DEVELOPMENT AND APPLICATION OF THE P-VERSION OF THE
FINITE ELEMENT METHOD. (U) WASHINGTON UNIV ST LOUIS MO
DEPT OF SYSTEMS SCIENCE AND MATHE. I N KATZ 29 OCT 86
UNCLASSIFIED SSM-8609 AFOSR-TR-87-0231 AFOSR-82-0315 F/G 12/1 NL
 DEVELOPMENT AND APPLICATION OF THE P-VERSION OF THE FINITE ELEMENT METHOD

1 PERSONAL AUTHOR(S) I. Norman Katz

13b. TIME COVERED FROM 85/10/30 TO 86/10/30

14. DATE OF REPORT (Year, Month, Day) 86/10/29

86/10/29

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

The p-version of the finite element method is a new, important, computationally efficient, approach to finite element analysis. It is more robust than the conventional h-version and its rate of convergence, for domains with corners and for other singularity problems, is twice that of the h-version.

Hierarchic elements which implement the p-version efficiently have been formulated so as to enforce C^0 or C^1 continuity in the planar case, and so as to enforce C^0 continuity in three dimensions.

* Continued on the reverse side.
Recent research accomplishments include:

1. Development of an algorithm that finds all roots of an analytic function in a finite domain.

2. Preprocessing procedures to restrict unbounded domains which contain roots to bounded ones.

3. A reliable numerical argument principle algorithm to compute number of zeros within a closed contour.

4. Formulation of equations which determine the nature of stress singularity at a corner of a plate composed of n estropic materials.

All of the above are used in the extraction method for p-version finite element analysis of composite materials with corners.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. DISCUSSION</td>
<td>1</td>
</tr>
<tr>
<td>2. PROFESSIONAL PERSONNEL</td>
<td>4</td>
</tr>
<tr>
<td>3. PAPERS PUBLISHED AND PRESENTED SINCE THE START OF THE PROJECT</td>
<td>5</td>
</tr>
</tbody>
</table>
1. DISCUSSION

There are now three basic approaches to finite element analysis. In all approaches the domain Ω is divided into simple convex subdomains (usually triangles or rectangles in two dimensions, and tetrahedra or bricks in three dimensions) and over each subdomain the unknown is approximated by a (local) basis function (usually a polynomial of degree $\leq p$). Basis functions are required to meet continuously at boundaries of subdomains in the case of planar or 3 dimensional elasticity, or smoothly in the case of plate bending. The approaches are:

1. The \textit{h-version} of the finite element method. In this approach the degree p of the approximating polynomial is kept fixed, usually at some low number such as 2 or 3. Convergence is achieved by allowing h, the maximum diameter of the convex subdomains, to go to zero. Estimates for the error in energy have long been known. In all of these estimates p is assumed to be fixed and the error estimate is asymptotic in h, as h goes to zero.

2. The \textit{p-version} of the finite element method. In this approach the subdivision of the domain Ω is kept fixed but p is allowed to increase until a desired accuracy is attained. The p-version is reminiscent of the Ritz method for solving partial differential equations but with a crucial distinction between the two methods. In the Ritz method a single polynomial approximation is used over the \textit{entire} domain Ω (Ω, in general, is not convex). In the p-version of the finite element method polynomials are used as approximations over \textit{convex subdomains}. This critical difference gives the p-version a more rapid rate of convergence than either the Ritz method or the h-version.
3. The h-p version of the finite element method. In this approach both the degree \(p \) of the approximating polynomial and the maximum diameter \(h \) of the convex subdomains are allowed to change.

The p-version of the finite element method requires families of polynomials of arbitrary degree \(p \) defined over different geometric shapes. Polynomials defined over neighboring elements join either continuously (are in \(C^0 \)) for planar or three dimensional elasticity, and smoothly (are in \(C^1 \)) for plate bending. In order to implement the p-version efficiently on the computer, these families should have the property that computations performed for an approximation of degree \(p \) are re-usable for computations performed for the next approximation of degree \(p+1 \). We call families possessing this property hierarchic families of finite elements.

The h-version of the finite element method has been the subject of intensive study since the early 1950's and perhaps even earlier. Study of the p-version of the finite element method, on the other hand, began at Washington University in St. Louis in the early 1970's and led to a more recent study of the h-p version. Research in the p-version (formerly called The Constraint Method) has been supported in part of the Air Force Office of Scientific Research since 1976.

Recent Research Accomplishments include:

1. Development of an algorithm that finds all roots of an analytic function in a bounded domain.

2. A preprocessing procedure which finds a bounded subdomain of a given unbounded domain in which the roots of an analytic function are to be found.

3. A numerical argument principle which computes the number of zeros of an analytic function inside a closed contour. The crucial part of
this algorithm is a test to determine whether the argument change between two points on the contour is less than π in absolute value.

4. Explicit formulation of the equations which determine the nature of the stress singularity in a plate wedge composed of n isotropic materials meeting at a corner. The boundary conditions are either clamped or free.

All of the above are needed to use the extraction techniques developed earlier for the finite element analysis by the p-version of a composite material with corners.
PROFESSIONAL PERSONNEL

1. I. Norman Katz, Professor of Applied Mathematics and Systems Science, Washington University

2. Barna A. Szabo, A.P. Greensfelder Professor Civil Engineering, Washington University

3. Xing-Ren Ying, Research Assistant, doctoral candidate in the Department of Systems Science and Mathematics, Washington University
PAPERS PUBLISHED AND PRESENTED SINCE THE START OF THE PROJECT (1977)

Published Papers:

Presented Papers:

END

4-87

DTIC