFF)
ADIFF = ABS((XP(I,J+1) - XP(I+1,J))/CE1B)
DEE = DEE + CE1A * DIAG / (1.0 + ADIFF * ADIFF)
ENDIF
ELSEIF (XE(I,J+1,1).LT.0.5) THEN
DEE = DEE - CE2B
ADIFF = ABS((XP(I,J) - XP(I+1,J+1))/CE1B)
DEE = DEE + CE1A * DIAG / (1.0 + ADIFF * ADIFF)
ADIFF = ABS((XP(I,J+1) - XP(I+1,J))/CE1B)
DEE = DEE + CE1A * DIAG / (1.0 + ADIFF * ADIFF)
ELSEIF (XE(I,J,1).LT.0.5) THEN
DEE = DEE - CE2B
ADIFF = ABS((XP(I,J) - XP(I+1,J+1))/CE1B)
DEE = DEE + CE1A * DIAG / (1.0 + ADIFF * ADIFF)
ELSEIF (XE(I,J,1).LT.0.5) THEN
DEE = DEE - CE2B
ADIFF = ABS((XP(I,J) - XP(I+1,J+1))/CE1B)
DEE = DEE + CE1A * DIAG / (1.0 + ADIFF * ADIFF)
ELSE
DEE = DEE - 2 * CE2B
ADIFF = ABS((XP(I,J) - XP(I+1,J+1))/CE1B)
DEE = DEE + CE1A * DIAG / (1.0 + ADIFF * ADIFF)
ENDIF
DEE=DEE-CE2B
ADIFF=ABS((XP(I,J+1)-XP(I+1,J))/CE1B)
DEE=DEE+CE1A*DIAG/(1.0+ADIFF*ADIFF)
ENDIF
ELSEIF (NON.EQ.4) THEN
DEE=DEE+CE2A
ENDIF
ENDIF
C CONTRIBUTION FORM INHIBITION OF PARALLEL LINES
IF (K.EQ.1) THEN
DEE=DEE+CE2C*(XE(I-2,J,1)+XE(I-1,J,1)+XE(I+1,J,1)+XE(I+2,J,1))
ELSE
DEE=DEE+CE2C*(XE(I,J-2,2)+XE(I,J-1,2)+XE(I,J+1,2)+XE(I,J+2,2))
ENDIF
XE(I,J,K)=HOLD
END
4.10 Function Subprogram GGUBFS.

The function subprogram GGUBFS is from the proprietary IMSL Library and is used to generate pseudorandom numbers that are independent and uniformly distributed on (0,1). The listing below should not be reproduced nor incorporated in any programs other than the present one unless its use is licensed on the system on which such a program is being developed.

<table>
<thead>
<tr>
<th>C</th>
<th>IMSL ROUTINE NAME</th>
<th>GGUBFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>GGU00010</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GGU00020</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GGU00030</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GGU00040</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GGU00050</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GGU00060</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GGU00070</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GGU00080</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GGU00090</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GGU0100</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GGU0110</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GGU0120</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GGU0130</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GGU0140</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GGU0150</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GGU0160</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GGU0170</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GGU0180</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GGU0190</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GGU0200</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GGU0210</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GGU0220</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GGU0230</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GGU0240</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GGU0250</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GGU0260</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GGU0270</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GGU0280</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GGU0290</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GGU0300</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GGU0310</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GGU0320</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GGU0330</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>GGU0340</td>
<td></td>
</tr>
</tbody>
</table>

37
REAL FUNCTION GGUBFS (DSEED)

DOUBLE PRECISION DSEED

DOUBLE PRECISION D2P31M, D2P31

D2P31M = \(2^{31} - 1\)

D2P31 = \(2^{31}\) (OR AN ADJUSTED VALUE)

DATA D2P31M/2147483647.DO/
DATA D2P31 /2147483648.DO/

FIRST EXECUTABLE STATEMENT

DSEED = DMOD(16807.DO*DSEED, D2P31M)

GGUBFS = DSEED / D2P31

RETURN

END
5 FLIR EXAMPLES.

The algorithm described in Sections 2 and 3 and implemented by the program of Section 4 has been applied to a variety of FLIR images provided by the Advanced Modeling Team at NV&EOL. The results of selected experiments are included here.

For these experiments, the model parameters were set on the basis of inspection of the digitized FLIR images to determine attributes such as dynamic range and noise-variance and on the basis of the insights and interpretations of the model parameters described in Section 3.

In each of the photographs in Appendix B, the upper-left panel contains a 32×32 section of the observed image. The upper-right panel contains the result of fifty iterations of the stochastic relaxation algorithm, with annealing. The lower-left panel contains the original observed image plus additional noise having standard deviation 8. The lower-right panel contains the result of fifty iterations of the stochastic relaxation algorithm, with annealing, applied to the noise corrupted image.

The model and program parameters for the experiments are given in the following table:

<table>
<thead>
<tr>
<th>Model</th>
<th>Program</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_1</td>
<td>CE1A</td>
<td>10.4</td>
</tr>
<tr>
<td>B</td>
<td>CE1B</td>
<td>4.0</td>
</tr>
<tr>
<td>θ_2</td>
<td>CE2B</td>
<td>1.66</td>
</tr>
<tr>
<td>θ_3</td>
<td>CE2A</td>
<td>1.0</td>
</tr>
<tr>
<td>ξ_1</td>
<td>-4</td>
<td></td>
</tr>
<tr>
<td>ξ_2</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>ξ_3</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>ξ_4</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>ξ_5</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>ξ_6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PMIN</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>PMAX</td>
<td>238</td>
<td></td>
</tr>
<tr>
<td>MAXDA</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>NDA</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

For the original observed images, the standard deviation Σ of the additive noise presumed to be degrading the ideal image was set to 5.

For the images to which noise was added, the standard deviation in the restoration algorithm was set to $\sqrt{25 + 64} = 9.43$.

Eight figures are included in Appendix B.
REFERENCES.

A COMPLEX SYSTEMS WORKING PAPERS.

During the course of the modeling project, a number of internal working papers were prepared describing progress and research plans for specific aspects of the research effort. These papers were not intended for general distribution. Nonetheless, because of the direct cooperation with the Advanced Modeling Team at NV&EOL, the working papers were all shared with the leaders of the team. Titles of the working papers directly related to the image analysis problems at NV&EOL include:

- An entropy approach to relaxation time, April 1983.
- Updating schemes for image processing, June 1983.
- Parameter estimation for some Markov random fields, August 1983.
- Synthesis of partition patterns, August 1983.
- Synthesis of surface patterns, August 1983.
- A computer experiment with sweep areas, October 1983.
- Some experiments with partition, shape, and network patterns, October 1983.
- Simulating cold patterns is difficult, November 1983.
- Stochastic relaxation for some continuous generator spaces, November 1983.
- Remarks on annealing schedules, December 1983.
- Parameter estimation for Markov random fields with hidden variables and experiments with the EM algorithm, August 1984.
- Aspects of image processing, September 1984.
- Software for image processing experiments, November 1984.
- Preliminaries to target identification in IR-pictures, April 1985.
- Recognizing patterns in the presence of nuisance parameters, February 1986.
- Parallel logic under uncertainty, continued and applied to the car experiment, August 1986.
B. FIGURES

FIGURE 1

FIGURE 2
END
5-87
DTic