GENERALIZATION OF LEVINSON'S THEOREM TO PARTICLE-MATTER INTERACTIONS (U) STATE UNIV OF NEW YORK AT BUFFALO DEPT OF CHEMISTRY S G CHUNG ET AL JAN 87 UNCLASSIFIED UBUFFALO/DC/87/TR-28 N00014-86-K-0043 F/G 20/11 NL
Generalization of Levinson's Theorem to Particle-Matter Interactions

by

Sung G. Chung and Thomas F. George

Prepared for Publication

in

Journal of Mathematical Physics

Departments of Chemistry and Physics
State University of New York at Buffalo
Buffalo, New York 14260

January 1987

Reproduction in whole or in part is permitted for any purpose of
the United States Government.

This document has been approved for public release and sale;
it's distribution is unlimited.
Title: Generalization of Levinson's Theorem to Particle-Matter Interactions

It is shown that Levinson's theorem in static potential scattering can be generalized to a particle dynamically interacting with one-dimensional matter systems (liquids or solids). A restriction on a particle-matter interaction is that it decays faster than an inverse quadratic of the particle-matter separation.
Generalization of Levinson's Theorem to Particle-Matter Interactions

S. G. Chung
Department of Physics
Western Michigan University
Kalamazoo, Michigan 49008

Thomas F. George
Departments of Chemistry and Physics & Astronomy
239 Bronczak Hall
State University of New York at Buffalo
Buffalo, New York 14260

Abstract

It is shown that Levinson's theorem in static potential scattering can be generalized to a particle dynamically interacting with one-dimensional matter systems (liquids or solids). A restriction on a particle-matter interaction is that it decays faster than an inverse quadratic of the particle-matter separation.

PACS: 03.80+r
1. Introduction

Levinson's theorem is one of the classic theorems in scattering theory. For s-wave motion of a particle in a spherically-symmetric potential $V(r)$ in three dimensions, Levinson showed that the scattering phase shift $\delta(k)$ as a function of incident wave number k is related to the number of s-wave bound states N as

$$N = \frac{\delta(+0)}{\pi}$$

under certain conditions on the potential $V(r)$.

Jauch and then Kazes and Ida later developed the method of scattering operator algebra, and succeeded to generalize the theorem to cases of nonlocal potentials. In this paper, we shall point out that the theorem can be generalized to the case of dynamical particle-matter interactions in one dimension (1-d).

A desire for this generalization arose in the course of our recent study of low-temperature adsorption of atoms on a material surface.

Consider a scattering eigenstate characterized by two wave numbers k_x and k_z of the incident particle as shown in Fig. 1a (the particle motion is in the xz-plane). The scattering wave function takes an asymptotic form at $z \to \infty$ of

$$|k^+\rangle = \phi_0 e^{ik_x x} (e^{-ik_z z} - S(k_x, k_z) e^{ik_z z})$$

where ϕ_0 represents the matter ground state ($T = 0$ K for simplicity, and we assume that the ground state is non-degenerate), and the S-matrix element $S(k_x, k_z)$ is in general a function of both k_x and k_z. Sometimes $S(k_x, k_z)$ has a weak k_x-dependence, whereby the problem becomes essentially one-dimensional. One such example is found in recent experiments for 4He atom scattering from a liquid 4He surface, reporting a weak k_x-dependence for the
reflectance coefficient as a function of k_x and k_z. Indeed, previously people mainly considered a simplified 1-d model of particle-matter interactions to study low-temperature adsorption (cf. Fig. 1b). We note that a 1-d model must be of finite size, because otherwise the matter does not have a well-defined boundary at finite temperatures, and the question of calculating, for example, the adsorption probability of a particle becomes meaningless.

A long-standing controversy in low-temperature adsorption based on a finite 1-d model concerns the importance of correlated motions of a particle near a material surface. This is essentially a question on the importance of many-body effects. We thus encounter an interesting question: is it possible to dynamically generalize Levinson's theorem? In this paper, we shall show that there indeed exists a dynamical version of Levinson's theorem. The only restriction in our arguments is that the potential created by a matter system and seen by a particle must decay faster than an inverse quadratic of the particle-matter separation. We also assume that the ground state of the matter system is non-degenerate, which in fact is very likely the case for a finite system without a special symmetry.

We have organized the present paper as follows: In the next section, as a natural generalization of the static case, we describe a scattering eigenstate of a finite 1-d model, particularly a Jost function and its general aspects. In Section 3, we discuss analytic properties of the Jost solution and Jost function. To do this, again as a natural generalization of the static case, we consider an integral Schrödinger equation for the Jost solution, and its formal solution in terms of Fredholm series. A dynamical generalization of Levinson's theorem is then straightforward (Section 4). Finally in Section 5, our conclusion is given.
2. **Scattering Eigenstate**

The Hamiltonian for a particle interacting with a matter system is written in general as

\[
H_{\text{tot}} = H(R, P) + V(R, x) + K(p),
\]

(3)

where \((R, P)\) are vector operators describing the positions and momenta of the matter atoms, and \((x, p)\) describe the position and momentum of the particle. \(H(R, P)\) is a 1-d matter Hamiltonian, \(K(p)\) is the kinetic energy of the particle, and \(V(R, x)\) describes the interaction between the particle and the 1-d matter system. Let us use the notations \(\bar{r} = (R, x)\), \(m = \text{mass of particle}\), and \(\phi_0(R)\) and \(E_0\), respectively, for the ground state of \(H(R, P)\) \((T = 0 \text{ K})\) and its energy. For a given total energy \(E(k) = E_0 + \hbar^2 k^2/2m\), the Schrödinger equation

\[
H_{\text{tot}} \psi(\bar{r}, k) = E(k) \psi(\bar{r}, k)
\]

(4)

has two independent solutions \(F(\bar{r}, \pm k)\) with the asymptotic properties at \(x \to \infty\)

\[
F(\bar{r}, \pm k) \to \phi_0(\bar{r}) e^{\mp ikx}
\]

(5)

The scattering state \(\psi(\bar{r}, k)\) is then given as a linear combination of the Jost solutions \(F(\bar{r}, \pm k)\). Noting that (4) is real and \(\psi(\bar{r}, k)\) is an even function of \(k\), we can write in general

\[
\psi(\bar{r}, k) = \frac{1}{2k} \left[f(-k) F(\bar{r}, k) - f(k) F(\bar{r}, -k) \right]
\]

(6)

To determine the Jost function \(f(k)\) in the static case, one imposes the condition

\[
\psi(x = x_0, k) = 0
\]

(7)

which is a requirement that the particle cannot reach the point \(x = x_0\) where
the potential energy is large. The corresponding physical condition in our
dynamic case is that
\[\psi(\vec{r} = \vec{r}_c, k) = 0 , \] (8)
where \(\vec{r}_c \) is a constant vector independent of \(k \). With a suitable choice of
normalization, one can then take the Jost function \(f(k) \) as
\[f(k) = F(\vec{r}_c, k) . \] (9)

A remark here is that the vectors \(\vec{r}_c \) which satisfy the condition (8)
generally form a hypersurface. A consistent situation, therefore, is that
by choosing the Jost function as (9) for a special point \(\vec{r} = \vec{r}_c \) on the
hypersurface, the condition (8) must be automatically satisfied for all the
other points on the hypersurface. In other words, the Jost solutions
\(F(\vec{r}, \pm k) \) must be strongly correlated.

In the next section, we shall examine an analytic property of the Jost
solution \(F(\vec{r}, k) \) in the complex \(k \)-plane, which leads to the same analytic
property of the Jost function \(f(k) \) due to (9). Before doing so, let us
mention some general properties of \(f(k) \). First, it is seen from (5) and (6)
that the zeroes of the Jost function \(f(k) \) on the negative imaginary axis in
the complex \(k \)-plane describe the bound states of \(H_{tot} \). In this paper, we
restrict ourselves to those particle-matter potentials which decay faster
than an inverse quadratic of the particle-matter separation. For such
potentials, one can readily see that the number of bound states is finite,
and therefore, except for physically uninteresting accidental situations,
\[f(0) \neq 0 . \] (10)

Second, the reality of \(H_{tot} \) means that
\[H_{\text{tot}} F^*(\vec{r},-\vec{k}^*) = E(k) F^*(\vec{r},-\vec{k}^*) , \]

(11)

but since \(F^*(\vec{r},-\vec{k}^*) = \phi_0(\vec{r}) e^{-i\vec{k}\cdot\vec{x}} \) as \(x \to \infty \), we have

\[F^*(\vec{r},-\vec{k}^*) = F(\vec{r},k) . \]

(12)

Now since \(\psi(\vec{r},k) \) as given by (6) is a real, even function of \(k \),

\[\psi^*(\vec{r},k^*) = \psi(\vec{r},k) . \]

(13)

From (6), (12) and (13), we obtain the well-known relationship

\[f^*(-\vec{k}^*) = f(k) . \]

(14)

For real \(k \), in particular, upon writing the Jost function as

\[f(k) = |f(k)| e^{i\delta(k)} , \]

(15)

where \(\delta(k) \) is a scattering phase shift, (10) and (14) give

\[-\delta(-k) = \delta(k) \]

(16)

under the convention that \(\delta(\pm\infty) = 0 \). A note on (16) is that \(\delta(\pm\infty) \) need not be the same, so that they are not necessarily zero.

3. Analyticity of the Jost Function

We now discuss an analytic property of the Jost solution in the complex \(k \)-plane, leading to the same analytic property of the Jost function due to (9). Let us consider the following integral Schrödinger equation for \(F(\vec{r},k) \):

\[F(\vec{r},k) = F_0(\vec{r},k) + \int d\vec{r}' \ K(\vec{r},\vec{r}';k) F(\vec{r}',k) , \]

(17)

where the integral kernel is
\[K(\vec{r}, \vec{r}'; k) = -G(\vec{r}, \vec{r}'; k)V(\vec{r}') \]

where \(V(\vec{r}) \equiv V(\vec{r}, x) \), \(F_0(\vec{r}, k) \equiv \phi_0(\vec{r})e^{-ikx} \), and the Green's function \(G(\vec{r}, \vec{r}'; k) \) is defined by

\[[H(\vec{r}, \vec{p}) + K(p) - E(k)]G(\vec{r}, \vec{r}'; k) = \delta(\vec{r} - \vec{r}') . \]

Introducing an orthonormal complete basis set \(\{\phi_i(\vec{r})\} \) for the matter Hamiltonian \(H(\vec{r}, \vec{p}) \), we can write the Green's function \(G \) as

\[G(\vec{r}, \vec{r}'; k) = \sum_i \int \frac{dk' e^{ik'(x-x')}}{2\pi} \frac{e^{ik(x-x')}}{E(i) + k'^2 - k^2 + i\epsilon} \phi_i(\vec{r})\phi^*_i(\vec{r}') , \]

where \(E(i) \) is the energy difference between the states \(\phi_i(\vec{r}) \) and \(\phi_0(\vec{r}) \), and we have put \(\hbar^2/2m = 1 \). In (20) we have added the term \(i\epsilon \) (\(\epsilon \) = infinitesimal positive number) in the denominator to describe an outgoing wave.

In carrying out the \(k' \)-integration in (20), as will become clear below, we need only consider \(k \) in the region \(D \) surrounded by the contour \(C \):

\([-k_0, k_0], [k_0, k_0 - i\omega], [k_0 - i\omega, -k_0], \) \([-k_0 - i\omega, -k_0] \), where \(k_0 \) is an infinitesimal positive number. On the other hand, our 1-d matter is finite, and thus the excitation above the ground state has a gap, that is, \(E(i) > 0 \). Therefore, for \(k \) in the region \(D \), it is always realized that

\[E(i, k) \equiv [E(i) - k^2]^{1/2} > 0 . \]

With (21) in mind, we perform a contour integral over \(k' \) to obtain

\[G(\vec{r}, \vec{r}'; k) = \sum_i \frac{e^{-E(i, k)|x-x'|}}{2E(i, k)} \phi_i(\vec{r})\phi^*_i(\vec{r}') . \]

The integral equation (17) can be solved formally by the Fredholm method.13
\[F(\bar{r},k) = F_0(\bar{r},k) + \frac{1}{\Delta} \int d\bar{r}_1 \Delta(\bar{r},\bar{r}') F_0(\bar{r}',k), \] (23)

where

\[\Delta = 1 + \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \int d\bar{r} \ldots \int d\bar{r}_n \begin{pmatrix} K_{11} & \cdots & K_{1n} \\ & \ddots & \vdots \\ & & K_{nn} \end{pmatrix} \] (24)

where \(K(\bar{r}_i,\bar{r}_j) \) is abbreviated as \(K_{ij} \) and

\[\Delta(\bar{r},\bar{r}') = K(\bar{r},\bar{r}') + \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \int d\bar{r}_1 \ldots \int d\bar{r}_n \begin{pmatrix} K_{rr'} & \cdots & K_{rl} \\ & \ddots & \vdots \\ & & K_{rl} \end{pmatrix} \begin{pmatrix} K_{rl} & \cdots & K_{rn} \\ & \ddots & \vdots \\ & & K_{rn} \end{pmatrix} \] (25)

We note that both \(F_0(\bar{r},k) \) and the kernel \(K(\bar{r},\bar{r}') \), as given by (18) and (22), are analytic in the region \(D \). Therefore, if the Fredholm series in (24) and (25) converge, we reach the conclusion that the Jost solution \(F(\bar{r},k) \) as given by (23) is also analytic in the region \(D \).

We now show the convergence of \(\Delta \). In a similar way, we can show the convergence of \(\Delta(\bar{r},\bar{r}') \). We first note that from (18) and Hadamard's inequality \(^{14}\) we can write

\[\int d\bar{r}_1 \ldots \int d\bar{r}_n \det_{1 \leq i,j \leq n} \| k_{ij} \| \]

\[\leq \int dx_1 \ldots \int dx_n \int d\bar{x}_1 \ldots \int d\bar{x}_n |v(\bar{r}_1) \ldots v(\bar{r}_n)| \| g_1 \| \ldots \| g_n \|, \] (26)

where \(\| g_i \| \) is the norm of the \(i \)-th column vector of the matrix \(G_{ij} \). Next, since our \(k \) is in the low-energy region \(D \), the excitation of the matter from
its ground state $\phi_0(\mathbf{R})$ is limited to a finite number of low-lying excited states, i.e., with some integer I, (22) gives

$$|G_{rr'}| \leq \sum_{i \leq I} \frac{|\phi_i(\mathbf{R})\phi_i(\mathbf{R}')|}{2E(i,k)} .$$

(27)

The wave functions of low-lying excited states are well localized in the \mathbf{R}-space, and therefore, when carrying out the integrations $\int d\mathbf{R}_1 \ldots \int d\mathbf{R}_n$ in (26), one can apply the average-value theorem. This means that there exists a certain constant vector \mathbf{R}_0 and finite constants A and B such that

$$\int d\mathbf{R}_1 \ldots \int d\mathbf{R}_n |V(\mathbf{r}_1) \ldots V(\mathbf{r}_n)| |g_1| |g_1| \ldots |g_n| |g_n|$$

$$= |V(\mathbf{R}_0, \mathbf{x}_1) \ldots V(\mathbf{R}_0, \mathbf{x}_n)| \int d\mathbf{R}_1 \ldots \int d\mathbf{R}_n |g_1| |g_1| \ldots |g_n| |g_n|$$

$$\leq |V(\mathbf{R}_0, \mathbf{x}_1) \ldots V(\mathbf{R}_0, \mathbf{x}_n)| A^n (Bn^{1/2})^n .$$

(28)

Physically, \mathbf{R}_0 describes a most probable configuration of the matter atoms at low temperatures. We finally note that since our $|V(\mathbf{R}_0, \mathbf{x})|$ decays faster than x^{-2} at $x \rightarrow \infty$ by assumption,

$$\int dx |V(\mathbf{R}_0, \mathbf{x})| \leq M < \infty .$$

(29)

From (26), (28) and (29) we obtain

$$\int d\mathbf{r}_1 \ldots \int d\mathbf{r}_n \det_{1 \leq i, j \leq n} |K_{ij}| \leq (MAB)^n n^{n/2} ,$$

(30)

which assures the convergence of Δ.

4. Dynamical Levinson's Theorem

In the preceding sections, we have discussed some general properties of the Jost function $f(k)$ and its analytic property in the complex k-plane. We are now ready to claim the existence of dynamical Levinson's theorem in a
similar manner as in the static potential scattering:

\[N_b = -\frac{1}{2\pi i} \int_C \frac{f'(k)}{f(k)} dk = -\frac{1}{2\pi i} \int_C d[\ln f(k)] = -\frac{1}{2\pi i} \left[\delta(0) - \delta(+\theta) \right] = \delta(+\theta)/\pi, \]

where \(N_b \) is the number of bound states of \(H_{\text{tot}} \), and the contour \(C \) is as given in Fig. 2. This can be seen as follows: since the Jost function \(f(k) \) is analytic in the region \(D \) surrounded by the contour \(C \), the integrand \(f'(k)/f(k) \) has simple poles of unit strength at zeroes of \(f(k) \), each of which corresponds to a bound state. For \(q \) degenerate bound states, the strength of the corresponding pole is \(q \). This is the first equality in (31). The remaining equalities in (31) are trivial from (10), (15), (16) and the analyticity of \(f(k) \) in the region \(D \).

5. Conclusion

In this paper, we have considered a 1-d model which describes a particle dynamically interacting with a finite 1-d matter. We have shown that if the matter has a non-degenerate ground state and is well-localized in space, and hence the collision of the particle with the matter is well-defined, and if the particle-matter potential decays faster than an inverse quadratic of the distance, there exists a dynamical version of Levinson's theorem, connecting the zero-energy phase shift \(\delta(+\theta) \) to the number of bound states of the total system. This dynamical Levinson's theorem has recently played an essential role in the study of low-temperature adsorption. Furthermore, in light of its general, many-body character, we expect its fruitful applications in other physical problems.
Acknowledgments

This research was supported by the Office of Naval Research, the Air Force Office of Scientific Research (AFSC), United States Air Force, under Contract F49620-86-C-0009, and the National Science Foundation under Grant CHE-8519053. The United States Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation hereon.
References

6) S. G. Chung and T. F. George, to be published.

8) S. G. Chung and T. F. George, to be published.

14) See Ref. 13, p. 212.
Figure Captions

Fig. 1 (a) Three-dimensional geometry for the scattering eigenstate characterized by the parallel and perpendicular wave numbers, k_x and k_z.
(b) Its one-dimensional simplification when the parallel and perpendicular motions are approximately separable.

Fig. 2 The contour C in the integral of (31). The crosses on the negative imaginary axis denote the zeroes of the Jost function $f(k)$.
Fig. 1
Fig. 2
<table>
<thead>
<tr>
<th>Institution</th>
<th>No. Copies</th>
<th>Contact Name</th>
<th>Address Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research</td>
<td>2</td>
<td>Dr. David Young</td>
<td>Attn: Code 1113</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>800 N. Quincy Street</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Arlington, Virginia 22217-5000</td>
</tr>
<tr>
<td>Dr. Bernard Dauda</td>
<td>1</td>
<td></td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td></td>
<td></td>
<td>Attn: Dr. Ron Atkins</td>
</tr>
<tr>
<td>Code 50C</td>
<td></td>
<td></td>
<td>Chemistry Division</td>
</tr>
<tr>
<td>Crane, Indiana 47522-5050</td>
<td></td>
<td></td>
<td>China Lake, California 93555</td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
<td></td>
<td>Attn: Dr. R. W. Drisko, Code L52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Port Hueneme, California 93401</td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>12</td>
<td></td>
<td>Attn: CRD-AA-IP</td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td></td>
<td></td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td></td>
<td></td>
<td>Research Triangle Park, NC 27709</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>Mr. John Boyle</td>
<td>Attn: Dr. H. Singerman</td>
</tr>
<tr>
<td>Attn: Dr. H. Singerman</td>
<td></td>
<td></td>
<td>Applied Chemistry Division</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Annapolis, Maryland 21401</td>
</tr>
<tr>
<td>Dr. William Tolles</td>
<td>1</td>
<td></td>
<td>Superintendent</td>
</tr>
<tr>
<td>Naval Ocean Systems Center</td>
<td></td>
<td></td>
<td>Attn: Dr. S. Yamamoto</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Marine Sciences Division</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>San Diego, California 91232</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dr. David L. Nelson</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Attn: Dr. Code 1113</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>800 North Quincy Street</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Arlington, Virginia 22217</td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. J. E. Jensen
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. J. H. Weaver
Department of Chemical Engineering and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. A. Reisman
Microelectronics Center of North Carolina
Research Triangle Park, North Carolina 27709

Dr. M. Grunze
Laboratory for Surface Science and Technology
University of Maine
Orono, Maine 04469

Dr. J. Butler
Naval Research Laboratory
Code 6115
Washington D.C. 20375-5000

Dr. L. Interante
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Irvin Heard
Chemistry and Physics Department
Lincoln University
Lincoln University, Pennsylvania 19352

Dr. K. J. Klaubunde
Department of Chemistry
Kansas State University
Manhattan, Kansas 66506

Dr. C. B. Harris
Department of Chemistry
University of California
Berkeley, California 94720

Dr. F. Kutzler
Department of Chemistry
Box 5055
Tennessee Technological University
 Cookeville, Tennessee 38501

Dr. D. DiLeila
Chemistry Department
George Washington University
Washington D.C. 20052

Dr. R. Reeves
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Steven M. George
Stanford University
Department of Chemistry
Stanford, CA 94305

Dr. Mark Johnson
Yale University
Department of Chemistry
New Haven, CT 06511-8118

Dr. W. Knauer
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. G. A. Somorjai
Department of Chemistry
University of California
Berkeley, California 94720

Dr. R. L. Park
Director, Center of Materials
Research
University of Maryland
College Park, Maryland 20742

Dr. J. Murday
Naval Research Laboratory
Code 6170
Washington, D.C. 20375-5000

Dr. W. T. Peria
Electrical Engineering Department
University of Minnesota
Minneapolis, Minnesota 55455

Dr. J. B. Hudson
Materials Division
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Keith H. Johnson
Department of Metallurgy and
Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. Theodore E. Madey
Surface Chemistry Section
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234

Dr. S. Sibani
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. M. G. Lagally
Department of Metallurgical
and Mining Engineering
University of Wisconsin
Madison, Wisconsin 53706

Dr. Arnold Green
Quantum Surface Dynamics Branch
Code 3817
Naval Weapons Center
China Lake, California 93555

Dr. A. Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02912

Dr. J. M. White
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. S. L. Bernasek
Department of Chemistry
Princeton University
Princeton, New Jersey 08544

Dr. R. P. Van Duyne
Chemistry Department
Northwestern University
Evanston, Illinois 60637

Dr. W. Kohn
University of California, San Diego
La Jolla, California 92037

Dr. D. E. Harrison
Department of Physics
Naval Postgraduate School
Monterey, California 93940
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. F. Carter
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Richard Colton
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Dan Pierce
National Bureau of Standards
Optical Physics Division
Washington, D.C. 20234

Dr. R. Stanley Williams
Department of Chemistry
University of California
Los Angeles, California 90024

Dr. R. P. Messmer
Materials Characterization Lab.
General Electric Company
Schenectady, New York 22217

Dr. Robert Gomer
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Ronald Lee
R301
Naval Surface Weapons Center
White Oak
Silver Spring, Maryland 20910

Dr. Paul Schoen
Code 6190
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. John T. Yates
Department of Chemistry
University of Pittsburgh
Pittsburgh, Pennsylvania 15260

Dr. Richard Greene
Code 5230
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. L. Kesmodel
Department of Physics
Indiana University
Bloomington, Indiana 47403

Dr. K. C. Janda
University of Pittsburgh
Chemistry Building
Pittsburgh, PA 15260

Dr. E. A. Irene
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton 509 5NH
UNITED KINGDOM

Dr. H. Tachikawa
Chemistry Department
Jackson State University
Jackson, Mississippi 39217

Dr. John W. Wilkins
Cornell University
Laboratory of Atomic and Solid State Physics
Ithaca, New York 14853
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. R. G. Wallis
Department of Physics
University of California
Irvine, California 92664

Dr. D. Ramaker
Chemistry Department
George Washington University
Washington, D.C. 20052

Dr. J. C. Hemminger
Chemistry Department
University of California
Irvine, California 92717

Dr. T. F. George
Chemistry Department
University of Rochester
Rochester, New York 14627

Dr. G. Rubloff
IBM
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. Horia Metiu
Chemistry Department
University of California
Santa Barbara, California 93106

Dr. W. Goddard
Department of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125

Dr. P. Hansma
Department of Physics
University of California
Santa Barbara, California 93106

Dr. J. Baldeschwieler
Department of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125

Dr. J. T. Keiser
Department of Chemistry
University of Richmond
Richmond, Virginia 23173

Dr. R. W. Plummer
Department of Physics
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 44106

Dr. M. Winograd
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Dr. Roald Hoffmann
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. A. Steckl
Department of Electrical and Systems Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. G. H. Morrison
Department of Chemistry
Cornell University
Ithaca, New York 14853
END

3 - 8 7

D Tic