ESTIMATION FOR THE RASCH MODEL
WHEN BOTH ABILITY AND
DIFFICULTY PARAMETERS ARE RANDOM

Steven E. Rigdon
and
Robert K. Tsutakawa

Mathematical Sciences Technical Report No. 133
February 1987

Department of Statistics
University of Missouri
Columbia, MO 65211

Prepared under contract No. N00014-85-K-0113, NR 150-535
with the Personnel and Training Research Programs
Psychological Sciences Division
Office of Naval Research

Approved for public release: distribution unlimited.
Reproduction in whole or in part is permitted for
any purpose of the United States Government
Title: Estimation for the Rasch Model when both Ability and Difficulty Parameters are Random

Authors: Rigdon, Steven E. & Tsutakawa, Robert K.

Type of Report: Technical

Date of Report: 87 FEB 18

Source of Funding:
- Program: N00014-85-K-0113
- Unit: 61153N
- Accession No: RR042-04-04-1 4421-535

Abstract:
Estimation of the parameters of the Rasch model, a one parameter item response model, is considered when both the item parameters and the ability parameters are considered random quantities. It is assumed that the item parameters are drawn from a \(N(\gamma, \tau^2)\) distribution, and the abilities are drawn from a \(N(0, \sigma^2)\) distribution. A variation of the EM algorithm is used to find approximate maximum likelihood estimates of \(\gamma, \tau\) and \(\sigma\). A second approach assumes that the difficulty parameters are drawn from a uniform distribution over part of the real line. Real and simulated data sets are discussed for illustration.
Estimation for the Rasch Model
when both Ability and Difficulty
Parameters are Random

Steven E. Rigdon
Southern Illinois University at Edwardsville

Robert K. Tsutakawa
University of Missouri
Estimation for the Rasch Model
when both Ability and Difficulty
Parameters are Random

Abstract

Estimation of the parameters of the Rasch model, a one
parameter item response model, is considered when both the
item parameters and the ability parameters are considered
random quantities. It is assumed that the item parameters are
drawn from a \(N(\theta_i) \) distribution, and the abilities are drawn
from a \(N(\mu) \) distribution. A variation of the EM algorithm is
used to find approximate maximum likelihood estimates of \(\beta \) and \(\phi \). A second approach assumes that the difficulty
parameters are drawn from a uniform distribution over part of
the real line. Real and simulated data sets are discussed for
illustration.

Key Words: EM algorithm, Item response curve, Rasch model.
Introduction

Suppose that the responses of n examinees to k test items are assembled in an n×k matrix \(Y \) of binary variables, with \(Y_{ij} = 1 \) if the ith examinee's answer to item \(j \) is correct, and \(Y_{ij} = 0 \) otherwise. It will be assumed that the model for the responses is the Rasch model, i.e.

\[
p_{ij} = P(Y_{ij} = 1 | \theta_i, \beta_j) = \frac{\exp(\theta_i - \beta_j)}{1 + \exp(\theta_i - \beta_j)}
\]

(1.1)

where \(\theta_i \) is the ability of the ith examinee and \(\beta_j \) is the difficulty parameter for item \(j \). Here \(\theta \) and \(\beta \) may take on any values on the entire real line. Given \(\theta = (\theta_1, \ldots, \theta_n) \) and \(\beta = (\beta_1, \ldots, \beta_k) \), conditional independence among the responses will be assumed, i.e.

\[
p(Y | \theta, \beta) = \prod_{i=1}^{n} \prod_{j=1}^{k} p_{ij}^{Y_{ij}} (1 - p_{ij})^{1-Y_{ij}}.
\]

(1.2)

The Rasch model is the simplest and probably the most widely used model in item response theory. As Thissen (1982) points out, there are situations where the Rasch model does fit test data well. However, it is overly simplistic in some situations, and so two and three parameter models (2PL and 3PL) have been proposed and studied. Estimation schemes for the 2PL and 3PL are usually much more involved than for the Rasch model. In addition, the 2PL and 3PL models require a large n in order to accurately estimate the second and third parameters of some items (Lord, 1983a). Thus when n is small, under about 200, the 2PL and 3PL models are not practical, and the Rasch model should be used. The results of this paper should be useful in these situations where the Rasch model is appropriate.
When θ and β are both considered fixed but unknown quantities, the standard maximum likelihood (ML) procedure of Birnbaum (1968) is applicable and has been studied extensively. There have been several recent proposals related to the EM algorithm (Dempster, Laird, Rubin, 1977) for estimating β or θ when θ is treated as a random sample from a normal distribution. For example, Sanathanan and Blumenthal (1978) give ML solution for parameters of this normal distribution when β is given, Bock and Aitkin (1981) and Thissen (1982) discuss methods for obtaining marginal ML estimates of β, and Rigdon and Tsutakawa (1983) discuss ML estimation of both β and the parameter of the normal distribution. In each of these cases individual ability parameters can be subsequently estimated by computing the posterior mean of θ after replacing the unknown parameters (i.e., β or the parameter of the normal distribution) by their ML estimate.

It is well known that the maximum likelihood estimate of ability is not finite for examinees that have a response pattern of all correct or all incorrect answers. The procedures mentioned in the previous paragraph possess the advantage of yielding a finite estimate of ability even in such situations. If the number of examinees is relatively small, it is likely that the response patterns for some items will consist of all zeros or all ones. In such a situation the method of maximum likelihood and the methods mentioned in the previous paragraph do not yield a finite estimate of the difficulty parameter. One of the methods proposed in this article does have the advantage of yielding finite estimates of difficulty and ability in these situations.

Lord (1983b) showed that for 3PL the maximum likelihood estimate of ability is positively biased for examinees with high ability and negatively biased for
examinees with low ability. By placing a prior distribution on the ability parameters, as is done for the methods mentioned previously and for the methods proposed here, the ability estimates are "pulled" toward the origin. Lord (1980) also indicates, again for 3PL, that Bayesian modal estimates of ability may be biased inwards, but their mean square error is smaller than that for ML.

Since the Rasch model is symmetric, in the sense that the probability of correct response depends only on the difference between the ability and difficulty parameters, the same problem of bias exists for the difficulty parameters. In this paper we deal with the case where the difficulty parameters are also treated as a random sample from some prior distribution. The use of a prior distribution for the difficulty parameters again "pul" the estimates toward the origin.

If the parameters of the prior distribution for \((\theta, \beta)\) are known, then inference on \(\theta_i\) or \(\beta_j\) can be based on the posterior distribution, given the data matrix \(y\). In the absence of known prior parameters, we consider replacing them by estimates obtained from the data, and thus adopt a parametric empirical Bayes (PEB) approach (Morris, 1983). One general procedure for estimating such prior parameters is by maximum likelihood, using the marginal likelihood function of the parameters. Unfortunately this approach presents insurmountable numerical problems. We propose instead an approximation suggested by the CMLF procedure of Rigdon and Tsutakawa (1983). For situations in which prior knowledge of \(\beta\) is diffuse and \(\beta\) cannot be treated as a random sample, we propose a limit of the above method by taking the prior of \(\beta\) to be locally uniform. Comparisons of these procedures to each other and to the MLF estimator of Rigdon and Tsutakawa (1983) are made by using simulated data sets.
Suppose now that $\theta_1, \theta_2, \ldots, \theta_n$ are selected from a normal distribution with mean zero and variance σ^2, and that $\beta_1, \beta_2, \ldots, \beta_k$ are selected from a normal distribution with mean γ and variance τ^2. The value of (σ, γ, τ) which maximizes the marginal likelihood of the observed data y, i.e.

$$p(y | \sigma, \gamma, \tau) = \int \int p(y, \beta | \sigma, \gamma, \tau) \, d\beta \, d\gamma$$

(2.1)

is called the marginal maximum likelihood estimator (MMLE). However, under the above assumptions, maximization of this quantity presents insurmountable numerical problems since multidimensional integrals must be evaluated, even if the EM algorithm of Dempster, Laird and Rubin (1977) is applied. Instead we propose a variation of the EM algorithm, which is similar to the CMLF method of Rigdon and Tsutakawa (1983). Note that the posterior density of θ_i given (β, σ) can be written

$$p(\theta_i | y, \beta, \sigma) \propto p(\theta_i | \sigma) \prod_{j=1}^{k} p(y_{ij} | \theta_i, \beta_j)$$

$$\propto \exp\left(r_i \theta_i - \theta_i^2 / 2\sigma^2 \right) / \prod_{j=1}^{k} \left[1 + \exp(\theta_i - \beta_j) \right]$$

(2.2)

where

$$r_i = \sum_{j=1}^{k} y_{ij}$$

is the raw score of examinee i. Similarly, the posterior density of β_j given (σ, γ, τ) can be written

$$p(\beta_j | y, \sigma, \gamma, \tau) \propto p(\beta_j | \gamma, \tau) \prod_{i=1}^{n} p(y_{ij} | \theta_i, \beta_j)$$

$$\propto \exp\left(-q_j \beta_j - (\beta_j - \gamma)^2 / 2\tau^2 \right) / \prod_{i=1}^{n} \left[1 + \exp(\theta_i - \beta_j) \right]$$

(2.3)
where

\[q_j = \sum_{i=1}^{n} y_{ij}. \]

Now these densities are numerically tractable, since, except for normalizing constants, they are just products of other densities which are easy to evaluate. Since neither \(\theta \) nor \(\beta \) are available, we exploit this tractability by applying the following algorithm. Start with some initial value \((\beta_0, \sigma_0, \gamma_0, \tau_0) \), set \(m \) equal to zero and repeat the following steps:

E1 Step: Compute the posterior expectations

\[\theta^{(1)} = \mathbb{E}(\theta \mid y, \beta, \sigma, \gamma, \tau) \]

and

\[\theta^{(2)} = \mathbb{E}(\theta^2 \mid y, \beta, \sigma, \gamma, \tau). \]

where \(\theta^2 = (\theta^2_1, \ldots, \theta^2_n) \). These expectations are evaluated by normalizing and integrating (2.2) times \(\theta \) and \(\theta^2 \) for \(i = 1 \) to \(n \).

E2 Step: Compute the posterior expectations

\[\beta^{(1)} = \mathbb{E}(\beta \mid y, \theta^{(1)}, \sigma, \gamma, \tau) \]

and

\[\beta^{(2)} = \mathbb{E}(\beta^2 \mid y, \theta^{(1)}, \sigma, \gamma, \tau). \]

where \(\beta^2 = (\beta^2_1, \ldots, \beta^2_k) \), and set \(\beta_{(m+1)} = \beta^{(1)} \). These expectations are evaluated by normalizing and integrating (2.3) times \(\beta \) and \(\beta^2 \) for \(j = 1 \) to \(k \).

M Step: Set
\[
\sigma_{(m+1)} = \left(\frac{\sum_{i=1}^{n} \theta_i^{(2)}}{n} \right)^{1/2} \tag{2.8}
\]
\[
\gamma_{(m+1)} = \frac{\sum_{j=1}^{k} \beta_j^{(1)}}{k} \tag{2.9}
\]
\[
\tau_{(m+1)} = \left(\frac{\sum_{j=1}^{k} \beta_j^{(2)}}{k} - [\gamma_{(m+1)}]^2 \right)^{1/2}. \tag{2.10}
\]

where \(\theta_i^{(\nu)} (\beta_j^{(\nu)}) \) is the \(i^{th} (j^{th}) \) element of the vector \(\bar{\theta}^{(\nu)} (\bar{\beta}^{(\nu)}) \), \(\nu = 1, 2 \). Increment \(m \) and test for convergence. If convergence is attained to a prescribed level then stop, otherwise go to the E1 Step.

Upon Convergence, the final value \((\hat{\sigma}, \hat{\gamma}, \hat{\beta})\) of \((\sigma_{(m)}, \gamma_{(m)}, \theta_{(m)})\) maximizes the two conditional likelihood functions given by

\[
U(\sigma | \bar{\beta}) = \int p(y | \bar{\theta}, \bar{\beta}) p(\bar{\theta} | \sigma) \, d\bar{\theta}
\]

and

\[
U(\gamma, \tau | \bar{\beta}) = \int p(y | \bar{\beta}) p(\bar{\beta} | \gamma, \tau) \, d\bar{\beta}
\]

where \((\hat{\sigma}, \hat{\beta})\) satisfies the equations

\[
\hat{\sigma} = \mathbb{E}(\theta | y, \bar{\beta}, \hat{\sigma})
\]

and

\[
\hat{\beta} = \mathbb{E}(\beta | y, \hat{\beta}, \hat{\gamma}, \hat{\tau}).
\]

In Rigdon and Tsutakawa (1983), CMLF stood for Conditional Maximum Likelihood Fixed (the difficulty parameters were fixed, i.e. not random). Keeping the same naming strategy, we call the method described here CMLR, for Conditional Maximum Likelihood Random (the difficulty parameters are considered random). It should be noted that all expectations required for this method are single integrals and must be evaluated by using numerical techniques. Gauss–Hermite quadrature formulas are appropriate (see Stroud and Secrest, 1966).
Once estimates for σ, γ, and τ are obtained, we estimate the θs and βs by evaluating the means of the posterior distributions as in equations (2.4) and (2.6). Approximate interval estimates for the θs and βs can be obtained by approximating the posterior distribution by a normal distribution using the posterior mean and standard deviation. That is, the interval estimate for θ_i is

$$
\theta_i^{(1)} \pm z_{1-\alpha/2} \left(\theta_i^{(2)} - \left[\theta_i^{(1)} \right]^2 \right)^{1/2}
$$

and for β_j the interval estimate is

$$
\beta_j^{(1)} \pm z_{1-\alpha/2} \left(\beta_j^{(2)} - \left[\beta_j^{(1)} \right]^2 \right)^{1/2}
$$

where $z_{1-\alpha/2}$ is the $(1-\alpha/2)$ point of the standard normal distribution function.

In some cases, there is vague prior information regarding β and the assumption that β is a random sample from a common distribution may not be reasonable. One Bayesian solution to this problem is to adopt an independent uniform prior distribution on each β_j. In this case (γ, τ) does not exist, equation (2.9) is not necessary and the M Step reduces to computing $\sigma_{(m+1)}$ only. The posterior density of β_j is now replaced by

$$
p(\beta_j | \gamma, \beta_j) \propto \exp(-\beta_j q_j) / \prod_{i=1}^{n} [1 + \exp(\theta_i - \beta_j)].
$$

(2.11)

This method will be called CMLU, for Conditional Maximum Likelihood Uniform, since the prior is uniform. This method does not have the advantage of yielding finite estimates of the difficulty parameter when the response pattern for that item consists of all zeros or all ones.
An Example

We will illustrate our methods using results from a test of general knowledge regarding arthritis, which was administered to hospital patients. This data set was previously used in Tsutakawa (1984) and consists of responses to $k=47$ items by $n=162$ patients. We will compare the methods proposed here, i.e. CMLR and CMLU with the MLF method of Rigdon and Tsutakawa (1983), since these methods are similar in the way that they apply the EM algorithm. The CMLF estimates are nearly identical to the MLF estimates. The estimates of the prior parameters, or the appropriate sample statistics, are shown in Table I for the MLF method and the CMLR and CMLU methods of this article; the average of the estimated abilities are also shown. Tables II and III display the estimates of the ability and difficulty parameters, respectively. Both the ability and difficulty estimates obtained by MLF and CMLU are quite close. The estimates obtained by CMLR are somewhat less disperse than the estimates obtained by other methods.

Insert Tables I, II and III about here.
Simulations

The computer-generated data sets of Rigdon and Tsutakawa (1983) are used here to compare the performance of the various estimation procedures. The ability parameters were randomly generated from the standard normal distribution. The difficulty parameters were chosen deterministically as the 1, 3, ..., 99 percent points of the following distributions:

i) the standard normal,

ii) the uniform over the interval \((-3^{1/2}, 3^{1/2})\), and

iii) the parabolic U-shaped with density \(h(x) = (5/27)x^2 + (7/36)\) for \(-1.5 < x < 1.5\).

These represent sets of item parameters with difficulties (i) concentrated near the average ability, (ii) spread out uniformly, and (iii) sparse near the average. The six response matrices \(Y\) was then randomly generated using the probabilities of correct response which depend on \(\theta\) and \(\beta\) through the relation in (1.1).

The estimates of the parameters of the prior distribution are shown in Table IV for CMLR and CMLU and for the MLF method of Rigdon and Tsutakawa (1983). The averages of the estimated abilities are also shown in this table. For MLF and CMLU (where \(\gamma\) and \(\tau\) are not part of the model) the sample means and standard deviations are shown for comparison. The averages of the sets of estimates tend to be quite close. The major difference between the sets of estimates seems to be in the dispersion. The difficulty estimates obtained by CMLR tend to be less disperse than those for the other methods. Ability estimates from CMLR are also less disperse, but this is not as pronounced.
Comparisons can be made between the actual values and the estimated values since the data were simulated. A measure of the accuracy of these procedures is the root mean squared deviations (RMSD's),

\[\left\{ \frac{1}{n} \sum (\theta_i - \bar{\theta})^2 \right\}^{1/2} \]

and

\[\left\{ \frac{1}{k} \sum (\beta_j - \bar{\beta})^2 \right\}^{1/2} \]

where \(\bar{\theta}_i \) and \(\bar{\beta}_j \) are estimates of \(\theta_i \) and \(\beta_j \). The RMSD's for the MLF, CMLR and CMLU methods are given in Table V. In most cases the performances of the procedures are quite close. In some cases the RMSD of the CMLR estimates of difficulty are considerably less than the RMSD's for the other methods. Two of these cases occur when the distribution of the \(\beta \)'s was chosen to be "U"-shaped, indicating that the CMLR method is robust with respect to the assumption that the \(\beta \)'s come from a normal distribution.

The frequencies of actual values within two posterior standard deviations of the estimates are also shown in Table V. As can be seen from this table, close to 95 percent of the estimates are within these limits, a result we would expect if the posteriors were normally distributed. This indicates that the posterior distribution may be useful in assessing the uncertainty in an estimate of \(\theta \) or \(\beta \).
Discussion

A Bayesian who has not seen the items may be inclined to assume that the prior distribution of $\tilde{\beta}$ is exchangeable. This person may then find it convenient to represent the exchangeable prior through a normal distribution having a hyperparameter with a subjective prior distribution. A frequentist, on the other hand, may view $\tilde{\beta}$ as a random sample from a larger population associated with a large or hypothetically large item pool. This person might then find it convenient to view this population as one having a normal distribution which can be estimated. Our first estimate, CMLR, conforms more to the latter point of view, whereas our second estimate, CMLU, is more compatible with the former when the prior for $\tilde{\beta}$ is diffuse.

We feel that our method can be recommended in situations where there are relatively few examinees and there is limited information about the item response curves. When the data satisfies the assumptions for the Rasch model and n is larger, our estimates should be in close agreement with the conventional ML estimates. For small n, not only does one have problems with the nonexistence of ML estimates, but the asymptotic properties for measuring the precision of these estimates will be of limited value. Our method seems particularly suitable for handling such cases.

The extension of our approach to 2PL and 3PL is clearly possible. Such extensions would require introducing additional distributions for the additional item parameters and developing efficient techniques for numerically evaluating two and three dimensional integrals, corresponding to (2.6) and (2.7).
Acknowledgements

This work was supported in part by Contract No. N00014-85-K-0113 from Personnel and Training Research Programs, Psychological Sciences Division, Office of Naval Research. The authors would also like to thank Hsin Ying Lin for performing the computations of the third section and the reviewers of an earlier draft for many helpful suggestions.
References

models, Psychometrika, 46, 567–574.
Authors

Steven E. Rigdon, Assistant Professor, Department of Mathematics and Statistics, 1333 Science Building, Southern Illinois University at Edwardsville, Edwardsville, Illinois 62026-1653. Specialization: Reliability, quality control.

Robert K. Tsutakawa, Professor, Department of Statistics, University of Missouri–Columbia, 318 Mathematical Sciences Bldg., Columbia, Missouri 65211. Specialization: Statistical inference, biostatistics, psychometrics.
Table I

Estimates of Parameters of Prior Distribution for Arthritis Test

<table>
<thead>
<tr>
<th>Method</th>
<th>$\Sigma \hat{\beta}/182$</th>
<th>σ</th>
<th>γ</th>
<th>τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLF</td>
<td>0.00</td>
<td>0.76</td>
<td>-0.90*</td>
<td>1.17*</td>
</tr>
<tr>
<td>CMLE</td>
<td>0.02</td>
<td>0.76</td>
<td>-0.85</td>
<td>1.12</td>
</tr>
<tr>
<td>CMHU</td>
<td>0.01</td>
<td>0.78</td>
<td>-0.89*</td>
<td>1.16*</td>
</tr>
</tbody>
</table>

* Sample statistics used in these entries.
Table II

Estimates of Abilities for Arthritis Test

<table>
<thead>
<tr>
<th>Raw Score</th>
<th>MLF</th>
<th>CNLR</th>
<th>CNLU</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>2.20</td>
<td>2.16</td>
<td>2.20</td>
</tr>
<tr>
<td>44</td>
<td>1.61</td>
<td>1.60</td>
<td>1.61</td>
</tr>
<tr>
<td>42</td>
<td>1.29</td>
<td>1.28</td>
<td>1.29</td>
</tr>
<tr>
<td>41</td>
<td>1.14</td>
<td>1.13</td>
<td>1.14</td>
</tr>
<tr>
<td>40</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>39</td>
<td>0.87</td>
<td>0.87</td>
<td>0.87</td>
</tr>
<tr>
<td>38</td>
<td>0.74</td>
<td>0.75</td>
<td>0.74</td>
</tr>
<tr>
<td>37</td>
<td>0.62</td>
<td>0.63</td>
<td>0.62</td>
</tr>
<tr>
<td>36</td>
<td>0.50</td>
<td>0.51</td>
<td>0.50</td>
</tr>
<tr>
<td>35</td>
<td>0.38</td>
<td>0.40</td>
<td>0.38</td>
</tr>
<tr>
<td>34</td>
<td>0.27</td>
<td>0.29</td>
<td>0.27</td>
</tr>
<tr>
<td>33</td>
<td>0.16</td>
<td>0.19</td>
<td>0.16</td>
</tr>
<tr>
<td>32</td>
<td>0.06</td>
<td>0.08</td>
<td>0.06</td>
</tr>
<tr>
<td>31</td>
<td>-0.05</td>
<td>-0.02</td>
<td>-0.05</td>
</tr>
<tr>
<td>30</td>
<td>-0.15</td>
<td>-0.12</td>
<td>-0.15</td>
</tr>
<tr>
<td>29</td>
<td>-0.25</td>
<td>-0.22</td>
<td>-0.25</td>
</tr>
<tr>
<td>28</td>
<td>-0.35</td>
<td>-0.31</td>
<td>-0.35</td>
</tr>
<tr>
<td>27</td>
<td>-0.44</td>
<td>-0.41</td>
<td>-0.44</td>
</tr>
<tr>
<td>26</td>
<td>-0.54</td>
<td>-0.50</td>
<td>-0.54</td>
</tr>
<tr>
<td>25</td>
<td>-0.64</td>
<td>-0.60</td>
<td>-0.64</td>
</tr>
<tr>
<td>24</td>
<td>-0.73</td>
<td>-0.69</td>
<td>-0.73</td>
</tr>
<tr>
<td>23</td>
<td>-0.83</td>
<td>-0.78</td>
<td>-0.83</td>
</tr>
<tr>
<td>22</td>
<td>-0.92</td>
<td>-0.87</td>
<td>-0.92</td>
</tr>
<tr>
<td>20</td>
<td>-1.11</td>
<td>-1.06</td>
<td>-1.11</td>
</tr>
<tr>
<td>19</td>
<td>-1.20</td>
<td>-1.15</td>
<td>-1.20</td>
</tr>
<tr>
<td>18</td>
<td>-1.30</td>
<td>-1.24</td>
<td>-1.30</td>
</tr>
<tr>
<td>17</td>
<td>-1.39</td>
<td>-1.34</td>
<td>-1.39</td>
</tr>
<tr>
<td>16</td>
<td>-1.49</td>
<td>-1.43</td>
<td>-1.49</td>
</tr>
<tr>
<td>13</td>
<td>-1.78</td>
<td>-1.71</td>
<td>-1.78</td>
</tr>
<tr>
<td>8</td>
<td>-2.31</td>
<td>-2.23</td>
<td>-2.31</td>
</tr>
</tbody>
</table>
Table III

Estimates of Difficulty Parameters for Arthritis Test

<table>
<thead>
<tr>
<th>Item Score</th>
<th>MLF</th>
<th>CNLR</th>
<th>CNLU</th>
</tr>
</thead>
<tbody>
<tr>
<td>149</td>
<td>-2.86</td>
<td>-2.53</td>
<td>-2.68</td>
</tr>
<tr>
<td>148</td>
<td>-2.60</td>
<td>-2.45</td>
<td>-2.59</td>
</tr>
<tr>
<td>146</td>
<td>-2.44</td>
<td>-2.30</td>
<td>-2.43</td>
</tr>
<tr>
<td>145</td>
<td>-2.37</td>
<td>-2.23</td>
<td>-2.36</td>
</tr>
<tr>
<td>143</td>
<td>-2.24</td>
<td>-2.13</td>
<td>-2.22</td>
</tr>
<tr>
<td>141</td>
<td>-2.11</td>
<td>-2.03</td>
<td>-2.10</td>
</tr>
<tr>
<td>139</td>
<td>-2.00</td>
<td>-1.91</td>
<td>-1.98</td>
</tr>
<tr>
<td>136</td>
<td>-1.84</td>
<td>-1.73</td>
<td>-1.83</td>
</tr>
<tr>
<td>135</td>
<td>-1.79</td>
<td>-1.68</td>
<td>-1.78</td>
</tr>
<tr>
<td>133</td>
<td>-1.70</td>
<td>-1.62</td>
<td>-1.68</td>
</tr>
<tr>
<td>132</td>
<td>-1.65</td>
<td>-1.60</td>
<td>-1.64</td>
</tr>
<tr>
<td>130</td>
<td>-1.57</td>
<td>-1.54</td>
<td>-1.55</td>
</tr>
<tr>
<td>123</td>
<td>-1.29</td>
<td>-1.17</td>
<td>-1.27</td>
</tr>
<tr>
<td>122</td>
<td>-1.25</td>
<td>-1.14</td>
<td>-1.23</td>
</tr>
<tr>
<td>121</td>
<td>-1.21</td>
<td>-1.13</td>
<td>-1.20</td>
</tr>
<tr>
<td>118</td>
<td>-1.11</td>
<td>-1.09</td>
<td>-1.09</td>
</tr>
<tr>
<td>117</td>
<td>-1.07</td>
<td>-1.08</td>
<td>-1.06</td>
</tr>
<tr>
<td>115</td>
<td>-1.00</td>
<td>-1.03</td>
<td>-0.99</td>
</tr>
<tr>
<td>110</td>
<td>-0.84</td>
<td>-0.75</td>
<td>-0.83</td>
</tr>
<tr>
<td>107</td>
<td>-0.75</td>
<td>-0.64</td>
<td>-0.74</td>
</tr>
<tr>
<td>103</td>
<td>-0.62</td>
<td>-0.60</td>
<td>-0.61</td>
</tr>
<tr>
<td>98</td>
<td>-0.48</td>
<td>-0.53</td>
<td>-0.47</td>
</tr>
<tr>
<td>94</td>
<td>-0.36</td>
<td>-0.33</td>
<td>-0.35</td>
</tr>
<tr>
<td>93</td>
<td>-0.33</td>
<td>-0.27</td>
<td>-0.33</td>
</tr>
<tr>
<td>88</td>
<td>-0.19</td>
<td>-0.11</td>
<td>-0.19</td>
</tr>
<tr>
<td>87</td>
<td>-0.16</td>
<td>-0.11</td>
<td>-0.16</td>
</tr>
<tr>
<td>82</td>
<td>-0.02</td>
<td>-0.08</td>
<td>-0.02</td>
</tr>
<tr>
<td>81</td>
<td>0.00</td>
<td>-0.07</td>
<td>0.01</td>
</tr>
<tr>
<td>80</td>
<td>0.03</td>
<td>-0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>72</td>
<td>0.26</td>
<td>0.34</td>
<td>0.25</td>
</tr>
<tr>
<td>71</td>
<td>0.28</td>
<td>0.37</td>
<td>0.28</td>
</tr>
<tr>
<td>62</td>
<td>0.54</td>
<td>0.45</td>
<td>0.54</td>
</tr>
<tr>
<td>61</td>
<td>0.57</td>
<td>0.47</td>
<td>0.56</td>
</tr>
<tr>
<td>57</td>
<td>0.69</td>
<td>0.67</td>
<td>0.68</td>
</tr>
<tr>
<td>50</td>
<td>0.91</td>
<td>0.91</td>
<td>0.90</td>
</tr>
<tr>
<td>43</td>
<td>1.14</td>
<td>1.04</td>
<td>1.13</td>
</tr>
<tr>
<td>37</td>
<td>1.36</td>
<td>1.36</td>
<td>1.35</td>
</tr>
<tr>
<td>27</td>
<td>1.79</td>
<td>1.70</td>
<td>1.77</td>
</tr>
</tbody>
</table>
Table IV

Estimates of Parameters of Prior Distribution for Simulated Data Sets

<table>
<thead>
<tr>
<th>β_1</th>
<th>n</th>
<th>Method</th>
<th>$\Sigma \overline{\beta_i}/n$</th>
<th>σ</th>
<th>γ</th>
<th>τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50</td>
<td>MLF</td>
<td>-0.01</td>
<td>0.97</td>
<td>0.11*</td>
<td>1.09*</td>
</tr>
<tr>
<td>N(0,1)</td>
<td>200</td>
<td>CMLR</td>
<td>-0.00</td>
<td>0.93</td>
<td>0.11</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMLU</td>
<td>-0.00</td>
<td>0.98</td>
<td>0.11*</td>
<td>1.10*</td>
</tr>
<tr>
<td>Uniform</td>
<td>50</td>
<td>MLF</td>
<td>-0.01</td>
<td>1.03</td>
<td>0.01*</td>
<td>1.03*</td>
</tr>
<tr>
<td>Uniform</td>
<td>200</td>
<td>CMLR</td>
<td>-0.00</td>
<td>1.02</td>
<td>0.01</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMLU</td>
<td>-0.00</td>
<td>1.03</td>
<td>0.01*</td>
<td>1.02*</td>
</tr>
<tr>
<td>"U"-shaped</td>
<td>50</td>
<td>MLF</td>
<td>-0.00</td>
<td>1.14</td>
<td>-0.26*</td>
<td>1.03*</td>
</tr>
<tr>
<td>"U"-shaped</td>
<td>200</td>
<td>CMLR</td>
<td>-0.00</td>
<td>1.09</td>
<td>-0.25</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMLU</td>
<td>-0.00</td>
<td>1.14</td>
<td>-0.26</td>
<td>1.03*</td>
</tr>
</tbody>
</table>

* Sample statistics used in these entries.
Table V

Comparison of Actual and Estimated Values: Simulated Data Sets

<table>
<thead>
<tr>
<th>θ's</th>
<th>n</th>
<th>Method</th>
<th>RMSD θ</th>
<th>RMSD β</th>
<th>Freq. of θ</th>
<th>Freq. of β</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N(0,1)$</td>
<td>50</td>
<td>NLF</td>
<td>0.394</td>
<td>0.311</td>
<td>48</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMLR</td>
<td>0.355</td>
<td>0.319</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMLU</td>
<td>0.425</td>
<td>0.311</td>
<td>48</td>
<td>47</td>
</tr>
<tr>
<td>$N(0,1)$</td>
<td>200</td>
<td>NLF</td>
<td>0.173</td>
<td>0.322</td>
<td>191</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMLR</td>
<td>0.173</td>
<td>0.324</td>
<td>189</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMLU</td>
<td>0.167</td>
<td>0.324</td>
<td>190</td>
<td>48</td>
</tr>
<tr>
<td>Uniform</td>
<td>50</td>
<td>NLF</td>
<td>0.263</td>
<td>0.326</td>
<td>48</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMLR</td>
<td>0.266</td>
<td>0.324</td>
<td>48</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMLU</td>
<td>0.265</td>
<td>0.326</td>
<td>48</td>
<td>49</td>
</tr>
<tr>
<td>Uniform</td>
<td>200</td>
<td>NLF</td>
<td>0.155</td>
<td>0.322</td>
<td>193</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMLR</td>
<td>0.158</td>
<td>0.324</td>
<td>192</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMLU</td>
<td>0.155</td>
<td>0.319</td>
<td>193</td>
<td>49</td>
</tr>
<tr>
<td>"U"-shaped</td>
<td>50</td>
<td>NLF</td>
<td>0.336</td>
<td>0.298</td>
<td>48</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMLR</td>
<td>0.318</td>
<td>0.300</td>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMLU</td>
<td>0.341</td>
<td>0.298</td>
<td>48</td>
<td>50</td>
</tr>
<tr>
<td>"U"-shaped</td>
<td>200</td>
<td>NLF</td>
<td>0.161</td>
<td>0.322</td>
<td>187</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMLR</td>
<td>0.145</td>
<td>0.322</td>
<td>188</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMLU</td>
<td>0.158</td>
<td>0.322</td>
<td>188</td>
<td>48</td>
</tr>
</tbody>
</table>
University of Missouri-Columbia/Tsutakawa

Dr. Leonard Feldt
Lindquist Center for Measurement
University of Iowa
Iowa City, IA 52242

Dr. Richard L. Ferguson
American College Testing Program
P.O. Box 168
Iowa City, IA 52240

Dr. Gerhard Fischer
Liebigasse 5/3
A 1010 Vienna
AUSTRIA

Dr. Myron Fischl
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Prof. Donald Fitzgerald
University of New England
Department of Psychology
Armidale, New South Wales 2351
AUSTRALIA

Mr. Paul Foley
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Alfred R. Fregly
AFOSR/NL
Bolling AFB, DC 20332

Dr. Robert D. Gibbons
University of Illinois-Chicago
P.O. Box 6998
Chicago, IL 60680

Dr. Janice Gifford
University of Massachusetts
School of Education
Amherst, MA 01003

Dr. Robert Glaser
Learning Research & Development Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15260

Dr. Bert Green
Johns Hopkins University
Department of Psychology
Charles & 34th Street
Baltimore, MD 21218

Dipl. Pad. Michael W. Habon
Universitat Dusseldorf
Erziehungswissenschaftliches
Universitaetsstr. 1
D-4000 Dusseldorf 1
WEST GERMANY

Dr. Ronald K. Hambleton
Prof. of Education & Psychology
University of Massachusetts
at Amherst
Hills House
Amherst, MA 01003

Dr. Delwyn Harnisch
University of Illinois
51 Gerty Drive
Champaign, IL 61820

Ms. Rebecca Hetter
Navy Personnel R&D Center
Code 62
San Diego, CA 92152-6800

Dr. Paul W. Holland
Educational Testing Service
Rosedale Road
Princeton, NJ 08541

Prof. Lutz F. Hornke
Institut fur Psychologie
RWTH Aachen
Jaegerstrasse 17/19
D-5100 Aachen
WEST GERMANY

Dr. Paul Horst
677 G Street, #194
Chula Vista, CA 90010

Mr. Dick Hoshaw
OP-135
Arlington Annex
Room 2834
Washington, DC 20350
Dr. Lloyd Humphreys
University of Illinois
Department of Psychology
603 East Daniel Street
Champaign, IL 61820

Dr. Steven Hunka
Department of Education
University of Alberta
Edmonton, Alberta
CANADA

Dr. Huynh Huynh
College of Education
Univ. of South Carolina
Columbia, SC 29208

Dr. Robert Jannarone
Department of Psychology
University of South Carolina
Columbia, SC 29208

Dr. Dennis E. Jennings
Department of Statistics
University of Illinois
1409 West Green Street
Urbana, IL 61801

Dr. Douglas H. Jones
Thatcher Jones Associates
P.O. Box 6640
10 Trafalgar Court
Lawrenceville, NJ 08648

Dr. Milton S. Katz
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Prof. John A. Keats
Department of Psychology
University of Newcastle
N.S.W. 2308
AUSTRALIA

Dr. G. Gage Kingsbury
Portland Public Schools
Research and Evaluation Department
501 North Dixon Street
P. O. Box 3107
Portland, OR 97209-3107

Dr. William Koch
University of Texas-Austin
Measurement and Evaluation
Center
Austin, TX 78703

Dr. Leonard Kroeker
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Daryl Lang
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Thomas Leonard
University of Wisconsin
Department of Statistics
1210 West Dayton Street
Madison, WI 53705

Dr. Michael Levine
Educational Psychology
210 Education Bldg.
University of Illinois
Champaign, IL 61801

Dr. Charles Lewis
Educational Testing Service
Princeton, NJ 08541

Dr. Robert Linn
College of Education
University of Illinois
Urbana, IL 61801

Dr. Robert Lockman
Center for Naval Analysis
4401 Ford Avenue
P.O. Box 16268
Alexandria, VA 22302-0268

Dr. Frederic M. Lord
Educational Testing Service
Princeton, NJ 08541

Dr. James Lumsden
Department of Psychology
University of Western Australia
Nedlands W.A. 6009
AUSTRALIA
University of Missouri-Columbia/Teutakawa

Dr. Milton Maier
Center for Naval Analysis
4401 Ford Avenue
P.O. Box 16266
Alexandria, VA 22302-0268

Dr. William L. Maloy
Chief of Naval Education and Training
Naval Air Station
Pensacola, FL 32508

Dr. Gary Marco
Stop 31-E
Educational Testing Service
Princeton, NJ 08451

Dr. Clessen Martin
Army Research Institute
5001 Eisenhower Blvd.
Alexandria, VA 22333

Dr. James McBride
Psychological Corporation
c/o Harcourt, Brace, Javanovich Inc.
1250 West 6th Street
San Diego, CA 92101

Dr. Clarence McCormick
HQ, MEPCOM
MEPCT-P
2500 Green Bay Road
North Chicago, IL 60064

Dr. Robert McKinley
Educational Testing Service
Princeton, NJ 08541

Dr. James McMichael
Technical Director
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Barbara Means
Human Resources
Research Organization
1100 South Washington
Alexandria, VA 22314

Dr. Robert Mislevy
Educational Testing Service
Princeton, NJ 08541

Dr. William Montague
NPRDC Code 13
San Diego, CA 92152-6800

Ms. Kathleen Moreno
Navy Personnel R&D Center
Code 62
San Diego, CA 92152-6800

Headquarters, Marine Corps
Code MPI-20
Washington, DC 20380

Dr. W. Alan Nicewander
University of Oklahoma
Department of Psychology
Oklahoma City, OK 73069

Deputy Technical Director
NPRDC Code 01A
San Diego, CA 92152-6800

Director, Training Laboratory,
NPRDC (Code 05)
San Diego, CA 92152-6800

Director, Manpower and Personnel Laboratory,
NPRDC (Code 06)
San Diego, CA 92152-6800

Director, Human Factors & Organizational Systems Lab,
NPRDC (Code 07)
San Diego, CA 92152-6800

Fleet Support Office,
NPRDC (Code 301)
San Diego, CA 92152-6800

Library, NPRDC
Code P201L
San Diego, CA 92152-6800

Commanding Officer,
Naval Research Laboratory
Code 2627
Washington, DC 20390
Dr. Mary Schratz
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Dan Segall
Navy Personnel R&D Center
San Diego, CA 92152

Dr. W. Steve Sellman
OASD (MRA&L)
2B269 The Pentagon
Washington, DC 20301

Dr. Kazuo Shigemasu
7-9-24 Kugenuma-Kaigan
Fujusawa 251
JAPAN

Dr. William Sims
Center for Naval Analysis
4401 Ford Avenue
P.O. Box 16268
Alexandria, VA 22302-0268

Dr. H. Wallace Sinaiko
Manpower Research and Advisory Services
Smithsonian Institution
301 North Pitt Street
Alexandria, VA 22314

Dr. Richard E. Snow
Department of Psychology
Stanford University
Stanford, CA 94306

Dr. Richard Sorensen
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Paul Speckman
University of Missouri
Department of Statistics
Columbia, MO 65201

Dr. Judy Spray
ACT
P.O. Box 168
Iowa City, IA 52243

Dr. Martha Stocking
Educational Testing Service
Princeton, NJ 08541

Dr. Peter Stoloff
Center for Naval Analysis
200 North Beauregard Street
Alexandria, VA 22311

Dr. William Stout
University of Illinois
Department of Mathematics
Urbana, IL 61801

Maj. Bill Strickland
AF/MPXOA
4E168 Pentagon
Washington, DC 20330

Dr. Hariharan Swaminathan
Laboratory of Psychometric and Evaluation Research
School of Education
University of Massachusetts
Amherst, MA 01003

Mr. Brad Symson
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. John Tangney
AFOSR/NL
Bolling AFB, DC 20332

Dr. Kikumi Tatsuoka
CERL
252 Engineering Research Laboratory
Urbana, IL 61801

Dr. Maurice Tatsuoka
220 Education Bldg
1310 S. Sixth St.
Champaign, IL 61820

Dr. David Thissen
Department of Psychology
University of Kansas
Lawrence, KS 66044

Mr. Gary Thomasson
University of Illinois
Educational Psychology
Champaign, IL 61820
Dr. George Wong
Biostatistics Laboratory
Memorial Sloan-Kettering
Cancer Center
1275 York Avenue
New York, NY 10021

Dr. Wallace Wulfeck, III
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Wendy Yen
CTB/McGraw Hill
Del Monte Research Park
Monterey, CA 93940

Dr. Joseph L. Young
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550
END

5-87

DTIC