OFFICE OF NAVAL RESEARCH
Contract NO0014-82-K-0113
Task No. NR 359-258

FINAL REPORT

ELECTROCHEMICAL AND OPTICAL ELECTRON TRANSFER PROCESSES

Paul Delahay
Principal Investigator

Period: April 1, 1982 to September 30, 1986

New York University
Department of Chemistry
New York, NY

September 30, 1986

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited
Final Report - Electrochemical and Optical Electron Transfer Processes

Paul Delahay

13a. TYPE OF REPORT Final

13b. TIME COVERED FROM 4/1/82 TO 9/30/86

14. DATE OF REPORT (Year, Month, Day) September 30, 1986

15. PAGE COUNT 5

17. COSATI CODES

<table>
<thead>
<tr>
<th>FIELD</th>
<th>GROUP</th>
<th>SUB-GROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Dielectric dispersion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ionization energies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electron transfer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Photoionization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inner-sphere reorganization</td>
</tr>
</tbody>
</table>

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Dielectric dispersion, Ionization energies, Electron transfer, Photoionization, Inner-sphere reorganization

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

A summary of significant results is given covering the three broad areas of investigation:

1) Nonequilibrium electronic polarization and loss in optical electron transfer: (a) first observation of this effect and subsequent detailed experimental study; (b) development of detailed theory accounting for experimental results.
2) Inner-sphere nuclear reorganization in optical electron transfer: (a) treatment of cations and metal complexes and correlation between optical electron transfer and thermal electron exchange; (b) development of the theoretical solvation model of inner-sphere reorganization for univalent anions and experimental verification of this model; (c) application to the energetics of anion/radical couples in aqueous solution; (d) application to the gas-liquid shift for photoelectron emission.
3) Ionization energies of liquids from energy distribution, quantum yield and second derivative curves. A list of reports and publications arising from this work is supplied.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT Unclassified/Unlimited

21. ABSTRACT SECURITY CLASSIFICATION Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL Paul Delahay

22b. TELEPHONE (Include Area Code) 212-598-2811
SUMMARY OF SIGNIFICANT RESULTS

Three broad areas were covered:

(1) Nonequilibrium electronic polarization and loss in optical electron transfer
 (a) First observation of this effect and subsequent detailed experimental study (report 3)
 (b) Development of a detailed theory accounting for experimental results (reports 3, 6, 8 and 11)

Yield spectra for photoelectron emission by liquids and solutions exhibit a fine structure which is essentially determined by the nature of the solvent and not by the species being photoionized. This fine structure was shown to arise from nonequilibrium electronic processes (polarization, loss) arising from dielectric dispersion of the solvent. Theoretical and experimental fine structure features agree extremely well. This effect, which was first observed in our laboratory, is the electronic counterpart of nuclear reorganization (Marcus, Sutin, etc.)

(2) Inner-sphere nuclear reorganization in optical electron transfer
 (a) Treatment of cations and metal complexes and correlation between optical electron transfer and thermal electron exchange (report 4)
 (b) Development of the theoretical solvation model of inner-sphere reorganization for univalent anions and experimental verification of this model (reports 4 and 9)
 (c) Application to the energetics of anion/radical couples in aqueous solution (report 10)
 (d) Application to the gas-liquid shift for photoelectron emission (report 5)

Energies of inner-sphere reorganization were derived from a bond stretching model for optical electron transfer involving cations and metal complexes. This made it possible to correlate thermal and optical electron transfer processes. Results are in agreement with experiment. The energy of inner-sphere reorganization of univalent anions was calculated from a solvation model based on a multipole expansion accounting for ion-solvent electrostatic interactions. Other contributions (London dispersion, Born repulsion, etc.) were also taken into account. Agreement with experiment is achieved.

(3) Ionization energies of liquids from energy distribution, quantum yield and second derivative curves

These three methods of determining ionization energies were investigated and compared for eight liquids (report 7).
TECHNICAL REPORTS AND PUBLICATIONS

in honor of H. Gerischer on his retirement as Director of the Fritz-Haber-Institut, Berlin).

PERSONNEL

Charles Cheung, graduate student, Ph.D. degree (now with ATT-Bell Laboratories)

Andrew Dziedzic, graduate student, Ph.D. degree, and postdoctoral fellow (now with Goldman Sachs)
END
2-87
DTIC