A COMPARISON OF FOUR ESTIMATORS OF A FIRST ORDER AUTOREGRESSIVE PROCESS (U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA J A HORN SEP 86
A COMPARISON OF FOUR ESTIMATORS
OF
A FIRST ORDER AUTOREGRESSIVE PROCESS
by
Joseph A. Horn Jr.
September 1986

Thesis Advisor: D. C. Boger

Approved for public release; distribution is unlimited.
A Comparison of Four Estimators of a First Order Autoregressive Process

Econometricians must choose between many methods for estimating p in a first order autoregressive process. This thesis examines the performance of four estimators in a Monte Carlo simulation. The methods examined are Durbin-Watson, Beach-MacKinnon, Theil-Nagar and Prais-Winsten. The autocorrelation coefficient, p, was varied from .2 to .9 and each method provided estimates of p and β for 1000 replications. The results presented here are similar to those found in previous comparisons. Specifically, Ordinary Least Squares was found to be an efficient estimator of p when autocorrelation is present only to a slight degree. Of the four estimators examined, the performance of Theil-Nagar proved superior in estimating both p and β for small values of the correlation coefficient. Beach-MacKinnon, on the other hand, while containing a large bias in the estimation of p, is the more efficient estimator of β for large values of p.

Subject Terms: Autoregression, Autocorrelation, Durbin-Watson, Prais-Winsten, Theil-Nagar, Beach-MacKinnon
A Comparison of Four Estimators of a First Order Autoregressive Process

by

Joseph A. Horn Jr.
Lieutenant, United States Navy
B.S.M.E., United States Naval Academy, 1980

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
September 1986

Author: Joseph A. Horn Jr.

Approved by: D.C. Boger, Thesis Advisor

D.R. Barr, Second Reader

P. Purdue, Chairman, Department of Operations Research

Dean of Information and Policy Sciences
ABSTRACT

Econometricians must choose between many methods for estimating p, the autocorrelation coefficient, in a first order autoregressive process. This thesis examines the performance of four estimators in a Monte Carlo simulation. The methods examined are Durbin-Watson, Beach-MacKinnon, Theil-Nagar and Prais-Winsten. The autocorrelation coefficient, p, was varied from .2 to .9 and each method provided estimates of p and β, the regression coefficient, for 1000 replications. The results presented here are similar to those found in previous comparisons. Specifically, Ordinary Least Squares was found to be an efficient estimator of β when autocorrelation is present only to a slight degree. Of the four estimators examined, the performance of Theil-Nagar proved superior in estimating both p and β for small values of the correlation coefficient. Beach-MacKinnon, on the other hand, while containing a large bias in the estimation of p, is the more efficient estimator of β for large values of p.
TABLE OF CONTENTS

I. INTRODUCTION .. 8
 A. BACKGROUND .. 8
 B. PROBLEM STATEMENT 8
 C. ESTIMATORS .. 9
 D. SIMULATION .. 9
 E. MEASURE OF EFFECTIVENESS 9

II. ESTIMATION .. 10
 A. GENERAL .. 10
 B. PROCESS ... 10
 C. METHODS OF ESTIMATION 12
 2. Estimated Generalized Least Squares 12
 3. Maximum Likelihood Estimation 14

III. COMPARISON ... 16
 A. GENERAL .. 16
 B. PREVIOUS COMPARISONS 16
 C. MODEL AND DATA GENERATION 17
 D. VALIDATION ... 17
 E. SIMULATION ... 17
 F. MEASURES OF EFFECTIVENESS 18

IV. RESULTS AND CONCLUSIONS 20
 A. GENERAL .. 20
 B. SAMPLE SIZE 20 .. 20
 C. SAMPLE SIZE 50 .. 22
 D. SUMMARY ... 22

APPENDIX: PROGRAM LISTINGS 27
LIST OF REFERENCES .. 47
LIST OF TABLES

I. ESTIMATES OF AUTOCORRELATION COEFFICIENT 18
II. ESTIMATES OF AUTOCORRELATION COEFFICIENT 21
III. DATA PRESENTED IN FIGURE 4.1 23
IV. EFFICIENCY OF REGRESSION COEFFICIENT ESTIMATES 24
V. DATA PRESENTED IN FIGURE 4.2 25
VI. EFFICIENCY OF REGRESSION COEFFICIENT ESTIMATES 26
LIST OF FIGURES

4.1 Estimated mean square error of ρ vs. ρ (sample size = 20) 23
4.2 Estimated mean square error of ρ vs. ρ (sample size = 50) 25
I. INTRODUCTION

A. BACKGROUND

Autocorrelation exists in a regression model when the error terms are no longer independent but are correlated. In the examination of time series data autocorrelation is a common phenomenon and can lead to problems if Ordinary Least Squares (OLS) estimation procedures are used. The purpose of this thesis is to examine and compare four different estimates of the autocorrelation coefficient, ρ, the estimation of which is essential to the resolution of OLS deficiencies. The four estimators to be examined are the Durbin-Watson, Theil-Nagar, Beach-MacKinnon, and Prais-Winsten.

B. PROBLEM STATEMENT

In the standard regression model $y = X\beta + e$, y is a Tx1 vector of observations of a dependent variable, X is a TxK design matrix and β is a Kx1 vector. The variable e is a Tx1 vector of unobservable random errors with $E(e) = 0$ and covariance matrix, $E(ee') = \sigma^2 I$. Thus, in the standard model, the random vector e contains elements which are pairwise uncorrelated with identical means and variances. In the presence of autocorrelation this strong assumption is violated. That is, the error terms are no longer independent but are correlated. The regression model becomes,

\[
y_t = X_t\beta + e_t \quad t=1,2,...,T \tag{eqn 1.1}
\]

where $e_t = \rho e_{t-1} + v_t$,

$E(v_t) = 0$, and

$E(vv') = \sigma^2 I$.

This is known as a first order autoregressive or AR(1) process. As illustrated by equation 1.1, e_t is expressed linearly in terms of the e_{t-1} and another random error term v_t. The assumption of zero mean and constant variance provides v_t with all the nice properties of e_t in the standard model. This process may occur for a variety of reasons, some of which are:

1. Omitted explanatory variables. If a correlated explanatory variable has been excluded from the design matrix its exclusion will be reflected in the correlation of the random variable e.

2. Mispecification of the mathematical form of the model. If the wrong mathematical relationship is chosen the values of e may be dependent.
3 *Interpolations in the statistical observations.* If the observational data is smoothed autocorrelation may result.

4 *Mispecification of the true random error.* Dependence among the error terms may occur naturally. [Ref. 1:p. 204]

Utilizing OLS to estimate the regression coefficient, \(\beta \), in the presence of an AR(1) process can lead to problems. Generally, there are two consequences to consider. The first is that the OLS estimator of the coefficients will be unbiased but will not be very efficient. The second consequence is that the OLS variance estimator is biased. For these reasons it is useful to investigate other methods to estimate \(\beta \) [Ref. 2:p. 439].

C. **ESTIMATORS**

When \(\rho \) is known, the process is easily accounted for using Generalized Least Squares or Weighted Least Squares methods [Ref. 3]. However, the usual situation is that \(\rho \) is unknown and must be estimated. A number of methods have been proposed to estimate \(\rho \) and properly account for OLS deficiencies in estimating \(\beta \). Chapter 2 will develop the four estimators mentioned above and examine the autocorrelation process.

D. **SIMULATION**

Each of the estimators considered here have the same asymptotic properties therefore any decision on which one to use must be based on small sample analysis and Monte-Carlo evidence. Therefore, a simulation will be created in which the data is generated according to guidelines presented in previous studies with equation 1.1 as the model. The actual values of \(\rho \) will be varied from .2 to .9. The four estimation techniques will then provide estimates of \(\rho \) and \(\beta \) for 1000 replications.

E. **MEASURE OF EFFECTIVENESS**

To provide an indication of which estimator performs best the mean square error of both \(\hat{\rho} \) and \(\hat{\beta} \) will be estimated for each estimator. Prior results for different sets of estimators indicate that no one estimator will prove superior over the entire range of \(\rho \) but that one or two may out perform the others over specific intervals.
II. ESTIMATION

A. GENERAL

This chapter attempts to explore the theory behind both the first order process and four estimators developed to properly account for it. Three of these (Durbin-Watson, Thiel-Nagar, and Prais-Winsten) are categorized as estimated generalized least squares estimators. The fourth (Beach-MacKinnon) is a maximum likelihood estimator.

B. PROCESS

The first order process can be written as

\[Y_t = X_t \beta + e_t \quad t = 1,2,\ldots,T \]

where \(e_t = \rho e_{t-1} + v_t \),

\[E(v_t) = 0, \]

\[E(vv') = \sigma^2 I, \]

\[E(v_t^2) = \sigma_v^2, \] and

\[E(v_tv_{s}) = 0 \quad \text{for} \ s \neq t. \]

The parameter \(\rho \) is generally unknown and along with \(\beta \) must be estimated. The statistical properties of the random error, \(v \), listed in equation 2.1 are identical to those listed for \(e \) in the general linear model. The statistical properties of \(e \) under these new assumptions are quite different. Judge [Ref. 4:p. 438] shows that

\[E(e_t) = \sum_{t=1}^{T} \rho^t E(v_{t-1}) = 0 \]

(eqn 2.2)

and

\[\sum_{t=1}^{T} E(e_{t}^2) = \sigma_e^2 = \sigma_v^2 / (1-\rho^2). \]

(eqn 2.3)

The covariance between errors \(s \) periods apart is no longer zero and is given by

\[E(e_t e_{t+s}) = E(e_t + s e_t) = (\rho^s \sigma_e^2)/(1-\rho^2). \]

(eqn 2.4)
The covariance matrix for e is now easily written as

\[\Phi = E(ee') = \]

\[
\begin{pmatrix}
1 & \rho & \ldots & \rho^{T-1} \\
\rho & 1 & \ldots & \rho^{T-2} \\
\vdots & \vdots & \ddots & \vdots \\
\rho^{T-1} & \rho^{T-2} & \ldots & 1 \\
\end{pmatrix}
\]

or utilizing the following convention,

\[\Phi = \sigma^2 \Psi \]

(\text{eqn 2.6})

where \(\Psi = \)

\[
\begin{pmatrix}
1 & \rho & \rho^2 & \ldots & \rho^{T-1} \\
\rho & 1 & \rho^2 & \ldots & \rho^{T-2} \\
\rho^2 & \rho & 1 & \ldots & \rho^{T-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\rho^{T-1} & \rho^{T-2} & \rho^{T-3} & \ldots & 1 \\
\end{pmatrix}
\]

Thus, the assumptions made about the error term, e, in the standard linear model no longer hold for the autoregressive case. Specifically, due to autocorrelation the error covariance matrix is no longer written as \(\sigma^2 I \) but is now \(\sigma^2 \Psi \).

When an attempt is made to perform a least squares fit to the data in the presence of an AR(1) process there are two problems to consider.

1. The least squares estimator \(\hat{\beta} = (X'X)^{-1}X'y \) will be unbiased but will not be very efficient.

2. The least squares covariance matrix \(\hat{\sigma}^2 (X'X)^{-1} \) with \(\hat{\sigma}^2 = (y-X\hat{\beta})(y-X\hat{\beta})/(T-K) \) will be a biased estimator of the variance of \(\hat{\beta} \).

In the presence of positive autocorrelation Judge [Ref. 4, p. 439] notes that with OLS estimation the bias of the standard error of \(\hat{\beta} \) will very likely appear as an
underestimate. Park and Mitchell [Ref. 5, p. 16] warn that OLS seriously underestimates the variance of \(\hat{\beta} \) for \(\rho > 0.4 \). This understatement makes the estimates themselves appear much more significant than they actually are and makes hypothesis testing of the slope coefficients unreliable.

C. METHODS OF ESTIMATION

1. Generalized Least Squares Estimation

When apriori information is available about \(\Psi \), the most convenient estimate for the regression coefficient, \(\hat{\beta} \), is obtained by applying least squares estimation techniques to the transformed model,

\[
Y^* = X^* \beta + e^*
\]

where \(Y^* = PY \)

\[X^* = PX \]

\[e^* = Pe. \]

The transformation matrix \(P \) is the \(T \times T \) matrix

\[
P = \begin{pmatrix}
\sqrt{1-\rho^2} & 0 & 0 & 0 & \ldots & 0 \\
-\rho & 1 & 0 & 0 & \ldots & 0 \\
0 & -\rho & 1 & 0 & \ldots & 0 \\
0 & 0 & -\rho & 1 & \ldots & 0 \\
& & & & \ddots & \ddots \\
& & & & & & \\
0 & 0 & 0 & \ldots & \ldots & -\rho & 1
\end{pmatrix}
\]

where \(PP = \Psi^{-1} \).

This method is known as the Generalized Least Squares (GLS) estimation.

2. Estimated Generalized Least Squares

The usual case is that \(\rho \) is unknown and must be estimated. Once an estimate for \(\rho (\hat{\rho}) \) is computed one can substitute \(\hat{\rho} \) into the \(P \) matrix and proceed with the GLS method outlined above. This is known as Estimated Generalized Least Squares (EGLS) estimation. The computational form of the alternative estimators for \(\rho \) discussed are as follows:
a. Durbin-Watson

The statistic

\[
d = \frac{\sum_{t=1}^{T} (\hat{e}_t \hat{e}_{t-1})^2}{\sum_{t=1}^{T} \hat{e}_t^2}, \quad t = 1, \ldots, T
\]

(eqn 2.8)

where \(\hat{e}_t = y_t - \hat{X}_t \hat{\beta} \)

is often used to test for first order autoregressive errors. As the number of observations (T) increases it can be demonstrated that d approaches the least squares estimator of \(\rho \) or

\[
\hat{\rho} = 1 - (d/2).
\]

(eqn 2.9)

The Durbin-Watson statistic is provided by most least squares computer packages and is very easy to use. It also is an example of a two-stage estimator. That is, it first estimates the correlation parameter and then uses this estimate to compute the generalized least squares estimates for \(\beta \).

b. Theil-Nagar

A modification of the Durbin-Watson estimator suggested by Henri Theil and A. L. Nagar is

\[
\hat{\rho} = \frac{(T^2(1-\text{d}/2) + K^2)}{(T^2 - K^2)}.
\]

(eqn 2.10)

Theil and Nagar claim that this estimator is an improvement over Durbin-Watson if the first and second differences of the explanatory variables are small when compared to their corresponding ranges [Ref. 6]. Like Durbin-Watson, it also is a two-stage estimator.

c. Prais-Winsten

A minimum sum of squares approach to estimating \(\rho \) yields,

\[
\hat{\rho} = \frac{\sum_{t=1}^{T} \hat{e}_t \hat{e}_{t-1}}{\sum_{t=1}^{T} \hat{e}_t^2}, \quad t = 1, \ldots, T
\]

(eqn 2.11)

where \(\hat{e}_t = y_t - \hat{X}_t \hat{\beta} \).
This estimator can be employed in both a two step and an iterative procedure. This paper, however, considers only the following iterative form:

1. Set $\hat{p} = 0$.
2. Transform the variables in accordance with the transformation matrix and equation 2.7.
3. Calculate the least squares estimate of \hat{p} conditional on \hat{p}.
4. Calculate the estimate of p conditional on \hat{p} by using equation 2.11.
5. If the absolute difference in \hat{p} from the previous iteration is sufficiently small (less than 0.00001) stop. If not go to step 2. [Ref. 7:p. 2]

3. Maximum Likelihood Estimation

A maximum likelihood (ML) estimator is the value of θ which maximizes the value of the likelihood function $L(\theta)$. Under the assumption that Y has a multivariate normal distribution with mean $X\beta$ and covariance matrix $\sigma^2\Psi$, the likelihood function is

$$L(\beta, \rho, \sigma^2) = C - \frac{1}{2} \sigma^2 \ln((y-X\beta)'\Psi^{-1}(y-X\beta))$$

where $C = -(T/2) \ln \sigma^2 + (1/2) \ln (1-\rho^2)$.

The ML estimators for β, ρ, and σ^2 are those values for which,

$$\frac{\partial L}{\partial \beta} = 0, \quad \frac{\partial L}{\partial \rho} = 0, \quad \frac{\partial L}{\partial \sigma^2} = 0.$$

Solutions to equations 2.13 are very difficult to derive. Beach and MacKinnon [Ref. 8:p. 54] use an ML estimator for σ^2 and substitute into equation 2.12. The result is the concentrated likelihood function,

$$L(\beta, \rho) = K(T/2) \ln((y-X\beta)'\Psi^{-1}(y-X\beta)(1-\rho^2)^{1/T})$$

where $K = (T/2) \ln(T) - (T/2)$.

They suggest maximizing $L(\beta, \rho)$ with respect to β with ρ held constant and then to maximize with respect to ρ with β held constant. An algorithm to derive this ML estimate is
1. Set $\hat{\rho} = 0$.
2. Transform the variables in accordance with equation 2.7.
3. Calculate the least squares estimate of β conditional on $\hat{\rho}$.
4. Calculate the ML estimate of ρ conditional on $\hat{\beta}$ by solving a cubic equation of the untransformed residuals. (see [Ref. 8] for details)
5. If the absolute difference in $\hat{\rho}$ from the previous iteration is sufficiently small (less than 0.00001) stop. If not, go to step 2 [Ref. 7]. (Note: The same procedure was employed for iterative Prais-Winsten method except that equation 2.11 was used to estimate ρ.)

This is not a comprehensive listing of all available estimators for a first order process. Other estimators are listed in Judge [Ref. 4].
III. COMPARISON

A. GENERAL

The finite sampling properties of the estimators listed here have not been derived. Choice of which estimator to use might be based on evidence obtained from Monte Carlo simulations. This chapter explains a simulation used and provides a synopsis of comparisons reported in the literature.

B. PREVIOUS COMPARISONS

There have been a number of studies of estimators for ρ. Each has concluded that OLS has serious deficiencies in the presence of autocorrelation. The majority of these papers have settled on two points. First, particularly in small sample sizes ($T < 50$) it is best to use estimators that consider all T observations. Rao and Grilliches concluded that using estimators such as Cochrane-Orcutt that ignore the first observation can lead to a substantial loss of efficiency [Ref. 9:p. 269]. These results were further substantiated by Beach and MacKinnon. In an attempt to develop a computationally efficient algorithm to maximize the likelihood function they discovered (for $\rho = 0.6, 0.8, 0.99$) significant gains in efficiency to be made by employing the first observation. Some of these gains are in the neighborhood of 700 percent [Ref. 8:p. 55]. Park and Mitchell concluded that retention of this first observation substantially reduces the risk of collinearity as ρ approaches 0.9 [Ref. 5:p. 10]. Kobayashi verified theoretically the experimental results of Park and Mitchell. By computing the asymptotic variances of several estimators he demonstrated that the loss of efficiency of the Cochrane-Orcutt method was due primarily to ignoring the first observation. [Ref. 10:p. 951].

The second point is that the Prais-Winsten solution techniques outperform many comparable estimators of the correlation parameter. Spitzer concluded that Prais-Winsten “appeared to be the best of all the two stage estimators.” [Ref. 11:p. 44]. Park and Mitchell in a later study comparing Beach-MacKinnon with the iterative Prais-Winsten estimator concluded that the iterative Prais-Winsten performs “appreciably better in estimating the autocorrelation coefficient ρ” [Ref. 7:p. 5].
Although there were no studies found specifically comparing the four estimators presented here, each has demonstrated a superiority to OLS in the presence of a first order process.

C. MODEL AND DATA GENERATION

Equation 2.1 was utilized as the model with the first term in the vector \(e \) generated in the following fashion,

\[e_1 = v_1 / (1-p)^{1/2}. \] (eqn 3.1)

In order to conform with previous comparisons, the data utilized in this experiment is identical to that used in Beach and MacKinnon [Ref. 8]. Two sample sizes of 20 and 50 observations were used. The untrended explanatory variable, X, was drawn from \(N(0, 0.0625) \) and the random error, \(v_t \), was drawn from \(N(0, 0.0036) \). Although autocorrelation in theory may be positive or negative, in econometric data it is almost always positive [Ref. 1:p. 201]. For this reason \(p \) was varied from 0.2 to 0.9.

D. VALIDATION

The data generation program was checked to ensure the normality of \(e \) using the Chi Square Goodness of Fit test. The normality assumption was accepted at a 0.3684 level. Finally, in order to ensure each estimator performed properly the random portion of the model, specifically the random variable \(V \), was removed. This allowed the estimators to function in a deterministic fashion. Data were then generated and submitted to each estimator for values of \(p \) equal 0.2, 0.6, 0.8. The results are presented in Table 1, illustrate that the estimators are functioning properly.

E. SIMULATION

For each run the values of the regression coefficients, \(\beta_0 \) and \(\beta_1 \), were set to 1 and 1. The variables \(X_t \) and \(v_t \) were drawn from the normal distributions discussed earlier. The dependent variable \(y_t \) was calculated using equation 2.1. Since the ultimate objective was to generate residuals to send to the four estimation routines, a regression was then performed of \(y \) on \(X \) and residuals calculated using,

\[\hat{e}_t = y_t - x_t \hat{\beta} \quad t = 1, 2, ..., T. \] (eqn 3.2)
The values of the residuals were then sent to each estimation routine. Estimates of \(\beta \) and \(\rho \) were determined for values of \(\rho \) equal to .2, .3, .4, .5, .6, .7, .8, and .9. Each estimate was replicated 1000 times for the sample sizes of 20 and 50.

F. MEASURES OF EFFECTIVENESS

In order to compare the performances of the estimators, two MOE's were used. The mean square error (MSE) of \(\hat{\rho} \) was estimated for each estimator. This represents the expected squared error made in estimating \(\rho \). The following computational form of MSE was used,

\[
\frac{\sum_{i=1}^{1000} (\hat{\rho}_i - \rho)^2}{1000}
\]

(eqns 3.3)

The successive values of MSE of \(\hat{\rho} \) were then plotted against the actual \(\rho \) to examine performance over the range of \(\rho \).

The second MOE examined the relative efficiencies of the regression coefficient as defined in Ref. 7: p. 7. A ratio of MSE of \(\hat{\beta} \) for a particular estimate to the MSE of \(\hat{\beta} \)
for the OLS estimate allows the examination of the relative gains in using particular techniques over OLS. Since the proper estimation of $\hat{\beta}$ is paramount the efficiency of $\hat{\beta}$ is predetermined to be the most important MOE.
IV. RESULTS AND CONCLUSIONS

A. GENERAL

The major emphasis of this thesis was to examine the performance of four estimators of the autocorrelation coefficient, \(p \), for a first order autoregressive process. The estimators examined were Durbin-Watson, Theil-Nagar, Prais-Winsten, and Beach-MacKinnon.

A Monte-Carlo simulation was performed for the following values of \(p \): .2, .3, .4, .5, .6, .7, .8, and .9. Each run was replicated 1000 times for sample sizes of 20 and 50. The results are recorded in Table II. Irrespective of sample size, each of the methods underestimate the true value of \(p \) but as the number of observations is increased from 20 to 50 the bias reduces. As was expected, no one estimator uniformly outperforms the others. In both sample sizes, the two stage estimators (Durbin-Watson and Theil-Nagar) achieve better results for small \(p \). As the value of \(p \) increases, the iterative methods (Prais-Winsten and Beach-MacKinnon) perform best. With \(T = 20 \) this transition occurs at \(p = .6 \) while at 50 observations it occurs earlier at \(p = .4 \).

The discussion of the results will be divided into two sections. The measures of effectiveness, as defined in Chapter 3 will first be applied to the simulation results for \(T = 20 \). This will be followed by an identical approach when the sample size is increased to 50.

B. SAMPLE SIZE 20

Since performance of an estimator is roughly indicated by its mean and variance, mean square error (MSE) of each \(\hat{p} \) over the entire sample size was estimated. The results of these calculations are presented in Table III along with a plot of MSE of \(\hat{p} \) versus actual values of \(p \) in Figure 4.1. They again indicate that the Theil-Nagar and Durbin-Watson estimators are better for smaller values of \(p \) (\(p < .6 \)) and as \(p \) increases the Prais-Winsten \(p \) emerges as the best. On the basis of Figure 4.1 alone, Beach-MacKinnon's performance is clearly inferior. However, in examining the efficiency of each estimator in Table IV, Beach-MacKinnon proves to be the most efficient in estimating \(\hat{p} \) over the widest range of \(p \). The tie in Figure 4.1 between Theil-Nagar and Durbin-Watson is resolved in Table IV with Theil-Nagar proving to
<table>
<thead>
<tr>
<th>Sample Size 20</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>DW</td>
<td>TN</td>
<td>PW</td>
<td>BM</td>
</tr>
<tr>
<td>.2</td>
<td>.158</td>
<td>.162</td>
<td>.113</td>
<td>.107</td>
</tr>
<tr>
<td>.3</td>
<td>.234</td>
<td>.239</td>
<td>.205</td>
<td>.193</td>
</tr>
<tr>
<td>.4</td>
<td>.310</td>
<td>.316</td>
<td>.296</td>
<td>.279</td>
</tr>
<tr>
<td>.5</td>
<td>.385</td>
<td>.392</td>
<td>.387</td>
<td>.365</td>
</tr>
<tr>
<td>.6</td>
<td>.460</td>
<td>.467</td>
<td>.478</td>
<td>.450</td>
</tr>
<tr>
<td>.7</td>
<td>.533</td>
<td>.542</td>
<td>.567</td>
<td>.535</td>
</tr>
<tr>
<td>.8</td>
<td>.603</td>
<td>.613</td>
<td>.655</td>
<td>.617</td>
</tr>
<tr>
<td>.9</td>
<td>.667</td>
<td>.681</td>
<td>.741</td>
<td>.697</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample Size 50</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>DW</td>
<td>TN</td>
<td>PW</td>
<td>BM</td>
</tr>
<tr>
<td>.2</td>
<td>.173</td>
<td>.161</td>
<td>.170</td>
<td>.178</td>
</tr>
<tr>
<td>.3</td>
<td>.279</td>
<td>.253</td>
<td>.270</td>
<td>.270</td>
</tr>
<tr>
<td>.4</td>
<td>.360</td>
<td>.340</td>
<td>.360</td>
<td>.359</td>
</tr>
<tr>
<td>.5</td>
<td>.451</td>
<td>.432</td>
<td>.463</td>
<td>.453</td>
</tr>
<tr>
<td>.6</td>
<td>.544</td>
<td>.523</td>
<td>.559</td>
<td>.547</td>
</tr>
<tr>
<td>.7</td>
<td>.630</td>
<td>.610</td>
<td>.651</td>
<td>.640</td>
</tr>
<tr>
<td>.8</td>
<td>.726</td>
<td>.700</td>
<td>.747</td>
<td>.731</td>
</tr>
<tr>
<td>.9</td>
<td>.812</td>
<td>.796</td>
<td>.839</td>
<td>.820</td>
</tr>
</tbody>
</table>
be uniformly more efficient than Durbin-Watson. Table IV also demonstrates that for
\(\rho = .2 \) OLS is at least as efficient as three of the four estimators.

C. SAMPLE SIZE 50

The results of the MSE calculations for \(T = 50 \) are recorded in Table V along
with a plot of MSE of \(\rho \) versus the actual values of \(\rho \) in Figure 4.2. The
Durbin-Watson and Theil-Nagar estimators again perform the best for smaller values
of \(\rho (\rho < .4) \) and as \(\rho \) increases the Beach-McKinnon and Prais-Winsten estimators of
\(\rho \) contain the smallest MSE.

Once again even though the Prais-Winsten \(\rho \) has a smaller MSE than
Beach-McKinnon, Table VI illustrates that Beach-McKinnon is a uniformly more
efficient estimator of the slope coefficient. For the smaller values of \(\rho (\rho < .4) \)
Theil-Nagar is more efficient than Durbin-Watson. Table VI also illustrates that OLS
is at least as efficient as any of the other estimators when \(\rho \) is small.

D. SUMMARY

As was found in previous studies when autocorrelation is present only to a slight
degree (\(\rho < .2 \)) the OLS estimator provides an efficient estimate for the regression
coefficient, \(\beta \). As the process becomes more significant however, all the estimators
outperform the OLS solution. In both sample sizes the performance of Theil-Nagar
and Durbin-Watson are nearly identical with respect to the MSE of \(\rho \). However, when
efficiency of the slope coefficient estimate is examined, Theil-Nagar proves to be the
better 2 stage estimator. Park and Mitchell [Ref. 7:p. 4] found that Prais-Winsten
performs better in estimating \(\beta \). The results presented here tend to dispute that
finding. For while Prais-Winsten has a uniformly smaller MSE of \(\rho \),
Beach-MacKinnon provides the most efficient estimator of \(\beta \). Spitzer, on the other
hand [Ref. 11:p. 44], which ranked two stage estimators as being the best for values of
\(\rho \) between .2 and .5, mirrors the results produced here. Apriori knowledge of the
neighborhood of \(\rho \) will be helpful in selecting the appropriate estimation method. For
both sample sizes Theil-Nagar appears to be the best for small values of \(\rho \).
Beach-MacKinnon, while containing a larger bias for \(\rho \) than does Prais-Winsten, is a
much more efficient estimator of the slope coefficient for larger values of \(\rho \).
Figure 4.1 Estimated mean square error of p vs. ρ (sample size = 20).

TABLE III
DATA PRESENTED IN FIGURE 4.1

<table>
<thead>
<tr>
<th>Sample Size 20</th>
<th>(p)</th>
<th>MSEDW</th>
<th>MSETN</th>
<th>MEPW</th>
<th>MSEBM</th>
</tr>
</thead>
<tbody>
<tr>
<td>.2</td>
<td>.7494</td>
<td>.7485</td>
<td>.8557</td>
<td>.8594</td>
<td></td>
</tr>
<tr>
<td>.3</td>
<td>.6268</td>
<td>.6244</td>
<td>.7004</td>
<td>.7115</td>
<td></td>
</tr>
<tr>
<td>.4</td>
<td>.5156</td>
<td>.5124</td>
<td>.5621</td>
<td>.5787</td>
<td></td>
</tr>
<tr>
<td>.5</td>
<td>.4159</td>
<td>.4126</td>
<td>.4400</td>
<td>.4604</td>
<td></td>
</tr>
<tr>
<td>.6</td>
<td>.3278</td>
<td>.3250</td>
<td>.3342</td>
<td>.3566</td>
<td></td>
</tr>
<tr>
<td>.7</td>
<td>.2519</td>
<td>.2495</td>
<td>.2433</td>
<td>.2662</td>
<td></td>
</tr>
<tr>
<td>.8</td>
<td>.1891</td>
<td>.1860</td>
<td>.1698</td>
<td>.1916</td>
<td></td>
</tr>
<tr>
<td>.9</td>
<td>.1407</td>
<td>.1357</td>
<td>.1141</td>
<td>.1331</td>
<td></td>
</tr>
</tbody>
</table>

23
<table>
<thead>
<tr>
<th>ρ</th>
<th>MSEβ (DW)</th>
<th>MSEβ (TN)</th>
<th>MSEβ (PW)</th>
<th>MSEβ (BM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MSEβ (OLS)</td>
<td>MSEβ (OLS)</td>
<td>MSEβ (OLS)</td>
<td>MSEβ (OLS)</td>
</tr>
<tr>
<td>.2</td>
<td>1.004</td>
<td>.9794</td>
<td>1.035</td>
<td>1.041</td>
</tr>
<tr>
<td>.3</td>
<td>.9228</td>
<td>.8967</td>
<td>.9442</td>
<td>.9515</td>
</tr>
<tr>
<td>.4</td>
<td>.8218</td>
<td>.7929</td>
<td>.8325</td>
<td>.8342</td>
</tr>
<tr>
<td>.5</td>
<td>.7082</td>
<td>.6751</td>
<td>.7024</td>
<td>.6959</td>
</tr>
<tr>
<td>.6</td>
<td>.5864</td>
<td>.5484</td>
<td>.5652</td>
<td>.5515</td>
</tr>
<tr>
<td>.7</td>
<td>.4610</td>
<td>.4207</td>
<td>.4329</td>
<td>.4135</td>
</tr>
<tr>
<td>.8</td>
<td>.3359</td>
<td>.3020</td>
<td>.3093</td>
<td>.2870</td>
</tr>
<tr>
<td>.9</td>
<td>.2253</td>
<td>.2087</td>
<td>.2077</td>
<td>.1892</td>
</tr>
</tbody>
</table>
Figure 4.2 Estimated mean square error of $\hat{\rho}$ vs. ρ (sample size = 50).

<table>
<thead>
<tr>
<th>Sample Size 50</th>
<th>ρ</th>
<th>MSEDW</th>
<th>MSETN</th>
<th>MSEPW</th>
<th>MSEBM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.2</td>
<td>.7010</td>
<td>.6766</td>
<td>.7055</td>
<td>.7065</td>
</tr>
<tr>
<td></td>
<td>.3</td>
<td>.5500</td>
<td>.5399</td>
<td>.5653</td>
<td>.5578</td>
</tr>
<tr>
<td></td>
<td>.4</td>
<td>.4383</td>
<td>.4196</td>
<td>.4396</td>
<td>.5578</td>
</tr>
<tr>
<td></td>
<td>.5</td>
<td>.3298</td>
<td>.3151</td>
<td>.3056</td>
<td>.3156</td>
</tr>
<tr>
<td></td>
<td>.6</td>
<td>.2358</td>
<td>.2262</td>
<td>.2116</td>
<td>.2215</td>
</tr>
<tr>
<td></td>
<td>.7</td>
<td>.1578</td>
<td>.1526</td>
<td>.1357</td>
<td>.1449</td>
</tr>
<tr>
<td></td>
<td>.8</td>
<td>.0906</td>
<td>.0942</td>
<td>.0773</td>
<td>.0851</td>
</tr>
<tr>
<td></td>
<td>.9</td>
<td>.0500</td>
<td>.0509</td>
<td>.0360</td>
<td>.0417</td>
</tr>
<tr>
<td>(\rho)</td>
<td>MSE((\beta))(DW)</td>
<td>MSE((\beta))(TN)</td>
<td>MSE((\beta))(PW)</td>
<td>MSE((\beta))(BM)</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MSE((\beta))(OLS)</td>
<td>MSE((\beta))(OLS)</td>
<td>MSE((\beta))(OLS)</td>
<td>MSE((\beta))(OLS)</td>
<td></td>
</tr>
<tr>
<td>.2</td>
<td>1.073</td>
<td>1.041</td>
<td>1.046</td>
<td>1.058</td>
<td></td>
</tr>
<tr>
<td>.3</td>
<td>.9985</td>
<td>.9482</td>
<td>.9714</td>
<td>.9562</td>
<td></td>
</tr>
<tr>
<td>.4</td>
<td>.8850</td>
<td>.8255</td>
<td>.8635</td>
<td>.8255</td>
<td></td>
</tr>
<tr>
<td>.5</td>
<td>.7452</td>
<td>.6859</td>
<td>.7282</td>
<td>.6825</td>
<td></td>
</tr>
<tr>
<td>.6</td>
<td>.5920</td>
<td>.5420</td>
<td>.5870</td>
<td>.5406</td>
<td></td>
</tr>
<tr>
<td>.7</td>
<td>.4366</td>
<td>.4020</td>
<td>.4453</td>
<td>.4020</td>
<td></td>
</tr>
<tr>
<td>.8</td>
<td>.2889</td>
<td>.2690</td>
<td>.3067</td>
<td>.2700</td>
<td></td>
</tr>
<tr>
<td>.9</td>
<td>.1589</td>
<td>.1505</td>
<td>.1738</td>
<td>.1505</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX
PROGRAM LISTINGS

This appendix contains listings of the programs utilized in the analysis performed herein. All of the functions are written in FORTRAN and contain the necessary documentation. The Monte Carlo simulation was performed using the Advanced Simulation and Statistics Package [Ref. 12] developed by P. A. Lewis. Since the package only allows for the simultaneous comparison of 3 estimators, 2 functions were developed for each sample size. The first, SIMS generates estimates for Durbin-Watson, Theil-Nagar, and Prais-Winsten for a sample size of 20. SIMSA meanwhile, generates estimates for Beach-MacKinnon for the identical sample size. Routines for Durbin-Watson and Theil-Nagar were included in SIMSA to ensure the results were comparable to SIMS. SIMSB and SIMSC perform in a similar fashion for sample size of 50 and therefore were not included. The Advanced Simulation and Statistics Package computes the mean square error of $\hat{\beta}$ for each estimator automatically. The mean square error for the β estimates was accomplished by the MSEB function.

SIMS

```
DIMENSION EHAT(20)
COMMON /MYDATA/ K,T,ANS,Y1,X
COMMON /DATA1/ IX1A,RHO
REAL*4 Y(5000),YMIN,YMAX,PMEAN(3)
CHARACTER*80 T1,T2,T3
INTEGER N,M,NE(8),L,D,SEI,SVS,NEST,NSR,IX1,IX2,IX3
EXTERNAL DATGEN, DURWAT, BEAMAC, PRAWIN, LSEB, DCALC, TRANSF
EXTERNAL LNORM,SIMTBD,GMPRD
NR=20
T=20
K=2
```

C

C
C
OPEN (UNIT=19, FILE='MONICA')
C
OPEN (UNIT=21, FILE='MARGE')
C
OPEN (UNIT=51, FILE='AMBROSE')
C
OPEN (UNIT=41, FILE='DAT2')
OPEN (UNIT=61, FILE='DAT3')
READ (19, *) ANS
10 READ(19, *, END=999) N, M, L, D, RG, SEI, SVS, NEST, NSR
READ(19, *) YMIN, YMAX
READ(19, *) (NE(I), I=1, L)
READ(19, 120) IX1, IX2, IX3
120 FORMAT(I5, 1X, I5, 1X, I5)
READ (19, 115) T1
115 FORMAT(A80)
READ (19, 115) T2
READ (19, 115) T3
READ (19, *) (PMEAN(I), I=1, 3)
READ (19, *) RHO
READ (19, 61) IX1A
61 FORMAT(I5)
C
C
CALL FOR SIMTBD
C
CALL SIMTBD (IX1, IX2, IX3, Y, N, M, NE, L, D, NSR, RG, SEI, SVS,
* YMIN, YMAX, NEST, DATGEN, DURWAT, T1, DATGEN, BEAMAC, T2, DATGEN, PRAWIN, T3,
* PMEAN)
GO TO 10
999 WRITE(6, *) 'END OF DATA INPUT'
STOP
END
C
**
C
************ DATA GENERATION SUBROUTINE ************
C
**
C
SUBROUTINE DATGEN (IX1, EHAT, NR)
DIMENSION BHAT(2), YSTAR(20), R2(20), U(20),
*E(20),YHAT(20),EHAT(20),XSTAR(20,2)
*,Y1(20),X(20,2),V(20)
COMMON /MYDATA/ K,T,ANS,Y1,X
COMMON /DATA1/ IX1A,RHO
INTEGER IX1,IX1A,NR

C
C GENERATE THE RANDOM ERROR
C
CALL SNOR (IX1,U,NR,1,0)

C ADJUST THE VARIANCE OF R. E. IAW BEACH AND MACKINNON(1978)
DO 38 I=1,T
 V(I)=U(I)*.06
38 CONTINUE

C GENERATE THE ERROR FOR THE STAND LINEAR MODEL
C
 E(1)=V(1)/(1-(RHO**2))**0.5
 DO 31 J=2,T
 E(J)=RHO*E(J-1)+V(J)
31 CONTINUE

C GENERATE THE EXPLANATORY VARIABLES IAW RAO AND GRILITCHES (1969)
C
 DO 32 I=1,20
 X(I,1)=1
32 CONTINUE

C CHANGE IX1 IN ORDER TO AVOID COLLINEARITY
C
IX1A=IX1+19
 CALL SNOR(IX1A,R2,NR,1,0)
 DO 33 J=1,20
 X(J,2)=R2(J)*.25
33 CONTINUE
THE TRUE BETA EQUALS 1,1

GENERATE THE INDEPENDENT VARIABLE

DO 35 I=1,20
 \textbf{Y1}(I)=((X(I,1)+X(I,2))+E(I)
35 CONTINUE

GENERATE THE LEAST SQUARES ESTIMATOR FOR BETA

CALL LSEB(X,Y1,BHAT)

PRINT LSEB TO A FILE
 \textbf{IF(ANS .EQ. 2) WRITE(61,201)BHAT}
201 FORMAT(F11.8,2X,F11.8)

GENERATE YHAT

DO 100 I=1,20
 \textbf{YHAT}(I)=X(I,1)*BHAT(1)+X(I,2)*BHAT(2)
100 CONTINUE

GENERATE EHAT

DO 50 I=1,20
 \textbf{EHAT}(I)=Y1(I)-YHAT(I)
50 CONTINUE

RETURN
END

*************************** DURBIN WATSON ***************************
C THIS FUNCTION COMPUTES THE DURBIN-WATSON ESTIMATE OF RHO
REAL FUNCTION DURWAT (EHAT,NR,WI)
DIMENSION EHAT(20),X(20,2),Y1(20),XSTAR1(20,2),YSTAR1(20),BHAT1(2)
COMMON /MYDATA/ K,T,ANS,Y1,X
CALL DCALC (EHAT,T,D)
DURWAT=1-D/2
C
CALL TRANSF(X,Y1,DURWAT,XSTAR1,YSTAR1)
CALL LSEB (XSTAR1,YSTAR1,BHAT1)
IF (ANS .EQ. 1) WRITE(21,701) BHAT1
701 FORMAT(F11.8,2X,F11.8)
C
RETURN
END
C
C
C ********************* THEIL NAGAR *********************
C THIS FUNCTION COMPUTES THE THEIL-NAGAR ESTIMATE OF RHO
C REAL FUNCTION THENAG (EHAT,NR,WI)
C DIMENSION EHAT(20),YSTAR2(20),XSTAR2(20,2),BHAT2(2)
*,Y1(20),X(20,2)
COMMON /MYDATA/ K,T,ANS,Y1,X
CALL DCALC (EHAT,T,D)
THENAG=((T**2)*(1-D/2)+K**2)/(T**2-K**2)
CALL TRANSF(X,Y1,THENAG,XSTAR2,YSTAR2)
CALL LSEB (XSTAR2,YSTAR2,BHAT2)
IF (ANS .EQ. 1) WRITE(31,801) BHAT2
801 FORMAT(F11.8,2X,F11.8)
RETURN
END
C
C ********************* PRAIS WINSTEN *********************
C THIS FUNCTION COMPUTES THE PRAIS-WINSTEN ESTIMATE OF RHO
REAL FUNCTION PRAWIN(EHAT,NR,WI)
DIMENSION EHAT3(20), YHAT3(20), YSTAR3(20), BHAT3(2),
*EHAT(20), XSTAR3(20,2)
*, Y1(20), X(20,2)
COMMON /MYDATA/ K, T, ANS, Y1, X
N=0
RHO3=0

N=N+1
CALL TRANSF (X, Y1, RHO3, XSTAR3, YSTAR3)
CALL LSEB (XSTAR3, YSTAR3, BHAT3)

C GENERATE YHAT3
DO 83 I=1, 20
 YHAT3(I)=X(I,1)*BHAT3(1)+X(I,2)*BHAT3(2)
83 CONTINUE

C
DO 4 I=1, T
 EHAT3(I)=Y1(I)-YHAT3(I)
4 CONTINUE

C
RHONUM=0
RHODEN=0
DO 5 I=2, T
 RHONUM=RHONUM+(EHAT3(I)*EHAT3(I-1))
5 CONTINUE

C
DO 6 I=2, T-1
 RHODEN=RHODEN+(EHAT3(I)**2)
6 CONTINUE

PRAWIN=RHONUM/RHODEN

C CHECK FOR PRAWIN WHICH ARE OUT OF BOUNDS
IF(PRAWIN.GE.1)THEN
 PRAWIN=0.99999
ELSE IF (PRAWIN.LE.-1)THEN
 PRAWIN=-0.99999
END IF

C COMPARISION OF RHO3 AND PRAWIN IF DIFF .LT. 0.0001 THEN END
IF(ABS(RHO3-PRAWIN).GT.0.0001)THEN
RH03=PRAWIN
GO TO 98
ELSE
 PRAWIN=PRAWIN
END IF
C IF (ANS .EQ. 1) WRITE(41,901) B Hat3
C01 FORMAT(F11.8,2X,F11.8)
RETURN
END

C THE FOLLOWING SUBROUTINES AID IN THE COMPUTATION OF THE FOUR
C ESTIMATORS OF RHO.
C
C *************** SUBROUTINE LSEB ****************************
C SUBROUTINE LSEB WILL COMPUTE THE LSE OF B
C
SUBROUTINE LSEB(X,Y1,BHAT)
DIMENSION BHAT(2),Y1(20),X(20,2),XTRNSP(2,20),XI(2,2),H(2,20),
*XPRIX(2,2)
C X TRANSPOSE
DO 40 I=1,20
 DO 41 J=1,2
 XTRNSP(J,I)=X(I,J)
41 CONTINUE
40 CONTINUE
C MULTIPLY X TRANSPOSE AND X
CALL GMPRD(XTRNSP,X,XPRIX,2,20,2)
C CALCULATE INVERSE OF X PRIME X
DET R=1/(XPRIX(1,1)*XPRIX(2,2)-XPRIX(1,2)*XPRIX(2,1))
XI(1,1)=DET R*XPRIX(2,2)
XI(1,2)=DET R*(-XPRIX(1,2))
XI(2,1)=DET R*(-XPRIX(2,1))
XI(2,2)=DET R*XPRIX(1,1)
C MULTIPLY INVERSE AND TRANSPOSE
CALL GMPRD(XI,XTRNSP,H,2,2,20)
DO 99 I=1,2
99 CONTINUE

CONTINUE
RETURN
END

C *************** SUBROUTINE DCALC ***********************
C SUBROUTINE DCALC WILL COMPUTE THE DURBIN STATISTIC D
C
SUBROUTINE DCALC(EHAT, T, D)
DIMENSION D1(20), D2(20), EHAT(20)
DNUM = 0
DDEN = 0
DO 1 I = 2, T
 D1(I-1) = (EHAT(I) - EHAT(I-1))**2
 DNUM = DNUM + D1(I-1)
1 CONTINUE
DO 2 J = 1, T
 D2(J) = EHAT(J)**2
 DDEN = DDEN + D2(J)
2 CONTINUE
D = DNUM / DDEN
RETURN
END

C *************** SUBROUTINE TRANSF ***********************
C
SUBROUTINE TRANSF(X, Y, RHOHAT, XSTAR, YSTAR)

34
DIMENSION Y1(20), YSTAR(20), X(20,2), XSTAR(20,2)
K=2
T=20

C Y TRANSFORM
YSTAR(1) = ((1-(RHOHAT**2))**0.5)*Y1(I)
DO 7 I=2,20
 YSTAR(I) = Y1(I) - (RHOHAT*Y1(I-1))
7 CONTINUE

C X TRANSFORM
XSTAR(1,1) = (1-(RHOHAT**2))**0.5
DO 9 J=2,K
 XSTAR(1,J) = ((1-(RHOHAT**2))**0.5)*X(1,J)
9 CONTINUE

DO 11 L=2,T
 XSTAR(L,1) = 1-RHOHAT
11 CONTINUE

DO 12 I=2,T
 DO 13 J=2,K
 XSTAR(I,J) = X(I,J) - RHOHAT*X(I-1,J)
13 CONTINUE

12 CONTINUE
RETURN
END
THE PURPOSE OF THIS PROGRAM IS TO RUN COMPUTE THE FOLLOWING

ESTIMATORS (DW TN BM) FOR A SAMPLE SIZE OF 20

DIMENSION EHAT(20)
COMMON /MYDATA/ K,T,ANS,Y1,X
COMMON /DATA1/ IX1A,RHO
REAL*4 Y(5000),YMIN,YMAX,PMEAN(3)
CHARACTER*80 T1,T2,T3
INTEGER N,M,NE(8),L,D,RG,SEI,SVS,NEST,NSR,IX1,IX2,IX3
EXTERNAL DATGEN, DURWAT, THENAG, BEAMAC, LSEB, DCALC, TRANSF
EXTERNAL LNORM, SIMTBD, GMPRO
NR=20
T=20
K=2

OPEN (UNIT=19,FILE='MONICA')
OPEN (UNIT=51,FILE='AMBROSE')
READ (19,*) ANS
10 READ(19,*,END=999) N,M,L,D,RG,SEI,SVS,NEST,NSR
READ(19,*)YMIN,YMAX
READ(19,*) (NE(I),I=1,L)
WRITE (22,105) (NE(I),I=1,L)
105 FORMAT(8I4)
READ(19,120) IX1,IX2,IX3
120 FORMAT(I5,1X,I5,1X,I5)
READ (19,115) T1
115 FORMAT(A80)
READ(19,115) T2
READ (19,115) T3
READ(19,*) (PMEAN(I),I=1,3)
READ(19,*) RHO
READ(19,61) IX1A
61 FORMAT(I5)
CALL FOR SIMTBD

CALL SIMTBD (IX1,IX2,IX3,Y,N,M,NE,L,D,NSR,RG,SEI,SVS,
*YMIN,YMAX,NEST,DATGEN,DURWAT,T1,DATGEN,THENAG,T2,DATGEN,BEAMAC,T3,
*PMEAN)
GO TO 10

999 WRITE(6,*)'END OF DATA INPUT'
STOP
END

**

******** DATA GENERATION SUBROUTINE ********

**

SUBROUTINE DATGEN (IX1,EHAT,NR)
DIMENSION BHAT(2),YSTAR(20),R2(20),U(20),
*E(20),YHAT(20),EHAT(20),XSTAR(20,2)
*,Y1(20),X(20,2)
COMMON /MYDATA/ K,T,ANS,Y1,X
COMMON /DATA1/ IX1A,RHO
INTEGER IX1,IX1A,NR

C

C GENERATE THE RANDOM ERROR

C

CALL SNOR (IX1,U,NR,1,0)

C

C GENERATE THE ERROR FOR THE STAND LINEAR MODEL

C

E(1)=U(1)/(1-(RHO**2))**0.5
DO 31 J=2,20
 E(J)=RHO*E(J-1)+U(J)
31 CONTINUE

C
C GENERATE THE EXPLANATORY VARIABLES IAW RAO AND GRILITCHES (1969)

DO 32 I=1,20
 X(I,1)=1
32 CONTINUE

CHANGE IX1 IN ORDER TO AVOID COLLINEARITY
IX1A=IX1+19
 CALL SNOR(IX1A,R2,NR,1,0)
 DO 33 J=1,20
 X(J,2)=R2(J)*.25
33 CONTINUE

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
DO 50 I=1,20
 EHAT(I)=Y1(I)-YHAT(I)
50 CONTINUE
C
C
RETURN
END
C
*********** DURBIN WATSON ***********
C
REAL FUNCTION DURWAT (EHAT,NR,WI)
DIMENSION EHAT(20),X(20,2),Y1(20),XSTAR1(20,2),YSTAR1(20),BHAT1(2)
COMMON /MYDATA/ K,T,ANS,Y1,X
CALL DCALC (EHAT,T,D)
DURWAT=1-D/2
CALL TRANSF(X,Y1,DURWAT,XSTAR1,YSTAR1)
CALL LSEB (XSTAR1,YSTAR1,BHAT1)
C
C
RETURN
END
C
C
*********** THEIL NAGAR ***********
C
REAL FUNCTION THENAG (EHAT,NR,WI)
DIMENSION EHAT(20),YSTAR2(20),XSTAR2(20,2),BHAT2(2)
*,Y1(20),X(20,2)
COMMON /MYDATA/ K,T,ANS,Y1,X
CALL DCALC (EHAT,T,D)
THENAG=((T**2)*(1-D/2)+K**2)/(T**2-K**2)
RETURN
END
C
C
*********** BEACH MACKINNON ***********
REAL FUNCTION BEAMAC(EHAT, NR, WI)
DIMENSION EHAT4(20), YHAT4(20), YSTAR4(20), BHAT4(2), *YI(20), EHAT(20), X(20, 2), XSTAR4(20, 2)
COMMON /MYDATA/ K, T, ANS, Y1, X
N = 0
RHO4 = 0
N = N + 1
CALL TRANSF (X, Y1, RHO4, XSTAR4, YSTAR4)
CALL LSEB (XSTAR4, YSTAR4, BHAT4)
C
BHAT4(1) = 1.0
C
BHAT4(2) = 1.0
C
GENERATE YHAT4
DO 83 I = 1, 20
 YHAT4(I) = X(I, 1) * BHAT4(1) + X(I, 2) * BHAT4(2)
83 CONTINUE
DO 4 I = 1, T
 EHAT4(I) = Y1(I) - YHAT4(I)
4 CONTINUE
SUM3 = 0
SUM2 = 0
SUM1 = 0
DO 71 I = 2, T
 SUM1 = SUM1 + (EHAT4(I) * EHAT4(I - 1))
71 CONTINUE
C
DO 72 I = 2, T
 SUM2 = SUM2 + (EHAT4(I - 1) ** 2)
72 CONTINUE
C
DO 73 I = 2, T
 SUM3 = SUM3 + (EHAT4(I) ** 2)
73 CONTINUE
C
DENOM = (T - 1) * (SUM2 - (EHAT4(1) ** 2))
A = \frac{-(T-2) \cdot \text{SUM1}}{\text{DENOM}}

B = \frac{(T-1) \cdot \left(EHAT4(1)**2\right) - (T \cdot \text{SUM2}) - \text{SUM3}}{\text{DENOM}}

C = \frac{T \cdot \text{SUM1}}{\text{DENOM}}

SMALP = B - \frac{(A**2)}{3}

SMALQ = C - \frac{(A*\text{B})}{3} + \frac{(2*(A**3))}{27}

THETA = \cos\left(\frac{\sqrt{27} \cdot (\text{SMALP} \cdot (-\text{SMALP})^{0.5})}{2 \cdot \text{SMALP} \cdot (-\text{SMALP})^{0.5}}\right)

BEAMAC IS THE ITERATIVE RHO FOR THIS PROCEDURE

BEAMAC = \frac{(-2 \cdot (-\text{SMALP}^{0.5}) \cdot \cos\left((\text{THETA}/3) + (3.1412/3)\right)) - (A/3)}{3}

CHECK FOR BEAMAC WHICH ARE OUT OF BOUNDS

IF (BEAMAC \geq 1) THEN
 BEAMAC = 0.99999
ELSE IF (BEAMAC \leq -1) THEN
 BEAMAC = -0.99999
END IF

COMPARISON OF RHO4 AND BEAMAC IF DIFF. LT. 0.0001 THEN END

IF (ABS(RHO4 - BEAMAC) \gt .0001) THEN
 RHO4 = BEAMAC
 GO TO 98
ELSE
 BEAMAC = BEAMAC
END IF

IF (ANS \neq 2) WRITE (51,901) BEAMAC

901 FORMAT(F15.11)

RETURN

END

THE FOLLOWING SUBROUTINES AID IN THE COMPUTATION OF THE FOUR ESTIMATORS OF RHO.
SUBROUTINE LSEB

SUBROUTINE LSEB(X,Y1,BHAT)
DIMENSION BHAT(2),Y1(20),X(20,2),XTRNSP(2,20),XI(2,2),H(2,20),
*XPRIX(2,2)

X TRANSPOSE
DO 40 I=1,20
 DO 41 J=1,2
 XTRNSP(J,I)=X(I,J)
 CONTINUE
41 CONTINUE
40 CONTINUE

MULTIPLY X TRANSPOSE AND X
CALL GMPRD(XTRNSP,X,XPRIX,2,20,2)

CALCULATE INVERSE OF X PRIME X
DETR=1/(XPRIX(1,1)*XPRIX(2,2)-XPRIX(1,2)*XPRIX(2,1))
XI(1,1)=DETR*XPRIX(2,2)
XI(1,2)=DETR*(-XPRIX(1,2))
XI(2,1)=DETR*(-XPRIX(2,1))
XI(2,2)=DETR*XPRIX(1,1)

MULTIPLY INVERSE AND TRANSPOSE
CALL GMPRD(XI,XTRNSP,H,2,2,20)
DO 99 I=1,2
 BHAT(I)=H(I,1)*Y1(1)+H(I,2)*Y1(2)+H(I,3)*Y1(3)
 *+H(I,4)*Y1(4)+H(I,5)*Y1(5)
 *+H(I,6)*Y1(6)+H(I,7)*Y1(7)+H(I,8)*Y1(8)+H(I,9)*Y1(9)
 *+H(I,10)*Y1(10)+
 *+H(I,15)*Y1(15)+
 *H(I,20)*Y1(20)
99 CONTINUE
RETURN
END

SUBROUTINE DCALC
SUBROUTINE DCALC WILL COMPUTE THE DURBIN STATISTIC D

SUBROUTINE DCALC(EHAT,T,D)
DIMENSION D1(20),D2(20),EHAT(20)
DNUM=0
DDEN=0
DO 1 I=2,T
 D1(I-1)=(EHAT(I)-EHAT(I-1))**2
 DNUM=DNUM+D1(I-1)
1 CONTINUE
DO 2 J=1,T
 D2(J)=EHAT(J)**2
 DDEN=DDEN+D2(J)
2 CONTINUE
D=DNUM/DDEN
RETURN
END

SUBROUTINE TRANSF IS DESIGNED TO TRANSFORM THE X'S AND Y'S ACCORDING TO THE LEAST SQUARES RULE.
SUBROUTINE TRANSF(X,Y1,RHOHAT,XSTAR,YSTAR)
DIMENSION Y1(20),YSTAR(20),X(20,2),XSTAR(20,2)
K=2
T=20
Y TRANSFORM
 YSTAR(1)=((1-(RHOHAT**2))**0.5)*Y1(1)
DO 7 I=2,20
 YSTAR(I)=Y1(I)-(RHOHAT*Y1(I-1))
7 CONTINUE
X TRANSFORM
 XSTAR(1,1)=(1-(RHOHAT**2))**0.5
DO 9 J=2,K
 XSTAR(1,J)=((1-(RHOHAT**2))**0.5)*X(1,J)
9 CONTINUE
9 CONTINUE
 DO 11 L=2,T
 XSTAR(L,1)=1-RHOHAT
 11 CONTINUE
 DO 12 I=2,T
 DO 13 J=2,K
 XSTAR(I,J)=X(I,J)-RHOHAT*X(I-1,J)
 13 CONTINUE
 12 CONTINUE
 RETURN
END
MSEB

C THIS PROGRAM IS DESIGNED TO CALCULATE THE MEAN SQUARE ERROR OF
C THE BETA VECTOR
DIMENSION B1(5000),B2(5000),B3(5000),B4(5000),B5(5000),B6(5000),
*B7(5000),B8(5000),B9(5000),B10(5000),BX(5000),BY(5000)
OPEN (UNIT=21,FILE='DAT1')
OPEN (UNIT=31,FILE='DAT2')
OPEN (UNIT=41,FILE='DAT3')
OPEN (UNIT=51,FILE='DAT4')
OPEN (UNIT=61,FILE='DAT5')

C COUNT=1000
READ(21,900)(B1(I),B2(I), I=1,1000)
CALL MSEBET (B1,B2,COUNT,XMSEDW)
READ(31,900)(B3(I),B4(I), I=1,1000)
CALL MSEBET (B3,B4,COUNT,XMSETN)
READ(41,900)(B5(I),B6(I), I=1,1000)
CALL MSEBET (B5,B6,COUNT,XMSEPW)
READ(51,900)(B7(I),B8(I), I=1,1000)
CALL MSEBET (B7,B8,COUNT,XMSEBM)
READ(61,900)(B9(I),B10(I), I=1,1000)
CALL MSEBET (B9,B10,COUNT,XMSEOLS)

900 FORMAT (F11.8,2X,F11.8)
WRITE(6,*)'MSEDW'
WRITE(6,*)XMSEDW

C
WRITE(6,*)'MSETN'
WRITE(6,*)XMSETN

C
WRITE(6,*)'MSEPW'
WRITE(6,*)XMSEPW

C
WRITE(6,*)'MSEBM'
WRITE(6,*)XMSEBM

C
WRITE(6,*)'MSELS'
WRITE(6,*)XMSELS
STOP
END

C **********SUBROUTINE MSEBET **********
C
SUBROUTINE MSEBET(BX,BY,AN,XMSEB)
DIMENSION BX(5000),BY(5000),SUM(5000)
PLACE=0
DO 901 I=1,AN
SUM(I)=((BX(I)-1)*(BY(I)-1))**2
PLACE=PLACE + SUM(I)
901 CONTINUE
XMSEB=PLACE/AN
RETURN
END
LIST OF REFERENCES

<table>
<thead>
<tr>
<th>No.</th>
<th>Name and Address</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Defense Technical Information Center, Cameron Station, Alexandria, Virginia 22304-6145</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Library, Code 0142, Naval Postgraduate School, Monterey, California 93943-5002</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>Professor D. C. Boger, Code 55Bo, Department of Administrative Sciences, Monterey, California 93943</td>
<td>2</td>
</tr>
<tr>
<td>4.</td>
<td>Professor D. R. Barr, Code 55BN, Department of Operations Research, Monterey, California 93943</td>
<td>1</td>
</tr>
<tr>
<td>5.</td>
<td>LT Joseph A. Horn Jr. USN, 226 W. Pine St., Audubon, New Jersey 08106</td>
<td>2</td>
</tr>
</tbody>
</table>
END

2-8-1

DTC