THERMOACOUSTIC GENERATION IN ANISOTROPIC MEDIA

John A. Hildebrand

MPL-U-44/85

Approved for public release: distribution unlimited.
THERMOACOUSTIC GENERATION IN ANISOTROPIC MEDIA

John A. Hildebrand

University of California, San Diego, Marine Physical Laboratory, Scripps Institution of Oceanography, San Diego, CA 92152

Office of Naval Research, Department of the Navy, 800 North Quincy Street, Arlington, VA 22217

Office cleared for public release; distribution unlimited.

Reproduction in whole or in part is permitted for any purpose of the United States Government.

acoustic waves
anisotropic media
crystalline anisotropy
thermoacoustic generation

The generation of acoustic waves by a modulated thermal source is examined for anisotropic materials. A wave equation is developed to include the effect of a thermoacoustic source for the anisotropic case. The dependence of the thermoacoustic source term upon the material elastic constants is identified for a thermal source varying in one dimension. This dependence is examined for several classes of crystalline anisotropy and it is found that thermoacoustic generation varies with crystallographic orientation. The directions of maximum and minimum thermoacoustic generation are not
consistent for a given crystal class and are dependent upon the specific values of the elastic constants for the material.
Thermoacoustic generation in anisotropic media

John A. Hildebrand
Marine Physical Laboratory, A-005, Scripps Institution of Oceanography, University of California, San Diego, California 92093

(Received 8 August 1985; accepted for publication 16 January 1986)

The generation of acoustic waves by a modulated thermal source is examined for anisotropic materials. A wave equation is developed to include the effect of a thermoacoustic source for the anisotropic case. The dependence of the thermoacoustic source term upon the material elastic constants is identified for a thermal source varying in one dimension. This dependence is examined for several classes of crystalline anisotropy and it is found that thermoacoustic generation varies with crystallographic orientation. The directions of maximum and minimum thermoacoustic generation are not consistent for a given crystal class and are dependent upon the specific values of the elastic constants for the material.

PACS numbers: 43.35.Ud

INTRODUCTION

It has long been known that a modulated thermal source may be used to create acoustic waves. The effect was discovered in the 1880s by Alexander Graham Bell, who studied the audible sound generated by illuminating matter with a periodically interrupted light. The basic principle of thermoacoustic generation within a solid involves the coupling of energy from thermal expansion and contraction into an acoustic wave. The problem of thermoacoustic generation at the surface of an isotropic solid was studied by White, who related the production of elastic waves to thermal and elastic properties of the solid. More recently, thermoacoustic generation at the surface of a solid has been used as a means of spectroscopic characterization and as a source for imaging. Thermoooustic generation is a particularly useful technique to study the thermal and elastic properties of thin layers of material because thermoacoustic waves can be generated within a layer which is thinner than the generated acoustic wavelength. In contrast, a layer several acoustic wavelengths thick is required to interact effectively with externally generated acoustic waves.

This paper assesses the effect of elastic anisotropy on the generation of acoustic waves by a modulated thermal source. It will be shown that the solid elastic constants enter into the efficiency of thermoacoustic generation and this results in an orientation dependence for thermoacoustic generation within anisotropic solids.

I. THERMOACOUSTIC WAVE EQUATION

The first step in this analysis is to develop a wave equation for thermoacoustic generation in anisotropic materials. The presence of a locally nonuniform temperature distribution within the material produces an additional strain without a corresponding change in stress. The thermal strain S_Θ is proportional to the temperature increase Θ and to the linear thermal expansion coefficient α. This strain is purely dilatational and can be written in abbreviated subscript notation as

\[S_\Theta = \alpha \Theta \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} , \]

where α and Θ are taken to be scalar quantities. The strain due to acoustic waves in the material S_a can be obtained from the difference between the total strain S and the temperature associated strain S_Θ:

\[S_a = S - S_\Theta , \]

giving the strain displacement relation,

\[S_a = \nabla \cdot u - S_\Theta , \]

where u is the displacement and ∇, is the symmetric part of the displacement gradient. Recall the acoustic equation of motion

\[\nabla \cdot T = \rho \frac{\partial^2 u}{\partial t^2} \]

and the constitutive equation

\[T = c : S_a , \]

where T is the stress, ρ is the density, c is the stiffness matrix, and the double dot product represents matrix multiplication. Substituting S_a into the constitutive equation gives

\[T = c : S - \alpha c : \Theta \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} . \]

This is the stress–strain relation for thermoacoustic generation and, if it is simplified to the case of isotropic media, it becomes

\[T = c : S . \]
waves in directions perpendicular to the thermal gradients. Anisotropic materials allow for generation of acoustic energy, and large coefficients of thermal expansion, which indicates that thermoacoustic generation is enhanced when the source terms become confined to the \(\hat{x} \) or \(\hat{z} \) directions, the elastic portion of the wave equation for the most general anisotropic case, there are 21 independent constants in the \(c \) matrix (e.g., triclinic crystal class) and the thermoacoustic source term can be written as follows:

\[
\nabla \cdot (c : S) = \alpha \nabla \cdot (c : \Theta).
\]

(9)

II. THERMOACOUSTIC SOURCE TERM

The right-hand side of Eq. (8) can be viewed as a source term due to the nonuniform temperature distribution. Expanding this term gives

\[
\nabla \cdot (c : S_o) = \alpha \nabla \cdot (c : \Theta).
\]

(10)

For the most general anisotropic case, there are 21 independent constants in the \(c \) matrix (e.g., triclinic crystal class) and the thermoacoustic source term can be written as follows:

Examining the components of the thermoacoustic source term indicates that thermoacoustic generation is enhanced for large thermal gradients, large coefficients of thermal expansion, and large values for the elastic constants. In addition, anisotropic materials allow for generation of acoustic waves in directions perpendicular to the thermal gradients. Under the assumption of propagation in an isotropic medium, Eq. (10) becomes

\[
\nabla \cdot (c : S_o) = 3B\alpha \nabla \Theta.
\]

(11)

With the additional assumption of purely dilatational displacements, the thermoacoustic wave equation (8) becomes

\[
c_{11} \nabla^2 u - \rho \frac{\partial^2 u}{\partial t^2} = 3B\alpha \nabla \Theta,
\]

(12)

which can also be directly obtained from the Duhamel–Neumann law.

In order to predict the efficiency of thermoacoustic generation in anisotropic materials, the thermoacoustic wave equation (8) will be examined for the simple case of a thermal gradient in one direction. In particular, assume that harmonic thermal energy is absorbed at the boundary between two semi-infinite media with a resulting thermal distribution which varies in the \(\hat{x} \) direction only. The thermoacoustic wave equation in the \(\hat{x} \) direction is then

\[
\frac{\partial^2 u}{\partial x^2} - \frac{1}{v^2} \frac{\partial^2 u}{\partial t^2} = \alpha \frac{(c_{11} + c_{12} + c_{13})}{c_{11}} \frac{\partial \Theta}{\partial x},
\]

(13)

where \(v = \sqrt{c_{11}/\rho} \) is the acoustic velocity. The effect of the elastic constants on the thermoacoustic source term can now be isolated to the factor

\[
\beta_\alpha = \frac{(c_{11} + c_{12} + c_{13})}{c_{11}}.
\]

Likewise, for thermoacoustic generation due to thermal gra-

TABLE I. Thermoacoustic generation factor for orthorhombic crystals.

<table>
<thead>
<tr>
<th>Material</th>
<th>(\beta_\alpha)</th>
<th>(\beta_\beta)</th>
<th>(\beta_\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barium sodium niobate</td>
<td>1.64</td>
<td>1.63</td>
<td>1.76</td>
</tr>
<tr>
<td>Iodic acid*</td>
<td>1.78</td>
<td>1.32</td>
<td>1.39</td>
</tr>
<tr>
<td>Rochelle salt*</td>
<td>2.16</td>
<td>1.90</td>
<td>1.88</td>
</tr>
</tbody>
</table>

* Piezoelectric crystal, values are calculated using \(\epsilon^\prime \).

John A. Hildebrand: Thermoacoustic generation in anisotropic media
For tetragonal, trigonal, and hexagonal crystals, the thermoacoustic generation factors are equal in the x and y directions ($\beta_{\text{trans}} = \beta_x = \beta_y$) due to the equivalence of the elastic constants

$$c_{11} = c_{22}$$

and

$$c_{33} = c_{11}.$$

For the tetragonal crystals in Table II, no clear pattern emerges for the relative magnitudes of β_{trans} and β_4. The examples shown are equally divided between cases where $\beta_{\text{trans}} > \beta_4$ and $\beta_4 > \beta_{\text{trans}}$. A substantial difference between the relative magnitude of β_{trans} and β_4 is observed for tellurium dioxide (39%), ADP (36%), and rutile (27%), indicating that for these crystals the magnitude of thermoacoustic generation will vary significantly with orientation. Also note the large absolute values of β_4 for barium titanate (2.83) and indium (2.84).

For the trigonal crystals in Table III, there is no consistent pattern for the relative magnitudes of β_{trans} and β_4. The examples show that larger thermoacoustic generation may be observed in either direction. However, note the consistently small values of β for the trigonal crystals and in particular the small β for quartz (1.22).

For the hexagonal crystals in Table IV, in each case $\beta_{\text{trans}} > \beta_4$, indicating that thermoacoustic generation is consistently greater in the transverse directions relative to the z direction. However, note that the list in Table IV is only a sampling of hexagonal crystals and others may deviate from this pattern. Note that in the x-y plane of a hexagonal crystal, elastic wave propagation is isotropic resulting in thermoacoustic generation which is independent of direction.

For cubic crystals, the thermoacoustic generation factor β is equal in the x, y, and z directions and is designated β_{100}. The factor β can be calculated for other directions by application of a coordinate transformation to the c matrix. Using a 45° rotation about the z axis, the effective elastic constants for propagation in the [110] direction of a cubic crystal are given as follows:

$$c_{11} = (c_{11} + c_{12} + 2c_{44})/2, \quad c_{12} = (c_{11} + c_{12} - 2c_{44})/2,$$

(17)

$$c_{13} = c_{12},$$

and

$$\beta_{110} = (c_{11} + c_{12} + c_{13})/c_{11}. $$

(18)

Table II. Thermoacoustic generation factor for tetragonal crystals.

<table>
<thead>
<tr>
<th>Material</th>
<th>β_{trans}</th>
<th>β_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonium dihydrogen phosphate (ADP)*</td>
<td>1.39</td>
<td>2.18</td>
</tr>
<tr>
<td>Barium titanate*</td>
<td>2.20</td>
<td>2.83</td>
</tr>
<tr>
<td>Calcium molybdate</td>
<td>1.77</td>
<td>1.62</td>
</tr>
<tr>
<td>Indium</td>
<td>2.80</td>
<td>2.84</td>
</tr>
<tr>
<td>Lead molybdate</td>
<td>2.11</td>
<td>1.97</td>
</tr>
<tr>
<td>Potassium dihydrogen phosphate (KDP)*</td>
<td>1.90</td>
<td>2.01</td>
</tr>
<tr>
<td>Rutile</td>
<td>2.16</td>
<td>1.58</td>
</tr>
<tr>
<td>Tellurium dioxide</td>
<td>2.31</td>
<td>1.41</td>
</tr>
</tbody>
</table>

* Piezoelectric crystal, values are calculated using c^6.

Table IV. Thermoacoustic generation factor for hexagonal crystals.

<table>
<thead>
<tr>
<th>Material</th>
<th>β_{trans}</th>
<th>β_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beryllium oxide*</td>
<td>1.47</td>
<td>1.36</td>
</tr>
<tr>
<td>Cadmium selenide*</td>
<td>2.14</td>
<td>1.94</td>
</tr>
<tr>
<td>Cadmium sulfide*</td>
<td>2.20</td>
<td>2.09</td>
</tr>
<tr>
<td>Titanium, crystal</td>
<td>1.99</td>
<td>1.76</td>
</tr>
<tr>
<td>Zinc oxide*</td>
<td>2.08</td>
<td>2.00</td>
</tr>
<tr>
<td>Zinc sulfide*</td>
<td>2.09</td>
<td>1.97</td>
</tr>
</tbody>
</table>

* Piezoelectric crystal, values are calculated using c^6.

Table V. Thermoacoustic generation factor for cubic crystals.

<table>
<thead>
<tr>
<th>Material</th>
<th>β_{100}</th>
<th>β_{110}</th>
<th>β_{111}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum, crystal</td>
<td>2.14</td>
<td>2.04</td>
<td>2.01</td>
</tr>
<tr>
<td>Barium fluoride</td>
<td>1.91</td>
<td>1.90</td>
<td>1.89</td>
</tr>
<tr>
<td>Bismuth germanate*</td>
<td>1.47</td>
<td>1.48</td>
<td>1.48</td>
</tr>
<tr>
<td>Bismuth germanium oxide*</td>
<td>1.48</td>
<td>1.80</td>
<td>1.95</td>
</tr>
<tr>
<td>Diamond</td>
<td>1.49</td>
<td>1.35</td>
<td>1.31</td>
</tr>
<tr>
<td>Europium iron garnet</td>
<td>1.85</td>
<td>1.82</td>
<td>1.81</td>
</tr>
<tr>
<td>Gallium arsenide*</td>
<td>1.91</td>
<td>1.55</td>
<td>1.46</td>
</tr>
<tr>
<td>Gallium phosphide*</td>
<td>1.89</td>
<td>1.55</td>
<td>1.46</td>
</tr>
<tr>
<td>Germanium</td>
<td>1.75</td>
<td>1.45</td>
<td>1.37</td>
</tr>
<tr>
<td>Gold, crystal</td>
<td>2.69</td>
<td>2.34</td>
<td>2.25</td>
</tr>
<tr>
<td>Indium antimonide*</td>
<td>2.09</td>
<td>1.71</td>
<td>1.61</td>
</tr>
<tr>
<td>Indium arsenide*</td>
<td>2.09</td>
<td>1.67</td>
<td>1.57</td>
</tr>
<tr>
<td>Indium phosphide*</td>
<td>2.13</td>
<td>1.73</td>
<td>1.62</td>
</tr>
<tr>
<td>Iron, crystal</td>
<td>2.19</td>
<td>1.70</td>
<td>1.58</td>
</tr>
<tr>
<td>Lithium fluoride</td>
<td>1.76</td>
<td>1.40</td>
<td>1.31</td>
</tr>
<tr>
<td>Magnesium oxide</td>
<td>1.61</td>
<td>1.38</td>
<td>1.31</td>
</tr>
<tr>
<td>Nickel, crystal</td>
<td>2.28</td>
<td>1.76</td>
<td>1.64</td>
</tr>
<tr>
<td>Silicon</td>
<td>1.77</td>
<td>1.51</td>
<td>1.44</td>
</tr>
<tr>
<td>Silver, crystal</td>
<td>2.50</td>
<td>2.01</td>
<td>1.89</td>
</tr>
<tr>
<td>Sodium fluoride</td>
<td>1.50</td>
<td>1.64</td>
<td>1.69</td>
</tr>
<tr>
<td>Strontium titanate</td>
<td>1.64</td>
<td>1.56</td>
<td>1.54</td>
</tr>
<tr>
<td>Tungsten, crystal</td>
<td>1.79</td>
<td>1.79</td>
<td>1.79</td>
</tr>
<tr>
<td>Yttrium aluminum garnet (YAG)</td>
<td>1.66</td>
<td>1.65</td>
<td>1.64</td>
</tr>
<tr>
<td>Yttrium gallium garnet</td>
<td>1.81</td>
<td>1.77</td>
<td>1.74</td>
</tr>
<tr>
<td>Yttrium iron garnet (YIG)</td>
<td>1.83</td>
<td>1.84</td>
<td>1.84</td>
</tr>
</tbody>
</table>

* Piezoelectric crystal, values are calculated using c^6.

John A Hildebrand, Thermoacoustic generation anisotropic media
By application of an additional rotation about the \(y' \) axis, the elastic constants for propagation in the [111] direction are found to be

\[
\begin{align*}
\sigma_{11} & = (c_{11} + 2c_{12} + 4c_{44})/2, \\
\sigma_{22} & = (c_{11} + 2c_{12} - 2c_{44})/2, \\
\sigma_{33} & = c_{12},
\end{align*}
\]

and \(\beta_{111} \) can be calculated from the \(c^* \) values as above. Using these expressions, the values of \(\beta_{100}, \beta_{110}, \) and \(\beta_{111} \) are given in Table V for various cubic crystals. For most of the examples in Table V, the relative magnitude of the generation factor is \(\beta_{100} > \beta_{110} > \beta_{111} \), indicating that thermoacoustic generation is greatest along an axis [100] of the cubic crystals. However, in four cases (bismuth germanate, bismuth germanium oxide, sodium fluoride, and yttrium iron garnet), the preferred direction for thermoacoustic generation is [111].

Experimental investigation of the thermoacoustic effect in crystalline materials has been reported by Tam and Leung\(^{13}\) and by Vladimirtsev et al.\(^{14}\) Tam and Leung used photoacoustically generated sound to measure the ultrasonic velocity as a function of orientation in a sample of polycrystalline aluminum. Although their paper does not mention variation in the amplitude of photoacoustic generation with crystal orientation, their experimental apparatus is well suited to measurements of this kind. Vladimirtsev et al. produced photoacoustic generation in piezoelectric crystals and observed the excitation of normal modes. They observed that surface optical defects increased the intensity of photoacoustic generation; however, they do not mention variation in photoacoustic generation with crystal orientation.

IV. SUMMARY

A wave equation has been derived which includes the generation of elastic waves by a modulated thermal source. The dependence of the thermoacoustic generation on material elastic constants has been explored for anisotropic materials. Although substantial variation in thermoacoustic generation is predicted for changes in orientation, the directions of maximum and minimum generation are not consistent for a single crystal class and instead depend upon the specific values of the elastic constants.

Acknowledgments

I thank L. M. Dorman, D. Rugar, and C. C. Williams for useful discussions relating to this work and I thank the anonymous reviewers for their useful comments. The author completed this work during postdoctoral study at the Marine Physical Laboratory supported by the Office of Naval Research.

ONR/MPL GENERAL DISTRIBUTION LIST

Chief of Naval Research
Department of the Navy
Arlington, Virginia 22207-4000
Code 13, 12853, 1050
111, 112, 118, 1125FO, 425-AC, 460

ONR/DST
NSTL Station
Bay, St. Louis, Mississippi 38229-5004
Code 112, 1121, 1122CS, 4525CB,
1125FO, 1125GO

Director
Office of Naval Research
Brach Office
1980 East Green Street
Pasadena, California 91106-3485

Commander
Naval Sea Systems Command
Washington, D.C. 20362
Code 43, 453, 465-23

Commanding Officer
Naval Ocean Research and Development Activity
NSTL Station
Bay St. Louis, Mississippi 38229-5004
Code 100, 110, 300, 330, 340, 350, 360, 500

Commander
U.S. Naval Oceanographic Office
NSTL Station
Bay St. Louis, Mississippi 38229-5004
Attn: Bill Jobs

Assistant Secretary of the Navy
(Research Engineering & Systems)
Department of the Navy
Washington, D.C. 20360

Defense Advanced Res. Proj. Agency
TTO - Tactical Technology Office
1400 Wilson Boulevard
Arlington, Virginia 22202-2008
Attn: Capt. Kirk Evans

National Oceanic & Atmospheric Administration
Ocean Engineering Office
8001 Executive Boulevard
Rockville, Maryland 20852

Commander
Space and Naval Warfare Systems Command
Washington, D.C. 20360
Code PW-124, 320A

Commander
Naval Ship Res. & Dev. Center
Bethesda, Maryland 20884

Executive Secretary
Naval Studies Board
National Academy of Sciences
2101 Constitution Avenue, N.W.
Washington, D.C. 20418

Director
Strategic Systems Proj. Ofc. (PM-1)
Department of the Navy
Washington, D.C. 20361
Code NSP-2025

Commander
Naval Ocean Systems Center
San Diego, California 92152
Code 00, 01, 18, 94, 531
5201, 71, 72

Commander
Submarines Development Group ONE
Fleet Post Office
San Diego, California 92162

Commanding Officer
Civil Engineering Laboratory
Naval Construction Battalion Center
Port Hueneme, California 93043
Code L40, L42

Commanding Officer
Naval Underwater Systems Center
Newport, Rhode Island 20644
Attn: Dr. K. A. Kemp, Code 8213

Officer in Charge
Naval Underwater Systems Center
New London Laboratory
New London, Connecticut 06320
Code 900, 906, 910, 080, 980

Director of Research
U.S. Naval Research Laboratory
Washington, D.C. 20375
Code 2652, 2657, 6000, 5100, 5800

Commander
Naval Surface Combat Systems Center
White Oak
Silver Spring, Maryland 20910

Commanding Officer
Naval Coastal Systems Laboratory
Panama City, Florida 32401

STOIC
Battle Columbus Laboratories
505 King Avenue
Columbus, Ohio 43201

Commander
Naval Air Systems Command
Washington, D.C. 20361
Code 370

Commanding Officer
U.S. Naval Air Development Center
Atten: Jim Howard
Warminster, Pennsylvania 18974

Director
Defense Documentation Center
(TDMA), Cameron Station
5010 Duke Street
Alexandria, Virginia 22314

Institute for Defense Analyses
1801 North Beauregard Street
Arlington, Virginia 22211

Superintendent
U.S. Naval Postgraduate School
Monterey, California 93940

Chief Scientist
U.S. Naval Undersea Sound Reference Div.
U.S. Naval Research Laboratory
P.O. Box 8337
Orlando, Florida 32808

Supreme Allied Commander
U.S. Atlantic Fleet
ASW Research Center, APO
New York, New York 00018
Via: ONR 100 M, CNO 0P0001,1,
Secretariat of Military,
Information Control Committee

Director
Institute of Marine Science
University of Alaska
Fairbanks, Alaska 99701

Director
Applied Physics Laboratory
Johns Hopkins University
Johns Hopkins Road
Laurel, Maryland 20610
Attn: J. R. Austin

Director
College of Engineering
Department of Ocean Engineering
Florida Atlantic University
Boca Raton, Florida 33431

Director
Marine Research Laboratories
U/S Marine Studies Center
University of Wisconsin
Madison, Wisconsin 53706

Director
Applied Research Laboratory
Pennsylvania State University
P.O. Box 30
State College, Pennsylvania 16802

Director
Applied Physics Laboratory
University of Washington
1013 East 40th Street
Seattle, Washington 98106

Director
The Univ. of Texas at Austin
Applied Research Laboratory
P.O. Box 8039
Austin, Texas 78712

Director
Lamont-Doherty Geological Observatory
Torry Cliff
Palisades, New York 10964

Director
Wood's Hole Oceanographic Institution
Wood's Hole, Massachusetts 02543

Director
Inst. of Ocean Science Engineering
Catholic University of America
Washington, D.C. 20017

National Science Foundation
Washington, D.C. 20550

Office of Naval Research
Resident Representative
U/S Univ. of California, San Diego
Mail Code G025
La Jolla, California 92038

University of California, San Diego
Marine Physical Laboratory
Branch Office
La Jolla, California 92038

May 1994