Effects of Local Geologic Structure for Yucca Flats UTS

Explosion Waveform (U) Teledyne Geotech Alexandria VA
Alexandria Labs K L McLaughlin et al. Oct 96 TGL-96-4

UNCLASSIFIED AFGL-TR-96-0220 F19620-85-C-0035 F/G 8/11 ML
MICROCOPY RESOLUTION TEST CHART
EFFECTS OF LOCAL GEOLOGIC STRUCTURE FOR YUCCA FLATS, NTS, EXPLOSION WAVEFORMS:
2-DIMENSIONAL LINEAR FINITE DIFFERENCE SIMULATIONS

K. L. McLaughlin, L. M. Anderson, and A. C. Lees

Teledyne Geotech Alexandria Laboratory
314 Montgomery Street
Alexandria, Va. 22314.

OCTOBER 1986

SCIENTIFIC REPORT: No. 2

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AIR FORCE GEOPHYSICS LABORATORY
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731
Title: Effects of Local Geologic Structure for Yucca Flats, NTS, Explosion Waveforms: 2-Dimensional Linear Finite Difference Simulations (Unclassified)

Authors: K.L. McLaughlin, L.M. Anderson, and A.C. Lees

Abstract:

Two-dimensional linear elastic finite difference calculations were performed for two-dimensional geologic model of Yucca Flats, Nevada Test Site, Nevada. The calculations were used to produce synthetic teleseismic P-wave seismograms for explosive line sources in Yucca Flats. P-wave coda (first 5 seconds) is observed to be highly dependent on takeoff angle for the teleseismic synthetics. P-wave coda varies with the position of the source in the valley structure and may produce variations in the individual station teleseismic P-wave mb magnitude of up to 0.3 magnitude units. However these magnitude variations should be substantially reduced by averaging over stations at multiple azimuth.
The reverberant coda appears to arise from scattered modal waves that are initially excited in the low velocity near-surface structures of the Yucca Flats deposits of alluvium and tuff. Scattering of the waves occurs at offsets in the basement structure and at the sides of the valley.

The combined effects of scattering, source function, intrinsic attenuation, and instrument response serve to obscure the expected P+pP spectral scalloping that is expected from a linear model. This loss of spectral resolution is the product of P coda filling in the P+pP interference notches and the lengthening of the initial P wave source time function by the convolution of the source time function, intrinsic attenuation operator and instrument response. Therefore, short time windows that do not include P coda energy do not have sufficient resolution to reliably detect the P+pP interference notches.
EFFECTS OF LOCAL GEOLOGIC STRUCTURE ON YUCCA FLATS, NTS, EXPLOSION WAVEFORMS: 2-DIMENSIONAL LINEAR FINITE DIFFERENCE SIMULATIONS

SUMMARY

Two-dimensional linear elastic finite difference calculations were performed for a two-dimensional geologic model of Yucca Flats, Nevada Test Site, Nevada. The calculations were used to produce synthetic teleseismic P-wave seismograms for explosive line sources in Yucca Flats. P-wave coda (first 5 seconds) is observed to be highly dependent on takeoff angle for the teleseismic synthetics. P-wave coda varies with the position of the source in the valley structure and may produce variations in the individual station teleseismic P-wave m_b magnitude of up to 0.3 magnitude units. However, these magnitude variations should be substantially reduced by averaging over stations at multiple azimuths.

The reverberant coda appears to arise from scattered modal waves that are initially excited in the low velocity near-surface structures of the Yucca Flats deposits of alluvium and tuff. Scattering of the waves occurs at offsets in the basement structure and at the sides of the valley.

The combined effects of scattering, source function, intrinsic attenuation, and instrument response serve to obscure the expected P+pP spectral scalloping that is expected from a linear model. This loss of spectral resolution is the product of P coda filling in the P+pP interference notches and the lengthening of the initial P wave.
source time function by the convolution of the source time function, intrinsic attenuation operator and instrument response. Therefore, short time windows that do not include P coda energy do not have sufficient resolution to reliably detect the P+pP interference notches.

INTRODUCTION

Yucca Flats explosion waveforms have often been noted to possess unusual reverberant P coda. The suggestion that this complication is due to near-source structure is apparent from observations that teleseismic P coda recorded in Yucca Flats is also reverberant (Der et al. 1980). Also, regional phases such as Pg and Lg recorded in Yucca Flats are anomalously large and have extended codas (Der et al. 1980).

Also, several authors have claimed that there are systematic magnitude anomalies due to location within Yucca Flats (Blandford and et al., 1977; Minster et al., 1981; Ferguson, 1981, 1983; Mellman et al. 1983). These magnitude anomalies have generally been associated with the shallow graben structure of Yucca Flats. The horst and graben structures strike north-south and magnitude anomalies have generally been attributed to the east west lateral variation in structure.

We present simulations of explosions within the laterally varying structure of Yucca Flats. The calculations are 2-D linear elastic finite difference calculations for line sources in a 2-D model. The calculations are used to simulate the first 5 seconds of teleseismic P waveforms. Variations in m_b and P-coda are observed as a function of take-off angle and azimuth. Spectra of the teleseismic waveforms are also examined. We compare the waveforms predicted from the 2-D modeling with waveforms...
predicted from simple 1-D layered models. Finally we show some deconvolved equivalent source time functions of Yucca Flats explosions at the arrays EKA, YKA, and GBA as well as recordings at the LRSM station, RK-ON.

CALCULATIONS

A 2-D geologic structure suggested by Ferguson (1981, 1983) was used to calculate synthetic seismograms for explosion sources in Yucca Flats. The structure is shown in Figure 1 with a 5-to-1 vertical exaggeration. The structure can be considered to be a West-to-East cross-section, looking North along the strike of the valley. The uppermost layer has a P-wave velocity of 1.34 km/sec, and represents the surface alluvial deposits that cover the valley floor. The intermediate depth layer has a P-wave velocity of 2.14 km/sec and represents a layer of undersaturated tuffs. The 3.0 km/sec layer represents the saturated tuffs that unconformably overlay the 4.57 km/sec Paleozoic carbonate sediments that form what is usually referred to as the Paleozoic basement. The basement itself has been folded and faulted in the Cenozoic. Faulting is primarily responsible for the basement relief shown in Figure 1, but a pre-volcanic (Tertiary) erosional surface provides some of the basement relief. Review and summary of the Geology of Yucca Flats may be found in Barnes, Housner, and Poole (1963), Barnes and Poole (1968), Colton and McKay (1966), Keller (1960), Ekren (1968), and Ramspott and Howard (1975).

The S-wave velocity (β) was assumed to be directly related to the P-wave velocity (α) by the following linear relationships: for $\alpha < 3.0$, $\beta = 0.45 \alpha$; for $3.0 < \alpha < 5.0$, $\beta = 0.50 \alpha$; and for $\alpha > 5.0$, $\beta = 0.59 \alpha$. The 2-D linear elastodynamic finite
difference calculations (Kelley et al 1976) were performed on a grid with 0.05 km spacing. A two point radius smoothing operator was applied to the model in Figure 1 in order to smooth the first order discontinuities. Consequently the first order discontinuities in Figure 1 are replaced by gradient layers 2 to 3 grid spaces thick (100 to 150 meters). A broadband plane P-wave pulse was directed from the 4.57 km/sec half-space at either a normal, 5, 10, or 15 degree incidence angle. A flat free-surface boundary condition was assumed for the top of the grid, and the Clayton and Engquist (1977) absorbing boundary conditions were used for the sides and bottom of the grid. The dilatation was computed at each of the numbered sites indicated in Figure 1, at a depth of 550 meters in the saturated tuff layer. By use of the reciprocity principle, the displacement response at an infinite distance (teleseismic) was determined for a dilatational line source with a von-Seggern and Blandford (1972) reduced displacement potential (RDP). The RDP was appropriate for a 100 Kt explosion in hard rock. A frequency dependent attenuation operator appropriate for NTS to shield path (Der and Lees, 1984) (see Figure 2) and an instrument response were then applied to the final synthetic seismogram. The synthetic seismograms are considered accurate up to 4 Hz. At frequencies above 4 Hz, the S-wave wavelengths are shorter than 10 grid spaces in the slowest portions of the model. Since 4 Hz P waves are rarely seen at teleseismic distances from NTS, this is not considered an important limitation. Incidence angles of 0, 5, 10, and 15 degrees (in the 4.57 km/sec halfspace) were used so that the P-wave synthetics correspond to teleseismic P-wave slownesses of 0.0 2.0, 4.0, and 6.4 sec/km. Flat layered models for the same incidence angles were calculated to compare with the 2-D model of Figure 1. These flat layered models were chosen to coincide
with the vertical velocity sections of Figure 1 at source points 5 and 10.

Figure 3 shows seismograms for a takeoff angle of 15 degrees at the numbered source locations 1 through 13 in Figure 1. Five seconds of synthetic seismograms are shown. All traces are shown at the same relative scale. The takeoff angle is defined such that the receiver is to the east of the valley at a distance of 65 degrees. Note that the initial P waveform is fairly stable with the characteristic P+pP interference notch while the coda varies dramatically across the model. The coda appears to be larger for sources towards the west.

For comparison, Figure 4 shows the seismograms for source locations 7, 8, and 9 at takeoff angles of 15 and -15 degrees (receivers to the east and west respectively). Additionally, the response of a 1-D layered model for the same takeoff angle is shown. All seismograms are shown at the same scales. The coda of the 1-D layered model is much reduced while the initial P waveform is very similar to that of the 2-D model. The receiver to the west (-15 degrees) has a slightly different P+pP interference notch and slightly less coda.

To further demonstrate the P-coda generation inherent in the 2-D model, Figure 5 shows the response of the 2-D model for a takeoff angle of 15 degrees, and sources at locations 4, 5, and 6 compared to the response of a 1-D model with the same vertical velocity structure as at source location 5. The principle differences remain in the P coda following the P wave by more than 2 seconds.

The 1-D vertical velocity structures of Yucca Flats taken at source locations 5 and 10 produce very similar responses as seen in Figure 6. The seismograms are off-
set slightly for the comparison. Simple 1-D layered models do not produce sizable anomalies in the teleseismic seismogram.

The coda generation appears to be a strong function of the takeoff angle. Figure 7 shows the response of the model for a source at location 5, and takeoff angles of 0 and 15 degrees. The P wave of zero slowness has much reduced coda generation. However, the initial P waveform is similar for the two takeoff angles.

AMPLITUDE SPECTRA

Figure 9 shows amplitude spectra for a source at location 7 and takeoff angles of 0, 5, 10, and 15 degrees. A 2.5 second window has been used for each spectral estimation. No smoothing operator has been applied. No source time function, seismometer response, or attenuation operator has been applied to the model response. The P+pP interference notches are clearly visible for all takeoff angles. The structure explored here is not sufficiently complex to obscure the linear pP reflection viewed at teleseismic distances.

Figures 9A and 9B show spectra for 2.5 and 5.0 second windows for the source location 5, takeoff angles 15 and -15 degrees with source time function, seismometer response, and attenuation operator applied to the model response. The P+pP spectral scalloping is no longer apparent in the spectra. Figure 9C shows the spectra for a 1-D layered model. The P+pP spectral modulation is evident in the 1-D layered model spectra for both the 2.5 and the 5.0 second windows. Therefore, the 2-D model is responsible for the lack of P+pP spectral modulation when the source time function, attenuation operator, and instrument response have been convolved with the model.
response. Since the model response without the complications of source, attenuation, and instrument shows P+pP nulls for short windows, it is evident that the smearing effects of the convolution also contributes to the loss of spectral resolution.

TELESEISMIC m_b

In order to compare the predicted magnitude anomaly that may occur for a laterally varying model such as this, the amplitudes of the "a", "b", and "max" phase of the P waves of Figure 3A and B were measured and plotted in Figures 10A, 10B, and 10C. The variation is plotted as log(amplitude) and log(amplitude/period) just as teleseismic magnitudes are computed. The log(A) and log(A/T) measurements are shown West-to-East across the model at source locations 1-to-13 in Figure 1. The "a", and "b" phase measurements show little variation as expected. Maximum variation is 0.20 magnitude units for m_b(Pa) and m_b(Pb). The m_b(Pa) and log(A) measurements show slightly less variation than the m_b(Pb) and log(A/T) measurements. The m_b(Pmax) measurements show the greatest variation since they are dominated by the later coda for several synthetic seismograms. The range of log(Pmax/T) variation is at most 0.4 magnitude units. Log(Pmax/T) has a larger variation than log(Pmax). Obviously, the estimation of the dominant period, T, is a significant source of estimation or measurement error. Since network standard deviations of 0.3 to 0.4 magnitude units are typical for single stations, it is conceivable that at least part of the variation of log(Pmax) may be the early P coda generation by the laterally varying structure. Standard procedures for measuring m_b require that the largest arrival in the first few seconds be used for measurement. A higher log(Pmax) magnitude is observed for...
source locations 1 and 2 on the western side of the Yucca Flats structure. A log(Pmax) magnitude minima occurs in the center of the Flats structure and the pattern is similar to the pattern found by Mellman et al. (1983) although the amplitude of the predicted fluctuation appears to be 0.2 magnitude units larger in this study.

COMPARISON WITH OBSERVED WAVEFORMS

The P-coda arises from the scattering of waves initially excited in the low velocity graben structure of the valley. Fault offsets and slopes of the basement act as locations for the conversion of the trapped waves into downward propagating P-waves. In the case of our 2-D simulations, these trapped waves are excited by a line source and propagate in a 2-D structure, and therefore they have less geometrical spreading than do waves from a point source in a 3-D structure. In fact, Rayleigh waves under these 2-D circumstances do not attenuate with distance if it were not for scattering. Therefore, P-coda is probably over estimated by the 2-D calculations. The P-coda predicted by our 2-D calculations should constitute a good upper bound to the P-coda generated by explosions in Yucca Flats.

We show in Figure 11A deconvolved source time functions (see Shumway and Der, 1985) Yucca Flats shots and Piledriver (Climax Stock) recorded at EKA (71.4°). The resolution kernel for the deconvolution is shown at the top of Figure 11A and indicates the potential resolution afforded by the bandwidth of the deconvolution, 0.4 to 3.5 Hz. The instrument and frequency independent t*=0.45 sec attenuation operator have been removed as part of the multichannel deconvolution. See Table 1 for event information. The Yucca Flats explosion source time functions (far-field displacement)
show reverberation lasting several seconds. Piledriver was detonated in the Climax Stock located to the north of Yucca Flats and does not show the low-frequency reverberation. Although Piledriver shows a negative polarity pulse following the initial P wave by about 0.25 seconds that could be interpreted as a pP, the Yucca Flats events show little or no apparent pP's within 1 seconds following the initial P wave.

We argue that the major variations in the elements of the "equivalent source functions" presented are due to the near source structure. Topgallant and Strait were located only 0.36 km apart. Likewise Lowball and Hearts were located 1.32 km apart. There are a number of similarities between the "equivalent source functions" for these two pairs of records. Lowball and Hearts were located between 2 and 2.25 km from Topgallant and Strait and the two pairs of explosion time functions show systematic differences. Farallones is located more than 4 km from any other explosion shown in Figure 1A and looks the least like any of the other explosions.

Figure 1B shows deconvolved source time functions for seven Yucca Flats events at YKA (25.5°) but the records are complicated by the upper mantle triplications. The first triplication lengthens and complicates the source time function considerably. The second triplication is prominent about 16 seconds following the initial P wave. Again, similarities between pairs of equivalent source time functions are apparent for explosions that were located close together. Scantling and Topgallant were separated by 0.45 km, Quargel and Cabrillo by 0.79 km, Crewline and Lowball by 1.74 km and Crewline and Bulkhead by 1.51 km. Many of the fine details of the coda and the two triplications can be correlated between pairs of neighboring events.
Figure 11C shows three out of four events at GBA (127.8°) that exhibit the reverberant P-coda in the first 5 seconds. Also, it is apparent that the near source generated coda is azimuthally dependent when Strait at GBA is compared to Strait at EKA. The explosion pairs Crewline and Bulkhead and Crewline and Strait are separated by 1.51 and 1.59 km respectively. Farallones on the other hand is located more than 4 km from any of the the other events in Figure 11C.

The individual traces of the R3 element of the EKA array are shown for 5 Yucca Flats events and Piledriver (as in Figure 11A). The source complexity is still apparent in these raw records when we compare Piledriver to the Yucca Flats events.

Figure 13 shows the complexity of several Yucca Flats events compared to Piledriver at the station RK-ON (Table 1 for event information). The reverberant P coda is clearly due to near-source structure since the Piledriver record shows much less complexity and the paths are nearly identical except for the Yucca Flats, Climax Stock locations in NTS. The only pair of explosions located within 1 km of each other in Figure 13 are Chiberta and Commodore, and they show similarities in the coda out to P+20 seconds.

These records make a qualitative argument that much of the equivalent source time function observed teleseismically from Yucca Flats explosions is near source related and varies with azimuth and location within the Valley.
TABLE 1. EVENT LOCATIONS AND DEPTHS

<table>
<thead>
<tr>
<th>YEAR</th>
<th>DOY</th>
<th>EVENT</th>
<th>LAT.</th>
<th>LONG.</th>
<th>DEPTH(km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1966</td>
<td>153</td>
<td>PILEDRIVER</td>
<td>37.22707</td>
<td>-116.05554</td>
<td>0.4627</td>
</tr>
<tr>
<td>1967</td>
<td>140</td>
<td>COMMODORE</td>
<td>37.13041</td>
<td>-116.06395</td>
<td>0.7452</td>
</tr>
<tr>
<td>1975</td>
<td>059</td>
<td>TOPGALLANT</td>
<td>37.10620</td>
<td>-116.05625</td>
<td>0.7132</td>
</tr>
<tr>
<td>1975</td>
<td>066</td>
<td>CABRILLO</td>
<td>37.13401</td>
<td>-116.08424</td>
<td>0.6005</td>
</tr>
<tr>
<td>1975</td>
<td>114</td>
<td>EDAM</td>
<td>37.11568</td>
<td>-116.08739</td>
<td>0.4115</td>
</tr>
<tr>
<td>1975</td>
<td>120</td>
<td>OBAR</td>
<td>37.10886</td>
<td>-116.02880</td>
<td>0.5690</td>
</tr>
<tr>
<td>1975</td>
<td>154</td>
<td>MIZZEN</td>
<td>37.09483</td>
<td>-116.03610</td>
<td>0.6370</td>
</tr>
<tr>
<td>1975</td>
<td>249</td>
<td>MARSH</td>
<td>37.02365</td>
<td>-116.02831</td>
<td>0.4267</td>
</tr>
<tr>
<td>1975</td>
<td>354</td>
<td>CHIBERTA</td>
<td>37.12765</td>
<td>-116.06157</td>
<td>0.7160</td>
</tr>
<tr>
<td>1976</td>
<td>077</td>
<td>STRAIT</td>
<td>37.10728</td>
<td>-116.05247</td>
<td>0.7803</td>
</tr>
<tr>
<td>1977</td>
<td>117</td>
<td>BULKHEAD</td>
<td>37.09479</td>
<td>-116.02789</td>
<td>0.5943</td>
</tr>
<tr>
<td>1977</td>
<td>145</td>
<td>CREWLINE</td>
<td>37.09433</td>
<td>-116.04486</td>
<td>0.5639</td>
</tr>
<tr>
<td>1977</td>
<td>231</td>
<td>SCANTLING</td>
<td>37.11003</td>
<td>-116.05451</td>
<td>0.7010</td>
</tr>
<tr>
<td>1977</td>
<td>348</td>
<td>FARALLONES</td>
<td>37.13587</td>
<td>-116.08603</td>
<td>0.6680</td>
</tr>
<tr>
<td>1978</td>
<td>193</td>
<td>LOWBALL</td>
<td>37.07867</td>
<td>-116.04379</td>
<td>0.5639</td>
</tr>
<tr>
<td>1978</td>
<td>322</td>
<td>QUARGEL</td>
<td>37.12687</td>
<td>-116.08388</td>
<td>0.5420</td>
</tr>
<tr>
<td>1979</td>
<td>249</td>
<td>HEARTS</td>
<td>37.08811</td>
<td>-116.05279</td>
<td>0.6400</td>
</tr>
</tbody>
</table>

CONCLUSIONS

We show that the reverberant P-coda from Yucca Flats explosions is due to the scattering of trapped waves in the low-velocity structure by variations in the Paleozoic basement of the horst and graben structure. This reverberation can be seen at a number of azimuths (Mellman et al 1983) and clearly distinguishes Yucca Flats explosions from Pahute Mesa or Climax Stock explosions. We find that the P-coda increases with increasing takeoff angle.

Variations in individual seismic station m_b (P_{max})'s may approach 0.3 magnitude units due to changes in location of the explosion, takeoff angle, and azimuth. However, these variations should be reduced substantially by network averaging.
Neither the m_b (Pmax) variations nor the P-coda variations can be attributed to a purely 1-D layered structure without lateral variation. Although our calculations agree favorably with Haskell-Thompson calculations for 1-D layered structures, there are no independent checks of the calculations for full elastic calculations of line sources in 2-D models. Because of the differences between 2-D and 3-D calculations, the P-coda predicted by these methods is probably an upper bound on the true 3-D case. Observations of Yucca Flats explosions do show the reverberant P-coda at several azimuths.

It was found that although there is an elastic $P+pP$ scalloping in the spectra of the model response, that when instrument, source, and attenuation operators were convolved with the model response, that there is a "smearing" effect that diminishes the resolution of the interference notches. The $P+pP$ time function is drawn out into the P-coda by the convolutions and the P-coda tends to fill in the interference notches. These simulations point out the difficulty of observing such notches in the spectra of a signal. A short window with poor spectral resolution is required to observe the notches but a long window with higher spectral resolution includes P-coda that contaminates the elastic $P+pP$ scalloping.

We do not require complicated sources to simulate the Yucca Flats reverberant seismograms. The initial portion of the waveform is the least altered by propagation in the structure. We see no mechanism for apparent P differences due to the scattering of waves in the Yucca Flats structure. We predict that deterministic m_b variations should be expected as a function of location within Yucca Flats. The m_b variations are best treated by suitable averaging over numerous azimuths around the source.
ACKNOWLEDGEMENTS

This work was supported under Contract F19628-85C-0035, administered by the Air Force Geophysics Laboratory. The views and conclusions contained in this report are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.
REFERENCES

Barnes, H., F. N. Housner, and F.G. Poole (1963) Geology of the Oak Spring Quadrangle, Nye County, Nevada.

Barnes, H. and F. G. Poole (1968) Regional thrust-fault system in Nevada Test Site and vicinity, GSA 110, 233-238.

Ramsopp, L. D. and N. W. Howard (1975) Average properties of nuclear test areas and media at the USERDA Nevada Test Site, UCRL-519348, Lawrence Livermore Laboratory, Livermore Calif. 94550.

FIGURE CAPTIONS

FIGURE 1. West-to-East model for geologic structure across Yucca Flats from Ferguson (1983). Model shown with 5-to-1 vertical exaggeration. Numbered source locations referred to in the text are indicated by solid dots at a depth of 550 meters below the surface. P-wave velocities of 1.34, 2.14, 3.00, and 4.57 km/sec are indicated for the geologic units of alluvium, unsaturated tuff, saturated tuff, and Paleozoic carbonates respectively.

FIGURE 2. Frequency dependent $t^*(f)$ for NTS to shield path from Der and Lees (1985). Time domain attenuation operator, $A(t)$, is shown as inset. t^* is 0.45 seconds at 1 Hz.

FIGURE 3A, 3B. Teleseismic P-wave synthetics appropriate for a takeoff angle of 15 degrees for model in Figure 1. Numbers correspond to numbered source locations in Figure 1. 5 seconds of record are shown in each case. All synthetics are plotted at the same scale. Synthetics are calculated for a von Seggern Blandford (1972) hard rock 100 Kt RDP convolved with an instrument response and an attenuation operator as in FIGURE 2.

FIGURE 4. Synthetics for the Yucca Flats model at source locations 7, 8, and 9, for takeoff angles of 15 and -15 degrees. Right-most seismograms are for a 1-D layered model and a takeoff angle of 15 degrees.

FIGURE 5A. Synthetics for source locations 4, 5, and 6 at takeoff angle of 15 degrees compared to the layered model.

FIGURE 5B. Comparison of linear elastic finite difference calculations with results of a Haskell-Thompson matrix solution for the layered structure at the source location 5. Takeoff angle is 15 degrees.

FIGURE 5C. Spectra of the two traces seen in FIGURE 5B.

FIGURE 6. Synthetics for 1-D layered models at source locations 5 and 10. Takeoff angle is 15 degrees.

FIGURE 7. Synthetics for the 2-D Yucca model, source location 5, at normal and 15 degree takeoff angles.

FIGURE 8. 2.56 second spectra of P waves for 0, 5, 10, and 15 degree takeoff angle, source location 7. P+pP interference pattern is clearly visible in all spectra. Spectra do not have the source, attenuation, and instrument responses convolved with the model response as in previous Figures.

FIGURE 9A,B,C. 2.5 and 5.0 second windows of the synthetics for source location 5 with takeoff angles of 15 (9A) and -15 (9B) degrees. (9C) shows the spectra for a 1-D layered structure appropriate for the same source location.

FIGURE 10A. Log(A) and log(A/T) for "a" phase of the P wave synthetics with a 15 degree takeoff angle. Numbers refer to source locations in Figure 1. Maximum variation is 0.15 log units.

FIGURE 10B. Log(A) and log(A/T) for "b" phase of the P wave synthetics with a 15 degree takeoff angle. Source locations 1 through 13 in Figure 1. Maximum variation
is 0.15 log units.

FIGURE 10C. Log(A) and log(A/T) for "max" phase of the P wave synthetics with a 15 degree takeoff angle. Source locations 1 through 13 in Figure 1. Maximum variation is 0.3 log units.

FIGURE 11A. Deconvolved source time functions (far-field displacement) of Yucca Flats events and Piledriver at EKA array (Δ=71.4°). The effects of a constant t*=0.45 sec attenuation operator have been removed. A resolution kernel is shown at the top representing the limited bandwidth of the deconvolutions, 0.4 to 3.5 Hz. The initial causal P wave has been been shaded for clarity. Note the higher frequency and shorter duration source time function of Piledriver with respect to the Yucca Flats events. Topgallant, Lowball, and Farallones have considerable reverberation in the first 5 seconds of record. The Yucca Flats events do not show a clear pP within 1 second of the initial P wave, although several events do show a negative phase about 1 second following the P wave and positive and a positive pulse about 1.5 seconds following the P wave. Piledriver shows a negative pulse about 0.25 seconds following the P wave (pP') and another negative polarity pulse about 0.8 seconds following the P wave.

FIGURE 11B. Deconvolved source time functions (far-field displacement) of Yucca Flats events at YKA array (Δ=25.5°). The effects of a constant t*=0.45 sec attenuation operator have been removed. A resolution kernel is shown at the top representing the limited bandwidth of the deconvolutions, 0.4 to 3.5 Hz. The initial causal P wave has been shaded for clarity. The P waves are doubly triplicated at this distance range. The initial P wave (shaded) is followed by a second stronger P wave by about 1.3 to 1.5 second. The two arrivals constructively interfere to produce a reverberant waveform that lasts 8 seconds or more. A second P-wave triplication follows the initial P waves by about 16 seconds.

FIGURE 11C. Deconvolved source time functions (far-field displacement) of Yucca Flats events at GBA array (Δ=127.8°). The effects of a constant t*=0.45 sec attenuation operator have been removed. A resolution kernel is shown at the top representing the limited bandwidth of the deconvolutions, 0.4 to 3.5 Hz. The initial causal P wave has been shaded for clarity. Strait, Crewline and Bulkhead show the characteristic reverberation of Yucca Flats events. Azimuthal differences are apparent if we compare Strait and Farallones between GBA and EKA (FIGURE 11A).

FIGURE 12. The individual traces of the R3 element of the EKA array are shown for 5 Yucca Flats events and Piledriver (as in Figure 11A). The source complexity is less apparent in these raw records when we compare Piledriver to the Yucca Flats events. The multichannel deconvolutions of Figure 11A improve the signal-to-noise over the single trace records.

FIGURE 13. Several Yucca Flats events recorded at RK-ON (Δ=71.0°) compared to Piledriver. Note the complexity of the P coda from the Yucca Flats events. Complexity is not due to receiver structure or upper mantle P wave complications, but must be due to the near-source structures of the Yucca Flats events. Chiberta and Commodore were located only 0.37 km apart.
\[t^*(f=1\text{Hz}) = 0.45 \text{ sec} \]
FIGURE 4.

YUCCA 1
\(\angle = 15^\circ \)

YUCCA 1
\(\angle = -15^\circ \)

layered
\(\angle = 15^\circ \)

9

8

7

5

4

3

0.0 secs 5.0
FIGURE 5A.

- --- YUCCA 1
- -- layered
1-D model

L.F.D.

H.T.

1.0 SEC

FIGURE 5B.
1-D model

-15°

AMPLITUDE

FREQUENCY HZ

H.T.

5.1 SEC

L.F.D.

FIGURE 5C.
FIGURE 7.

- normal
- \(\angle 15^\circ \)
FIGURE 8
Figure 9A
\(P_a \ (\angle 15^\circ) \)

FIGURE 10A.
$P_{\text{max}} (\angle 15^\circ)$
0.4 to 3.5 Hz EKA 71.4°

TOPGALLANT

STRAIT

LOWBALL

HEARTS

FARALONS

PILEDRIVER

FIGURE 11A.
0.4 to 3.5 Hz YKA 25.5°

FIGURE 11B.
0.4 to 3.5 Hz GBA 127.8°

STRAIT

FARALONS

CREWLINE

BULKHEAD

4.0 SEC

FIGURE 11C.
FIGURE 13.
DISTRIBUTION LIST

Dr. Monem Abdel-Gawad
Rockwell International Science Center
1049 Camino Dos Rios
Thousand Oaks, CA 91360

Professor Keltiti Aki
Center for Earth Sciences
University of Southern California
University Park
Los Angeles, CA 90089-0741

Professor Shelton S. Alexander
Geosciences Department
403 Deike Building
The Pennsylvania State University
University Park, PA 16802

Professor Charles B. Archambeau
Cooperative Institute for Research in Environmental Sciences
University of Colorado
Boulder, CO 80309

Dr. Thomas C. Bache Jr.
Science Applications Int'l Corp.
10210 Campus Point Drive
San Diego, CA 92121

Dr. James Bulau
Rockwell International Science Center
1049 Camino Dos Rios
P.O. Box 1085
Thousand Oaks, CA 91360

Dr. Douglas R. Baumgardt
Signal Analysis and Systems Division
ENSICO, Inc.
3400 Port Royal Road
Springfield, VA 22151-2388

Dr. S. Bratt
Science Applications Int'l Corp.
10210 Campus Point Drive
San Diego, CA 92121

Professor John Ebel
Department of Geology & Geophysics
Boston College
Chestnut Hill, MA 02167

Woodward-Clyde Consultants
Attn: Dr. Lawrence J. Burdick
Dr. Jeff Barker
P.O. Box 93245
Pasadena, CA 91109-3245 (2 copies)

Dr. Roy Burger
1221 Surrey Rd.
Schenectady, NY 12309

Professor Robert W. Clayton
Seismological Laboratory
Division of Geological and Planetary Sciences
California Institute of Technology
Pasadena, CA 91125

Dr. Vernon F. Cormier
Earth Resources Laboratory
Department of Earth, Atmospheric and Planetary Sciences
Massachusetts Institute of Technology
42 Carleton Street
Cambridge, MA 02142

Professor Anton M. Dainty
Earth Resources Laboratory
Department of Earth, Atmospheric and Planetary Sciences
Massachusetts Institute of Technology
42 Carleton Street
Cambridge, MA 02142

Dr. Zoltan A. Der
Teledyne Geotech
314 Montgomery Street
Alexandria, VA 22314

Prof. Adam Dziewonski
Hoffman Laboratory
Harvard University
20 Oxford St.
Cambridge, MA 02138

Professor John Ferguson
Center for Lithospheric Studies
The University of Texas at Dallas
P.O. Box 830688
Richardson, TX 75083-0688
Dr. Jeffrey W. Given
Sierra Geophysics
11255 Kirkland Way
Kirkland, WA 98033

Prof. Roy Greenfield
Geosciences Department
403 Deike Building
The Pennsylvania State University
University Park, PA 16802

Professor Charles A. Langston
Geosciences Department
403 Deike Building
The Pennsylvania State University
University Park, PA 16802

Professor Thorne Lay
Department of Geological Sciences
1006 C.C. Little Building
University of Michigan
Ann Arbor, MI 48109-1063

Dr. George R. Hellman
Sierra Geophysics
11255 Kirkland Way
Kirkland, WA 98033

Professor Brian J. Mitchell
Department of Earth and Atmospheric Sciences
Saint Louis University
Saint Louis, MO 63156

Professor Thomas V. McEvilly
Seismographic Station
University of California
Berkeley, CA 94720

Dr. Keith L. McLaughlin
Teledyne Geotech
314 Montgomery Street
Alexandria, VA 22314

Professor Otto W. Nuttli
Department of Earth and Atmospheric Sciences
Saint Louis University
Saint Louis, MO 63156

Professor Paul G. Richards
Lamont-Doherty Geological Observatory
of Columbia University
Palisades, NY 10964

Dr. Norton Rimer
S-Cubed
A Division of Maxwell Laboratory
P.O. 1620
La Jolla, CA 92038-1620
Mr. Peter Marshall
Procurement Executive
Ministry of Defense
Blacknest, Brimpton, Reading RG7-4RS
UNITED KINGDOM

Dr. B. Massinon
Societe Radiomana
27, Rue Claude Bernard
75005, Paris, FRANCE

Dr. Pierre Mechler
Societe Radiomana
27, Rue Claude Bernard
75005, Paris, FRANCE

Mr. Jack Murphy
S-CUBED
Reston Geophysics Office
11800 Sunrise Valley Drive
Suite 1212
Reston, VA 22091

Dr. Svein Mykkeltveit
NTNF/NORSAR
P.O. Box 51
N-2007 Kjeller, NORWAY

Dr. Carl Newton
Los Alamos National Laboratory
P.O. Box 1663
Mail Stop C 335, Group ESS3
Los Alamos, NM 87545

Dr. Peter Basham
Earth Physics Branch
Department of Energy and Mines
1 Observatory Crescent
Ottawa, Ontario
CANADA K1A 0Y3

Professor J. A. Orcutt
Geological Sciences Division
Univ. of California at San Diego
La Jolla, CA 92093

Dr. Frank F. Pilotte
Director of Geophysics
Headquarters Air Force Technical Applications Center
Patrick AFB, Florida 32925-6001

Professor Keith Priestley
University of Nevada
Mackay School of Mines
Reno, Nevada 89557

Mr. Jack Raclin
USGS - Geology, Rm 3Cl36
Mail Stop 928 National Center
Reston, VA 22092

Dr. Frode Ringdal
NTNF/NORSAR
P.O. Box 51
N-2007 Kjeller, NORWAY

Dr. George H. Rothe
Chief, Research Division
Geophysics Directorate
Headquarters Air Force Technical Applications Center
Patrick AFB, Florida 32925-6001

Dr. Alan S. Ryall, Jr.
Center for Seismic Studies
1300 North 17th Street
Suite 1450
Arlington, VA 22209-2308

Dr. Jeffrey L. Stevens
S-CUBED,
A Division of Maxwell Laboratory
P.O. Box 1620
La Jolla, CA 92038-1620

Dr. Lawrence Turnbull
OSWR/NED
Central Intelligence Agency
CIA, Room 5G48
Washington, DC 20505

Professor Steven Grand
Department of Geology
245 Natural History Bldg
1301 West Green Street
Urbana, IL 61801

Teledyne Geotech Alexandria Laboratory
Attn: K. L. McLaughlin
314 Montgomery Street
Alexandria, VA 22314
10 copies

D-4
END
5 87
DTIC