This is the final report of a project carried out in the Applied Mathematics Groups of the Department of Mathematics at Stanford University. Results were obtained on the stability of nonlinear waves and of solutions of nonlinear amplitude equations of the Ginzburg-Landau type. New results were obtained on solutions of the Kortweg-de Vries equation. Uniform solutions for scattering of waves by a potential barrier were constructed. The stability regions for Hill's equation were determined, which can be used to describe waves in periodic media.
MATHEMATICAL PROBLEMS OF NONLINEAR WAVE PROPAGATION
AND OF WAVES IN HETEROGENEOUS MEDIA

FINAL REPORT

October 1, 1984 - September 30, 1986

Professor Joseph B. Keller

October 22, 1986

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

Grant: AFOSR 85 0007 A
I. BRIEF OUTLINE OF RESEARCH FINDINGS

Most of our findings during the last years of research are contained in the research papers listed in Section II. Some of them have been published already, others have been submitted for publication and accepted, and others have not yet been accepted. The status of each paper is indicated after its title. In addition in Section III we give abstracts of papers submitted during this period. Now we shall mention some of the findings explicitly.

Concerning nonlinear wave propagation, Dr. Newton and Prof. Keller have analyzed the stability of a large class of nonlinear waves, and Prof. Keller has derived amplitude equations for resonantly interacting water waves. Dr. Newton studied instabilities of solutions of amplitude equations of the Ginzburg-Landau type by examining secondary bifurcation. Professor Venakides has completed two papers on the Korteweg-de Vries equation. One shows how step-like initial data produce a train of solitons by continually emitting them one at a time. The other shows how oscillatory waves are produced from smooth initial data in the weak dispersion limit. This latter paper fills a gap in the theory of wave production, and should ultimately enable one to connect Whitham's modulation theory to initial non-oscillatory data.

Another work by Professor Keller provides uniform solutions for scattering of waves by a potential barrier. This well known problem is not usually solved by uniform methods in the literature. In particular the phases of the reflection and transmission coefficients are not available. These quantities are needed to calculate the discriminant of Hill's equation containing a periodic distribution of barriers. This in turn can be used to examine the linear stability of nonlinear waves.

In the theory of waves in heterogeneous media, Dr. Weinstein and Professor Keller have written two papers on the stability regions for Hill's equation, which governs waves in periodic media. Mr. Nevard and Professor Keller have proved
a reciprocal theorem and an inequality for the effective conductivities of heterogeneous anisotropic media. It generalizes the previous theorems on the topic, and can be used to treat low frequency waves.
<table>
<thead>
<tr>
<th>No.</th>
<th>Author(s)</th>
<th>Title</th>
<th>Publication Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
<td>J. B. Keller, R. Voronka</td>
<td>Valuation of stocks and options</td>
<td>To be submitted.</td>
</tr>
</tbody>
</table>
104. M. Cheney  
S. Coen  
A. Weglein  
Velocity & density of a two-dimensional acoustic medium from point source surface data  

105. J. B. Keller  
Probability of a shutout in racquetball  

106. S. Venakides  
The Zero Dispersion Limit of the Korteweg-de Vries Equation for Initial Potentials with Non-trivial Reflection Coefficient  

107. J. H. Maddocks  
Stability of Nonlinearly Elastic Rods  

108. J. B. Keller  
Genetic Variability Due to Geographical Inhomogeneity  

109. J. B. Keller  
M. S. Falkovitz  
Precipitation pattern formation  
In preparation.

110. V. Twersky  
Scattering and Nonscattering Obstacles  

111. R.E. Caflisch  
J.H. Maddocks  
Nonlinear Dynamical Theory of the Elastica  

112. J.B. Keller  
J.G. Watson  
Rough Surface Scattering via the Smoothing Method  

113. J.B. Keller  
Free boundary problems in mechanics  
Pub: Lectures in Partial Differential Equations  

114. J.B. Keller  
Newton's second law  
Sub: Am. J. Physics
115. L.L. Bonilla

Effective elastic constants of polycrystalline aggregates


116. J. Fawcett

On the Stability of Inverse Scattering Problems


117. J. Fawcett

Two Dimensional Modelling and Inversion of the Acoustic Wave Equation in Inhomogeneous Media


118. J. Fawcett

H.B. Keller

Three Dimensional Ray Tracing and Geophysical Inversion in Layered Media


119. L.L. Bonilla

J.B. Keller

Acousto-elastic effects and sound wave propagation in heterogeneous anisotropic materials


120. J. Fawcett

R.W. Clayton

Tomographic Reconstruction of Velocity Anomalies


121. J. Fawcett

Inversion of N Dimensional Spherical Averages


122. M.I. Weinstein

J.B. Keller

Hill's equation with a large potential


123. M. Cheney

S. Coen

A. Weglein

Inversion of the 2.5-D Acoustic Equation


124. M. Cheney

J.H. Rose

B. DeFacio

The connection between time- and frequency- domain three-dimensional inverse scattering methods


125. M. Cheney

A rigorous derivation of the 'Miracle' of three-dimensional inverse scattering theory


126. E.O. Tuck

Small Gap Flows (A Lecture Series)

Pub: Applied Mathematics Group, Dept. of Mathematics, Stanford University, ANG-84-126, March 84.

and

Dept. of Naval Architecture & Offshore Engineering, University of California, Berkeley, NAOE 84-1, April 1984.
127. J.B. Keller  
Discriminant, transmission coefficient and stability bands of Hill's equation  

128. J.B. Keller  
One hundred years of diffraction theory  

129. J.B. Keller  
Soliton generation and nonlinear wave propagation  

130. J.B. Keller  
Semiclassical Mechanics  

131. S. Venakides  
The generation of modulated wavetrains in the solution of the KdV equation  

132. S. Venakides  
Long-time asymptotics of the KdV equation  
Acc: AMS Transactions

133. J.B. Keller  
Computers and chaos in mechanics  

134. J.B. Keller  
Reciprocal relations for effective conductivities of anisotropic media  

135. J.B. Keller  
Irreversibility and nonrecurrence  

136. J.B. Keller  
Inverse elastic scattering in three dimensions  

137. J.B. Keller  
Reaction kinetics on a lattice  

138. J.B. Keller  
Impact with friction  

139. J.B. Keller  
Uniform Solutions for scattering by a potential well  
| 140. | J.B. Keller | The Probability of heads |
| 141. | J.B. Keller | Melting and freezing at constant speed |
| 142. | J.B. Keller | "Acoustoelasticity" |
| 143. | J.B. Keller | Effective conductivities of reciprocal media |
| 144. | J.B. Keller | Impact with an impulsive frictional moment |
| 145. | J.B. Keller | Ropes in Equilibrium |
| J. Maddocks | | Acc: SIAM J. Appl. Math |
| 146. | J.B. Keller | Weir Flows |
| J.M. Vanden-Broeck | | Acc: J. Fluid Mechanics |
| 147. | Walter Craig | An existence theory for water-waves and the Boussinesq and Kortweg-deVries Scaling limits |
| 148. | Walter Craig | The Lyapunov index and the integrated density of states for Stochastic Schrödinger operations |
| 149. | P.K. Newton | Instabilities of the Ginzburg-Landau equation: Periodic solutions |
| 150. | P.K. Newton | Periodic Solutions of the Ginzburg-Landau equation |
Reciprocal relations for effective conductivities of anisotropic media

by: J. Nevard and J. B. Keller

We consider any pair of two-dimensional anisotropic media with local conductivity tensors which are functions of position and which are related to one another in a certain reciprocal way. We prove that their effective conductivity tensors are related to each other in the same way for both spatially periodic media and statistically stationary random media. We also prove an inequality involving the effective conductivity tensors of two three-dimensional media which are reciprocally related. These results extend the corresponding results for locally isotropic media obtained by Keller, Mendelsohn, Hansen, Schulgasser and Kohler and Papanicolau. They also yield a relation satisfied by the effective conductivity tensor of a medium reciprocal to a translated or rotated copy of itself.

Uniform solutions for scattering by a potential barrier

by: J. B. Keller

The one dimensional Schrödinger equation is solved asymptotically for scattering of a particle by a potential barrier and for bound states of a potential well, when the potentials change little in a wavelength. Both solutions are represented uniformly in space, rather than nonuniformly as in the WKB method. This avoids matching expansions and using connection formulas. The scattering solution and the complex reflection and transmission coefficients are also uniform in the particle energy.
Irreversibility and nonrecurrence

by: L. L. Bonilla and J. B. Keller

Can the irreversible, nonrecurrent equations of macroscopic physics be derived exactly from the reversible recurrent equations of classical mechanics? We show by an example that it is possible to derive an irreversible equation from reversible ones exactly, with no approximations. However the resulting equation has a damping coefficient which can have any value, positive or negative, depending upon the initial conditions. By choosing the initial conditions in a particular way, we derive the Langevin equation with an external force satisfying the fluctuation-dissipation theorem. We then describe the general projection method for deriving irreversible equations, and some of its applications. We also show, in an example, how to get nonrecurrent reversible equations from recurrent reversible ones, by letting the number $N$ of degrees of freedom become infinite. For this example, we compare the solutions of the equations with various finite values of $N$ with those for $N = \infty$ to show how long they are close to one another.

Long-time asymptotics of the KdV equation

by: S. Venakides

We study the long time evolution of the solution to the Korteweg-de Vries equation with initial data $v(x)$ which satisfy:

$$\lim_{x \to -\infty} v(x) = -1 \quad \lim_{x \to +\infty} v(x) = 0$$
We show that as \( t \to \infty \) the step emits a wavetrain of solitons which asymptotically have twice the amplitude of the initial step. We derive a lower bound on the number of solitons generated up to time \( t \) for \( t \) large.

**The Generation of modulated wavetrains in the solution of the KdV equation**

by: S. Venakides

We study the solution \( u(x, t, \epsilon) \) of the initial value problem for the Korteweg-de Vries equation:

\[
\begin{align*}
  u_t - 6uu_x + \epsilon^2 u_{xxx} &= 0 \\
  u(x, 0, \epsilon) &= v(x)
\end{align*}
\]

where \( v(x) \leq 0 \) is a single well. We introduce a method which can be generally applied to the solution of completely integrable systems in the continuum limit of the spectral data. We recover the weak limit of \( u(x, t, \epsilon) \) as \( \epsilon \to 0 \), computed earlier by Lax and Levermore. Furthermore, we show the mechanism by which fast oscillations emerge in regions of the \( x-t \) plane, called shock regions, and we describe the nature of these oscillations.
REACTION KINETICS ON A LATTICE

by: Joseph B. Keller

The kinetics of an irreversible first order reaction at the points of a lattice is examined. A "mean field" approximation is used.

WEIR FLOWS

by: Joseph B. Keller and Jean-Marc Vanden-Broeck

The flow of a liquid with a free surface over a weir in a channel is calculated numerically for thin weirs in channels of various depths, and for broad crested weirs in channels of infinite depth. The results show that the upstream velocity, as well as the entire flow, are determined by the height of the free surface far upstream and by the geometry of the weir and channel, in agreement with observation. The discharge coefficient is computed for a thin weir, and a formula for it is given which applies when the height of the weir is large compared to the height of the upstream free surface above the top of the weir. The coefficients in this formula are close to those found empirically.

SEMICLASSICAL MECHANICS

by Joseph B. Keller

Classical mechanics and the quantum conditions of Planck, Bohr, Sommerfeld, Wilson and Einstein are presented. The virtues and defects of this "old quantum theory" are pointed out. Its replacement by quantum mechanics is described leading to the Schrödinger equation for the wave function and the corresponding energy eigenvalues. For separable systems, the reduction of this equation to ordinary differential equations and their asymptotic solution by WKB method are described, as well as the resulting corrected quantum conditions with integer or half-integer quantum numbers. For nonseparable systems, the analogous asymptotic solution constructed by the author is described, together with the corrected quantum conditions to which it leads. Examples of the use of these conditions in the solution of eigenvalue problems are presented. It is explained that difficulties arise in using this method when the classical motion is stochastic or chaotic. Suggestions for overcoming these difficulties are mentioned.
END
4-87
DTIC