APPROXIMATION FOR
BAYESIAN ABILITY ESTIMATION

Robert K. Tsutakawa
and
Michael J. Soltys

Mathematical Sciences Technical Report No. 134
February 1987

Department of Statistics
University of Missouri
Columbia, MO 65211

Prepared under contract No. N00014-85-K-0113, NR 150-535
with the Personnel and Training Research Programs
Psychological Sciences Division
Office of Naval Research

Approved for public release: distribution unlimited.
Reproduction in whole or in part is permitted for
any purpose of the United States Government
An approximation is proposed for the posterior mean and standard deviation of the ability parameter in an item response model. The procedure assumes that approximations to the posterior mean and covariance matrix of item parameters are available. It is based on the posterior mean of a Taylor series approximation to the posterior mean conditional on the item parameters.
APPROXIMATION FOR BAYESIAN ABILITY ESTIMATION

ROBERT K. TSUTAKAWA

and

MICHAEL J. SOLTYS

University of Missouri

Correspondence to be handled by:

Robert K. Tsutakawa
Department of Statistics
University of Missouri
316 Math Sciences
Columbia, MO 65211
314-882-6879
APPROXIMATION FOR BAYESIAN ABILITY ESTIMATION

KEY WORDS: Ability estimation, Bayesian approximation, binary variables, item response, two-parameter logistic.

Abstract

An approximation is proposed for the posterior mean and standard deviation of the ability parameter in an item response model. The procedure assumes that approximations to the posterior mean and covariance matrix of item parameters are available. It is based on the posterior mean of a Taylor series approximation to the posterior mean conditional on the item parameters. The method is illustrated for the two-parameter logistic model using data from an ACT math test with 39 items. A numerical comparison with the empirical Bayes method shows that the point estimates are very similar but the standard deviations under empirical Bayes are about two percent smaller than those under Bayes. The effect of sample size is demonstrated by illustrating the increase in the standard deviations for a smaller data set.
Ability Estimation

We consider estimating the ability of an individual based on the person's dichotomous responses to a set of test items whose characteristics are partially known through responses to the same set from other individuals belonging to the same population. Each item is characterized by an item response function which defines the probability of a correct response to the item by an individual with ability θ. We assume such a function to be known except for some parameter ξ and use the notation $P(y|\theta, \xi)$ to represent the probability of correct response ($y=1$) or incorrect response ($y=0$) by an individual with real valued ability θ to an item with parameter ξ. An example of such a function is the two-parameter logistic model defined by

$$P(y|\theta, \xi) = \frac{\exp\{ya(\xi-\beta)\}}{1+\exp\{a(\theta-\beta)\}}, \quad (1)$$

where $y = 0, 1$, $-\infty < \theta < \infty$, $\xi = (\alpha, \beta)$ is two dimensional with $\alpha > 0$ and $-\infty < \beta < \infty$.

We assume the calibration of the test is based on responses to k items by a group of n individuals representative of some target population for which abilities are to be measured. We let $y_{ij} = 0$ or 1 according as the response by examinee i to item j is incorrect or correct. We assume conditional independence among the responses so that the joint probability of the nxk matrix y of responses y_{ij} is given by

$$P(y|\theta, \xi) = \prod_{ij} P(y_{ij}|\theta_{ij}, \xi_{ij}) \quad (2)$$
where $\theta = (\theta_1, \ldots, \theta_n)$ represents the abilities of the n individuals and $\xi = (\xi_1, \ldots, \xi_k)$ the parameters of the k items.

One standard method used in calibration is to obtain the joint maximum likelihood estimate $(\hat{\theta}_L, \hat{\xi}_L)$ of (θ, ξ) using a procedure such as LOGIST (Wingersky, Barton, and Lord, 1982). The calibrated items are then used to measure the ability θ for a new individual with item responses $x = (x_1, \ldots, x_k)$ by finding the value of $\hat{\theta}$ which maximizes the probability

$$P(x|\hat{\theta}, \hat{\xi}) = \prod_j P(x_j|\theta, \xi_L).$$

This procedure is straightforward and relatively easy to implement, however it is known to be biased outwards for extreme values of θ (Lord, 1983a), is subject to an occasional nonexistence of a solution, and fails to provide a good measure of uncertainty in the estimated θ.

A related empirical Bayes procedure is to first assume a prior distribution π of θ and estimate ξ by marginal maximum likelihood. Then derive the posterior mean of θ conditionally on ξ assumed to equal the marginal maximum likelihood estimate. The resulting estimate of θ is an empirical Bayes (Cox and Hinkley, 1974) estimate and has been demonstrated on different models by Bock and Aitkin (1981) and Rigdon and Tsutakawa (1983), among others.

The Bayesian approach, which we adopt here, assumes prior distributions on both θ and ξ and uses an approximate posterior mean and variance of θ to make inferences regarding the unknown θ. The approximation for the posterior mean $E(\theta|X)$ is based on the posterior expectation of a Taylor series approximation of the
Ability Estimation

conditional posterior expectation $E(\theta | x, \xi)$. When the posterior distribution of ξ is normal, it reduces to Lindley's (1980) approximation whose general form requires the computation of a large number of 3rd partial derivatives of the loglikelihood function. We will first discuss our method when the individual whose θ is being measured, is a member of the calibrating set, e.g. $\theta = \hat{\theta}_1$. We then show how the same approximation can be modified and used on a new individual from the same target population.
Approximate Posterior Mean and Variance of θ

Assume that $\theta_1, \ldots, \theta_n$ are independent and identically distributed (iid) according to some known prior $p(\theta)$. Also assume that ξ_1, \ldots, ξ_k are independently distributed according to some known priors $p(\xi_1), \ldots, p(\xi_k)$ and independent of $\theta_1, \ldots, \theta_n$. Then the marginal posterior pdfs of ξ and θ are given by

$$p(\xi \mid y) \propto p(\xi) \prod_i \int_j P(y_{ij} \mid \theta_i, \xi_j) p(\theta_i) d\theta_i$$

(4)

and

$$p(\theta \mid y) \propto p(\xi) \prod_j \int_i P(y_{ij} \mid \theta_i, \xi_j) p(\theta_i) d\theta_i.$$

(5)

As shown in Tsutakawa and Lin (1986) the EM algorithm can be used to compute the posterior mode $\hat{\xi}$ of ξ and the posterior covariance of ξ can be approximated by $\hat{\Sigma}$, the inverse of the negative Hessian of the log posterior evaluated at $\hat{\xi}$. Due to the symmetry between (4) and (5), it may appear that similar methods may be adopted to compute the posterior mode of $\hat{\theta}$. However, the analogous approach presents serious numerical problems since the integrals in (5) are multiple integrals in contrast to the single integrals in (4).

Instead we shall try to derive the posterior expectation of θ by approximating the integral in the expression,

$$E(\theta \mid y) = \int E(\theta \mid y, \xi) p(\xi \mid y) d\xi,$$

(6)
where $E(\tilde{\theta} | y, \xi)$ is the posterior expectation of $\tilde{\theta}$ conditionally
on ξ, which is used by the empirical Bayes approach upon substituting
$\tilde{\xi}$ with its marginal maximum likelihood estimate.

Let $w(\xi) = E(\tilde{\theta}_i | y_i, \xi)$ and let w, w_r, w_{rs} and w_{rst} denote
the values of $w(\xi)$ and its first three derivatives all evaluated
at ξ. Then according to Lindley (1980), under regularity conditions
(6) may be approximated to order $O(n^{-1})$ by

$$w + \frac{1}{2} \sum_r w_{rs} t_{rs} + \frac{1}{2} \sum_{rst} \Lambda_{rst} w_{u} t_{rs} t_{tu}, \quad (7)$$

where Λ_{rst} is the third partial of the log posterior evaluated at
$\xi = \xi$ and t_{rs} are the elements of ξ. The last term accounts for
the skewness of the posterior distribution of ξ and if, in particular,
the posterior is normal, Λ_{rst} vanish (Anderson, 1958, p. 39) and (7)
reduces to

$$m = w + \frac{1}{2} \sum_{rs} w_{rs} t_{rs}. \quad (8)$$

A heuristic justification for (8) can be given by considering
the posterior expectation of the third order Taylor series approxi-
mation to $E(\tilde{\theta}_i | y_i, \xi)$ about $\xi = \xi$. To simplify the notation re-
present the components of ξ and ξ by (u_1, \ldots, u_q) and $u_1, \ldots, u_q)$.
Then the approximation is given by

$$w(\xi) = w + \sum_r w_r (u_r - \xi_r)$$

$$+ 1/2 \sum_{rs} w_{rs} (u_r - \xi_r)(u_s - \xi_s)$$

$$+ 1/6 \sum_{rst} w_{rst} (u_r - u)(u_s - \xi_s)(u_t - \xi_t). \quad (9)$$
If \(p(\xi | y) \) is normal with mean \(\xi \) and covariance matrix \((\sigma_{rs}) \), then the third moments of \(\xi \) vanish and

\[
\int w(\xi) p(\xi | y) \, d\xi
\]

\[= w + \frac{1}{2} \sum w_{rs} \sigma_{rs}. \tag{10}\]

Upon replacing \((\sigma_{rs}) \) by its estimate \((\tau_{rs}) \) we have (8).

Mosteller and Wallace (1964, p. 151) refer to (10) as the standard approximation for the case of known means and covariances and point out the need to consider the bias \(\xi - E(\xi | y) \) and third derivatives when the distribution is nonsymmetric.

The posterior variances and covariances of \(\xi \) may be similarly approximated by first obtaining an approximation to \(E(\theta_i \theta_j | y) \) by repeating (8) with \(w(\xi) = E(\theta_i \theta_j | y, \xi) \) and then making the appropriate substitutions in \(E(\theta_i \theta_j | y) - E(\theta_i | y)E(\theta_j | y) \). The approximate variances, \(s^2 \), and covariances can be helpful in assessing the uncertainty of a particular individual's ability or in comparing the abilities of two individuals.

Suppose we now have the \(n+1 \)st or a new individual, with unknown \(\theta \), whose response to the same \(k \) items is \(x = (x_1, \ldots, x_k) \). We can repeat the entire procedure including the updating of \((\xi, \xi) \) after replacing \(y \) with \((y, x) \). However this would be quite costly for routine evaluations. It would be much simpler retaining \((\xi, \xi) \) from the first \(n \) individuals and using \(x \) in \(w(\xi) = E(\theta | x, \xi) \) only. When \(n \) is moderately large, the change in \((m, s^2)\) through the updated \((\xi, \xi) \) by the addition of a single individual would be quite negligible relative to the variability in \(E(\theta | x, \xi) \) or \(E(\theta^2 | x, \xi) \) due to different values of \(x \).
Computational Details for the Two-parameter Logistic Model

In this section we present computational expressions for the evaluation of \(w \) and \(w_{rs} \) in the case of the two-parameter logistic model (1) with a \(N(0,1) \) prior on \(\theta \). A derivation of \((\hat{c}, \hat{\xi})\) based on the EM algorithm can be found in Tsutakawa and Lin (1986).

For this model we have

\[
\begin{align*}
w(\xi) & = E(\theta_i | Y_i, \xi) \\
& = \int \theta_i p(\theta_i | Y_i, \xi) d\theta_i,
\end{align*}
\]

where

\[
p(\theta_i | Y_i, \xi) = \frac{p(\theta_i) \prod_{j=1}^{k} p(y_{ij} | \theta_i, \alpha_j, \beta_j)}{\prod_{j=1}^{k} p(y_{ij} | \theta_i, \alpha_j, \beta_j)}
\]

and

\[
p(\theta) = \frac{1}{\sqrt{2\pi}} \exp(-\theta^2/2),\quad -\infty < \theta < \infty.
\]

Following the notation in Tsutakawa (1984), for each \(i = 1, \ldots, n \) and \(u = 1, \ldots, k \) let

\[
g_1(i,u,\theta) = \frac{\partial P(y_{iu} | p, \alpha_u, \beta_u)}{\partial \alpha_u} / P(y_{iu} | \alpha_u, \beta_u),
\]

(12)
Ability Estimation

\[g_2(i, u, \theta) = \frac{\partial^3 P(y_{iu} | \theta, \alpha, \beta)}{\partial \alpha^3} / P(y_{iu} | \alpha, \beta), \]

\[h_{11}(i, u, \theta) = \frac{\partial^2 P(y_{iu} | \theta, \alpha, \beta)}{\partial \alpha^2} / P(y_{iu} | \alpha, \beta), \]

\[h_{12}(i, u, \theta) = \frac{\partial^2 P(y_{iu} | \alpha, \beta)}{\partial \alpha \partial \beta} / P(y_{iu} | \alpha, \beta), \]

\[h_{22}(i, u, \theta) = \frac{\partial^2 P(y_{iu} | \alpha, \beta)}{\partial \beta^2} / P(y_{iu} | \alpha, \beta), \]

\[\phi_{\beta u} = (1 + \exp(-\alpha_u (\theta - \beta_u)))^{-1}, \quad \text{and} \quad \psi_{\theta u} = 1 - \phi_{\beta u}. \]

By taking derivatives it is readily shown that

\[g_1(i, u, \theta) = (y_{iu} - \alpha_u)(\theta - \beta_u), \]

\[g_2(i, u, \theta) = -\alpha_u (y_{iu} - \beta_u), \]

\[h_{11}(i, u, \theta) = (y_{iu} - \alpha_u)(\alpha_u - \beta_u)(\alpha_u - \beta_u), \]

\[h_{12}(i, u, \theta) = -(y_{iu} - \beta_u)(1 + \alpha_u (\alpha_u - \beta_u)(\theta - \beta_u)), \]

and

\[h_{22}(i, u, \theta) = (y_{iu} - \beta_u)^2 (\alpha_u - \beta_u). \]

(We note that there is a minus sign missing in the expression for \(h_{12} \) in Tsutakawa (1984)). Now define the following posterior expectations of the derivatives and their products by
\[\bar{g}_s(i,u) = \int_{-\infty}^{\infty} g_s(i,u,\theta) p(\theta | y_i, \xi) d\theta, \]

\[\bar{h}_{st}(i,u) = \int_{-\infty}^{\infty} h_{st}(i,u,\theta) p(\theta | y_i, \xi) d\theta, \]

\[\bar{d}_{st}(i,u,v) = \int_{-\infty}^{\infty} g_s(i,u,\theta) g_t(i,v,\theta) p(\theta | y_i, \xi) d\theta, \]

\[s,t = 1,2, u,v = 1, \ldots, k, u \neq v, \text{ where } p(\theta | y_i, \xi) \text{ is defined by (11)}. \]

Now denote the second derivatives of \(w(\xi) \) evaluated at \(\xi = \xi^\wedge \) by

\[w_{11}(u,v) = \frac{\partial^2 w}{\partial \alpha_u \partial \alpha_v}, \]

\[w_{12}(u,v) = \frac{\partial^2 w}{\partial \alpha_u \partial \beta_v}, \]

\[w_{21}(u,v) = \frac{\partial^2 w}{\partial \beta_u \partial \alpha_v}, \]

and

\[w_{22}(u,v) = \frac{\partial^2 w}{\partial \beta_u \partial \beta_v}. \]

These derivatives may be computed using the following expressions.

\[w_{st}(u,u) = E(\partial h_{st}(i,u,\theta)) + (2\bar{g}_s(i,u)\bar{g}_t(i,u) - \bar{h}_{st}(i,u))E(\cdot) \]

\[- g_s(i,u)E(\partial g_t(i,u,\theta)) - \bar{g}_t(i,u)E(\cdot g_s(i,u,\theta)); \]

and, for \(u \neq v, \)

\[w_{st}(u,v) = (2\bar{g}_s(i,u)\bar{g}_t(i,v) - \bar{d}_{st}(i,u,v))E(\cdot) \]

(17)
Ability Estimation

\[E_{g_S}(1,u|g_t|1,v,\cdot) \]

\[= \int_t^E \sum_{s} E_{g_s}(1,u|g_t|1,v,\cdot) \]

\[= \int_t^E \sum_{s} E_{g_s}(1,u|g_t|1,v,\cdot) \]

where \(E \) denotes posterior expectation with respect to the density \(p_{t-1} y_t, \cdot \) defined by (11) when \(i = t \).

The numerical evaluation of \(w_{st}(u,v) \) requires numerically integrating a number of integrals of the type

\[\int \cdots \int p_{i-1}(\cdot)p(y_i,1',\cdot)h(\cdot) \, \text{d}y_i \cdots \text{d}y_1 \]

(18)

where the function \(h(\cdot) \) varies from one integral to the next. The use of scaling for improved accuracy in the Gauss-Hermite approximation is discussed in Tsutakawa (1984).
Example

Our method will now be illustrated on a sample data set from an ACT math test previously used by Tsutakawa and Lin (1986). The sample consists of responses on $k = 39$ items by $n = 41$ respondents. Using their method, $(\hat{\xi}, \tilde{\xi})$ were initially recomputed. The posterior means and standard deviations (m, s) were then computed for the first 100 respondents and are plotted against the empirical counterparts, $(E(y, \hat{\xi}), \text{SD}(y, \hat{\xi}))$, and $(E(y, \tilde{\xi}), \text{SD}(y, \tilde{\xi}))$, where $\hat{\xi}$ is the marginal maximum likelihood estimate of ξ in Figures 1 and 2. We note that the means under the two procedures are almost identical but the standard deviations could be quite different.

In particular, posterior standard deviations are 1.5 to 2.5 percent smaller under empirical Bayes than approximate Bayes. An explanation for this is that the empirical Bayes approach does not account for the uncertainty in ξ (Deelev and Lindley 1981).

A plot of s vs. m in Figure 3 shows that the larger s is associated with the larger m, suggesting the difficulty of estimating extreme ability values based on the given test. The quadratic relationship seen in the plot suggests that, for routine use, s may be expressed as a function of m and need not be computed for all individuals.
Effect of Sample Size n

An interesting conjecture involves the effect of the sample size \(n \) on our Bayesian estimates. Although the posterior moments of ability are calculated separately for each individual they depend on the values of \((\xi, \zeta) \) which are estimated from a response matrix which may contain the particular individual's response. It is natural to believe that as the size of the response matrix decreases, the posterior standard deviation of an individual's ability would increase, as there is more uncertainty in the estimated \((\hat{\xi}, \hat{\zeta}) \).

We previously found ability estimates for the first 100 examinees in a 400 x 39 response matrix using \((\xi, \zeta) \) which were derived from the responses of all 400 examinees. To investigate our conjecture we reestimated the posterior moments of ability for the same set of 100 examinees, using \((\hat{\xi}, \hat{\zeta}) \) derived from the first 100 examinees only.

The initial comparison produced an interesting result. From individual to individual it was found that the posterior standard deviation of ability was usually smaller than the corresponding standard deviation based on \(n = 400 \). We do not feel however that our initial conjecture is untrue as the following discussion shows.

It is well known that the parameters of the two-parameter logistic model are not unique. The item parameters which were estimated from the two samples are quite different although the items are exactly the same. In particular, the estimates of \(\alpha_j \)
were larger for $n = 100$. This is consistent with Lord (1983b) who shows that the MLE of the discrimination parameter is positively biased, particularly for small n. (Although we are not using MLE's here, our prior is relatively flat.) Intuitively, larger values of the discrimination parameter will tend to produce smaller posterior standard deviations of ability. We feel that this explains why the standard deviations did not increase as expected.

In order to put both sets of estimated item parameters on a common scale and make them more comparable, we propose the following transformation. Define

$$
\sigma = \left\{ \frac{1}{k} \prod_{j=1}^{k} \sigma_j \right\},
$$

$$
\mu = - \sigma \sum_{j=1}^{k} \beta_j, \quad (19)
$$

$$
\alpha_j^* = \frac{\alpha_j}{\sigma}, \text{ and}
$$

$$
\beta_j^* = \mu + \sigma \beta_j, \quad j = 1, \ldots, k.
$$

The corresponding transformation for the ability parameter is

$$
\theta_i^* = \mu + \sigma \theta_i. \quad (20)
$$
Ability Estimation

We refer to this process as rescaling and it is easily seen that \(\sum_{j=1}^{k} \sigma_j = 1 \) and \(\sum_{j=1}^{k} \beta_j = 0 \). Under this transformation we now have

\[
E(\theta_l^* | y) \approx u + \sigma E(\theta_l | y)
\]

and

\[
SD(\theta_l^* | y) \approx \sigma SD(\theta_l | y).
\]

One reason for putting the restriction on the item parameter space rather than on the abilities is because the item parameters are common to both sets while the ability parameters in the two sets are not identical, except for the first 100. Upon applying the rescaling to the two sets separately, the rescaled posterior standard deviations for \(n = 100 \) were .6 to 14 percent larger than those found using \(n = 400 \). This can be seen graphically in Figure 4.
Ability Estimation

Discussion

The approximation to the posterior mean and variance of the ability parameter proposed here is relatively simple to compute once the posterior mode and approximate covariance matrix of the item parameters are available. Other approximations, which do not appear as readily adaptable to ability estimation, yet deserve further study, include those by Leonard (1982) and Tierney and Kadane (1986). We now briefly examine the computational requirements of these approximations for evaluating the posterior mean of an individual with response x who appears subsequent to the calibration based on n individuals with data Y.

For the Tierney and Kadane approximation define

$$
L(x) = \ln \pi(x) + \xi(x),
$$

(22)

and

$$
L^*(x) = m^{-1} \log E(\theta|x, x) \pi(x) \xi(x),
$$

(23)

where $\pi(x)$ is the prior for x, $m = n + 1$, $y_{n+1} = \hat{y}$ and $(y_{n+1}, \ldots, y_{n+1, k})^T = x$ so that the posterior expectation of θ can be expressed as

$$
E(\theta|y, x) = \frac{\int e^{mL^*(x)} d\xi}{\int e^{mL(x)} d\xi}.
$$

(25)
Ability Estimation

Suppose \(\hat{\xi}' \) and \(\hat{\xi}^* \) are the modes of \(L \) and \(L^* \) and \(\tilde{\Sigma}' \) and \(\tilde{\Sigma}^* \) are minus the inverse Hessians of \(L \) and \(L^* \) evaluated at \(\hat{\xi}' \) and \(\hat{\xi}^* \), respectively. Under regularity conditions, the posterior expectation may be approximated, according to Tierney and Kadane by

\[
\bar{\Theta} = \frac{|\tilde{\Sigma}^*|^{\frac{1}{2}}}{|\tilde{\Sigma}'|^{\frac{1}{2}}} \exp\{m[L^*(\hat{\xi}^*) - L(\hat{\xi}')]\}. \quad (26)
\]

One of the requirements is that \(E(\theta|\tilde{x},\xi) \) be a positive valued function of \(\xi \). But as pointed out by R.D. Bock (personal communication, April 29, 1986) since the origin of \(\theta \) is arbitrary we may take it to be a large positive number, such as 5, and if necessary truncate the prior of \(\theta \) to make \(E(\theta|\tilde{x},\xi) \) positive.

Although the computation of \((\hat{\xi}',\tilde{\Sigma}')\) can be performed using the EM algorithm as shown in Tsutakawa and Lin (1986), the computation of \(\hat{\xi}^* \) can be a major problem, since, unlike the computation for \(\xi' \), the maximization of \(L^*(\xi) \) requires working with all item parameters simultaneously.

For the Leonard approximation, we begin with the joint posterior of \((\theta,\xi)\),

\[
p(\theta,\xi|x,y) \quad p(x|\theta,\xi)p(\theta)p(\xi|y) \quad (27)
\]

For fixed \(\theta \), let \(\xi_{\theta}^\wedge \) be the mode of \(\xi \) and \(R_{\theta} \) the negative inverse Hessian of the log of (27) with respect to \(\xi \) evaluated at \(\xi_{\theta}^\wedge \).

Then, under regularity conditions, the marginal posterior pdf of \(\theta \) is approximated by
Ability Estimation

\[p(\theta | x, y) = (2\pi)^{q/2} \ p(\theta, \xi_\theta | x, y) / |R_\theta|^\frac{q}{2} \] . \quad (28)

where \(q \) is the dimension of \(\xi \). Following Leonard and Novick (1966), the posterior moments of \(\theta \) may be computed from (28) using numerical integration.

In practice the major difficulty would be in computing \(\hat{\xi}_\theta \). The EM algorithm can again be used, with some modification of the procedure in Tsutakawa and Lin (1986). However since the computation of each \(\hat{\xi}_\theta \) will require as much effort as computing \(\hat{\xi}_\theta \) and a fair number of \((\hat{\xi}_\theta, |R_\theta|) \) pairs will be needed for each individual, without some modification, Leonard's approximation cannot be recommended for routine use.

In practice the simplicity of our approximation is obtained by separating the item parameter and ability estimation. Although there is some loss of information from not using all current data successively update the posterior distribution of the item parameters, (i) the extensive computation is completed at the calibration stage and (ii) ability measurement is done uniformly and without excessive computation for subsequent examinees.
References

Figure 1. Bayes vs. Empirical Bayes.
Figure 3. Bayes Standard Deviation vs. Bayes θ.
Figure 4. Rescaled Bayes Standard Deviations for $N = 100$ vs. 400
Dr. Terry Ackerman
American College Testing Programs
P.O. Box 168
Iowa City, IA 52243

Dr. Robert Ahlers
Code N711
Human Factors Laboratory
Naval Training Systems Center
Orlando, FL 32813

Dr. James Algina
University of Florida
Gainesville, FL 32605

Dr. Erling B. Andersen
Department of Statistics
Studiestraede 6
1495 Copenhagen
DENMARK

Dr. Eva L. Baker
UCLA Center for the Study of Evaluation
145 Moore Hall
University of California
Los Angeles, CA 90024

Dr. Isaac Bejar
Educational Testing Service
Princeton, NJ 08450

Dr. Menucha Birenbaum
School of Education
Tel Aviv University
Tel Aviv, Ramat Aviv 69978
ISRAEL

Dr. Arthur S. Blaiwes
Code N711
Naval Training Systems Center
Orlando, FL 32813

Dr. Bruce Bloxom
Defense Manpower Data Center
550 Camino El Estero, Suite 200
Monterey, CA 93943-3231

Dr. R. Darrell Bock
University of Chicago
NDRC
6030 South Ellis
Chicago, IL 60637

Cdt. Arnold Bohrer
Sectie Psychologisch Onderzoek
Rekrutterings-En Selectiecentrum
Kwartier Koningen Astrid
1120 Brussels, BELGIUM

Dr. Robert Breaux
Code N-095R
Naval Training Systems Center
Orlando, FL 32813

Dr. Robert Brenner
American College Testing Programs
P.O. Box 168
Iowa City, IA 52243

Dr. Lyle D. Broemeling
ONR Code 1111SP
800 North Quincy Street
Arlington, VA 22217

Mr. James W. Carey
Commandant (G-PTE)
U.S. Coast Guard
2100 Second Street, S.W.
Washington, DC 20593

Dr. James Carlson
American College Testing Program
P.O. Box 168
Iowa City, IA 52243

Dr. John B. Carroll
409 Elliott Rd.
Chapel Hill, NC 27514

Dr. Robert Carroll
OP 0187
Washington, DC 20370

Mr. Raymond E. Christal
AFHRL/ME
Brooks AFB, TX 78235
University of Missouri-Columbia/Tsukakawa

Dr. Leonard Feldt
Lundquist Center
for Measurement
University of Iowa
Iowa City, IA 52242

Dr. Richard L. Ferguson
American College Testing Program
P.O. Box 168
Iowa City, IA 52240

Dr. Gerhard Fischer
Lebogasse 5 3
A-1010 Vienna
AUSTRIA

Dr. Martin Fischer
Army Research Institute
Fort E. Shenkower Avenue
Alexandria, VA 22333

Prof. Donald Fitzgerald
University of New England
Department of Psychology
Armidale, New South Wales 2351
AUSTRIA

M. Paul Feyer
Naval Personnel R&D Center
San Diego, CA 92152-6800

Dr. Paul D. Feyer
SFA, DC 20332

Dr. Robert D. Ettings
University of Illinois-Chicago
100 E. 6996
Chicago, IL 60680

Mrs. Jodene Gifford
University of Massachusetts
School of Education
Amherst, MA 01003

Dr. Robert Giaser
Learning Research & Development Center
University of Pittsburgh
3939 G Hara Street
Pittsburgh, PA 15260

Dr. Bert Green
Johns Hopkins University
Department of Psychology
Charles & 34th Street
Baltimore, MD 21218

Dipl. Pad. Michael W. Habon
Universitat Dusseldorf
Erziehungswissenschafliche
Universitatsstr. 1
D-4000 Dusseldorf 1
WEST GERMANY

Dr. Ronald K. Hambleton
Prof. of Education & Psychology
University of Massachusetts
at Amherst
Hills House
Amherst, MA 01003

Dr. Delwyn Harmsch
University of Illinois
51 Gerty Drive
Champaign, IL 61820

Ms. Rebecca Hetter
Naval Personnel R&D Center
Code 62
San Diego, CA 92152-6800

Dr. Paul W. Holland
Educational Testing Service
Rosedale Road
Princeton, NJ 08541

Prof. Lutz F. Hornke
Institut fur Psychologie
RWTH Aachen
Jaegerstrasse 17/19
D-5100 Aachen
WEST GERMANY

Dr. Paul Horst
677 G Street, #184
Chula Vista, CA 90010

Mr. Dick Hoshaw
DP-135
Arlington Annex
Room 2034
Washington, DC 20350
University of Missouri-Columbia/Taetakawa

Dr. Milton Maier
Center for Naval Analysis
4401 Ford Avenue
P.O. Box 16268
Alexandria, VA 22302-0268

Dr. William L. Maloy
Chief of Naval Education and Training
Naval Air Station
Pensacola, FL 32508

Dr. Gary Marco
Stop 31-E
Educational Testing Service
Princeton, NJ 08541

Dr. Clessen Martin
Army Research Institute
5001 Eisenhower Blvd.
Alexandria, VA 22333

Dr. James McBride
Psychological Corporation
c/o Harcourt, Brace,
Javanovich Inc.
1250 West 5th Street
San Diego, CA 92101

Dr. Clarence McCormick
HQ, MEPCOM
MEPCT-P
2500 Green Bay Road
North Chicago, IL 60064

Dr. Robert McKinley
Educational Testing Service
Princeton, NJ 08541

Dr. James McMichael
Technical Director
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Barbara Means
Human Resources
Research Organization
1100 South Washington
Alexandria, VA 22314

Dr. Robert Mislevy
Educational Testing Service
Princeton, NJ 08541

Dr. William Montague
NPRDC Code 13
San Diego, CA 92152-6800

Ms. Kathleen Moreno
Navy Personnel R&D Center
Code 62
San Diego, CA 92152-6800

Headquarters, Marine Corps
Code MPI-20
Washington, DC 20380

Dr. W. Alan Nicewander
University of Oklahoma
Department of Psychology
Oklahoma City, OK 73069

Deputy Technical Director
NPRDC Code 01A
San Diego, CA 92152-6800

Director, Training Laboratory,
NPRDC (Code 05)
San Diego, CA 92152-6800

Director, Manpower and Personnel Laboratory,
NPRDC (Code 06)
San Diego, CA 92152-6800

Director, Human Factors & Organizational Systems Lab,
NPRDC (Code 07)
San Diego, CA 92152-6500

Fleet Support Office,
NPRDC (Code 301)
San Diego, CA 92152-6800

Library, NPRDC
Code P201L
San Diego, CA 92152-6800

Commanding Officer,
Naval Research Laboratory
Code 2627
Washington, DC 20390
University of Missouri-Columbia/Tsutakawa

Dr. Harold F. O'Neil, Jr.
School of Education - MPH 801
Department of Educational Psychology & Technology
University of Southern California
Los Angeles, CA 90089-0031

Dr. James Paulson
Department of Psychology
Portland State University
P.O. Box 751
Portland, OR 97207

Administrative Sciences Department,
Naval Postgraduate School
Monterey, CA 93940

Dr. James Olson
WICAT, Inc.
1875 South State Street
Orem, UT 84057

Department of Operations Research,
Naval Postgraduate School
Monterey, CA 93940

Office of Naval Research,
Code 1142PT
800 N. Quincy Street
Arlington, VA 22217-5000
(6 Copies)

Dr. Mark D. Reckase
ACT
P. O. Box 168
Iowa City, IA 52243

Office of Naval Research,
Code 125
800 N. Quincy Street
Arlington, VA 22217-5000

Dr. Malcolm Re
AFHRL/MP
Brooks AFB, TX 78235

Assistant for MPT Research,
Development and Studies
OP 0187
Washington, DC 20370

Dr. Barry Riegelhaupt
HumRRD
1100 South Washington Street
Alexandria, VA 22314

Dr. Judith Orasanu
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Carl Ross
CNET-PDCD
Building 90
Great Lakes NTC, IL 60068

Dr. Jesse Orlansky
Institute for Defense Analyses
1501 N. Beauregard St.
Alexandria, VA 22311

Dr. J. Ryan
Department of Education
University of South Carolina
Columbia, SC 29208

Dr. Randolph Park
Army Research Institute
5001 Eisenhower Blvd.
Alexandria, VA 22333

Dr. Fumiko Samejima
Department of Psychology
University of Tennessee
Knoxville, TN 37916

Wayne M. Patience
American Council on Education
GED Testing Service, Suite 20
One Dupont Circle, NW
Washington, DC 20036

Mr. Drew Sands
NPRDC Code 62
San Diego, CA 92152-6600

Lowell Schoer
Psychological & Quantitative Foundations
College of Education
University of Iowa
Iowa City, IA 52242
Dr. Robert Tsutakawa
University of Missouri
Department of Statistics
222 Math. Sciences Bldg.
Columbia, MO 65211

Dr. Ledyard Tucker
University of Illinois
Department of Psychology
603 E. Daniel Street
Champaign, IL 61820

Dr. Vern W. Urry
Personnel R&D Center
Office of Personnel Management
1900 E. Street, NW
Washington, DC 20415

Dr. David J. Weiss
NG60 Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455

Dr. Ronald A. Weitzman
NPS, Code 54Wz
Monterey, CA 92152-6800

Major John Welsh
AFHRL/MOAN
Brooks AFB, TX 78233

Dr. Douglas Wetzel
Code 12
Navy Personnel R&D Center
San Diego, CA 92152-6600

Dr. Rand R. Wilcox
University of Southern California
Department of Psychology
Los Angeles, CA 90007

Dr. Frank Vicino
Navy Personnel R&D Center
San Diego, CA 92152-6600

Dr. Hilda Wing
Cr. Thomas A. Warm
Psychological Corporation
c/o Harcourt, Brace,
Javanovich Inc.
1250 West 6th Street
San Diego, CA 92101

Dr. Martin F. Wiskoff
Manpower Analysis Program
Navy Personnel R&D Center
San Diego, CA 92152-6800

Mr. John H. Wolfe
Navy Personnel R&D Center
San Diego, CA 92152-6600
Dr. George Wong
Biostatistics Laboratory
Memorial Sloan-Kettering
Cancer Center
1275 York Avenue
New York, NY 10021

Dr. Wallace Wulfeck, III
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Wendy Yen
CTB/McGraw Hill
Del Monte Research Park
Monterey, CA 93940

Dr. Joseph L. Young
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550