AD-R178 409 DIFFERENT GOALS OF INQUIRY TEACHING(U) BBN LABS INC 1/1
CAMBRIDGE MA A COLLINS SEP 86 BBN-6458
N00014-85-C-0026
UNCLASSIFIED

SENSE
Different Goals of Inquiry Teaching
Technical Report
Allan Collins

September 1986

Approved for publication; distribution unlimited
Different Goals of Inquiry Teaching (Unclassified)

Among teachers who use inquiry methods, there are three distinct goals of their teaching. Some use inquiry methods to help students construct a theory or set of principles that is the teacher's own understanding of the domain. A second group of teachers use inquiry methods to help students construct genuinely novel theories or principles that emerge from the dialogue. A third group of teachers use inquiry methods to teach students how to ask themselves questions in order to teach "metacognitive" or self-monitoring skills. This paper describes teachers who pursue these different goals and how they use inquiry methods to do so.
Different Goals of Inquiry Teaching

Allan Collins
Bolt Beranek & Newman Inc.
cambridge, MA 02238
Abstract

Among inquiry teachers, there are three distinct goals of their teaching. One group uses inquiry methods to help students construct a given theory or set of principles. A second group uses inquiry methods to help students construct genuinely novel theories or principles. A third group uses inquiry methods to teach students how to pose questions themselves in order to teach self-monitoring skills. The paper describes and gives examples of teachers who pursue these different goals.
Different Goals of Inquiry Teaching

Allan Collins

Inquiry teaching forces students to actively engage in articulating theories and principles that are critical to deep understanding of a domain. The knowledge acquired is not simply content, it is content that can be employed in solving problems and making predictions. That is, inquiry teaching engages the student in using knowledge, so that it does not become "inert" knowledge like much of the wisdom received from books and lectures.

Among the teachers we have analyzed who use inquiry methods (Collins, 1977; Collins, Brown & Newman, in press; Collins & Stevens, 1982, 1983), we have identified three distinct goals of their teaching. Some use inquiry methods to help students construct a theory or set of principles that is the teacher's own understanding of the domain. A second group of teachers uses inquiry methods to help students construct genuinely novel theories or principles that emerge from the dialogue. A third group of teachers uses inquiry methods to teach students how to ask themselves questions in order to teach "metacognitive" or self-monitoring skills. In this paper, we will describe teachers who pursue these different goals and how they use inquiry methods to do so.

Teaching Principles or Theories

The most common goal of inquiry teachers is to force students to construct a particular principle or theory that the teacher has in mind. To accomplish this, they pose problems or cases to students, and ask them to try to formulate general rules or theories that lead to the correct answers in a variety of problems.

For example, Max Beberman, a famous math teacher we studied (Collins & Stevens, 1982), tried to get students to induce the rules for addition of real numbers by having students draw a line to the right on graph paper for each positive number and a line to the left for each negative number. Students quickly started using a shortcut: they added the positive numbers together, the negative numbers together and took the difference. They learned a generalized procedure for adding real numbers. Later Beberman tried to get the students to formulate the rules for addition of real numbers, as shown in Table 1.

Similarly in geography, as shown in Table 2. Richard Anderson (Collins, 1977) questioned a student about the relative temperatures in different places in North America to force the student to formulate and test the hypothesis that the average temperature of a place depends not just on the latitude, but also on the distance from the ocean (it also depends on other factors, such as altitude, but these were not discussed). In our analysis (Collins, 1977, Collins & Stevens 1982), we characterized the questioning strategies teachers use in such dialogues in terms of production
Table 1

Excerpt from a Beberman dialogue
(annotated with strategies used in parenthesis)

T. I want to state a rule here which would tell somebody how to add negative numbers if they didn't know how to do it before. Christine? (Ask for rule formulation.)

S. The absolute value—well—(a plus b equals uh-negative—)

T. Yes, what do we do when we try to do a problem like that? Christine is on the right track. (Reward rule formulation.) What do you actually do? Go ahead, Christine. (Ask for rule formulation.)

S. You add the numbers of arithmetic 5 and 7, and then you—

T. I add the numbers of arithmetic 5 and 7, but how do I get the numbers of arithmetic when I'm talking with pronumerals like this? (Ask for generalization of factors.)

S. Well, you can substitute.

T. But I don't want to talk about any special cases; I want to talk about all the cases at once. (Ask for generalization of factors.)
Table 2

Two production rules in the theory with examples from an Anderson dialogue

Ask for relevant factors

If (1) there are either necessary or sufficient factors that have not been identified.
then (2) ask the student for any relevant factors.

Example. (From Anderson, in Collins, 1977)

T. Which is likely to have the coldest winter days. Newfoundland or Montana? (Entrapment into prediction based on insufficient factors—in this case a secondary factor overrides a primary factor.)

S. Newfoundland.

T. Please give your reasons for answering Newfoundland. (Ask for relevant factors.)

Ask for the formulation of a rule

If (1) one or more factors have been identified.
then (2) ask how the values of the factors are related to the value of the dependent variable.

Example. (from Anderson, in Collins, 1977)

T. Please try to be more precise (e.g., with respect to the effect of latitude on temperature). Would you, for instance, say that if you take any two places in the Northern Hemisphere, the one furthest south has the colder winter temperatures? (Suggest the formulation of a rule.)

S. No I wouldn’t say that.

T. What would you say? (Ask for the formulation of a rule.)
rules of the form, "If in situation x, ask question y." Examples of two of these production rules, together with excerpts from the Anderson dialogue are shown in Table 2.

This kind of inquiry is very effective at getting students to construct theories that can be used to make predictions. It even models for the students the kinds of questioning strategies scientists use to investigate a problem. The students participate in a kind of guided discovery of principles and theories. But the students know they are only rediscovering old principles, and that the teacher is withholding information in the dialogue. In this sense, it is only a variation on the strategy of questioning students to see what they know. Furthermore, without practicing the questioning strategies themselves, it is unlikely students will learn how to ask themselves the kinds of questions the teacher is asking. So this kind of inquiry dialogue goes some way toward teaching students how to use their knowledge to solve novel problems, but fails short of an ideal teaching strategy.

Teaching Theory Construction

Two teachers we studied (Collins & Stevens, 1982, 1983) clearly had a different goal in their questioning: they were trying to teach students how to construct novel principles or theories on their own. They had no prior theory they were trying to teach: only a set of constraints that a suitable principle or theory must meet.

One of these teachers, Eloise Warman (Collins & Stevens, 1982) was teaching preschoolers principles of moral education. In one of the teaching sessions we analyzed, the problem had arisen among the children that the boys were monopolizing the blocks and the girls were not getting a chance to play with them. So Warman asked the children to discuss what would be a fair rule that would allow the girls to play with the blocks. The resolution of the problem is shown in Table 3. When the children asked her to suggest a rule, she refused, saying she had tried and that they had to come up with a fair rule themselves. After much discussion, when one of the boys suggested letting the girls play with the blocks on two days, she reformulated this into a new rule that the boys could play with blocks on two days and the girls on two days each week, and asked if that was fair. Thus, she was getting the children to think about how different principles of assigning toys promoted fairness.

The other teacher we analyzed (Collins & Stevens, 1982) who emphasized theory construction was Professor Roger Schank in teaching Artificial Intelligence. In the class we analyzed, the stated goal was to have the students construct a taxonomy of possible kinds of plans. Typically, Schank encourages students to construct theories that consist of a set of primitive elements, like the chemical elements. Thus, he wanted a theory of everyday plans that consisted of the basic plan types from which all possible, more complex plans can be created. When students
Table 3

Excerpt from a Warnan Dialogue (G=girl, B=boy)

T. Do you think it should be all right that only one person should get to make all the choices for who gets to play with blocks? Or do you think it should be something we all decide on? (Ask for questioning of authority.)

G. I think it should be the teachers.

T. But why just the teachers? (Ask for questioning of authority.) It doesn’t seem to work. We had an idea. We’ve been trying. (Point out insufficiency of factors in rule.)

B. I’ve got one idea.

T. Oh, Gregg’s got a good idea. (Reward rule formulation.)

B. The girls can play with the big blocks only on 2 days.

T. Hey, listen we come to school 4 days a week. If the girls play with the big blocks on 2 days that gives the boys 2 other days to play with blocks. Does that sound fair? (Restate rule. Ask if rule is correct or incorrect—i.e., fair or not.)

G. Yea! Yea!
suggested plan types that were in his book. Schank objected, telling them they had to come up with a different set of plan types, not the same one he had constructed. His emphasis was on creating a novel theory, not one that he knew in advance. His role was that of a moderator: to set the general goals, to write down the different suggestions, to get students to critique different solutions, to try to find redundancies or difficulties with the proposed typology, etc. This was a first course in Artificial Intelligence: in later courses and research, the students were coached in setting their own goals and critiquing their own solutions.

This kind of inquiry teaching emphasizes certain skills that the previous technique does not. In particular, it teaches students how to pose problems that can be solved, how to critique possible solutions, and how to recognize an acceptable solution when it has been found. The process is more like scientific or artistic problem solving in the real world. The teacher does not know what will be discovered: hence, he or she can exploit whatever ideas arise in the discussion. The teacher can even act as a participant in idea creation or synthesis: the goal is to come up with the best possible solution to a stated problem. In addition, the students perceive that something genuinely novel is being constructed by the process: that they are participants in real problem solving.

Teaching Self-Questioning Skills

Another group of teachers we analyzed (Collins, Brown, & Newman, in press) went beyond modelling question asking for students, to coaching students in actually posing questions themselves. Thus they used inquiry methods to teach students self-monitoring or "metacognitive" skills. Their general method of teaching we call "cognitive apprenticeship" (Collins, Brown, & Newman, in press).

One example is the Reciprocal Teaching method developed by Palincsar and Brown (1984) for teaching reading to elementary school students. The basic method centers on modelling and coaching students in two strategic skills: asking questions about a text and summarizing the text. A series of sessions with a poorer student on asking questions is shown in Table 4. It is called Reciprocal Teaching because the teacher and students take turns playing the role of teacher. At the beginning of the session, both the teacher and students read a paragraph silently to themselves. Whoever is playing the role of teacher formulates a question about the paragraph, constructs a summary, and makes a prediction or clarification if any come to mind. Initially, the teacher models this process, but then each student takes a turn. When students first undertake the process, the teacher coaches them extensively on how to construct good questions and summaries, offering prompts and critiquing their efforts. In this way, the teacher provides scaffolding for the students, enabling them to take on whatever portion of the task they can. As the students become more proficient, the teacher turns over more of the task to them. Formulating questions and
Table 4
The Acquisition of Question-Asking by a Weak Seventh-Grade Student
Using Reciprocal Teaching (from Palincsar & Brown. 1984)

Day 1:

TEXT: The water moccasin, somewhat longer than the copperhead, is found in southeastern states. It lives in swampy regions. It belongs, as do also the copperhead and the rattlesnakes, to a group of poisonous snakes called pit vipers. They have pits between their eyes and their nostrils which, because they are sensitive to heat, help the snakes tell them when they are near a warm-blooded animal. Another name for the water moccasin is “cottonmouth.” This name comes from the white lining of the snake’s mouth.

1. C: What is found in the southeastern snakes, also the copperhead. rattlesnakes. vipers--they have. I'm not doing this right.
2. T: All right. Do you want to know about pit vipers?
3. C: Yeah.
4. T: What would be a good question about the pit vipers that starts with the word “why?”
5. C: (no response)
6. T: How about. "Why are the snakes called pit vipers?"
7. C: Why do they want to know that they are called pit vipers?
8. T: Try it again.
9. C: Why do they, pit vipers in a pit?
10. T: How about. "Why do they call the snakes pit vipers?"
11. C: Why do they call the snakes pit vipers?
12. T: There you go! Good for you.

Day 4:

TEXT: Spinner’s mate is much smaller than she, and his body is dull brown. He spends most of his time sitting at one side of her web.

13. C: (No question)
14. T: What’s this paragraph about?
15. C: Spinner’s mate. How do spinner’s mate...
17. C: How do spinner’s mate is smaller than... How am I going to say that?
Day 7:

TEXT: Perhaps you are wondering where the lava and other volcanic products come from. Deep within our earth there are pockets of molten rock called magma. Forced upward in part by gas pressure, this molten rock continually tries to reach the surface. Eventually--by means of cracks in the crustal rocks or some similar zone of weakness--the magma may break out of the ground. It then flows from the vent as lava, or spews skyward as dense clouds of lava particles.

22. C: How does the pressure from below pushes the mass of hot rock against the opening? Is that it?

23. T: Not quite. Start your question with, "What happens when?"

24. C: What happens when the pressure from below pushes the mass of hot rock against the opening?

25. T: Good for you! Good job.

Day 11:

TEXT: One of the most interesting of the insect-eating plants is the Venus’s flytrap. This plant lives in only one small area of the world—the coastal marshes of North and South Carolina. The Venus’s flytrap doesn’t look unusual. Its habits, however, make it truly a plant wonder.

26. C: What is the most interesting of the insect eating plants, and where do the plants live at?

27. T: Two excellent questions! They are both clear and important questions. Ask us one at a time now.

Day 15:

TEXT: Scientists also come to the South Pole to study the strange lights that glow overhead during the Antarctic night. (It’s a cold and lonely world for the few hardy people who “winter over” the polar night.) These "southern lights" are caused by the Earth acting like a magnet on electrical particles in the air. They are clues that may help us understand the Earth’s core and the upper edges of its blanket of air.

28. C: Why do scientists come to the south pole to study?

29. T: Excellent question! That is what this paragraph is all about.
summarizing are important strategies for self-monitoring because they provide a basis for self-diagnosis. If you cannot formulate a question or summarize a passage, then you do not understand it. By getting students to critique other students' questions and summaries, it forces them to articulate why some questions or summaries are central to the passage and others not.

As a second example, Professor Alan Schoenfeld (1983, 1985) tried to teach self-monitoring strategies for solving mathematics problems to college students. His approach was first to model for the students how to use different problem solving techniques (called heuristics). Then he would give the class problems to solve that involved the same heuristic. Like Schmidt, he would serve as moderator, soliciting possible solution techniques from the students, getting them to evaluate which techniques are most likely to work, asking them to evaluate their progress as they proceeded. Then he would have the students break up into groups to solve problems, and he would go from group to group acting as a consultant. Typically he asked them three questions: (1) what they are doing, (2) why they are doing it, and (3) how success in what they are doing would help them solve the problem. As the course proceeded, students came to anticipate his questions by asking the questions of themselves. In this way he turned the monitoring that he exercised in the class as a whole over to the students themselves.

Self-questioning is critical to monitoring your understanding and your progress in problem solving. Palincsar and Brown, and Schoenfeld both focus on teaching students how to do self-questioning. This is a twist on the usual inquiry teaching model where the teacher asks all the questions. Here, the teacher starts out asking questions, but then tries to turn the questioning over to the students, providing whatever scaffolding the students need to take over the role of questioning. This kind of teaching is directly aimed at teaching students critical inquiry skills.

Conclusion

Inquiry teaching should be thought of as one of the teaching methods that the successful teacher intertwines with other methods. We think of it as a tool to be used within a more general "cognitive apprenticeship" (Collins, Brown, & Newman, in press) where it plays two distinct roles: (1) to force students to articulate their knowledge as strategies, principles, and theories that they can call upon in different contexts and (2) to teach students questioning skills so that they can learn new domains or solve novel problems on their own.

Inquiry teaching fits naturally into a more general philosophy of teaching knowledge in situated contexts. Learning theories is not enough: one must learn when and how to use them, e.g., how to make predictions, construct and test hypotheses, etc. Too much of education is taught as abstract content, rather than usable knowledge.
Furthermore, skill in question asking and problem finding (Getzels & Csikszentmihalyi, 1976; Scardamalia & Bereiter, 1985) is critical to all problem solving in science and the arts. We suspect these are the most critical skills students can learn during their schooling, and that students vary widely in their native ability. But if students can practice the skills of asking questions and posing problems for themselves under the apprenticeship of a skilled teacher, then we think they can learn these critical skills.

Acknowledgements

This research was supported by the National Institute of Education under Contract No. US-NIE-C-400-81-0030 and by the Office of Naval Research under Contract No. N00014-C-85-0026. I thank Amy Aaronson, Arthur Graesser, and Kathryn Crawford for their comments.
REFERENCES

Dr. Phillip L. Ackerman
University of Minnesota
Department of Psychology
Minneapolis, MN 55455

Dr. Steve Andricole
George Mason University
School of Information Technology & Engineering
4400 University Drive
Fairfax, VA 22030

Dr. Beth Adelson
Department of Computer Science
Tufts University
Medford, MA 02155

Technical Director, ARI
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Robert Ahlers
Code N711
Human Factors Laboratory
Naval Training Systems Center
Orlando, FL 32813

Dr. Alan Baddeley
Medical Research Council
Applied Psychology Unit
15 Chaucer Road
Cambridge CB2 2EF
ENGLAND

Dr. Ed Aiken
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Patricia Baggett
University of Colorado
Department of Psychology
Box 345
Boulder, CO 80309

Dr. Robert Aiken
Temple University
School of Business Administration
Department of Computer and Information Sciences
Philadelphia, PA 19122

Dr. Eva L Baker
UCLA Center for the Study of Evaluation
145 Moore Hall
University of California
Los Angeles, CA 90024

Dr. James Algina
University of Florida
Gainesville, FL 32605

Dr. Meryl S Baker
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. John Allen
Department of Psychology
George Mason University
4400 University Drive
Fairfax, VA 22030

Dr. Isaac Bejar
Educational Testing Service
Princeton, NJ 08450

Dr. William E. Alley
AFHRL/MOT
Brooks AFB, TX 78235

Leo Beltracchi
United States Nuclear Regulatory Commission
Washington DC 20555

Dr. John R. Anderson
Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

Dr. Mark H. Bickhard
University of Texas
EDB 504 ED Psych
Austin, TX 78712

Dr. Thomas H. Anderson
Center for the Study of Reading
174 Children's Research Center
51 Gerty Drive
Champaign, IL 61820
Dr. Daniel Gopher
Industrial Engineering & Management
TECHNION
Haifa 32000
ISRAEL

Dr. Sherrie Gott
AFHRL/MODJ
Brooks AFB, TX 78235

Jordan Grafman, Ph.D.
2021 Lyttonsville Road
Silver Spring, MD 20910

Dr. Wayne Gray
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Bert Green
Johns Hopkins University
Department of Psychology
Charles & 34th Street
Baltimore, MD 21218

Dr. James G. Greeno
University of California
Berkeley, CA 94720

Prof. Edward Haertel
School of Education
Stanford University
Stanford, CA 94305

Dr. Henry M. Halff
Halff Resources, Inc.
4918 33rd Road, North
Arlington, VA 22207

Janice Hart
Office of the Chief of Naval Operations
OP-11H
Department of the Navy
Washington, DC 20350-2000

Mr. William Hartung
PEAM Product Manager
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Wayne Harvey
Center for Learning Technology
Educational Development Center
55 Chapel Street
Newton, MA 02160

Prof. John R. Hayes
Carnegie-Mellon University
Department of Psychology
Schenley Park
Pittsburgh, PA 15213

Dr. Barbara Hayes-Roth
Department of Computer Science
Stanford University
Stanford, CA 95305

Dr. Joan I. Heller
505 Haddon Road
Oakland, CA 94606

Dr. Shelly Heller
Department of Electrical Engineering & Computer Science
George Washington University
Washington, DC 20052

Dr. Jim Hollan
Intelligent Systems Group
Institute for Cognitive Science (C-015)
UCSD
La Jolla, CA 92039

Dr. Melissa Holland
Army Research Institute for the Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

Ms. Julia S. Hough
Lawrence Erlbaum Associates
6012 Greene Street
Philadelphia, PA 19144

Dr. James Howard
Dept. of Psychology
Human Performance Laboratory
Catholic University of America
Washington, DC 20064
Director, Manpower and Personnel Laboratory,
NPRDC (Code 06)
San Diego, CA 92152-6800

Director, Human Factors & Organizational Systems Lab.
NPRDC (Code 07)
San Diego, CA 92152-6800

Library, NPRDC
Code P201L
San Diego, CA 92152-6800

Technical Director
Navy Personnel R&D Center
San Diego CA 92152-6800

Dr. Harold F. O Neil, Jr
School of Education - WPH 801
Department of Educational Psychology & Technology
University of Southern California
Los Angeles, CA 90089-0031

Dr. Michael Oberlin
Naval Training Systems Center
Code 711
Orlando, FL 32813-7100

Dr. Stellan Ohlsson
Learning R & D Center
University of Pittsburgh
3939 O Hara Street
Pittsburgh, PA 15213

Director, Research Programs,
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5000

Office of Naval Research
Code 1133
800 N Quincy Street
Arlington, VA 22217-5000

Office of Naval Research
Code 1142PS
800 N Quincy Street
Arlington, VA 22217-5000

Office of Naval Research
Code 1142CS
800 N Quincy Street
Arlington, VA 22217-5000

Office of Naval Research
Code 11R
800 N Quincy Street
Arlington, VA 22217-5000

Director, Technology Programs
Office of Naval Research
Code 12
800 North Quincy Street
Arlington, VA 22217-5000

Director, Research Programs,
Office of Naval Research
Code 125
800 N Quincy Street
Arlington, VA 22217-5000

Psychologist
Office of Naval Research
Branch Office, London
Box 39
FPO New York, NY 09510

Special Assistant for Marine Corps Matters,
ONR Code 00MC
800 N Quincy St
Arlington, VA 22217-5000

Psychologist
Office of Naval Research
Liaison Office, Far East
APO San Francisco, CA 96503

Office of Naval Research
Resident Representative,
UCSD
University of California
San Diego
La Jolla, CA 92037-0001

Assistant for Planning MANTRAPEX
OP 0186
Washington, DC 20370
Dr. Sylvia A. Shafto
Department of Computer Science
Towson State University
Towson, MD 21204

Dr. Ben Shneiderman
Dept. of Computer Science
University of Maryland
College Park, MD 20742

Dr. Richard E. Snow
Department of Psychology
Stanford University
Stanford, CA 94306

Dr. Elliot Soloway
Yale University
Computer Science Department
P.O. Box 2158
New Haven, CT 06520

Dr. Kathryn T. Spoehr
Brown University
Department of Psychology
Providence, RI 02912

Dr. Lee Shulman
Stanford University
1040 Cathcart Way
Stanford, CA 94305

Dr. James J. Staszewski
Research Associate
Carnegie-Mellon University
Department of Psychology
Schenley Park
Pittsburgh, PA 15213

Dr. Robert Shumaker
Naval Research Laboratory
Code 7510
4555 Overlook Avenue, S.W.
Washington, DC 20375-5000

Dr. Elliot Shute
AFHRL/ME
Brooks AFB, TX 78235

Dr. Robert S. Siegler
Carnegie-Mellon University
Department of Psychology
Schenley Park
Pittsburgh, PA 15213

Dr. Albert Stevens
Bolt Beranek & Newman, Inc.
10 Moulton St
Cambridge MA 02238

Dr. Lee Shulman
Stanford University
1040 Cathcart Way
Stanford, CA 94305

Dr. James J. Staszewski
Research Associate
Carnegie-Mellon University
Department of Psychology
Schenley Park
Pittsburgh, PA 15213

Dr. Paul J. Sticha
Senior Staff Scientist
Training Research Division
HumRRO
1100 S. Washington
Alexandria, VA 22314

Dr. Derek Sleeman
Dept. of Computing Science
King's College
Old Aberdeen
AB9 2UB
UNITED KINGDOM
ENID

4-87

DTIC