
o/

Conrd e'dt MDA--903-83-C-O335

Reducing the Cost of Branches M 19871987

Mv) Scott McFarling and John Hennessy A
t Computer Systems Laboratory

Stanford University

Abstract A Model of Branch Cost
'\ Pipeline structure significantly affects the cost of a

2Pipelining is the major organizational technique that branch. We will examine some alternative pipeline
Scomputers use to reach higher single-processor structures, determine why they impact performance,

performance. A fundamental disadvantage of pipelining and give a method of assigning branch cost. We will
is the loss incurred due to branches that. require stalling conclude with a pipeline structure that will be the basis
or flushing the c'?eline. Both hardware solutions and for evaluating the different oranch schemes.

* architectural chas have been proposed to overcome We start with a five-stage pipeline that we will later
these problems. This paper examines a range of change to reduce the overall branch penalty. For
schemes for reducing branch cost focusing on both simplicity, we assume a register-register machine; this
static (compile-time) and dynamic (hardware-assisted) simplifies the pipeline and also makes it easier to
prediction of branches. These schemes are investigated quantify execution time. The evaluation in this paper
from quantitative performance and implementation can be extended to machines with more complex
viewpoints. pipelines using the data contained in this paper.

Our initial pipeline has the following structure:

Introduction IF ID ADDR ALU WB
IF ID ADDR ALU

Branches constitute anywhere from 15-30% of the IF ID ADDR

instructions executed on typical machines. On higher The function of these stages are as follows:
performance pipelined machines, such instructions
consume a lirger fraction of time because they cause

pipeline stalls and pipeline flushes. On machines with ID Decode instruction.

___ powerful instruction sets, the frequency of branches ADDR Fetch registers and compute the effcctivo

tends to be very high. RISC-style machines emphasize address.

very high instruction execution rates, and although operation.
branch frequencies may be lower, the branch penalties WB Write into register file either loaded data or
must also be kept lower. In a RISC machine, branches ALU result.
"are the most significant barrier to achieving single-
"cycle execution (i.e. initiation of an instruction on every An instruction fetch is assumed to take a single

" - machine cycle), cycle. For a high performance machine, an instruction

- There are numerous approaches to dealing with cache may be required to provide instructions at this

branches. This paper examines a set of compile-time rate. We also assume that only one instruction can be

and run-time branching schemes, evaluates their fetched per cycle. Specifically, we ignore schemes that

__ effectiveness, and makes some observations about their require multiple instruction cache ports or multiword

implementation cost. Procedure call and return jumps busses that allow instruction decode to get ahead of
are excluded since different tradeoffs exist and special execution.
optimizations may be appropriate. We start by defining Let's first consider a branch instruction that includes
a machine model that we will use for evaluating the a register-register compare, i.e., a compare and branch
various branch schemes. instruction. The results of the compare are available at

the end of the ALU phase, and the two possible new
PCs (the branch target and the sequential branch
successor) can easily be computed before then,
However, the pipeline requires that the new PC must betThe MIPS-X project has been supported by the Defense sttoheitrconaheheetgserlr.ec,

Advanced Research Projects Agency under contract # MDA

903-83-C-0335. a three cycle penalty is required whenever the branch is

'hi";t has been~ppioved
oc u p 7blic heausC- aend slCe; it,

distributon is unlirmited.

taken. Furthermore, to avoid a penalty on the untaken know the position and size of the branch displacement
case, we must be careful not to commit any state during without much decode time (perhaps a half-cycle).
the the first three stages of the pipeline. If this is not Moving this address calculation will also cost an
possible, we must be able to back-out any state additional adder, because the main ALU and effective
changes. Additionally, the hardware must be capable of address adder are still required by the preceding two
disabling the three instructions in the pipe when the instructions.
branch is taken. Just moving the branch destination calculation does

Alternatively, consider a condition-code based not reduce the branch delay, because either the
machine. In such a machine, the brFaich can be done as condition code setting instruction or the condition
soon as the address is evaluated, since the branch evaluation in the compare-and-branch instruction force
condition is based on simple masking of the condition a total branch delay of three cycles. If we make some
code. This removes one delay cycle, leaving a branch further assumptions about our instruction encoding, we
delay of two. However, the setting of the condition can reduce this delay to two cycles with either
code must precede the branch instruction. If we assume condition evaluation mechanism. To do this, we need to
that the condition code must be stable by the beginning move the ALU cycle of the pipeline up to the position
of the ADDR cycle of the branch, then the immediately of the ADDR cycle; the resulting pipeline is identical to
preceding instruction can set the condition code. For the one used in MIPS-X2 , a high performance successor
some other pipeline structures, this may not be possible of the MIPS architecture.
and delays will be needed between the condition code IF ID ALU MEM WB
setting and its use by the branch. IF ID ALU MEM

In an earlier paper1, condition codes were shown to IF ID ALU
rarely set for free i.e. by ALU operations needed for
another purpose. Thus, the branch cost for a condition This pipeline requires a register fetch during ID,
code machine with this pipeline structure is two implying that the instruction format is simple enough to
instructions (the condition code setting instruction plus access the registers without decoding the instruction
the actual branch) and two delay slots. Since delay type. While this is possible for a load/store machine, it
slots can be filled more often than the condition code is very difficult for a machine with complex datatypes

and addressing modes. The decode time of the morecan be set complex instruction format can be pipelined away only
Top comae. aif one disregards branches. For simplicity and
TO compare a variety of condition evaluation consistency, we will assume that we are dealing with

mechanisms effectively, we propose that branch cost be this streamlined pipeline structure and its worst case
based on the average cycle count between the start of branch cost of three cycles.
"condition evaluation and the start of the corresponding
stage of the instruction executed after the branch. This
average cycle count includes the cycles for the register-
register comparison, plus the branch itself, plus the Branch Schemes
delay slots that are idle or do not advance the state of
the computation. For the above pipeline, the cost of a A longer, more aggressive pipeline requires a more
branch for both the condition-code and compare-and- aggressive branch strategy. On the first generation
branch models, assuming that all the delay cycles are Berkeley and Stanford RISC machines, the pipeline
wasted, is four, although the cycle breakdown is required a branch delay of one instruction and had a
different in the two cases. branch cost of 1.3 to 2 .a. With a 20% branch

The branch cost reduction schemes we will present frequency, those machines saw a loss of 6% to 30% of
all aim at using the branch delay slots to achieve less the machine compared to a machine with a single cycle
cosaly branches. Since less than 100% of the delay slots branch instruction. The effect of a deeper pipeline with

can be effectively used, we would first like to try to its longer branch delays is considerable: a two cycle
reduce the number of delay slots. The length of the branch penalty (which equals a three cycle branch)branch delay is determined by the position of certain implies 40% of the machine is wasted in branch delays,
operanchsdea is tpipeline, namely evaluating the branch and a three cycle penalty wastes 60%! Theseoperations in the pipeuing the evaluatin the bra performance losses could easily wipe out the advantage
condition and computing the destination PCs. For a of deeper pipelining. We would like to keep the branch
complex instruction set with multiple addressing modes cs oprbet ho nurdo esde ieie
for data items and branch destinations, it would be cost comparable to th;,; incurred on a less deep pipeline.
difficult to improve on this pipeline. However, for a In the remainder of this paper, we will describe
simple instruction en-oding, the base address several techniques tL reduce branch cost and evaluate
computation that is done during ADDR could be their performapu_ ,n our example pipeline. To make a
accomplished during ID. If we attempt to compute the quantitative comparison feasible, we have measured
branch-taken destination during ID, we will need to performance on a set of benchmarks. These

benchmarks are:

I

Bigfm Fiduccia-Mattheyses graph partitioning the branch because no state is committed in the first two
algorithm; 500 lines, stages of the pipeline.

Dnf converts logic equations to disjunctive Execution proceeds without penalty if the branch is
normal form; 1500 lines.

Hopt a simple global optimizer for Pascal; 2200 not taken because the sequentially following
lines. instructions have been fetched and initiated. If the

branch is taken, the sequential instructions must be
All these programs are written in Pascal, and while squashed and the target fetched. Squashing refers to

they are not huge, we believe they are fairly typical of disabling instructions in the pipeline such that the
non-numeric code. For numeric applications the instructions do not change the program state. Even
predictability of branches should be better. Each when no state has been changed, squashing can be
program was compiled with an optimizing compiler3 . difficult. Several actual processors suffer an extra
Optimization tends to increase the relative frequency of penalty to squash instructions in the pipeline. This
branches, because branch instructions are rarely overhead must be eliminated if the predict-not-taken
eliminated, while loads, stores, and arithmetic approach is to have much value.
instructions often are. Also, removing redundant Assuming squashing problems can be solved.
instructions prevents them from being scheduled into performance of predict-not.taken is limited by the
the branch delay slots, artificially improving the percentage of branches taken. We assume that there is
performance of the scheduling schemes we will explore no penalty for not taken branches (the branch cost is
later. Hence, using optimized code as the basis for a one), and that taken branches cost a full 3 cycles (one
study of branches is important. branch instruction and two aborted delay slots). Taken

Beyond efforts to shorten the branch delay, schemes branches are more common: as Table 1 shows, 63% of
to alleviate branch cost focus on the use of the branch branches are taken on our example benchmarks; other
delay slots. To use those slots effectively, we must studies have shown numbers that are slightly higher.
oredict the outcomie of the branch; we will examine For example, Clark 4 reported that 67% of all branches
techniques that attempt branch prediction both in are taken. Table 1 also shows performance for a predict
hardware and in softv.3re. We first consider three taken scheme, which would always fetch the target as
hardware-oriented schemes, assume the branch is not soon as a branch is recognized. This means that taken
taken, dynamic branch prediction, and a branch target branches cost two cycles and not-taken branches cost
buffer. These schemnes require increasing amounts of three cycles. Overall, predict-taken is slightly slower
hardware. We then consider more software-orientwd than predict-not-taken, and it is also more complex to
schemes, increasing both the hardware support implement.
requirements and the accuracy of software prediction. Branches Predict Predict

Predict Branch Not Taken Benchmark Taken Not Taken Taken

The first scheme we consider is what many Bigfm .67 2.34 2.34
Dnf .54 2..08 2.46

architectures do: continue fetching instructions ignoring Hoy .67 2.34 2.33

the branch. The viability of this approach depends Hop .67 2.34 2.33

intimately on the depth of the pipeline and the Average .63 2.26 2.38

arrangement of activities in the pipeline. Most machines
with a pipeline depth of three can easily use this Table 1: Assume Taken or Not-Taken Performance
mechanibm with a single-cycle delay, since the only
activity that will occur before the branch outcome is Dynamic Prediction
known is to prefetch the sequential successor. The The extra cost of branches relative to ALU
68020 and the VAX 11/780 use this scheme. However, instructions can be broken down into 2 parts: condition
even when the branch delay is only one, complications evaluation and target fetch, The target fetch must be
can arise. For example, fetching the !_nstruction delayed until the branch direction is known. If the
following the branch may cause a page fault or a direction could be predicted, th, branch penalty of a
protection violktion. To prevent this from occurring, the taken branch could be reduced by one cycle. Dynamic
VAX 11/'180 will halt its prefetching if it detects such prediction attempts to predict the directuon u&i a branch
an event, until the prm.cssor is sure that the instruction from its past behavior. Lee and Smith5 evaluated
should be attempted, several hardware prediction methods. We will examine

As the branch delay increases, these complications the technique they found most accurate. In this
get suoze semv.a. In many complex architectures, •trategy, the lower-order bits cof the branch address are
machine state mnay Lie changed early in the computation. used to access a table, yielding two prediction bits.
"-or examplc, auto-ir.-remcnt/dccremcnt addrcszi:g These bits specify the prediction tn Se used for all

modes will cause problems if the register updl:te is branches whose addresses are identical mnodulo the size
allowced to execute before the branch is determined, of the table. Since no tags are needed. tl , 'awe cai be
Our exa-nple pipeline can start the two ,,tAtructions after quite small.

The table entry for a branch is updated whenever that Branch Target Buffer
branch is executed. The update is done according to the Hardware prediction successfully reduces branch
finite state machine shown in Figure 1. If the last twomappd banchs hve gne n te sae drectonthe cost because it accurately predicts branch direction.
mapped branches have gone in the same direction, the However, there is still almost a full cycle wasted per
FSM predicts this direction. If a branch goes the branch, largely because a correctly predicted, taken
opposite way, the FSM will continue predicting its branch wastes a cycle waiting fbr the target to be
usual direction on the next mapped branch. Thus, if a fetched. To drive branch cost down further, a branch
branch goes an unusual direction one time, the target buffer(BTB) can be used to get the targetprediction will only be wrong one time. With a single tre ufrBB a eue ogttetre
prediction bit, the prediction would be wrong twicei instruction early. A BTB acts as a cache of branch

Note,targets: given the address of a branch, it returns the

branches that are almost always taken but have actual target instruction, If the BTB is small and fast. it

occasional, single changes in their behavior, can be accessed during the ID phase of the branch
instruction (before the branch is actually decoded)
With our pipeline and its delay of two cycles, we need
to retrieve two instructions. Rather than store the

NtTan . -second instruction in the BTB, it can be fetched as in
the previous section if a separate prediction table is

Predict Taken Predict Taken maintained. Because the BTB entries are wider than
Taken prediction table entries, this will save hardware. Also,

2 n NotTaken, we can miss in the BTB, but correctly predict with the
prediction table, and still lose only one cycle.

NotTaken There are several variations on the branch target
Predict Not taken Precict Nt Taken buffer. For example, we could cache the addresses of

Taken the predicted insti: ction and access the BTB during IF:
NatTaken this would be especially attractive for a machine with

multiword instructions. Another variation, which we
will not examine, is to keep the branch target successor

Figure 1: Branch Prediction State Diagram instruction in the BTB, and access the BTB during IF.
This could yield zero cost unconditional branches, since
we would know from the BTB whether the instruction

For the purposes of comparison we will assume a is a branch, and the next instruction to be executed,
prediction table of 128 entries. Larger prediction tables both at the end of IF. The BTB could just return the
do not generate significant improvements. We will also next instruction, eliminating the unconditional branch
assume that squashing is available, so that the next execution completely. This last variation has some
sequential instruction can be started in case the branch implementation challenges that arise from the need to
is not taken. This assumption leaves us with the branch keep more instructions in the cache and from the need
cost matrix shown below: to update the BTB on a miss.

Actual Branch In the chart below we give the branch costs for the
Prediction Taken Not Taken BTB scheme:
Taken 2 3 Buffer Hit Buffer MissNot Taken 3 1 Prediction Taken Not Taken Taken Not Taken

Taken 1 3 2 3

Table 2 shows the prediction accuracy of this scheme Not Taken 3 1 3 1

on our benchmarks together with overall performance. If we can both predict the branch correctly and find it
in the buffer, the branch costs only a single cycle.

Prediction Cycles/ However, it takes a fairly large buffer to obtain a good
Benchmark Accuracy Branch hit rate. For example, the MU-5 5,6 had an eight entry
Bigfm .85 1.92 buffer and was able to start instructions only 40-60% of
Dnf .81 1.97 the time, including the instructions following branches
Hp. .85 1.96 that were predicted not taken. A BTB is basically a
Average .c3 1.95 small, selective, instruction cache. A BTB has an

advantage because it only needs to store target
Table 2: D-namic Branch Performance instructions; however, the spatial locauity of a BTB is

low, and the amount of tag storage is larger (only one-
word blc~k., i,,c s,,s . h our simulations, we
noticed that a direct mapped BTB and an in;truction
cache of the same sizre had about the same hit ratio.

Note also that a collision in a BTB is more damaging branch, which requires only one branch-related
than a collision in a branch prediction table, since a instruction. However, the MIPS number must be taken
BTB miss yields nothing of value, while prediction bits with some reservation since each instruction took two
still have some relevance. In fact, since most branches clock cycles.
are taken, a prediction table entry has a greater than
50% chance of predicting correctly, even if the entry a) From betore b) From target (c From atlor
were for a different branch. A:. X- 3,

Simulation results for the BTB scheme are given in [,.-___
Tables 3 and 4. We show a variety of sizes for the LM8Y, $ot

BTB, all assuming a prediction table of 128 entries. The
BTB is assumed to be direct mapped; higher
associativity could lead to better hit rates. By
comparison, the hit rates we found are still more
optimistic than the hit rates Lee and Smith obtained i B ' a C 1h-

with higher associativity, probably because their test
programs were larger. For large BTB sizes, the average
branch cost is quite good. However, the buffer size is
significant, must be close to the processor, and may be
complex to implement.

Benchmark 16 Entries 64 Entries 256 Entries Figure 2: Scheduling a Delayed Branch
Bigfm .54 .83 .94
Dnf .49 .80 .92 The MIPS 1.3 cycle branch cost means that the
Hopt .42 .85 .94 single delay slot could only be used about 70% of the
Average .47 .83 .93 time. Unfortunately, the second slot of our example

pipeline is much more difficult to fill. If both slots
Table 3: BTB Hit Rates could be used 70% of the time, we would predict an

average branch cost of 1,6 cycles. Table 5 shows aBenchmark 16 Entries 64 Entries 256 Entries branch penalty of over 2.2 cycles. The second slot

Dinf 1.66 1.46 1.40 could not be used over 75% of the time.

Hopt 1.65 1.32 1.26 Benchmark Cycles/Branch
Average 1.62 1.38 1.31 Bigfm 2.41

Dnf 2.27Table 4: Branch Performance with BTB Hp 1.96

Delayed Branch Average 2.21

From a hardware point of view, the simplest way to Table 5: Delayed Branch Performance
optimize branches is the delayed branch. The machine
continues executing instructions after the branch until Fast Compare
the condition is determined. The compiler tries to The delayed branch scheme incurs a delay of two
schedule useful instructions into the slots after the with our pipeline structure because of the need to wait
branch from one of the three locations shown in Figure until the branch condition is known. The condition
2. Instructions from before (a) can riot be used if the requires a full cycle for a full ALU operation.
branch depends on them. Instructions from after the Katevenist 0 observed that a general ALU operation is
branch (b) or at the target (c) must be safe to execute not needed for most compares; these fast compares
whether the branch is taken or not. No live state may include tests for equality, inequality, and any relation
be destroyed and no illegal operations may be done, with zero. Other compares can often be converted to
such as loading from a null address. Also, (b) and (c) the fast type. For example, the C loop:
only reduce branch cost if the scheduled instructions for (i=0;i<10; i++) a [i] = b[i];
would have been executed anyway, i.e. the branch went can be converted to:
the favorable direction. Thus, where there is a choice,
strategy (a) should be used rather than (b) or (c).

Delayed branches have been used successfully on Those compares that can not be simplified can be split:Delaeral brI manches, haveibnc usedig ue ssfully on 0one instruction can do the compare and put the result inseveral RISC machin-.s, including the IBM 801, RISC. ..
II7, and MIPS8 ,9

4 three machines had a on,-cycle a general register which can then he compared apiinst

bianch delay. For t e machines, brancn costs are in zero by dte fast co,,pue-and-bianch instruction.

the range of 1.3 to'" The lower number was achieved The fast compare can be done during the ID phase of
on the MIPS de: .i..'ough the use of compare-and- the instruction as soon as the register operands are

fetched. Thus, the branch delay for a fast compare is should be squashed (i.e. when the prediction is wrong).
reduced to one cycle, which can be used as a delayed Of course, setting this bit depends on predicting the
branrch. Since only one instruction is needed, we expect branch at compile-time. Without extra analysis, the
better filling than for the 2-cycle delayed branch in the compiler would always guess that branches were taken.
previous section. These assumptions imply the The value of this bit comes when the compiler has
following cost matrix: accurate information on taken versus not-taken

Slot Filled Slot Not Filled frequencies. We will examine the issue of accurate
No Compare Needed 1 2 prediction later; for now, we assume that squashing is
Compare Needed 2 3 never done when branches are taken.

Table 6 shows the breakdown of comparisons used in Squashing control: the branch instruction contains a
our benchmarks; compares are classified as full bit specifying whether instructions i4 iniediat,.ly after
compares requiring a separate instruction, compares the branch may be squashed or not. This bit allows the
against zero, or equal/not equal compares. It is use of delayed branches if both slots can be filled with
interesting to note the variance in the distribution: Dnf instructions from before the branch, i.e. where a
and Bigfm make heavy use of compare against zero, delayed branch would be faster. MIPS-X supports
while Hopt relies heavily on equal/not equal compares. branches with a squash control bit that squashes only
In all cases, the compiler has attempted to use fast when they are not taken and the control bit is on. The
compares whenever possible. Table 7 shows the value of the control bit is rather limited, since it is
overall branch cost including the number of full usually on. However, for comparison purposes we will
compares and the number of wasted delay cycles, assume it is available.

Delayed branch with squashing provides the best of
Equal/ Compare Full the delayed branch, predict-taken, and predict-not-taken

B m Not Equal Aainst 0 Compare schemes. If for a particular branch, a delayed branch is
Bigfm .22 .69 .09 best, it can be used by not setting the squash control bit.
Dnf .07 .84 .09Doft .07 .84 .07 Otherwise, a delayed branch with squashing has the

S.79 .14 .07 advantage of predict-taken, in that the instructions most
Average .36 .56 .08 likely to follow the branch are started. However, like

Table 6: Compare Types Needed predict-not-taken the started instructions can begin
e cimmediately because dtey are positioned sequentially

"h Wasted Compares Cyclesh after the branch. Table 8 shows the resulting
Benchmark Slots Needed Branch. performance. By combining the best features of the
Bigfm .54 ,09 1.63 other three schemes, nearly one half cycle per branch is
Dnf .43 .09 1.52 saved over the best of the three alone. Cycle count

6.07 1.44 performance is not quite as good as for fast-compare,
Average .44 .08 1.53 but cycle time impacts may well overshadow the

Table 7: Fast Branch Performance difference.

Cycle count performance of the fast compare scheme Probability Cycles/
is encouraging. However, the compare must be done in Benchmark Taken Branch
the same cycle as the register fetch, which may present Bigfia .67 1.64
problems on machines with complex instruction Dnf .54 1.98
encodings. Also the timing of the simple compare is a Hopt .67 1.70
concern, because it must complete in time to change the Average .63 1.77
instruction address going out in the next cycle. This Table 8: Squashed Branch Performance
could easily end up as the critical path controlling
instruction cache access and, hence, cycle time. Profiled Branches

dBranches With Squashing The performance of squashing branches is limited by
Delayed brashing the assumption that all branches are usually taken.

The major limitation of delayed branches is the Performance could be increased further if the compiler
difficlty of filling the branch delay slots with safe knew which branches are usually not taken. Such
instructions. An alternative to the fast compare or information could be supplied by an execution profiler.
simple delayed branch schemes is to use delayed Table 9 compares the prediction accuracy of a profile
branches with controlled squashing of the instructions with that of dynamic hardware prediction. The profile
in the delay slot. There are four varieties of delayed predicts slightly better than a 128-entry predictor and
branch with squashing that are generated by varying doesn't require any hardware. Most branches usually
two characteristics: go one way or the other throughout the execution of a

Squashing direction: the branch indicates whether it program. Additionally, software prediction does not

is likely to be taken and, hence, when the delay slots suffer any loss of accuracy due to collisions in the

i1 k,-ýC'jAAWkT 11UNU 'f ,L'1 m r

branch prediction hardware, a single cycle. If the profile predicts not taken and the
branch is actually taken, there is an extra cycle delay

Profile Hardware for the added branch. Thus, the profile prediction must
Benchmark Prediction Prediction be fairly accurate or branch inseition could increase
Bigfm .83 .85 branch cost.
Dnf .82 .81
_opt .89 .8The result- ' profile optimization are given in Table

Average .85 .83 10. Performance of the fast compare scheme with
profile information is provided as well. Here, the

Table 9: Branch Prediction Accuracy profile is used to fill the delay slots with instructions

Profile information can be used to optimize branches more likely to be useful.

in several ways. Delayed branch performance can be Benchmark Fast Branch Squashing Branch
improved by filling slots from the predicted successor Bigfm 1.59 1.54
basic block. For higher performance, we need to Dnf 1.35 1.46
handle the case where the likely successor is not safe to Hopt 1.38 1.30
always execute. Ideally, the instruction set would Average 1.44 1.43
contain branches with the squashing direction bit
described in the previous section. Alternatively, the Table 10: Branch Performance with Profile
compiler can attempt to increase the fraction of taken As Table 10 shows, profile prediction significantly
branches by modifying the control flow graph. We will reduces branch cost. However, the data in the table
examine two alternatives: assumes that the program will be run on only one set of

* If-then-else restructuring, inputs. To be useful, the prediction must be accurate for
- branch insertion other inputs as well. To measure how severe this effect

If-then-else control structures can be optin:.ized by is, we changed the inputs to our set of benchmarks and
rearranging the flow graph. If the then clause is more measured how much slower they were relative to the
likely to be executed, the branch corresponding to the if same program recompiled using a profile derived from
will usually not be taken. The if-branch can be changed the new input. Over 98% of the savings due to
to usually taken by swapping the then and else clauses profiling was preserved. This high value is quite
and inverting the branch condition. For a predict-not- encouraging. For other programs the number may not
taken machine, this technique could be used to decrease be this high, but we still expect most of the gain to be
the number of branches taken. However, swapping the maintained.
then and else clauses solves only part of the problem:
on our Pascal benchmarks, only 44% of if's have else
clauses. Plus, the technique does nothing for loop Conclusion
branches.

The cost of any usually not-taken branch can be We have presented several schemes for improving
improved without requiring a squash direction bit. We branch cost. The performance results are summarized
simply insert an additional branch before the predicted in Tables 11 and 12. Table 11 shows performance in
not-taken branch. The new branch has the inverse of the terms of cycles per branch, while Table 12 shows
original condition and thus is usually taken. The overall machine speed relative to a hypothetical
original branch is made unconditional and the slots for machine with single cycle branches. The overall
both branches can be filled with instructions from their performance is based on the instruction set of MIPS-X.
respective targets (requiring only squashing when the Since MIPS-X is a load/store machine, branch
branch is not taken). For example: frequencies are somewhat lower than on machines with

bgt rl, r2, labe.l. fuller instruction sets. The impact of branch cycle
count will be even higher on a machine where branches

becomes: are more frequent.

ble rl,r2,lnew Scheme Performance Averape
bra labell Delayed Branch 2.21

Inew: Predict Not Taken 2.26

If Lhe squash control bit is on and if all squash slots can Branch Target Buffer(256) 1.31
be filled, branch costs are as follows: Fast Compare 1.53

Actual Branch Profiled Fast Compare 1.44

P ediction Takcn Not Taken Squashing Branch 1.77
Taken 1 3 Profiled Squashing Branch 1.43

Not Taken 4 1 Table 11: Branch Performance Summary:
If profile prediction is correct, the branch costs only Cycles per Branch . .

OTIC D1) st SPe Cl

INSLP/ C .

