Vibrational Motions of Buckminsterfullerene

by

Z. C. Wu, Daniel Jelski and Thomas F. George

Prepared for Publication

in

Chemical Physics Letters

Departments of Chemistry and Physics
State University of New York at Buffalo
Buffalo, New York 14260

March 1987

Reproduction in whole or in part is permitted for any purpose of
the United States Government.

This document has been approved for public release and sale;
it is distribution is unlimited.
Title
Vibrational Motions of Buckminsterfullerene

Personal Author(s)
Z. C. Wu, Daniel Jelski and Thomas F. George

Type of Report
Prepared for Publication in Chemical Physics Letters

Date of Report
March 1987

Location
Office of Naval Research

Address
Chemistry Program
800 N. Quincy Street
Arlington, Virginia 22217

Title Abstract
A non-Cartesian coordinate system is developed which permits the vibrational motions of Buckminsterfullerene (Bucky ball) to be expressed in terms of four force constants. A 180 x 180 matrix is then derived which, when diagonalized, yields the complete vibrational spectrum. These results are compared with those obtained previously via a MNDO calculation.
VIBRATIONAL MOTIONS OF BUCKMINSTERFULLERENE

Z. C. Wu, Daniel A. Jelski and Thomas F. George

Departments of Physics & Astronomy and Chemistry
239 Fronczak Hall
State University of New York at Buffalo
Buffalo, New York 14260

Abstract

A non-Cartesian coordinate system is developed which permits the vibrational motions of Buckminsterfullerene (Bucky ball) to be expressed in terms of four force constants. A 180 x 180 matrix is then derived which, when diagonalized, yields the complete vibrational spectrum. These results are compared with those obtained previously via a MNDO calculation.
I. Introduction

The purpose of this paper is to investigate the vibrational motions of Buckminsterfullerene (Bucky ball) in a way that lends itself toward future application. Hence simplicity, both theoretical and practical, is an important consideration. To this end we can take advantage of the symmetry of the species, and we shall derive a relatively simple procedure for calculating the vibrational normal frequencies. Furthermore, our method lends itself to physical interpretation, and we shall be able to make some statements about the nature of Bucky ball. The experimental literature on Bucky Ball is well known.\(^1\)\(^-\)\(^5\) Theoretically much work has been dedicated to determining the most stable structure of \(\text{C}_{60}\) clusters,\(^6\)\(^-\)\(^10\) and to determining some of their optical properties.\(^11\) We continue this work here by assuming that Bucky ball exists and is relatively stable.

In essence our calculation can be described as follows. We express the position of each atom in local coordinates, choosing our coordinate system (non-Cartesian) in a way that simplifies the calculation. This permits us to express the equation of motion of each atom in terms of four force constants, and since all atoms are identical we immediately derive an equation of motion for the entire system. The fundamental principles behind this calculation are found in Ref. 12. While we must input the force constants into our calculation (this is a disadvantage), we generate the correct number of modes, the correct point group properties, and, at least qualitatively, the correct frequencies. This requires only the diagonalization of one \(180 \times 180\) matrix, a procedure which requires only about three minutes CPU on a VAX. Furthermore, since we can vary the force
constants and since we can compare our results with those of Stanton,13 we are able to make some predictions about the structure of Bucky ball as compared to benzene. In the next section we derive our method for calculating the normal mode frequencies, and in Section III we compare our results with those of Stanton13 and discuss the implications.

II. Theory

The structure of Buckminsterfullerene, illustrated in Fig. 1, is that of a truncated icosahedron with sixty vertices, twenty hexagonal faces and twelve pentagonal faces. A carbon atom occupies each vertex. The bonds separating a hexagon from a pentagon are found to be more "single" than bonds separating two hexagons.6,8 The bond lengths are given as 1.41 Å and 1.54 Å, respectively.8 Since each vertex is at the intersection of two hexagonal and one pentagonal face, it follows that it is joined by one "double" bond and two "single" bonds. This implies that the motion of an atom around its equilibrium position can be decomposed along the three non-coplanar directions of the adjacent bonds (Fig. 2). We can use x_i, y_i and z_i to denote the deviation of atom i from its equilibrium position in these directions (we caution the reader not to confuse our notation with Cartesian coordinates, since ours are not Cartesian). The angle between two adjacent single bonds is $\frac{3\pi}{5}$ and that between a double bond and an adjacent single bond is $\frac{2\pi}{3}$. One can work out the angle between a double bond and its adjacent pentagonal face as $\gamma = \cos^{-1}\left(\frac{1}{2\cos^{3\pi} \frac{3\pi}{5}}\right)$. The angle between two adjacent hexagonal faces is $\phi = \cos^{-1}\left[\frac{8}{3}(\sin^{3\pi} \frac{3\pi}{10})^2 - 1\right]$, and the angle between adjacent hexagonal and pentagonal faces is
\[\theta = \frac{\pi - \phi}{2} - \psi. \]

The variations of the bond length \(a_{1j} \), \(b_{1k} \) and \(c_{1l} \) (see Fig. 2) due to the motion of the atoms are, to first order,

\[
\delta a_{1j} = (x_i - \frac{1}{2}y_i - \frac{1}{2}z_i) + (x_j - \frac{1}{2}y_j - \frac{1}{2}z_j),
\]

\[
\delta b_{1k} = (y_i - \frac{1}{2}x_i - \cos\frac{2\pi}{5}z_i) + (z_k - \frac{1}{2}x_k - \cos\frac{2\pi}{5}y_k), \tag{1}
\]

\[
\delta c_{1l} = (z_i - \frac{1}{2}x_i - \cos\frac{2\pi}{5}y_i) + (y_l - \frac{1}{2}x_l - \cos\frac{2\pi}{5}z_l).
\]

Also, the variations of the angles between bonds \(\alpha \), \(\beta \) and \(\gamma \) are

\[
\delta \alpha_i = \frac{1}{L}(-\sin \frac{\phi}{5} \cos \phi y_j + \sin \frac{\phi}{5} z_j + \sin \frac{\phi}{5} x_k - \sin \frac{2\phi}{5} \cos \theta y_k
- \sin \frac{\phi}{5} y_i + \sin \frac{\phi}{5} \cos \phi z_i - \sin \frac{\phi}{5} x_j + \sin \frac{2\phi}{5} \cos \theta z_j),
\]

\[
\delta \beta_i = \frac{1}{L}(-\sin \frac{\phi}{5} \cos \phi z_j + \sin \frac{\phi}{5} y_j + \sin \frac{\phi}{5} x_k - \sin \frac{2\phi}{5} \cos \theta z_k
- \sin \frac{\phi}{5} z_i + \sin \frac{\phi}{5} \cos \phi y_i - \sin \frac{\phi}{5} x_j + \sin \frac{2\phi}{5} \cos \theta y_j), \tag{2}
\]

\[
\delta \gamma_i = \frac{1}{L}(\sin \frac{2\phi}{5} y_k - \sin \frac{\phi}{5} \cos \theta x_k + \sin \frac{2\phi}{5} z_k - \sin \frac{\phi}{5} \cos \theta x_l
+ \sin \frac{\phi}{5} \cos \theta x_i - \sin \frac{2\phi}{5} y_i + \sin \frac{\phi}{5} \cos \theta x_j - \sin \frac{2\phi}{5} z_j),
\]

where \(L \) refers to the bond lengths which are assumed equal.

The kinetic energy of each atom is
\[
T_i = \frac{m}{2} \left(\dot{x}_i \left(x_i - \frac{1}{2} y_i - \frac{1}{2} z_i \right)^2 + (y_i \cos \frac{\pi}{5} - z_i \cos \frac{2\pi}{5})^2 \right.
+ (y_i \cos \frac{3\pi}{10} \sin \theta + z_i \cos \frac{3\pi}{10} \sin \theta)^2 \left. \right],
\]

\hspace{1cm} (3)

where \(m \) is the mass of each atom. It is assumed that the atoms undergo harmonic oscillations around their equilibrium positions, where the potential is due to the variations of the bond lengths and the angles between them. If atoms \(j, k \) and \(l \) represent nearest neighbors of atom \(i \), as shown in Fig. 2, then the Lagrangian for this system takes the form

\[
L = T - V = \sum_{i} T_i - \sum_{i>j} \frac{1}{2} k_1 \delta a_{ij}^2 - \sum_{i>k} \frac{1}{2} k_2 \delta b_{ik}^2 - \sum_{i>l} \frac{1}{2} k_2 \delta c_{il}^2
- \sum_{i} \frac{1}{2} [k_3 (\delta a_i^2 + \delta b_i^2) + k_4 \delta y_i^2],
\]

\hspace{1cm} (4)

where \(k_1, k_2, k_3 \) and \(k_4 \) are all force constants. Equation (4) can be rewritten in the compact form

\[
L = \frac{1}{2} \sum_{m,n=1}^{180} (T_{mn} x^m x^n - V_{mn} x^m x^n),
\]

\hspace{1cm} (5)

and the appropriate Euler-Lagrange equation is

\[
\ddot{x}^n = - \sum_{m, l=1}^{180} (T_{mn}^{-1})_{ml} V_{ml} x^l.
\]

\hspace{1cm} (6)
By diagonalizing the 180×180 matrix $T^{-1}V$, we get the squares of the eigenfrequencies along with their associated eigenvectors.

Several cases are worth discussing:

(a) $k_2 = k_3 = k_4 = 0$. Each double bond with force constant k_1 becomes independent. Then one obtains only one non-zero eigenfrequency, $(k_1/m)^{1/2}$, with a 30-fold degeneracy.

(b) $k_1 = k_3 = k_4 = 0$. The system reduces to 12 independent pentagons. For each pentagon the eigenfrequencies are (with degeneracies) 0.89401 (1), 1.00029 (2) and 1.15166 (2), with $k_2/m = 1$. All other eigenfrequencies are zero.

(c) $k_3 = k_4 = 0$. One obtains 90 non-zero eigenfrequencies corresponding to the 90 bonds. Since there is no force on the angles, Bucky ball can be squished in $90 - 6 = 84$ different ways. The remaining 6 degrees of freedom are due to translation and rotation.

(d) In the general case, there are always 6 zero eigenfrequencies corresponding to global translational and rotational motions. There are also three non-degenerate modes.

III. Results and Discussion

Table I contains 180 eigenvalues representing the vibrational frequencies of Buckminsterfullerene. The values of $k_1 - k_4$ are those that best seem to fit the data of Stanton, which was calculated by the MNDO method with the gradients evaluated at six points around an atom. The best fit was determined by matching the highest and lowest frequencies and also by matching the three non-degenerate frequencies. In addition, we have insisted that the ratio between k_1 and k_2 be approximately equal to the
inverse ratio of the bond lengths. Since at this point we have no independent way of determining k_4, we have insisted that it equal k_3.

For benzene the appropriate values would be $k_1 = k_2 = 7.62 \times 10^5$ dynes/cm and $k_3 = 0.667 \times 10^5$ dynes/cm. Comparing these values with those given in Table I, we see that the force constants for Bucky ball are considerably higher than for benzene. This is physically reasonable since the stretching of a bond in Bucky ball involves a dislocation of the entire molecule, and hence greater resistance. Similarly we expect the stretching constant to be larger.

It is also instructive to look at the three non-degenerate modes. Stanton has calculated their frequencies (in cm$^{-1}$) as 611 (for the A_g mode), 973 (A_u) and 1667 (A_g). Our calculation reveals frequencies at 548, 970, and 1627 cm$^{-1}$, respectively. We have found that the two A_g modes depend only on constants k_1 and k_2. The first is a "breathing" motion whereas the second involves oscillation between the "single" and "double" bonds. In both cases angles can be expected to play no role. The A_u motion, on the other hand, involves a twisting (angle-dependent) motion of the pentagons. When k_3 and k_4 are zero, the eigenfrequency of this motion becomes zero. All other modes must be degenerate according to the point group of Buckminsterfullerene.

Our method is well suited to elucidating this sort of physical description of the motions since the k's have obvious physical significance. This is a big advantage of this calculation, along with the numerical simplicity. We intend to use this method to further investigate the vibrational spectrum of Buckminsterfullerene.
Acknowledgments

We gratefully acknowledge the assistance of Dr. Richard E. Stanton for sharing with us some unpublished research results. We also thank him for useful discussions. This research was supported by the Office of Naval Research and the Air Force Office of Scientific Research (AFSC), United States Air Force, under Contract F49620-86-C-0009. The United States Government is authorized to reproduce and distribute reprints notwithstanding any copyright notation hereon.
References

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Symmetry</th>
<th>Frequency</th>
<th>Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>-</td>
<td>272.0</td>
<td>Hg</td>
</tr>
<tr>
<td>354.7</td>
<td>Hu</td>
<td>361.8</td>
<td>F2u</td>
</tr>
<tr>
<td>373.7</td>
<td>Gu</td>
<td>427.9</td>
<td>Hg</td>
</tr>
<tr>
<td>455.8</td>
<td>Gg</td>
<td>491.3</td>
<td>Flu</td>
</tr>
<tr>
<td>491.6</td>
<td>Hu</td>
<td>525.2</td>
<td>F2g</td>
</tr>
<tr>
<td>530.2</td>
<td>Gg</td>
<td>547.6</td>
<td>Ag</td>
</tr>
<tr>
<td>550.9</td>
<td>Flu</td>
<td>552.4</td>
<td>Hg</td>
</tr>
<tr>
<td>566.8</td>
<td>F2g</td>
<td>577.7</td>
<td>Hg</td>
</tr>
<tr>
<td>626.6</td>
<td>F2u</td>
<td>672.7</td>
<td>Gg</td>
</tr>
<tr>
<td>701.9</td>
<td>Gu</td>
<td>726.4</td>
<td>F2g</td>
</tr>
<tr>
<td>755.8</td>
<td>Gu</td>
<td>770.3</td>
<td>Hu</td>
</tr>
<tr>
<td>779.8</td>
<td>Hg</td>
<td>810.9</td>
<td>F2g</td>
</tr>
<tr>
<td>926.6</td>
<td>F2g</td>
<td>958.3</td>
<td>Gu</td>
</tr>
<tr>
<td>1019.0</td>
<td>F2u</td>
<td>1084.3</td>
<td>Au</td>
</tr>
<tr>
<td>1160.0</td>
<td>Hg</td>
<td>1173.5</td>
<td>Gg</td>
</tr>
<tr>
<td>1289.7</td>
<td>Hu</td>
<td>1309.4</td>
<td>F2u</td>
</tr>
<tr>
<td>1374.1</td>
<td>Flu</td>
<td>1398.5</td>
<td>Hg</td>
</tr>
<tr>
<td>1463.8</td>
<td>F2g</td>
<td>1578.5</td>
<td>Hg</td>
</tr>
<tr>
<td>1590.0</td>
<td>Gg</td>
<td>1620.4</td>
<td>Gu</td>
</tr>
<tr>
<td>1627.4</td>
<td>Ag</td>
<td>1655.3</td>
<td>F2u</td>
</tr>
<tr>
<td>1665.1</td>
<td>F2g</td>
<td>1688.2</td>
<td>Hg</td>
</tr>
<tr>
<td>1720.1</td>
<td>F2u</td>
<td>1764.4</td>
<td>Gu</td>
</tr>
<tr>
<td>1765.4</td>
<td>Gg</td>
<td>1830.0</td>
<td>Hu</td>
</tr>
</tbody>
</table>

Table 1. Frequencies in cm$^{-1}$ and their degeneracies for the vibrational modes of Buckminsterfullerene. $k_1 = 1.1 \times 10^6$, $k_2 = 1.0 \times 10^6$, $k_3 = 1.0 \times 10^5$ and $k_4 = 1.0 \times 10^5$ dynes/cm.
FIGURE CAPTIONS

Figure 1. The C_{60} cluster, better known as Buckminsterfullerene, is a truncated icosahedron with 20 hexagonal faces and 12 pentagonal faces.

Figure 2. A diagram of the local coordinate system used in the calculation.
<table>
<thead>
<tr>
<th>No. Copies</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research</td>
<td>Dr. David Young</td>
</tr>
<tr>
<td>Attn: Code 1113</td>
<td>Code 334</td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td>NORDA</td>
</tr>
<tr>
<td>Arlington, Virginia 22217-5000</td>
<td>NSTL, Mississippi 39529</td>
</tr>
<tr>
<td>Dr. Bernard Duda</td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td>Attn: Dr. Ron Atkins</td>
</tr>
<tr>
<td>Code 50C</td>
<td>Chemistry Division</td>
</tr>
<tr>
<td>Crane, Indiana 47522-5050</td>
<td>China Lake, California 93555</td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>Scientific Advisor</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko, Code L52</td>
<td>Commandant of the Marine Corps</td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td>Code RD-1</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20380</td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>U.S. Army Research Office</td>
</tr>
<tr>
<td>Building 5, Cameron Station high quality</td>
<td>Attn: CRD-AA-IP</td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td></td>
<td>Research Triangle Park, NC 27709</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>Mr. John Boyle</td>
</tr>
<tr>
<td>Attn: Dr. H. Singerman</td>
<td>Materials Branch</td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td>Naval Ship Engineering Center</td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td>Philadelphia, Pennsylvania 19112</td>
</tr>
<tr>
<td>Dr. William Tolles</td>
<td>Naval Ocean Systems Center</td>
</tr>
<tr>
<td>Superintendent</td>
<td>Attn: Dr. S. Yamamoto</td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td>Marine Sciences Division</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td>San Diego, California 91232</td>
</tr>
<tr>
<td>Washington, D.C. 20375-5000</td>
<td>Dr. David L. Nelson</td>
</tr>
<tr>
<td></td>
<td>Chemistry Division</td>
</tr>
<tr>
<td></td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td></td>
<td>800 North Quincy Street</td>
</tr>
<tr>
<td></td>
<td>Arlington, Virginia 22217</td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. J. E. Jensen
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. C. B. Harris
Department of Chemistry
University of California
Berkeley, California 94720

Dr. J. H. Weaver
Department of Chemical Engineering and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. F. Kutzler
Department of Chemistry
Box 5055
Tennessee Technological University
 Cookeville, Tennessee 38501

Dr. A. Reisman
Microelectronics Center of North Carolina
Research Triangle Park, North Carolina 27709

Dr. D. DiLella
Chemistry Department
George Washington University
Washington D.C. 20052

Dr. M. Grunze
Laboratory for Surface Science and Technology
University of Maine
Orono, Maine 04469

Dr. R. Reeves
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. J. Butler
Naval Research Laboratory
Code 6115
Washington D.C. 20375-5000

Dr. Steven M. George
Stanford University
Department of Chemistry
Stanford, CA 94305

Dr. L. Interante
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Mark Johnson
Yale University
Department of Chemistry
New Haven, CT 06511-8118

Dr. Irvin Heard
Chemistry and Physics Department
Lincoln University
Lincoln University, Pennsylvania 19352

Dr. W. Knauer
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. K. J. Klaubunde
Department of Chemistry
Kansas State University
Manhattan, Kansas 66506
ABSTRACTS DISTRIBUTION LIST, 056/625/629

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. G. A. Somorjai</td>
<td>Department of Chemistry, University of California</td>
</tr>
<tr>
<td></td>
<td>Berkeley, California 94720</td>
</tr>
<tr>
<td>Dr. R. L. Park</td>
<td>Director, Center of Materials Research, University of Maryland, College Park, Maryland 20742</td>
</tr>
<tr>
<td>Dr. J. Murday</td>
<td>Naval Research Laboratory, Code 6170, Washington, D.C. 20375-5000</td>
</tr>
<tr>
<td>Dr. W. T. Peria</td>
<td>Electrical Engineering Department, University of Minnesota, Minneapolis, Minnesota 55455</td>
</tr>
<tr>
<td>Dr. J. B. Hudson</td>
<td>Materials Division, Rensselaer Polytechnic Institute, Troy, New York 12181</td>
</tr>
<tr>
<td>Dr. Keith H. Johnson</td>
<td>Department of Metallurgy and Materials Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139</td>
</tr>
<tr>
<td>Dr. Theodore E. Madey</td>
<td>Surface Chemistry Section, Department of Commerce, National Bureau of Standards, Washington, D.C. 20234</td>
</tr>
<tr>
<td>Dr. S. Sibener</td>
<td>Department of Chemistry, James Franck Institute, 5640 Ellis Avenue, Chicago, Illinois 60637</td>
</tr>
<tr>
<td>Dr. J. E. Demuth</td>
<td>IBM Corporation, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598</td>
</tr>
<tr>
<td>Dr. Arnold Green</td>
<td>Quantum Surface Dynamics Branch, Code 3817, Naval Weapons Center, China Lake, California 93555</td>
</tr>
<tr>
<td>Dr. M. G. Lagally</td>
<td>Department of Metallurgical and Mining Engineering, University of Wisconsin, Madison, Wisconsin 53706</td>
</tr>
<tr>
<td>Dr. A. Wold</td>
<td>Department of Chemistry, Brown University, Providence, Rhode Island 02912</td>
</tr>
<tr>
<td>Dr. R. P. Van Duyne</td>
<td>Chemistry Department, Northwestern University, Evanston, Illinois 60637</td>
</tr>
<tr>
<td>Dr. S. L. Bernasek</td>
<td>Department of Chemistry, Princeton University, Princeton, New Jersey 08544</td>
</tr>
<tr>
<td>Dr. J. M. White</td>
<td>Department of Chemistry, University of Texas, Austin, Texas 78712</td>
</tr>
<tr>
<td>Dr. W. Kohn</td>
<td>Department of Physics, University of California, San Diego, La Jolla, California 92037</td>
</tr>
<tr>
<td>Dr. D. E. Harrison</td>
<td>Department of Physics, Naval Postgraduate School, Monterey, California 93940</td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. F. Carter
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. John T. Yates
Department of Chemistry
University of Pittsburgh
Pittsburgh, Pennsylvania 15260

Dr. Richard Colton
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Richard Greene
Code 5230
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Dan Pierce
National Bureau of Standards
Optical Physics Division
Washington, D.C. 20234

Dr. L. Kesmodel
Department of Physics
Indiana University
Bloomington, Indiana 47403

Dr. R. Stanley Williams
Department of Chemistry
University of California
Los Angeles, California 90024

Dr. K. C. Janda
University of Pittsburgh
Chemistry Building
Pittsburgh, PA 15260

Dr. R. P. Messmer
Materials Characterization Lab.
General Electric Company
Schenectady, New York 22217

Dr. E. A. Irene
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. Robert Gomer
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton S09 5NH
UNITED KINGDOM

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Ronald Lee
R301
Naval Surface Weapons Center
White Oak
Silver Spring, Maryland 20910

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton S09 5NH
UNITED KINGDOM

Dr. Paul Schoen
Code 6190
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. H. Tachikawa
Chemistry Department
Jackson State University
Jackson, Mississippi 39217

Dr. John W. Wilkins
Cornell University
Laboratory of Atomic and Solid State Physics
Ithaca, New York 14853
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. R. G. Wallis
Department of Physics
University of California
Irvine, California 92664

Dr. O. Ramaker
Chemistry Department
George Washington University
Washington, D.C. 20052

Dr. J. C. Hemminger
Chemistry Department
University of California
Irvine, California 92717

Dr. T. F. George
Chemistry Department
University of Rochester
Rochester, New York 14627

Dr. G. Rubloff
IBM
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. Horia Metiu
Chemistry Department
University of California
Santa Barbara, California 93106

Dr. W. Goddard
Department of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125

Dr. P. Hansma
Department of Physics
University of California
Santa Barbara, California 93106

Dr. J. Baldeschwieler
Department of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125

Dr. J. T. Keiser
Department of Chemistry
University of Richmond
Richmond, Virginia 23173

Dr. R. W. Plummer
Department of Physics
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 41106

Dr. N. Winograd
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Dr. Roald Hoffmann
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. A. Steckl
Department of Electrical and Systems Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. G. H. Morrison
Department of Chemistry
Cornell University
Ithaca, New York 14853
END

4 - 8 1

D11C