FAA Helicopter/Heliport Research, Engineering, and Development
Bibliography, 1964–1986

Robert D. Smith
Federal Aviation Administration
Program Engineering and
Maintenance Service
Washington, D.C. 20591

November 1986

Bibliography

This document is available to the public
through the National Technical Information
Service, Springfield, Virginia 22161
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
This report is a bibliography of FAA helicopter and heliport related documents published in the 1964-1986 time period. The list is limited to documents in which the research, engineering, and development elements of the FAA were involved as sponsors, participants, or authors.
TABLE OF CONTENTS

1. Introduction .. 1
2. Scope ... 1
3. Availability .. 1
4. Order of Listing .. 1

Appendix A: Bibliography 3
Appendix B: Subject Index 11
Appendix C: Author Index 21
Appendix D: Acronyms .. 31
Appendix E: Abstracts .. 33
1. INTRODUCTION. This report has been assembled as an aid for those who are interested in helicopter/heliport research, engineering, and development. This includes those within the Federal Aviation Administration (FAA), those in industry, and those in state and local governments.

2. SCOPE. In selecting documents to be included in this report, two limitations have been observed. First, the documents are specifically related, in whole or in part, to helicopter operations. Second, they are limited to documents in which the research, engineering, and development elements (i.e., the ADL Complex) of the FAA have been involved as sponsors, participants, or authors. Citations include abstracts. Author and subject indexes are provided.

3. AVAILABILITY OF DOCUMENTS. The documents listed in the report are readily available from three sources:

 a. National Technical Information Service (NTIS). Many of the documents listed in this report are available thru NTIS. These documents can be identified via the statement in block 18 of the technical report documentation page (Form DOT F 1700.7) given in Appendix E. For those reports available from NTIS, the accession number is given in block 2 of the technical report documentation page. In ordering a document from NTIS, the accession number should be used. The cost is dependent on the number of pages in the document (see Table 1).

 b. American Helicopter Society (AHS). Copies of virtually all of the documents listed in this report have been given to AHS. Both AHS members and nonmembers may obtain copies of reports for a small fee.

 c. Helicopter Association International (HAI). Copies of virtually all of the documents listed in this report have been given to HAI. HAI members may obtain copies of reports for a small fee.

4. ORDER OF THE LISTING. In the bibliographic listing, documents are listed in order of the year in which they were published. Within the year of publication, documents are listed sequentially according to report number. Some documents do not include the year of publication as part of report number. Such a document is listed after other documents published in the same year. (e.g., NAE-AN-26, published in 1985, is listed after the other reports published in 1985.)
Table 1.

NTIS PRICE SCHEDULES

Schedule A
STANDARD PRICE DOCUMENTS
AND MICROFICHE

<table>
<thead>
<tr>
<th>PAGE RANGE</th>
<th>NORTH AMERICAN PRICE</th>
<th>FOREIGN PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microfiche</td>
<td>$ 5.95</td>
<td>$11.90</td>
</tr>
<tr>
<td>001-050</td>
<td>9.95</td>
<td>19.90</td>
</tr>
<tr>
<td>051-100</td>
<td>11.95</td>
<td>23.90</td>
</tr>
<tr>
<td>101-200</td>
<td>16.95</td>
<td>33.90</td>
</tr>
<tr>
<td>201-300</td>
<td>22.95</td>
<td>45.90</td>
</tr>
<tr>
<td>301-400</td>
<td>28.95</td>
<td>57.90</td>
</tr>
<tr>
<td>401-500</td>
<td>34.95</td>
<td>69.90</td>
</tr>
<tr>
<td>501-600</td>
<td>40.95</td>
<td>81.90</td>
</tr>
<tr>
<td>601-up</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

*Contact NTIS for price quote.

IMPORTANT NOTICE

NTIS Shipping and Handling Charges (effective June 1, 1985)
U.S., Canada, Mexico — ADD $3.00 per TOTAL ORDER
All Other Countries — ADD $4.00 per TOTAL ORDER

Exceptions — Does NOT apply to:
ORDERS REQUESTING NTIS RUSH HANDLING
ORDERS FOR SUBSCRIPTION OR STANDING ORDER PRODUCTS ONLY

NOTE: Each additional delivery address on an order requires a separate shipping and handling charge.
APPENDIX A: BIBLIOGRAPHY

RD-64-4 State-of-the-Art Survey for Minimum Approach, Landing and Takeoff Intervals as Dictated by Wakes, Vortices, and Weather Phenomena (W.J. Bennett)

RD-64-55 Analytical Determination of the Velocity Fields in the Wakes of Specified Aircraft (W.J. Bennett)

NA-67-1 An Analysis of the Helicopter Height Velocity Diagram including a Practical Method for its Determination (William J. Hanley, Gilbert Devore)

DS-67-23 VIOL and STOL Simulation Study (Robert C. Conway)

NA-68-21 Flight Test and Evaluation of Heliport Lighting for VFR (Richard L. Sulzer, Thomas H. Paprocki)

RD-68-61 Evaluation of LORAN-C/D Airborne Systems (George H. Quinn)

FAA-RD-70-10 Analytical Study of the Adequacy of VOR/DME and DME/DME Guidance Signals for V/STOL Area Navigation in the Los Angeles Area (Bernhart V. Dinerman)

FAA-RD-71-105 Heliport Beacon Design, Construction, and Testing (Fred Walter)

FAA-RD-72-133 Flight Test and Evaluation of Heliport Lighting for IFR (Thomas H. Paprocki)

FAA-RD-73-145 V/STOL Noise Prediction and Reduction (Wiley A. Guinn, Dennis F. Blakney, John S. Gibson)

FAA-RD-75-79 A Comprehensive Review of Helicopter Noise Literature (B. Maqiozzi, F.B. Metzger, W. Bausch, R.J. King)

FAA-RD-75-94 Wind and Turbulence Information for Vertical and Short Take-Off and Landing (V/STOL) Operations in Built-Up Urban Areas-Results of Meteorological Survey (J.V. Ramsdell)
<table>
<thead>
<tr>
<th>Document ID</th>
<th>Title</th>
<th>Authors/Contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAA-RD-75-190</td>
<td>Noise Certification Criteria and Implementation Considerations for V/STOL Aircraft</td>
<td>MAN-Acoustics and Noise, Inc.</td>
</tr>
<tr>
<td>FAA-RD-76-1</td>
<td>Human Response to Sound: The Calculation of Perceived Level, PLdB (Noisiness or Loudness) Directly From Physical Measures</td>
<td>Thomas H. Higgins</td>
</tr>
<tr>
<td>FAA-RD-76-49</td>
<td>V/STOL Rotary Propulsion Systems - Noise Prediction and Reduction</td>
<td>B. Magliozzi</td>
</tr>
<tr>
<td></td>
<td>Vol-II Graphical Prediction Methods</td>
<td></td>
</tr>
<tr>
<td>FAA-RD-76-116</td>
<td>Noise Certification Considerations for Helicopters Based on Laboratory Measurements</td>
<td>MAN-Acoustics and Noise</td>
</tr>
<tr>
<td>FAA-RD-76-146</td>
<td>A Comparison of Air Radio Navigation Systems</td>
<td>George H. Quinn</td>
</tr>
<tr>
<td></td>
<td>Vol-II Helicopter Models: Bell 212 (UH-1N), Sikorsky S-6L (SH-3A), Sikorsky S-64 "Skycrane" CH-54B, Boeing Vertol "Chinook" (CH-47C)</td>
<td></td>
</tr>
<tr>
<td>FAA-RD-77-94</td>
<td>Noise Characteristics of Eight Helicopters</td>
<td>Harold C. True, E.J. Rickley</td>
</tr>
<tr>
<td>FAA-RD-77-100</td>
<td>Study to Improve Turbine Engine Rotor Blade Containment</td>
<td>K.F. Heermann, R.H. Eriksson, K.R. McClure</td>
</tr>
<tr>
<td>NA-78-55-LR</td>
<td>Limited Test of LORAN-C and Omega for Helicopter Operations</td>
<td>Robert H. Pursel</td>
</tr>
<tr>
<td>FAA-RD-78-101</td>
<td>Helicopter Operations Development Plan</td>
<td></td>
</tr>
<tr>
<td>FAA-RD-78-143</td>
<td>Aircraft Wake Vortex Takeoff Tests at Toronto International Airport</td>
<td>Thomas Sullivan, James Hallock, Bert Winston, Ian McWilliams, David C. Burnham</td>
</tr>
<tr>
<td>FAA-RD-78-150</td>
<td>Helicopter Air Traffic Control Operations</td>
<td></td>
</tr>
</tbody>
</table>

2. **FAA-RD-79-64** Workload and the Certification of Helicopters for IFR Operations (Albert G. Delucien, David L. Green, Steven W. Jordan, Joseph J. Traybar)

4. **FAA-RD-79-123** Test and Evaluation of Air/Ground Communications for Helicopter Operations in the Offshore New Jersey, Baltimore Canyon Oil Exploration Area (James J. Coyle)

5. **FAA-NA-79-22** Northeast Corridor User Evaluation (Joseph Harrigan)

6. **FAA-RD-80-17** Flight Evaluation of a Radar Cursor Technique as an Aid to Airborne Radar Approaches (Joseph Perez)

7. **FAA-NA-80-20** Helicopter Communications System Study (Michael White, Dana Swann)

8. **FAA-RD-80-22** Airborne Radar Approach (Cliff Mackin)

11. **FAA-RD-80-47** Flight Test Investigation of LORAN-C For En Route Navigation in the Gulf of Mexico (Robert H. Pursel)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAA-RD-80-80</td>
<td>Helicopter Northeast Corridor Operational Test Support</td>
<td>(Glen A. Gilbert)</td>
</tr>
<tr>
<td>FAA-RD-80-88</td>
<td>Recommended Short-Term ATC Improvements for Helicopters</td>
<td>(Tirey K. Vickers, D.J. Freund)</td>
</tr>
<tr>
<td></td>
<td>Vol-I Summary of Short Term Improvements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vol-II Recommended Helicopter ATC Training Material</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vol-III Operational Description of Experimental LORAN-C Flight Following (LOFF) in the Houston Area</td>
<td></td>
</tr>
<tr>
<td>FAA-RD-80-107</td>
<td>Study of Heliport Airspace and Real Estate Requirements</td>
<td>(Albert G. Delucien, F.D. Smith)</td>
</tr>
<tr>
<td>FAA-CT-80-175</td>
<td>LORAN-C Non-Precision Approaches in the Northeast Corridor</td>
<td>(Frank Lorqe)</td>
</tr>
<tr>
<td>FAA-CT-80-210</td>
<td>Helicopter Icing Review</td>
<td>(A.A. Peterson, L.U. Dadone)</td>
</tr>
<tr>
<td>FAA-RD-81-7-LR</td>
<td>Three Cue Helicopter Flight Directors: An Annotated Bibliograph</td>
<td>(Tosh Pott, J.P. McVicker, Hebert W. Schlickenmaier)</td>
</tr>
<tr>
<td>FAA-RD-81-9</td>
<td>Impact of Low Altitude Coverage Requirements on Air-Ground Communications</td>
<td>(B. Magenheim)</td>
</tr>
<tr>
<td>FAA-RD-81-27</td>
<td>Flight Evaluation of LORAN-C as a Helicopter</td>
<td></td>
</tr>
<tr>
<td>FAA-CT-80-33</td>
<td>Navigation Aid in the Baltimore Canyon Oil Exploration Area</td>
<td>(William A. Wynn)</td>
</tr>
<tr>
<td>FAA/CT-81/35</td>
<td>National Icing Facilities Requirements Investigation</td>
<td>(Frank R. Taylor, Richard J. Adams)</td>
</tr>
<tr>
<td>FAA/RD-81/35</td>
<td>Development of a Heliport Classification Method and an Analysis of Heliport Real Estate and Airspace Requirements</td>
<td>(F.D. Smith, Albert G. Delucien)</td>
</tr>
<tr>
<td>FAA/RD-81/40</td>
<td>Improved Weather Services for Helicopter Operations in the Gulf of Mexico</td>
<td>(Arthur Hilsenrod)</td>
</tr>
<tr>
<td>FAA-RD-81-55</td>
<td>Recommended Changes to ATC Procedures for Helicopter</td>
<td>(Glen A. Gilbert, Tirey K. Vickers)</td>
</tr>
<tr>
<td>FAA-RD-81-59</td>
<td>Helicopter Area Air Traffic Control Demonstration Plan</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Tirev K. Vickers, D. James Freund)</td>
<td></td>
</tr>
<tr>
<td>FAA/RD-81/92</td>
<td>Weather Deterioration Models Applied to Alternate Airport</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Criteria (Edwin D. McConkey)</td>
<td></td>
</tr>
<tr>
<td>FAA-CT-81-167</td>
<td>Terminal Helicopter Instrument Procedures (TERPS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Robert H. Pursel)</td>
<td></td>
</tr>
<tr>
<td>FAA-CT-81-180</td>
<td>Engineering and Development Program Plan, Helicopter Icing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Certification Research</td>
<td></td>
</tr>
<tr>
<td>FAA/RD-82/b</td>
<td>Instrument Approach Aids for Helicopter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Edwin D. McConkey, Ronald E. Ace)</td>
<td></td>
</tr>
<tr>
<td>FAA/RD-82/7</td>
<td>Flight Test Investigation of Area Calibrated LORAN-C</td>
<td></td>
</tr>
<tr>
<td>FAA/CT-81/72</td>
<td>for En Route Navigation in the Gulf of Mexico</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(John G. Morrow)</td>
<td></td>
</tr>
<tr>
<td>FAA/RD-82/8</td>
<td>Initial FAA Tests on the Navigation System Using Time</td>
<td></td>
</tr>
<tr>
<td>FAA/CT-81/73</td>
<td>and Ranging Global Positioning System Z-Set Receiver</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Robert J. Esposito)</td>
<td></td>
</tr>
<tr>
<td>FAA/RD-82/9</td>
<td>PAA Acceptance Tests on the Navigation System Using</td>
<td></td>
</tr>
<tr>
<td>FAA/CT-81/75</td>
<td>Time and Ranging Global Positioning System Z-Set Receiver</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Robert J. Esposito)</td>
<td></td>
</tr>
<tr>
<td>FAA/RD-82/16</td>
<td>3D LORAN-C Navigation Documentation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Eric H. Bolz, Larry D. King)</td>
<td></td>
</tr>
<tr>
<td>FAA/RD-82/24</td>
<td>LORAN-C En Route Accuracies in the Central Appalachian</td>
<td></td>
</tr>
<tr>
<td>FAA/CT-82/32</td>
<td>Region (Frank Lorge)</td>
<td></td>
</tr>
<tr>
<td>FAA/RD-82/40</td>
<td>Application of the MLS to Helicopter Operations</td>
<td></td>
</tr>
<tr>
<td>FAA/CT-82/57</td>
<td>(Edwin D. McConkey, John B. McKinley, Ronald E. Ace)</td>
<td></td>
</tr>
<tr>
<td>FAA/CT-82/57</td>
<td>Northeast Corridor Helicopter Area Navigation Accuracy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evaluation (Jack D. Edmonds)</td>
<td></td>
</tr>
<tr>
<td>FAA/RD-82/63</td>
<td>EMC Analysis of a Prototype Civil-Use GPS Receiver on Four</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aircraft Configurations (Robert L. Mullen)</td>
<td></td>
</tr>
<tr>
<td>FAA/RD-82/71</td>
<td>Global Positioning System En Route/Terminal Exploratory</td>
<td></td>
</tr>
<tr>
<td>FAA/CT-82/64</td>
<td>Test (Jerome T. Connor, Robert J. Esposito, Philip Lizzi)</td>
<td></td>
</tr>
<tr>
<td>FAA/RD-82/78</td>
<td>LORAN-C Nonprecision Approaches in the Northeast</td>
<td></td>
</tr>
<tr>
<td>FAA/CT-82/76</td>
<td>Corridor (Frank Lorge)</td>
<td></td>
</tr>
<tr>
<td>FAA/CT-82/103</td>
<td>Flight Test Route Structure Statistics of Helicopter GPS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Navigation with the Magnavox Z-Set (Robert D. Till)</td>
<td></td>
</tr>
<tr>
<td>FAA/CT-82/120</td>
<td>All Weather Heliport (Paul H. Jones)</td>
<td></td>
</tr>
<tr>
<td>FAA/CT-TN83/03</td>
<td>Helicopter Global Positioning System Navigation with</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the Magnavox Z-Set (Robert D. Till)</td>
<td></td>
</tr>
</tbody>
</table>
FAA/PM-83/4 Alaska LORAN-C Flight Test Evaluation (Larry D. King, Edwin D. McConkey)

FAA/CT-83/6 General Aviation Safety Research Issues (Robert J. Ontiveros)

FAA/CT-83/7 Engineering and Development Program Plan, Aircraft Icing

FAA/CT-83/21 A New Data Base of Supercooled Cloud Variables for Altitudes up to 10,000 Feet AGL and the Implications for Low Altitude Aircraft Icing (Richard K. Jeck)

FAA/CT-83/22 A New Characterization of Supercooled Clouds Below 10,000 Feet AGL (Charles O. Masters)

FAA/PM-83-32 Conus LORAN-C Error Budget: Flight Test (Larry D. King, Kristen J. Venezia, Edwin D. McConkey)

FAA/CT-83/40 Survey of Characteristics of Near Mid-Air Collisions Involving Helicopters (Barry R. Billmann)

FAA/CT-TN83/50 Altitude Aided GPS (George Paolacci) and Addendum 1

FAA/CT-TN84/16 Helicopter MLS (Collocated) Flight Test Plan to Determine Optimum Course Width (James H. Enias)

FAA/CT-TN84/20 Helicopter MLS Collocated Flight Test for TERPS Data (James H. Enias, Paul Maenza, Donald P. Pate)

FAA/PM-84/22 Heliport Snow and Ice Control, Methods and Guidelines (John B. McKinley, Robert B. Newman)

FAA/PM-84/23 Structural Design Guidelines for Heliports (Charles W. Schwartz, Matthew W. Witczak, Rita B. Leahy)

FAA/PM-84/25 Evaluating Wind Flow Around Buildings on Heliport Placement (John B. McKinley)

FAA/PM-84/31 Very Short Range Statistical Forecasting of Automated Weather Observations (Robert G. Miller)

FAA/CT-TN84/34 Helicopter IFR Lighting and Marking Preliminary Test Results (Paul H. Jones)

FAA/CT-TN84/40 Heliport MLS Siting Evaluation (Scott B. Shollenberger)

FAA/CT-TN84/47 Global Positioning System Performance During FAA Helicopter Tests on Rotor Effects (Jerome T. Connor, George Paolacci)

PM-85-3-LR Volume 2: Appendices

PM-85-4-LR Volume 1: Viewgraphs
FAA/CT-TN85/5 Gulf of Mexico Helicopter Loran C Stability Study (Kohann M. Weiss)

FAA/PM-85/6 Helicopter User Survey: TCAS (Frank H. Taylor)

FAA/PM-85/7 MLS for Heliport Operators, Owners, and Users (Kristen J. Venezia, Edwin D. McConkey)

FAA/PM-85/8 VHF-AM Communications Equipment, Selection and Installation Practices for Helicopters (Eric H. Bolz, Larry D. King)

FAA/CT-85/11 Analysis of Rotorcraft Crash Dynamics for Development of Improved Crashworthiness Design Criteria (Joseph W. Coltman, Akif O. Bolukbasi, David H. Laananen)

FAA/CT-TN85/15 Course Width Determination for Collocated MLS at Heliports (James H. Enias)

FAA/CT-TN85/17 Nonprecision Approaches in the Northeast Corridor Using Second Generation Loran Receivers (Barry Billmann, John G. Morrow, Christopher Wolf)

FAA/CT-TN85/23 Test Plan for Siting, Installation, and Operational Suitability of the AWOS at Heliports (Rene A. Matos)

FAA/CT-TN85/24 Helicopter Terminal Instrument Approach Procedures (VOR/ILS) (Christopher Wolf)

FAA/CT-85/26 Summary of Artificial and Natural Icing Tests Conducted on U.S. Army Aircraft from 1974 to 1985 (Harry W. Chambers, John Y. Adams)

FAA/PM-85/30 Pilot Evaluation of TCAS in the Long Ranger Helicopter (John W. Andrews)

FAA/CT-TN85/53 Validation of MLS Siting Criteria for MLS Steep Angle Approaches to a Heliport (Scott Shollenberger)

FAA/CT-TN85/55 Pilot Inflight Evaluation of MLS Procedures at Heliports (James H. Enias)

FAA/CT-TN85/58 Technical Support of the Wall Street/Battery Park City Heliport MLS Project (Barry R. Billmann, Michael M. Webb, James H. Enias)

FAA/CT-TN85/60 Rotorcraft TCAS Evaluation, Group 1 Results (Albert J. Rehmann)

FAA/CT-TN85/63 Computed Centerline MLS Approach Demonstration at Washington National Airport (James H. Remer)
<table>
<thead>
<tr>
<th>Report Number</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAA/CT-TN85/64</td>
<td>Heliport MLS Critical Area Flight Tests (Robert S. Jeter)</td>
<td></td>
</tr>
<tr>
<td>NAE-AN-26</td>
<td>A Preliminary Investigation of Handling Qualities Requirements for Helicopter Instrument Flight During Decelerating Approach Maneuvers and Overshoot (Stan Kereliuk, J. Murray Morgan)</td>
<td>February 1985</td>
</tr>
<tr>
<td>FAA/PM-86/10</td>
<td>Very Short Range Statistical Forecasting of Automated Weather Observations (Robert G. Miller)</td>
<td></td>
</tr>
<tr>
<td>FAA/CT-TN86/14</td>
<td>Heliport MLS Flight Inspection Project (Scott Shollenberger, Barry R. Billmann)</td>
<td></td>
</tr>
<tr>
<td>FAA/PM-86/14</td>
<td>Technical Requirements for Benchmark Simulator-Based Terminal Instrument Procedures (TERPS) Evaluation (Anil V. Phatak, John A. Sorensen)</td>
<td>NASA CR-177407</td>
</tr>
<tr>
<td>FAA/CT-TN86/17</td>
<td>LORAN Offshore Flight Following Project Plan (Jean Evans, Frank Lorke)</td>
<td></td>
</tr>
<tr>
<td>FAA/CT-TN86/22</td>
<td>Heliport Electroluminescent (E-L) Lighting System, Preliminary Evaluation (Paul H. Jones)</td>
<td></td>
</tr>
<tr>
<td>FAA/PM-86/30</td>
<td>The Siting, Installation, and Operational Suitability of the Automated Weather Observing System (AWOS) at Heliports (Rene A. Matos, John R. Sackett, Philip Shuster, Rosanne M. Weiss)</td>
<td>FAA/CT-86-9</td>
</tr>
<tr>
<td>FAA/CT-TN86/31</td>
<td>Evaluation of Sikorsky S-76A, 24 Missed Approach Profiles Following Precision MLS Approaches to a Helipad at 40 KIAS (Michael M. Webb)</td>
<td>FAA/CT-TN86/31</td>
</tr>
<tr>
<td>FAA/PM-86/45</td>
<td>Aeronautical Decision Making for Helicopter Pilots (Richard J. Adams, Jack L. Thompson)</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX B: SUBJECT INDEX

ACCIDENTS

- FAA/CT-83/40
- FAA/CT-85/11

ADVANCING BLADE CONCEPT HELICOPTER

- FAA-RD-78-150

AIR TRAFFIC CONTROL

<table>
<thead>
<tr>
<th>Publication</th>
<th>Publication</th>
<th>Publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD-64-4</td>
<td>RD-64-55</td>
<td>NA-68-21</td>
</tr>
<tr>
<td>FAA-RD-80-85</td>
<td>FAA-RD-80-86</td>
<td>FAA-RD-80-87</td>
</tr>
<tr>
<td>FAA/CT-TN86/17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AIRBORNE RADAR APPROACHES

<table>
<thead>
<tr>
<th>Publication</th>
<th>Publication</th>
<th>Publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAA-RD-80-60</td>
<td>FAA-RD-80-85</td>
<td>FAA-RD-80-88,II</td>
</tr>
<tr>
<td>FAA/RD-82/6</td>
<td>FAA/RD-82/40</td>
<td></td>
</tr>
</tbody>
</table>

AIRWORTHINESS

- FAA-RD-78-157
- FAA/CT-85/26

AREA NAVIGATION (RNAV) (See also GPS, LORAN-C, and MLS RNAV)

<table>
<thead>
<tr>
<th>Publication</th>
<th>Publication</th>
<th>Publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAA-RD-71-96</td>
<td>FAA-RD-76-146</td>
<td>FAA-RD-78-150</td>
</tr>
<tr>
<td>FAA-RD-80-17</td>
<td>FAA-RD-80-64</td>
<td>FAA-RD-80-80</td>
</tr>
<tr>
<td>FAA-RD-80-85</td>
<td>FAA-RD-81-59</td>
<td>FAA/CT-82/57</td>
</tr>
<tr>
<td>FAA/RD-82/6</td>
<td>FAA/RD-82/7</td>
<td></td>
</tr>
</tbody>
</table>

AUTOMATED WEATHER OBSERVING SYSTEM (AWOS)

- FAA/RD-81/40
- FAA/CT-TN/85/23
- FAA/PM-86/30

AVIONICS EQUIPPAGE

- FAA/PM-86/25,1
AUTOMATIC DEPENDENT SURVEILLANCE (See LOFF)

AUTOMATIC DIRECTION FINDER (See Nondirectional Beacon)

AUTOROTATION

NA-67-1

AVIONICS, AIRBORNE RADAR APPROACHES

FAA-RD-79-99
FAA-RD-80-18
FAA-RD-80-60

AVIONICS, COMMUNICATIONS

FAA/PM-85/8

AVIONICS, GPS (See also GPS)

FAA/RD-82/8
FAA/RD-82/9
FAA/RD-82/63
FAA/RD-82/71
FAA/CT-82/103
FAA/CT-TN83/03
FAA/CT-TN83/50
FAA/CT-84/47

AVIONICS, LORAN-C (See also LORAN-C and LOFF)

FAA-RD-70-10
FAA-RD-80-88
FAA-CT-80-175
FAA-RD-81-27
FAA/RD-82/7
FAA/RD-82/16
FAA/RD-82/78
FAA/CT-TN85/17

AVIONICS, MLS

FAA/RD-82/40
FAA/CT-TN85/63

AVIONICS, TCAS (See TCAS)

CHARTING

FAA-RD-78-150

COLLISION AVOIDANCE SYSTEM (See also TCAS)

FAA-RD-80-88, I
FAA-RD-81-59

COST/BENEFITS

FAA/RD-82/40
FAA/RD-82/6
FAA/PM-84/22
CRASHWORTHINESS

FAA-RD-78-101 FAA/CT-85/11

DECELERATING APPROACHES (See Low Speed Approaches and MLS)

DEPENDENT SURVEILLANCE (See also LOFF)

FAA-RD-80-85

DISTANCE MEASURING EQUIPMENT (DME)

FAA-RD-71-96 FAA-RD-76-146 FAA-RD-80-17
FAA/RD-82/6 FAA/RD-82/63 FAA/RD-82/78
FAA/PM-86/14 FAA/PM-86/15 FAA/PM-86/25,1

DOPPLER NAVIGATION

FAA-RD-76-146

FLIGHT CONTROLS

FAA-RD-78-157 FAA-RD-79-64 FAA-RD-80-64
FAA/PM-86/14 FAA/PM-86/15 NAE-AN-26 (1985)

FLIGHT DIRECTORS

FAA-RD-78-157 FAA-RD-81-7-LR FAA/PM-86/25,1

FLIGHT DISPLAYS

FAA-RD-78-157 FAA/PM-85/30

FLIGHT INSPECTION

FAA/CT-86/14 FAA/PM-85/7

GENERALIZED EQUIVALENT MARKOV (GEM) (See Weather Forecasts, and AWOS GEM)

GLOBAL POSITIONING SYSTEM (GPS)

FAA-RD-76-146 FAA-RD-78-101 FAA-RD-78-150
FAA-RD-80-85 FAA/RD-82/6 FAA/RD-82/8
FAA/RD-82/103 FAA/CT-TN83/03 FAA/CT-TN83/50
FAA/CT-TN84/47 FAA/PM-86/14 FAA/PM-86/15

GULF OF MEXICO (See also LOFF and Offshore Operations)

FAA-RD-80-47 FAA-RD-80-85 FAA-RD-80-87
FAA-RD-80-88 FAA/RD-81/40 FAA-RD-81-59
FAA/RD-82/7 FAA/CT-TN85/5
<table>
<thead>
<tr>
<th>Topic</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>HANDLING QUALITIES</td>
<td>FAA-RD-78-157, FAA-RD-79-59, FAA-RD-79-64</td>
</tr>
<tr>
<td></td>
<td>FAA-RD-80-58, FAA-RD-80-64, FAA/CT-83/6</td>
</tr>
<tr>
<td></td>
<td>NAE-AN-26 (1985)</td>
</tr>
<tr>
<td>HEIGHT VELOCITY DIAGRAM</td>
<td>NA-67-1, FAA-RD-80-88, FAA/PM-86/28</td>
</tr>
<tr>
<td>HELICOPTER NOISE (See Noise)</td>
<td></td>
</tr>
<tr>
<td>HELIPORT DESIGN (See also Heliport Lighting, MLS Siting, and AWOS)</td>
<td>FAA-RD-78-101, FAA-RD-80-107, FAA-RD-81-35</td>
</tr>
<tr>
<td></td>
<td>FAA/CT-82/120, FAA/PM-84/22, FAA/PM-84/23</td>
</tr>
<tr>
<td></td>
<td>FAA/PM-84/25, FAA/CT-TN84/31, PM-85-2-LR</td>
</tr>
<tr>
<td></td>
<td>PM-85-3-LR, FAA/PM-85/7</td>
</tr>
<tr>
<td>HELIPORT LIGHTING/MARKING</td>
<td>NA-69-2, FAA-RD-71-105, FAA-RD-72-133</td>
</tr>
<tr>
<td></td>
<td>FAA/CT-82/120, FAA/CT-TN84/34, FAA/CT-TN86/22</td>
</tr>
<tr>
<td>HELICOPTER OPERATIONS STATISTICS</td>
<td>FAA/CT-83/40, FAA/PM-85/6, FAA/CT-85/11</td>
</tr>
<tr>
<td></td>
<td>FAA/PM-86/28</td>
</tr>
<tr>
<td>HELICOPTER PERFORMANCE</td>
<td>FAA-RD-80-107, FAA/CT-81/35</td>
</tr>
<tr>
<td>HELIPORT PLANNING</td>
<td>FAA-RD-80-107, FAA/CT-81/35, FAA/PM-84/22</td>
</tr>
<tr>
<td></td>
<td>FAA/PM-84/25</td>
</tr>
<tr>
<td>HELIPORT SNOW AND ICE CONTROL</td>
<td>FAA/PM-84/22</td>
</tr>
<tr>
<td>HIGH FREQUENCY COMMUNICATION</td>
<td>FAA-RD-78-150</td>
</tr>
<tr>
<td>HOLDING PATTERNS</td>
<td>FAA-RD-78-150, FAA-RD-80-59, FAA-RD-80-80</td>
</tr>
<tr>
<td></td>
<td>FAA-RD-80-86, FAA-RD-80-88</td>
</tr>
</tbody>
</table>

14
HUMAN FACTORS (See also Flight Controls, Flight Displays, and TCAS)

<table>
<thead>
<tr>
<th>FAA-RD-81-59</th>
<th>FAA/CT-83/6</th>
<th>FAA/CT-83/40</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAA/PM-86/28</td>
<td>FAA/PM-86/45</td>
<td></td>
</tr>
</tbody>
</table>

ICING (See also Weather)

<table>
<thead>
<tr>
<th>FAA-RD-78-101</th>
<th>FAA/CT-80-24</th>
<th>FAA-CT-80-210</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAA/CT-81/35</td>
<td>FAA/CT-83/7</td>
<td>FAA/CT-83/21</td>
</tr>
<tr>
<td>FAA/CT-83/22</td>
<td>FAA/PM-84/22</td>
<td>FAA/CT-85/26</td>
</tr>
</tbody>
</table>

INERTIAL NAVIGATION SYSTEM

<table>
<thead>
<tr>
<th>FAA-RD-76-146</th>
<th>FAA-RD-80-85</th>
<th>FAA/PM-82/7</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAA/PM-82/24</td>
<td>FAA/CT-TN85/24</td>
<td>FAA/PM-86/14</td>
</tr>
</tbody>
</table>

INSTRUMENT LANDING SYSTEM (ILS)

<table>
<thead>
<tr>
<th>FAA/PM-86/15</th>
<th>FAA/CT-TN85/24</th>
<th>FAA/PM-86/14</th>
</tr>
</thead>
</table>

LIGHTING (See Heliport Lighting)

LORAN-C (See also LOFF)

<table>
<thead>
<tr>
<th>FAA-RD-70-10</th>
<th>FAA-RD-76-146</th>
<th>NA-78-55-LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAA-RD-80-88</td>
<td>FAA-CT-80-175</td>
<td>FAA-RD-81-27</td>
</tr>
<tr>
<td>FAA-RD-81-59</td>
<td>FAA/RD-82/6</td>
<td>FAA/RD-82/7</td>
</tr>
<tr>
<td>FAA/RD-82/78</td>
<td>FAA/PM-83/4</td>
<td>FAA/PM-83/32</td>
</tr>
<tr>
<td>FAA/CT-TN85/5</td>
<td>FAA/CT-TN85/17</td>
<td>FAA/PM-86/14</td>
</tr>
<tr>
<td>FAA/PM-86/15</td>
<td>FAA/CT-TN85/17</td>
<td>FAA/PM-86/14</td>
</tr>
</tbody>
</table>

LORAN-C VERTICAL NAVIGATION (VNAV)

<table>
<thead>
<tr>
<th>FAA/RD-82/16</th>
</tr>
</thead>
</table>

LORAN FLIGHT FOLLOWING (LOFF)

<table>
<thead>
<tr>
<th>FAA-RD-80-87</th>
<th>FAA-RD-80-88</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAA/RD-81-59</td>
<td>FAA/CT-TN86/17</td>
</tr>
</tbody>
</table>

LOW-ALTITUDE COMMUNICATIONS (See also Northeast Corridor)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FAA-RD-80-20</td>
<td>FAA-RD-80-80</td>
<td>FAA-RD-80-87</td>
</tr>
<tr>
<td>FAA-RD-81-9</td>
<td>FAA/RD-81/40</td>
<td>FAA-RD-81-59</td>
</tr>
<tr>
<td>PM-85-2 LR</td>
<td>FAA/PM-85/8</td>
<td></td>
</tr>
</tbody>
</table>
LOW-ALTITUDE NAVIGATION (See also LOHAN-C, Northeast Corridor, and GPS)

FAA/RD-78-101	FAA/RD-76-146	NA-78-5 1.8
FAA/RD-78-101	FAA/RD-78-150	FAA/CT-80-18
FAA/RD-80-20	FAA/RD-80-80	FAA/RD-80-87
FAA/RD-81-59	FAA/PM-83/32	

LOW-ALTITUDE SURVEILLANCE (See also LOF)

| FAA/RD-78-150 | FAA/RD-80-20 | FAA/RD-80-80 |
| FAA/RD-80-87 | FAA/RD-81-59 | |

LOW SPEED APPROACHES

| FAA/PM-86/14 | FAA/PM-86/15 | FAA/CT-TN86/31 |
| NAE-AN-26 (1985) | | |

MLS FLIGHT INSPECTION (See Flight Inspection)

MICROWAVE LANDING SYSTEM (MLS), GENERAL (See also DME)

FAA/RD-78-101	FAA/RD-82/6	FAA/RD-82/40
FAA/CT-TN84/16	FAA/CT-TN84/20	FAA/CT-TN84/40
FAA/PM-85/7	FAA/CT-TN85/15	FAA/CT-TN85/53
FAA/CT-TN85/55	FAA/CT-TN85/58	FAA/CT-TN85/63
FAA/CT-TN85/64	FAA/CT-86/14	FAA/PM-86/14
FAA/PM-86/15	FAA/AVN-200/25	FAA/CT-TN86/31

MLS RNAV

| FAA/RD-80-59 | FAA/RD-82/40 | FAA/PM-85/7 |
| FAA/CT-TN85/63| FAA/PM-86/25, 1| |

MLS SITING

| FAA/CT-TN84/40| FAA/CT-TN85/53| FAA/CT-85/58 |
| FAA/CT-TN85/64| FAA/CT-TN85/64| FAA/CT-TN86/31|

MLS TERPS (See also TERPS)

FAA/RD-80-59	FAA/RD-81-167	FAA/CT-TN84/16
FAA/CT-TN84/20	FAA/CT-TN85/53	FAA/CT-TN85/55
FAA/CT-TN86/31	FAA/AVN-200-25	FAA/CT-TN86/31

MILITARY TRAINING ROUTES

| FAA/RD-80-88, I |

NAVIGATION SATELLITE TIMING AND RANGING (NAVSTAR) (See GPS)

NEAR MID-AIR COLLISIONS (See also TCAS)

| FAA/RD-80-88, I | FAA/CT-83/40 | FAA/PM-85/6 |

16
NOISE

FAA-RD-73-145 FAA-RD-75-79 FAA-RD-75-12
FAA-RD-75-190 FAA-RD-76-1 FAA-RD-76-49
FAA-RD-78-101

Note: During the late 1970's, responsibility for issues regarding helicopter noise was transferred to the FAA Office of Environment and Energy (AEE). The reports listed in this bibliography are limited to those in which the research, engineering, and development elements (i.e., the ADL complex) of the FAA have been involved as sponsors, participants, or authors. Since AEE is outside the ADL complex, the reports they have published on helicopter noise are not listed herein.

NONDIRECTIONAL BEACON

FAA-RD-76-146 FAA-RD-78-101 FAA-RD-78-150
FAA-RD-80-85 FAA-RD-82/6 FAA/PM-86/25, I

NONPRECISION APPROACHES (See also Airborne Radar Approaches)

NA-80-34-LH FAA-CT-80-175 FAA-RD-81-27
FAA/RD-82/71 FAA/RD-82/78 FAA/CT-82/103
FAA/CT-TN83/03 FAA/CT-TN84/34 FAA/CT-TN85/17
FAA/PM-86/25, I

NORTHEAST CORRIDOR

FAA-RD-70-10 FAA-RD-80-17 NA-80-34-LH
FAA-RD-80-59 FAA-RD-80-80 FAA-CT-80-175
FAA-RD-81-59 FAA/CT-82/57 FAA/RD-82/78
FAA/CT-TN85/17

OBSTRUCTION AVOIDANCE (See also Airborne Radar Approaches and TERPS)

OFFSHORE OPERATIONS (See also Gulf of Mexico and Airborne Radar Approaches)

FAA-RD-76-123 FAA-RD-76-146 NA-78-55-LR
FAA-RD-79-123 FAA-RD-80-20 NA-80-34-LR
FAA-RD-80-87 FAA-RD-80-107 FAA-RD-81-27
FAA-RD-81-55 FAA/RD-82/6 FAA/PM-83/4

OMEGA

NA-78-55-LR FAA-RD-78-101 FAA-RD-78-150
FAA/PM-86/14 FAA/PM-86/15

17
PRECISION APPROACH RADAR (PAR)

FAA-RD-80-107

RNAV (See Area Navigation)

ROTOR BLADE CONTAINMENT

FAA-RD-77-100

SAFETY (While this topic is addressed in most of the documents in this bibliography, the following documents are of particular interest.)

FAA/CT-83/6 PM-85-2-LR PM-85-3-LR
PM-85-4-LR FAA/PM-85/6 FAA/PM-86/28
FAA/PM-86/45

SIMULATION

NA-68-21 FAA-RD-79-59 FAA-RD-80-64
FAA-RD-80-86 FAA-RD-80-88 FAA-RD-80-88
FAA-RD-81-59 FAA/CT-85/11 FAA/PM-86/14
FAA/PM-86/15

TACAN

FAA-RD-76-146 FAA-RD-78-101 FAA-RD-80-88, II
FAA-RD-82/6 FAA/PM-86/14
FAA/RD-82/63 FAA/PM-86/15

TERMINAL INSTRUMENT PROCEDURES (TERPS)

FAA-RD-78-150 FAA-RD-80-17 FAA-RD-80-58
FAA-RD-81-167 FAA/CT-TN84/16 FAA/CT-TN84/20
FAA/CT-TN85/15 FAA/CT-TN85/24 FAA/CT-TN85/53
FAA/CT-TN85/55 FAA/PM-86/14 FAA/PM-86/15
FAA/AVN-200-25 (1986)

TILT ROTOR

FAA-RD-78-150

TRAFFIC ALERT AND COLLISION AVOIDANCE SYSTEM (TCAS)

FAA/RD-82/63 FAA/CT-83/40 FAA/PM-85/6
FAA/PM-85/30 FAA/CT-TN85/49 FAA/CT-TN85/60
FAA/CT-TN85/83

TRAINING

FAA-RD-78-150 FAA-RD-80-88 FAA-RD-81-59
FAA/CT-83/6 FAA/CT-TN85/55 FAA/PM-86/28
Very Light Weight Air Traffic Management Equipment (VLATME)

FAA-RD-80-87

VOR

FAA-RD-71-96	FAA-RD-76-146	FAA-RD-78-101
FAA-RD-78-150	FAA-RD-80-17	NA-80-34-LR
FAA-RD-80-64	FAA-RD-80-85	FAA/RD-82/6
FAA/RD-82/78	FAA/CT-TN85/24	FAA/PM-86/14
FAA/PM-86/15	FAA/PM-86/25/I	

Wake Vortexes

| RD-64-4 | RD-64-55 | FAA-RD-74-48 |
| FAA-RD-78-143 | FAA-RD-80-87 | FAA-RD-80-88,II |

Weather (See also Icing)

| RD-64-4 | FAA-RD-75-94 | FAA-RD-78-101 |
| FAA/CT-83/6 | FAA/PM-84/22 | FAA/PM-84/25 |

Weather Forecasts

| FAA/RD-81/40 | FAA-RD-81-92 | FAA/PM-84/31 |
| FAA/PM-86/10 |

Weather Observations

| FAA/RD-81/40 | FAA/CT-TN85/23 |

Wind Shear

| FAA-RD-79-59 |

Workload

| FAA-RD-80-58 | FAA-RD-81-59 | FAA/CT-TN85/15 |
APPENDIX C: AUTHOR INDEX

ACE, RONALD E. (Systems Control Technology)
 FAA/RD-82/6 FAA/RD-82/40

ADAMS, RICHARD J. (Systems Control Inc. (Vt), Systems Control Technology)
 FAA-RD-79-99 FAA-CT-81-35 FAA/PM-85/6
 FAA/PM-86/28 FAA/PM-86/45

ADAMS, JOHN Y. (FAA Technical Center)
 FAA/CT-85/26

ANDREWS, JOHN W. (Lincoln Laboratory)
 FAA/PM-85/30

BAUSCH, W. (Hamilton Standard, a Division of UTC)
 FAA-RD-75-79

BENNETT, W.J. (Boeing Airplane Division)
 RD-64-55

BILLMANN, BARRY R. (FAA Technical Center)
 FAA/CT-83/40 FAA/CT-TN85/17 FAA/CT-TN85/58
 FAA/CT-86/14

BLAKNEY, DENNIS F. (Lockheed-Georgia)
 FAA-RD-73-145 FAA-RD-75-125

BOLUKBASI, AKIF O. (Simula Inc.)
 FAA/CT-85/11

BOLZ, ERIC H. (Systems Control Technology)
 FAA/RD-82/16 FAA/PM-85/8

BURNHAM, DAVID C. (Transportation System Center)
 FAA-RD-78-143

21
CHAMBEKS, HARRY W. (FAA Technical Center)

FAA/CT-85/26

CLEMENT, WARREN F. (Systems Technology)

FAA-RD-79-59

COLTMAN, JOSEPH W. (Simula Inc.)

FAA/CT-85/11

CONNOR, JEROME T. (FAA Technical Center)

FAA/RD-82/71 FAA/CT-TN83/50 FAA/CT-TN84/47

CONWAY, ROBERT C. (FAA, NAFEC)

NA-68-21

COYLE, JAMES J. (FAA, NAFEC)

FAA-RD-79-123

CROSWELL, THOMAS H. (RJO Enterprises)

FAA/PM-86/25

CUSHMAN, ARTHUR W. (FAA Technical Center)

FAA/CT-TN85/83

DADONE, L.U. (Boeing Vertol)

FAA-CT-80-210

DELUCIEN, ALBERT G. (PACER Systems Inc.)

FAA-RD-78-157 FAA-RD-79-64 FAA-RD-80-58
FAA-RD-80-107 FAA/RD-81/35

DEVORE, GILBERT (FAA, NAFEC)

NA-67-1

FINERMAN, BERNHART V. (FAA, NAFEC)

FAA-RD-71-96

EDMONDS, JACK D. (FAA Technical Center)

FAA/CT-82/57
ENIAS, JAMES H. (FAA Technical Center)

FAA/CT-TN84/16 FAA/CT-TN84/20 FAA/CT-TN85/15
FAA/CT-TN85/55 FAA/CT-TN85/58

ERIKSSON, R.H. (Pratt & Whitney)

FAA-RD-77-100

ESPOSITO, ROBERT J. (FAA Technical Center)

EVANS, JEAN (FAA Technical Center)

FAA/CT-TN86/17

FORREST, R.D. (NASA Ames Research Center)

FAA-RD-80-64

FREUND, D. JAMES (VITRO)

FAA-RD-80-85 FAA-RD-80-86 FAA-RD-80-87
FAA-RD-80-88 FAA-RD-81-59

GERDES, R.M. (NASA Ames Research Center)

FAA-RD-80-64

GIBSON, JOHN S. (Lockheed-Georgia)

FAA-RD-73-145 FAA-RD-75-125

GILBERT, GLEN A. (Helicopter Association of America, Helicopter Association International)

FAA-RD-80-80 FAA-RD-81-55

GREEN, DAVID L. (PACER Systems Inc.)

FAA-RD-78-157 FAA-RD-79-64 FAA-RD-80-58

GUINN, WILEY A. (Lockheed-Georgia)

FAA-RD-73-145

HALE, CHARLES (FAA, Oklahoma City)

FAA/AVN-200/25 (1986)

HALILJUK. JAMES (Transportation System Center)

FAA-RD-78-143
HANLEY, WILLIAM J. (FAA, NAPEC)

NA-67-1

HARRIGAN, JOSEPH (FAA, NAPEC)

FAA-RD-80-17

HEERMANN, K.F. (Pratt & Whitney)

FAA-RD-77-100

HIGGINS, THOMAS H. (FAA, Washington)

FAA-RD-76-1

HILSENROD, ARTHUR (FAA, Washington)

FAA/RD-81/40

JECK, RICHARD K. (Naval Research Laboratory)

FAA-RD-80-24 FAA/CT-83/21

JETER, ROBERT S. (FAA Technical Center)

FAA/CT-TN85/64

JEWELL, WAYNE F. (Systems Technology)

FAA-RD-79-59

JONES, PAUL H. (FAA Technical Center)

FAA/CT-82/120 FAA/CT-TN84/34 FAA/CT-TN86/22

JORDAN, STEVEN W. (PACER Systems Inc.)

FAA-RD-79-64

KERELIUK, STAN (National Aeronautical Establishment)

KAEN-26 (1985)

KING, LARRY D. (Systems Control Inc. (Vt), Systems Control Technology)

KING, R.J. (Hamilton Standard, a division of UTC)

FAA-RD-75-79
KOWALSKI, STANLEY (RJO Enterprises)
FAA/PM-86/25

LAANANEN, DAVID H. (Simula Inc.)
FAA/CT-85/11

LEAHY, RITA B. (Univ. of Maryland)
FAA/PM-84/23

LEBACQZ, J. VICTOR (NASA Ames Research Center)
FAA-RD-80-64

LETTY, RICHARD M. (FAA, Washington)
FAA-RD-77-57

LIZZI, PHILIP (FAA Technical Center)
FAA/RD-82/71

LORGE, FRANK (FAA, NAPEC)
FAA-CT-80-175 FAA/RD-82/24 FAA/RD-82/78
FAA/CT-TN86/17

LYNN, WILLIAM A. (FAA Technical Center)
FAA-RD-81-27

MAENZA, PAUL (FAA, Oklahoma City)
FAA/CT-TN84/20 FAA/AVN-200/25

MACKIN, CLIFF (FAA, NAPEC)
FAA-RD-80-22

MAGENHEIM, B. (AMAF Industries)
FAA-RD-81-9

MAGLIOZZI, B. (Hamilton Standard, a division of UTC)
FAA-RD-75-79 FAA-RD-76-49

MASTERS, CHARLES O. (FAA Technical Center)
FAA/CT-83/42
MATOS KENE A. (FAA Technical Center)

FAA/CT-TN85/23 FAA/PM-86/30

MAURER, JOHN (FAA, NAPEC)

FAA-RD-73-47

MCCLURE, K.R. (Pratt & Whitney)

FAA-RD-77-100

MCCONKEY, EDWIN D. (Systems Control Technology)

FAA-RD-81-92 FAA/RD-82/6 FAA/RD-82/40
FAA/PM-83/4 FAA/PM-83/32 FAA/PM-85/7

MCKINLEY, JOHN B. (Systems Control Technology)

FAA/RD-82/40 FAA/PM-84/22 FAA/PM-84/25

MCVICKER, J.P. (FAA, Washington)

FAA-RD-81-7-LR

MCWILLIAMS, IAN (Transportation System Center)

FAA-RD-78-143

METZGER, F.B. (Hamilton Standard, a division of UTC)

FAA-RD-75-79

MILLER, DR. ROBERT G. (National Weather Service)

FAA/PM-84/31 FAA/PM-86/10

MORGAN, J. MURRAY (National Aeronautical Establishment)

NAE-AN-26 (1985)

MORKOW, JOHN G. (FAA Technical Center)

FAA/RD-82/7 FAA/CT-TN85/17

MULLEN, ROBERT L. (Electromagnetic Compatibility Analysis Center)

FAA/RD-82/63

NEWMAN, ROBERT B. (Systems Control Technology)

FAA/PM-84/22
O'BRIEN, PAUL L. (FAA, NAPEC)

FAA-RD-73-47

ONTIVEROS, ROBERT J. (FAA Technical Center)

FAA/CI-83/6

PAOLACCI, GEORGE (FAA Technical Center)

FAA/CT-TN84/47

PATE, DONALD P. (FAA, Oklahoma City)

PAPROCKI, THOMAS H. (FAA Technical Center)

NA-69-2 FAA-RD-72-133

PEREZ, JOSEPH (FAA, NAPEC)

FAA-RD-80-18

PETTERSON, A.A. (Boeing Vertol)

FAA-CT-80-210

PHATAK, ANIL V. (Analytical Mechanics Associates)

FAA/P-86/14 FAA/P-86/15

POTT, TOSH (FAA, Washington)

FAA-RD-81-7-LR

PRICE, H.R. (PACER Systems Inc.)

FAA-RD-80-58

PURSEL, ROBERT H. (FAA Technical Center)

NA-78-55-LR FAA-RD-80-47 FAA-CT-81-167

QUINN, GEORGE H. (FAA, Washington)

FAA-RD-70-10 FAA-RD-76-146

RAMSDELL, J.V. (Battelle, Pacific Northwest Laboratories)

FAA-RD-75-94

REDDY, N.N. (Lockheed-Georgia)

FAA-RD-75-125

27
REHMANN, ALBERT J. (FAA Technical Center)

FAA/CT-TN85/49 FAA/CT-TN85/60 FAA/CT-TN85/83

RDMER, JAMES H. (FAA Technical Center)

FAA/CT-TN85/63

RICKLEY, E.J. (FAA, Washington)

FAA-RD-77-94

ROSSITER, SIDNEY B. (FAA, NAPEC)

FAA-RD-73-47

SACKETT, JOHN R. (FAA Technical Center)

FAA/PM-86/30

SCHOLLENBERGER, SCOTT B. (FAA Technical Center)

FAA/CT-TN84/40 FAA/CT-TN85/53 FAA/CT-86/14

SCHLICKENMAIER, HERBERT W. (FAA, Washington)

FAA-RD-81-7-LR

SCHWARTZ, CHARLES W. (Univ. of Maryland)

FAA/PM-84/23

SHRAGER, JACK J. (FAA, NAPEC)

FAA-RD-74-48

SHUSTER, PHILIP (FAA Technical Center)

FAA/PM-86/30

SINCLAIR, DR. S.R.M. (National Aeronautical Establishment)

FAA-RD-79-59

SMITH, F.D. (PACER Systems Inc.)

SORENSEN, JOHN A. (Analytical Mechanics Associates)

FAA/PM-86/14 FAA/PM-86/15

SULLIVAN, THOMAS (Transportation System Center)

FAA-RD-78-143
SULZER, RICHARD L. (FAA Technical Center)

NA-69-2

SWANN, DANA (ARINC Research)

FAA-RD-80-20

TAYLOR, FRANK R. (Systems Control Inc. (VT), Systems Control Technology)

FAA-CT-81-35 FAA/PM-85/6 FAA/PM-86/28

THOMPSON, JACK L. (Systems Control Technology)

FAA/PM-86/45

TIBBETS, J.G. (Lockheed-Georgia)

FAA-RD-75-125

TILL, ROBERT D. (FAA Technical Center)

FAA/CT-82/103 FAA/CT-TN83/03

TRAYBAR, JOSEPH J. (PACER Systems Inc., FAA Technical Center)

FAA-RD-78-157 FAA-RD-79-64

TRUE, HAROLD C. (FAA, Washington)

FAA-RD-77-57 FAA-RD-77-94

VENEZIA, KRISTEN J. (Systems Control Technology)

FAA/PM-83/32 FAA/PM-85/7

VICKERS, TIREY K. (VITRO, Helicopter Association International)

FAA-RD-80-85 FAA-RD-80-86 FAA-RD-80-87

WALTER, FRED (Scientifico)

FAA-RD 71-105

WARREN, JOHN (FAA Technical Center)

FAA/CT-TN85/83

WEBB, MICHAEL M. (FAA Technical Center)

FAA/CT-TN85/58 FAA/CT-TN86/31
WEISS, ROSANNE M. (FAA Technical Center)

FAA/CT-TN85/5 FAA/RM-86/30

WEST, THOMAS C. (FAA, Washington)

FAA/RD-79-59

WHITE, MICHAEL (ARINC Research)

FAA/RD-80-20

WINSTON, BRL (Transportation System Center)

FAA/RD-78-143

WITCZAK, MATTHEW W. (Univ. of Maryland)

FAA/RM-84/23

WOLF, CHRISTOPHER (FAA Technical Center)

FAA/CT-TN85/17 FAA/CT-TN85/24
APPENDIX D: ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>Advancing blade concept</td>
</tr>
<tr>
<td>ADF</td>
<td>Automatic direction finder</td>
</tr>
<tr>
<td>AM</td>
<td>Amplitude modulated</td>
</tr>
<tr>
<td>AMA</td>
<td>Analytical Mechanics Associates</td>
</tr>
<tr>
<td>ARINC</td>
<td>Aeronautical Radio Inc.</td>
</tr>
<tr>
<td>ATC</td>
<td>Air traffic control</td>
</tr>
<tr>
<td>AWOS</td>
<td>Automated weather observing system</td>
</tr>
<tr>
<td>AWOS GEM</td>
<td>AWOS generalized equivalent markov</td>
</tr>
<tr>
<td>E-L</td>
<td>Electroluminescent</td>
</tr>
<tr>
<td>EMS</td>
<td>Emergency medical service</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>FAA ATC</td>
<td>FAA Technical Center</td>
</tr>
<tr>
<td>FLIR</td>
<td>Forward looking infrared radar</td>
</tr>
<tr>
<td>GEM</td>
<td>Generalized equivalent markov</td>
</tr>
<tr>
<td>GPS</td>
<td>Global positioning system</td>
</tr>
<tr>
<td>HAA</td>
<td>Helicopter Association of America</td>
</tr>
<tr>
<td>HAI</td>
<td>Helicopter Association International</td>
</tr>
<tr>
<td>HF</td>
<td>High frequency</td>
</tr>
<tr>
<td>IFR</td>
<td>Instrument flight rules</td>
</tr>
<tr>
<td>ILS</td>
<td>Instrument landing system</td>
</tr>
<tr>
<td>INS</td>
<td>Inertial navigation system</td>
</tr>
<tr>
<td>LFF</td>
<td>Loran flight following</td>
</tr>
<tr>
<td>MLS</td>
<td>Microwave landing system</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>NAE</td>
<td>National Aeronautical Establishment</td>
</tr>
<tr>
<td>NAFEC</td>
<td>National Aviation Facilities Experimental Center</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NAVSTAR</td>
<td>Navigation satellite timing and ranging</td>
</tr>
<tr>
<td>NRL</td>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td>PAR</td>
<td>Precision approach radar</td>
</tr>
<tr>
<td>RNAV</td>
<td>Area navigation</td>
</tr>
<tr>
<td>SCT</td>
<td>Systems Control Technology</td>
</tr>
<tr>
<td>STOL</td>
<td>Short takeoff and landing</td>
</tr>
<tr>
<td>TCAS</td>
<td>Traffic alert and collision avoidance system</td>
</tr>
<tr>
<td>TERPS</td>
<td>Terminal instrument procedures</td>
</tr>
<tr>
<td>VFR</td>
<td>Visual flight rules</td>
</tr>
<tr>
<td>VLATME</td>
<td>Very light weight air traffic management equipment</td>
</tr>
<tr>
<td>VNAV</td>
<td>Vertical navigation</td>
</tr>
<tr>
<td>VOR</td>
<td>Very high frequency omnidirectional radio range</td>
</tr>
<tr>
<td>VTOL</td>
<td>Vertical takeoff and landing</td>
</tr>
</tbody>
</table>
This report is a study of the generation and decay of the wake behind an aircraft, both in free air and ground effect, and its effect on following aircraft. An analysis is presented for both fixed- and rotarywing aircraft which defines the wake movement with time and the wake-induced velocities. The wake due to the propulsion system is analyzed both for normal operation and reversed thrust, as well as for pure propulsion lift. The influence of atmospheric parameters such as wind, temperature, and turbulence is discussed as it applies to the generation and decay of the wake.
This report documents Phase II of a two-part study for the prediction of the velocity fields in the wakes of fixed-wing and rotary-wing aircraft. The material presented in this report, together with that in RD-64-4, comprises one part of a large program directed toward determining safe separation times and distances for aircraft operating in the air terminal traffic pattern.

Thirty-three aircraft currently operating within the Air Traffic Control system are analyzed. Numerical data are presented in tabular and curve form for eleven of the aircraft, defining their respective wake velocity fields.

A discussion of the assumptions and limitations of the analytical models used is included along with a discussion of possible correlation of the calculated values with test results.
A composite summary analysis was made of the height-velocity (H-V) diagram test data obtained from the flight testing of three single engine, single rotor helicopters of varying design characteristics and basic parameters. The purpose of this analysis was to ascertain if a practical method for the determination of the H-V diagram could be evolved, as well as a means to determine the effects of aircraft weight and altitude on the H-V diagram. Analysis disclosed that H-V diagrams can be developed for any conventional single rotor helicopter by the flight test determination of a single maximum performance critical speed (Vcr) point in conjunction with the use of a non-dimensional curve and the solution of specific key point ratios which are set forth in the report. An evaluation of the H-V diagram key point relationships is presented followed by a discussion of the observed factors affecting autorotative landing following power failure. A suggested step by step procedure for flight manual type H-V diagrams is also presented.
A simulation study was conducted to determine the effect on air traffic control when both Vertical and Short Takeoff and Landing (VTOL and STOL) aircraft are introduced into a terminal air traffic control environment.

It was concluded that VTOL and STOL aircraft could be accommodated in the terminal area under present operational procedures as contained in the Terminal Air Traffic Control Manual 7110.8. However, when VTOL and STOL aircraft reduced their terminal area speed to a slow final approach speed, difficulties were encountered in providing not only the desired spacing between these aircraft but also between these aircraft and conventional aircraft in the sequence to and on the final approach course.

It was recommended that, in the planning of future VTOL and STOL aircraft ports, consideration be given to the location and runway alignment in order that the traffic flow of this airport be compatible with that of other traffic. It was also recommended that flight tests be conducted under simulated Instrument Flight Rule (IFR) conditions to determine the most favorable relationship between glide slope angle, rate of descent and approach speed for both Vertical and Short Takeoff and Landing aircraft. It was further recommended that the feasibility of non-standard separation be examined in a live environment.
Abstract

The guidance value of heliport lighting system components was tested under VFR conditions in a joint FAA/U.S. Army effort. The overall system included lighting to identify and locate the heliport and support the approach and landing of helicopters.

Forty-six civil and military pilots flew on 11 nights at Tipton Army Airfield, Fort Meade, Maryland, producing the following conclusions: The heliport beacon, flashing green-yellow-white, had adequate range and distinctiveness but could be improved by a change in flash rate; the yellow pad perimeter lighting met all requirements; the white approach direction and yellow landing direction lighting components were satisfactory; both pad surface floodlighting and pad insert lights were used satisfactorily, and all pilots who were shown the painted maltese cross marking rated it as an aid at night; the lighted wind sock provided adequate wind direction information if overflown first, but neither the lighted wind sock nor the lighted wind tee tested were adequate to provide this information to a pilot on the approach path at one-half mile from the pad.

A minimum VFR heliport lighting system is recommended to include the beacon for location information, the perimeter lights and painted marking for pad identification, and the lighted wind sock to provide wind information. Other components are recommended for installation when required by special conditions.

Key Words

Heliport Lighting
Heliport Beacon
Heliport Marking

Distribution Statement

Document is on file at the NAFEC Library, Atlantic City, New Jersey 08405
Abstract

The performance of three Loran-C airborne receiver/computer systems was investigated during flights in the U. S. Northeast Corridor to determine the feasibility of using Loran-C signals and equipment to navigate V/STOL vehicles in that area. Flight tests were conducted in a C-130 and DC-6 fixed wing aircraft, and a CH-47C Helicopter. Tracking radar was used on several of the flights to determine the airborne Loran-C equipment accuracy. Oscilloscope photographs of the received signals and strip chart recordings of the received 50 kHz to 150 kHz spectrum were used to establish the Loran-C signal, noise, and interference conditions throughout the Northeast Corridor. Test results showed that existing Loran-C signals and the systems did establish aircraft positions from the ground to operating altitudes in the Northeast Corridor. However, the equipment interfering signal rejection ability and reliability were not adequate for immediate operational use.
Analytical Study of the Adjacency of VOR/DME and DME/DME Guidance Signals for V/STOL Area Navigation in the Los Angeles Area

Abstract

An analysis was performed by personnel of the National Aviation Facilities Experimental Center (NAFEC) to determine the adequacy of very high frequency omnirange/distance measuring equipment (VOR/DME) guidance signals for vertical/short takeoff and landing (V/STOL) aircraft area navigation (RNAV) in the Los Angeles (LAX) area. Guidance signals were derived from existing VOR/DME and "converted" VOR facilities. It was concluded that:

1. VOR/DME RNAV over seven approved routes was feasible when using the existing VOR/DME facilities;
2. DME/DME RNAV over the approved routes is feasible when using station-pair combinations from existing VOR/DME facilities and certain converted VOR stations;
3. Except for the last segment of the LAX to Van Nuys (VNY) direct route, VOR/DME RNAV over the hypothetical direct routes was feasible when using existing VOR/DME facilities;
4. Except for the last segment of the LAX to VNY direct route, DME/DME RNAV over the direct routes was feasible when using station-pair combinations from existing VOR/DME facilities and certain converted VOR stations;
5. RNAV using DME/DME was potentially more accurate than VOR/DME; and
6. The number of en route station changeovers for VOR/DME and DME/DME RNAV over the approved and direct routes was considered acceptable.

Key Words

- Navigation
- Full-Weather Aviation
- Air Routes
- V/STOL Aircraft

Distribution Statement

Availability is unlimited. Document may be released to the National Technical Information Service, Springfield, Virginia 22151, for sale to the public.

<table>
<thead>
<tr>
<th>Security Classif. (of this report)</th>
<th>Security Classif. (of this page)</th>
<th>No. of Pages</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>152</td>
<td></td>
</tr>
</tbody>
</table>
A heliport beacon production prototype was designed, constructed, and tested for optical performance and resistance to environmental conditions. The revolving beam beacon employs two 250 W, 130 V tungsten-halogen lamps, one each for the aviation green and aviation yellow projectors, and one 500 W, 120 V tungsten-halogen lamp for the white split beam projector. Lamp life is in excess of 5,000 hours at 115 V except with the 500 W lamp of the white beam projector, for which no 5,000 lamp has yet been found. The life of this lamp is approximately 3500 hours. The entire beacon system is sealed against the environment. The complete device weighs less than 50 pounds and can be mounted on standard light poles. It is about 16" in diameter and 24" tall. Low weight and cost are accompanied by low power consumption and minimal maintenance requirements, reducing the costs for installation and operation to a fraction of the amounts heretofore associated with devices of this kind.
Various approach lighting system patterns, developed through mockup and VFR flight testing efforts, were evaluated to determine their effectiveness in providing visual guidance for helicopter IFR approach and landing operations. Four basic lighting configurations were flown, under actual IFR weather conditions, by experienced helicopter subjects pilots. As a result of information collected through in-flight recording of objective data and post flight completion of pilot questionnaires, one of the lighting patterns was chosen as most effective for the conditions specified.
Two dynamic simulations were conducted, using saturated Short Takeoff and Landing (STOL) aircraft traffic sample inputs, to study the effects of various aspects of STOL aircraft operations within the Air Traffic Control System. One investigated the effects of STOL aircraft operating at a downtown STOLport within the New York terminal area complex; the other investigated the effect of STOL aircraft operating on various configurations of STOL runways at a high-density, multi-runway, conventional takeoff and landing (CTOL) airport. It was concluded that STOL operations can be accommodated at a downtown STOLport; however, where airspace is limited, intricate profiles requiring a high degree of aircraft performance may be required. The performance of these profiles should be an onboard responsibility using highly accurate area navigation equipments with the ATC facility serving as a monitor. The current method of controller speed commands can be used as an interim method of metering and spacing pending more sophisticated methods, but requires flexible aircraft speed parameters and close cooperation between pilot and controller. As an aid to airspace utilization, a glide slope of 7 1/2° is beneficial and may be essential. It was further concluded that the least effect on CTOL operations at a CTOL/STOL airport is achieved by a parallel system of STOL runways bordering upon the CTOL complex. The techniques for controlling STOL aircraft at a CTOL airport are similar to those applied to CTOL aircraft; however, more emphasis is placed on speed control as opposed to radar vectoring because of the criticalness of the operation within the confines of limited airspace. A steep glide slope, pre-planned pilot-performed flight tracks, and the limiting of the number of STOL routes into the terminal area are aids to an efficient STOL operation.
Title and Subtitle:
V/STOL NOISE PREDICTION AND REDUCTION

Authors:
W. A. Guinn, D. F. Blakney, J. S. Gibson

Performing Organization Name and Address:
LOCKHEED-GEORGIA COMPANY
Marietta, Georgia

Abstract:
A four Phase program is described. Phase I was concerned with the identification of noise sources in rotary and jet stream type propulsion systems for V/STOL aircraft. In order to facilitate the noise source identifications and provide needed data for subsequent work, an extensive bibliography (809 references) was compiled. Phase II work covers the definition of noise generating mechanisms for jet stream V/STOL systems. Phase III discusses the noise reduction concepts which are applicable. In Phase IV, hand calculation and computer programs are derived and presented for predicting the far field noise environment of various types of V/STOL aircraft.

Key Words:
Acoustics, Noise Prediction, Aircraft Noise, Noise Reduction, V/STOL Noise, Aerodynamic Noise

Distribution Statement:
Document is available to the public through the National Technical Information Service, Springfield, Virginia 22151

Type of Report and Period Covered:
Final Report, June 1972 - August 1973

Sponsoring Agency Name and Address:
DEPARTMENT OF TRANSPORTATION
Federal Aviation Administration
Systems Research & Development Service
Washington, D.C. 20590

Report Date:
August 1973

Report Date:
August 1973

Report Date:
August 1973
A review of all literature published since 1964 relating to helicopter vortex systems and wake turbulence was made. The results of this review are evaluated and summarized, and conclusions are drawn relative to that review. The documents are grouped in general categories, and this is further supplemented by an annotated bibliography and authors index. Also incorporated in the review is a comparative analysis of rotary-wing versus fixed-wing circulation intensity time-history.
This report summarizes the state-of-the-art in helicopter noise. It includes a bibliography of reports on all components of helicopter noise including main rotor, tail rotor, engine and gearbox. Literature on helicopter noise reduction and subjective evaluation of helicopter noise were also included. Capsule summaries of important reports are included which describe the purpose of the report, summarizes the important results, compares the report with others on the same subject, and provides a critical evaluation of the work presented. It is concluded that the available prediction methodology provides a means for estimating helicopter sources on a gross basis. However, the mechanisms of noise generation are still not fully understood, although the experimental and theoretical tools are now available to conduct the definitive experiments and establish the mathematical models needed for accurate definition of helicopter noise generation mechanisms. Spectrum analyses of helicopter noise show that main rotor, tail rotor, and engine sources contribute significantly to annoyance. In cases where these sources have been heavily suppressed, gearbox noise will also appear as a significant contributor to annoyance. Therefore, quieter helicopters must include suppression of all of these components. For certification, the literature indicates that a new noise unit is required. This unit may use the effective perceived noise level concept but should include corrections for impulsive noise, correctly address the influence of tones throughout the frequency spectrum, extend the spectrum of interest to very low frequencies, and correct the annoyance of noise components below 50 Hz. For assessing the community acceptance of helicopter noise, modification of the Day-Night Noise Level, LDN, shows promise.
Winds and turbulence have been measured at typical urban STOL and VTOL port sites and at a conventional rural airport during a 9-month period. These measurements have been used to develop a set of turbulence models for use in: design of V/STOL aircraft stability and control features, development of airworthiness criteria for certification of V/STOL aircraft, and simulation of the turbulence in the urban terminal environment of V/STOL aircraft. The model set includes spectral models, rms gust velocity models and turbulence length scale models. Probability distributions are given for gust velocities and length scales. The data obtained during the study and the models derived therefrom are compared with conventional, flat-terrain turbulence models and data.

In addition, the report contains a review of atmospheric boundary layer theory and descriptions of the measurement sites, instrumentation and data processing. There is a discussion of spatial aspects of turbulence and an evaluation of the standard airport cup anemometer.

The appendices contain extensive summaries of the data collected. These summaries include: wind roses, wind and turbulence statistics for selected periods, turbulence spectra, gust velocity distributions, and length scale distributions.
A computer program is presented for predicting the noise levels of V/STOL aircraft with jet-propulsive-lift systems. Using the equations developed in Part I of this report the noise levels may also be estimated with hand calculations. Vectored thrust, externally blown flap, upper surface blown flap, internally blown flap, and augmentor wing are the propulsive-lift concepts considered. Semi-empirical equations are derived using the test results and theories for the following aircraft noise sources: internal engine, jet, excess (core engine), high-lift system, airframe, and auxiliary power unit. The computer program predicts the perceived noise levels and tone corrected perceived noise levels for V/STOL aircraft at any specified sideline distance for known geometrical and operational parameters. This report supersedes the earlier report No. FAA-RD-73-145, August 1973.
Although this first phase of a two-phase program emphasized the extent that Perceived Noise Level in PNdB, Perceived Level in dBA, and corrections to these engineering calculation procedures reflected annoyance to next generation STOL aircraft noise signatures, other aspects of certification implementation were also considered and will be emphasized in a report on the second phase of the program.

As a means of determining the accuracy and reliability of engineering calculation procedures that could be utilized as a basis for noise certification of V/STOL commercial aircraft, 36 persons made annoyance judgments to 34 noise signals presented at 5 different levels. The signals included recordings of conventional jet aircraft operations, turboprop and reciprocating engine powered commercial aircraft, helicopter flybys, and simulations of V/STOL operations. Both relative annoyance and absolute acceptability judgments were obtained. Some of the results are:

- For flyover (not hover) operations EPNdB validly and reliably predicts annoyance.
- For hover type of operations EPNdB under predicts annoyance.
- When applied to all aircraft types, the FAR-36 tone correction degrades reliability for both PNdB and dBA while the duration correction improves reliability to a significant extent.
- A difference between calculated and judged values should be equal-to or greater-than 3 EPNdB in order to conclude that the difference is reliable.
The relationship between the perceived level, PldB, of sound (loudness or noisiness) is shown to be a function of the sound pressure squared and the sound frequency squared, i.e. PldB = k p² f². A logarithmic formula employing this basic relationship between perceived level and pressure and frequency has been developed and is found to be as accurate as the more complex methods currently in use, i.e. PldB = 14 + 20 Log₁₀ P [dB] + 20 Log₁₀ f (Hz) which is equal to the following:

\[P_{\text{dB}} = P(\text{dB}) - 60 + 20 \log_{10} f (\text{Hz}) \]

The perceived level of an aircraft takeoff or landing is demonstrated to be equal to the logarithmic sum of the perceived levels calculated using the above formula, for each octave band or 1/3 octave band, i.e. \[P_{\text{dB}} = \sum \text{antilog}_{10} P_{\text{dB}_i}/10 \]

The results are found to be more accurate than the complex methods currently in use for the useful range of sound pressure levels and frequencies found to be associated with operational aircraft including helicopters, turbofan, turboprop and turbojet powered aircraft. This work, therefore, provides the systems engineer an easily understood and useful design and evaluation method. The formula developed clearly shows the design engineer and management personnel the relationship between the physical characteristics of an evolving system and its potential impact on human and community response.
Technical Report Documentation Page

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Report No.</td>
<td>FAA-RD-76-49, I</td>
</tr>
<tr>
<td>2. Government Accession No.</td>
<td>AD-A027389</td>
</tr>
<tr>
<td>3. Recipient’s Catalog No.</td>
<td></td>
</tr>
<tr>
<td>4. Title and Subtitle</td>
<td>V/STOL ROTARY PROPULSION SYSTEMS - NOISE</td>
</tr>
<tr>
<td></td>
<td>PREDICTION AND REDUCTION</td>
</tr>
<tr>
<td></td>
<td>Volume I - Identification of Sources, Noise Generating</td>
</tr>
<tr>
<td></td>
<td>Mechanisms, Noise Reduction Mechanisms, and Prediction</td>
</tr>
<tr>
<td>5. Author(s)</td>
<td>B. Magliozzi</td>
</tr>
<tr>
<td>6. Performing Organization Name and Address</td>
<td>Hamilton Standard</td>
</tr>
<tr>
<td></td>
<td>Division of United Technologies Corp.</td>
</tr>
<tr>
<td></td>
<td>Windsor Locks, Connecticut 06096</td>
</tr>
<tr>
<td>7. Sponsoring Agency Name and Address</td>
<td>U.S. Department of Transportation</td>
</tr>
<tr>
<td></td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td></td>
<td>Systems Research and Development Service</td>
</tr>
<tr>
<td></td>
<td>Washington D.C. 20590</td>
</tr>
<tr>
<td>8. Synopsis</td>
<td>The propulsion systems of current and future V/STOL vehicles can be</td>
</tr>
<tr>
<td></td>
<td>defined as combinations of free-air propellers, shrouded propellers,</td>
</tr>
<tr>
<td></td>
<td>variable pitch fans, fixed pitch fans, tilt rotors,</td>
</tr>
<tr>
<td></td>
<td>helicopter rotors, lift fans, gearboxes, and drive engines.</td>
</tr>
<tr>
<td></td>
<td>In this report, noise sources for each of these propulsors,</td>
</tr>
<tr>
<td></td>
<td>gearboxes, and drive engines are identified and rank ordered.</td>
</tr>
<tr>
<td></td>
<td>The noise generating mechanisms for each of the propulsor noise</td>
</tr>
<tr>
<td></td>
<td>sources identified are defined and systematically cataloged.</td>
</tr>
<tr>
<td></td>
<td>Three approaches to reduction of propulsor noise are discussed:</td>
</tr>
<tr>
<td></td>
<td>changes in physical geometry, changes in design operating conditions,</td>
</tr>
<tr>
<td></td>
<td>and the use of acoustic treatments.</td>
</tr>
<tr>
<td></td>
<td>Computerized and graphical procedures based on methodology from the</td>
</tr>
<tr>
<td></td>
<td>open literature and at United Technologies Corp., are presented</td>
</tr>
<tr>
<td></td>
<td>for predicting aerodynamic performance of and noise from the V/STOL</td>
</tr>
<tr>
<td></td>
<td>propulsors identified in this study.</td>
</tr>
<tr>
<td></td>
<td>The developed methodology allows the user to estimate the achieved</td>
</tr>
<tr>
<td></td>
<td>noise reduction as well as the incurred performance penalties of</td>
</tr>
<tr>
<td></td>
<td>noise reduction design features and noise attenuation devices such</td>
</tr>
<tr>
<td></td>
<td>as partly sonic inlets and acoustic treatments. It is shown that</td>
</tr>
<tr>
<td></td>
<td>much of the noise generating mechanism substantiation data and</td>
</tr>
<tr>
<td></td>
<td>prediction methodology are based on static operation. Forward flight</td>
</tr>
<tr>
<td></td>
<td>flight effects have recently been recognized as having a significant</td>
</tr>
<tr>
<td></td>
<td>effect on the noise sources. Therefore, forward flight effect</td>
</tr>
<tr>
<td></td>
<td>corrections are included in the methodology, but these have not</td>
</tr>
<tr>
<td></td>
<td>been fully substantiated due to lack of data.</td>
</tr>
<tr>
<td>9. Performing Organization Name and Address</td>
<td>Hamilton Standard</td>
</tr>
<tr>
<td></td>
<td>Division of United Technologies Corp.</td>
</tr>
<tr>
<td></td>
<td>Windsor Locks, Connecticut 06096</td>
</tr>
<tr>
<td>10. Work Unit No.</td>
<td>(TRAIS)</td>
</tr>
<tr>
<td>11. Contract or Grant No.</td>
<td>DOT-FA74WA-3477</td>
</tr>
<tr>
<td>12. Type of Report and Period Covered</td>
<td>Final Report</td>
</tr>
<tr>
<td>13. Type of Report and Period Covered</td>
<td></td>
</tr>
<tr>
<td>15. Supplementary Notes</td>
<td></td>
</tr>
<tr>
<td>16. Abstract</td>
<td>The propulsion systems of current and future V/STOL vehicles can be</td>
</tr>
<tr>
<td></td>
<td>defined as combinations of free-air propellers, shrouded propellers,</td>
</tr>
<tr>
<td></td>
<td>variable pitch fans, fixed pitch fans, tilt rotors,</td>
</tr>
<tr>
<td></td>
<td>helicopter rotors, lift fans, gearboxes, and drive engines.</td>
</tr>
<tr>
<td></td>
<td>In this report, noise sources for each of these propulsors,</td>
</tr>
<tr>
<td></td>
<td>gearboxes, and drive engines are identified and rank ordered.</td>
</tr>
<tr>
<td></td>
<td>The noise generating mechanisms for each of the propulsor noise</td>
</tr>
<tr>
<td></td>
<td>sources identified are defined and systematically cataloged.</td>
</tr>
<tr>
<td></td>
<td>Three approaches to reduction of propulsor noise are discussed:</td>
</tr>
<tr>
<td></td>
<td>changes in physical geometry, changes in design operating conditions,</td>
</tr>
<tr>
<td></td>
<td>and the use of acoustic treatments.</td>
</tr>
<tr>
<td></td>
<td>Computerized and graphical procedures based on methodology from the</td>
</tr>
<tr>
<td></td>
<td>open literature and at United Technologies Corp., are presented</td>
</tr>
<tr>
<td></td>
<td>for predicting aerodynamic performance of and noise from the V/STOL</td>
</tr>
<tr>
<td></td>
<td>propulsors identified in this study.</td>
</tr>
<tr>
<td></td>
<td>The developed methodology allows the user to estimate the achieved</td>
</tr>
<tr>
<td></td>
<td>noise reduction as well as the incurred performance penalties of</td>
</tr>
<tr>
<td></td>
<td>noise reduction design features and noise attenuation devices such</td>
</tr>
<tr>
<td></td>
<td>as partly sonic inlets and acoustic treatments. It is shown that</td>
</tr>
<tr>
<td></td>
<td>much of the noise generating mechanism substantiation data and</td>
</tr>
<tr>
<td></td>
<td>prediction methodology are based on static operation. Forward flight</td>
</tr>
<tr>
<td></td>
<td>flight effects have recently been recognized as having a significant</td>
</tr>
<tr>
<td></td>
<td>effect on the noise sources. Therefore, forward flight effect</td>
</tr>
<tr>
<td></td>
<td>corrections are included in the methodology, but these have not</td>
</tr>
<tr>
<td></td>
<td>been fully substantiated due to lack of data.</td>
</tr>
</tbody>
</table>

18. Distribution Statement: This document is available to the public through the National Technical Information Service, Springfield, Virginia 22151.

19. Security Class: Unclassified

20. Security Class: Unclassified

21. No. of Pages: 137

22. Price: Unclassified

Form DOT F 1700.7 (8-75) | REPRODUCTION OF THIS FORM IS AUTHORIZED
Graphical procedures for estimating noise and performance of free-air propellers, variable pitch fans with inlet guide vanes, variable pitch fans with outlet guide vanes, fixed pitch fans, helicopter rotors, tilt rotors, and lift fans are presented. Noise prediction methods for drive engines, gearboxes, jets with and without bypass flow, as well as noise reduction and performance losses for partly sonic inlets and duct linings are also presented. These graphical methods are parallel to those developed for the computer program discussed in Volume III of this report to the extent possible without their becoming too involved and tedious to use.

The procedures are extensive and applicable to a wide variety of V/STOL propulsor systems, including present and future V/STOL vehicles. The methods have been validated with available data wherever possible. However, high quality data for isolated propulsors which is free from contamination by other sources and ground reflections is somewhat limited, particularly for forward flight conditions.

A computer program is presented which allows a user to make performance and far-field acoustic noise predictions for free-air propellers, variable pitch fans with inlet guide vanes, variable pitch fans with outlet guide vanes, fixed pitch fans, helicopter rotors, tilt rotors, fixed pitch lift vanes with remote, integral, and tip-turbine drives, and variable pitch lift fans with remote and integral drives. Noise prediction methodology for drive engines, single stream and coaxial jets, and gearboxes are also included, as well as noise reduction and performance losses of partly sonic inlets and duct acoustic treatment.

A description of the program, detailed instructions for its use, required inputs, and sample cases are presented.

This is the second part of a program concerning noise certification for V/STOL and helicopter aircraft. Aspects considered were: an engineering calculation procedure which validly and reliably reflects annoyance to helicopter operations; estimates of noise exposure levels which could be compatible with human activities in areas surrounding heliports; noise exposure modeling for helicopter noise; certification measurement approaches for helicopter noise certification.

The basics of the program involved human response evaluations of conventional takeoff and landing (CTOL) aircraft noise, simulations of helicopter noise emphasizing "slap" or pulsating noise effects, and recordings of a wide variety of helicopter operations.

The main conclusion is that PNdB with the FAR-36 duration correction reliably reflects annoyance to helicopter noise. No correction for "slap" or tone is required. Also, dBA is almost as effective as PNdB for measuring effects of helicopter noise (duration effects are included). Elimination of "heavy slap" is equivalent to a maximum of a 2 to 3 dBA reduction relative to annoyance response.
A COMPARISON OF AIR RADIONAVIGATION SYSTEMS (FOR HELICOPTERS IN OFF-SHORE AREAS)

This paper examines the technical potential of ten navigation systems that may meet specific IFR en route navigation requirements for helicopters operating in off-shore areas. Technical factors considered essential for navigation are: (1) operational range, (2) operational altitude, (3) accuracy, and (4) reliability.

Not addressed in this paper are such operational factors as pilot workload, number of waypoints, type of display, etc.

Estimated user equipment cost will be included because of its importance in system selection.
| **1. Report No.** | FAA-RD-77-57, I |
| **2. Government Accession No.** | AP-A040561 |
| **3. Recipient's Catalog No.** |
4. Title and Subtitle	Helicopter Noise Measurements Data Report
Volume I	Helicopter Models: Hughes 300-C, Hughes 500-C, Bell 47-G, Bell 206-L
5. Report Date	April 1977
6. Performing Organization Name and Address	Department of Transportation Federal Aviation Administration Systems Research and Development Service Washington, D.C. 20591
7. Authors	Harold C. True and Richard M. Letty
8. Performer's Catalog No.	
9. Sponsoring Organization Name and Address	Department of Transportation Federal Aviation Administration Systems Research and Development Service Washington, D.C. 20591
10. Work Unit No. (TRAIS)	
11. Contract or Grant No.	
12. Supplementary Notes	
13. Type of Report and Period Covered	Data Report

16. **Abstract**

This data report contains the measured noise levels obtained from an FAA Helicopter Noise Test Program. The purpose of this test program was to provide a data base for a possible helicopter noise certification rule. The noise data presented in this two volume report is primarily intended as a means to disseminate the available information. Only the measured data is presented in this report. All FAA/DOT data analysis and comparisons will be presented in a later report which is scheduled for distribution in July, 1977.

The eight helicopters tested during this Helicopter Noise Test Program constituted a wide range of gross weights and included participation from several helicopter manufacturers. The helicopter models used in this test program were the Hughes 300C, Hughes 500C, Bell 47-G, Bell 206-L, Bell 212 (UH-1N), Sikorsky S-61 (SH-3A), Sikorsky S-64 "Sky crane" (CH-54B), and Boeing Vertol "Chinook" CH-47C. Volume I contains the measured noise levels obtained from the first four helicopters while Volume II contains the data from the remaining four.

The test procedure for each helicopter consisted of obtaining noise data during hover, level flyover, and approach conditions. The data presented in this report consists of time histories, 1/3-octave band spectra, EPNL, PNL, dBA, dBD and OASPL noise levels.

17. **Key Words**

Helicopter Noise Levels; Hover; Level Flyover; Approach; Glide Slope; Time Histories; EPNL, PNL, dBA, dBD and OASPL.

18. **Distribution Statement**

This document is available to the public through the National Technical Information Service Springfield, Virginia 22151

19. **Security Classif. (of this report)** | UNCLASSIFIED |

20. **Security Classif. (of this page)** | UNCLASSIFIED |

21. **No. of Pages** | 386 |

22. **Price** |
This data report contains the measured noise levels obtained from an FAA Helicopter Noise Test Program. The purpose of this test program was to provide a data base for a possible helicopter noise certification rule. The noise data presented in this two volume report is primarily intended as a means to disseminate the available information. Only the measured data is presented in this report. All FAA/DOT data analysis and comparisons will be presented in a later report which is scheduled for distribution in July, 1977.

The eight helicopters tested during this Helicopter Noise Test Program constituted a wide range of gross weights and included participation from several helicopter manufacturers. The helicopter models used in this test program were the Hughes 300C, Hughes 500C, Bell 47-G, Bell 206-L, Bell 212 (UH-1N), Sikorsky S-61 (SH-3A), Sikorsky S-64 "Sky crane" (CH-54B), and Boeing Vertol "Chinook" CH-47C. Volume I contains the measured noise levels obtained from the first four helicopters while Volume II contains the data from the remaining four.

The test procedure for each helicopter consisted of obtaining noise data during hover, level flyover, and approach conditions. The data presented in this report consists of time histories, 1/3-octave band spectra, EPNL, PNL, dBA, dBd and OASPL noise levels.

Refer to the main text in Volume I which describes the test program and data presentation format.
Title and Subject

NOISE CHARACTERISTICS OF EIGHT HELICOPTERS

Abstract

This report describes the noise characteristics of Eight Helicopters during level flyovers, simulated approaches, and hover. The data was obtained during an FAA/DOT Helicopter Noise Program to acquire a data base for possible helicopter noise regulatory action. The helicopter models tested were the Bell 47G, 206L, and 212 (UHIN), the Hughes 300C and 500C, the Sikorsky S-61 (SH-3B) and S-64 (CH-54B) and the Vertol CH-47C. The acoustic data is presented as Effective Perceived Noise Level, A-weighted sound pressure level and 1/3 octave band sound pressure level with a slow meter characteristic per FAR Part 36. Selected waveforms and narrow band spectra are also shown. Proposed methods to quantify impulsive noise ("blade slap") are evaluated for a level flyover for each of the helicopters.

The tested helicopters can be grouped into classes depending upon where the maximum noise occurs during a level flyover. Helicopters with the higher main rotor tip speeds propagate highly impulsive noise ahead of the helicopter. The maximum noise for most of the helicopters occurs near the overhead position and appears to originate from the tail rotor. Unmuffled reciprocating engine helicopters appear to have significant engine noise behind the helicopter. Noise levels, when compared as a function of gross weight and flown at airspeeds to minimize “compressibility slap” form a band 7 EPNdB wide with a slope directly proportional to gross weight. The quieter helicopters have multibladed rotors and tipspeeds below 700 fps. The duration correction in EPNL is important in evaluating helicopter noise because it penalizes the longer time histories of the helicopters with significant blade slap during a level flyover.

Key Words

Helicopter Noise Levels; Effective Perceived Noise Level, Flyover Noise Time History, Main Rotor, Tail Rotor, Impulsive Noise.
An engineering study on a large turbofan engine was conducted to: (1) accurately estimate the engine weight increase and design criteria necessary to contain equivalent disk fragments resulting from a rotor failure, (2) evaluate forward containment for tip fragments of fan blades, (3) identify critical structural components and loads for the loss of an equivalent fan disk fragment through analysis of the rotor/frame transient dynamic response. The fragments studied for engine containment were disk fragments with energy equivalent to two adjacent blades and an included disk serration, and four adjacent blades and three included disk serrations. The forward containment study was made to determine the additional weight required to contain or deflect turbofan engine fan blade tip fragments up to 30 degrees forward of the plane of rotation, as measured from the axis of rotation.

The results of this study indicated significant weight increases for the engine in order to contain the equivalent disk fragments of two blades with an included disk serration and four blades with three included disk serrations. The total resultant engine weight increase (shown in Table 9) for the two blade fragment is 367 pounds and for the four blade fragment is 682 pounds.
Limited flight tests were conducted using Loran-C and Omega guidance in the offshore Atlantic City area as part of the Helicopter IFR Operations Program at NAFEC. Tests were conducted using a prototype Loran-C system and a production Omega system both installed in a CV-580 aircraft. Approved offshore routes were flown and data was collected on both navigation systems. Precision radar tracking was used to determine aircraft position. Measured results on Omega navigation indicate mean ± 2 sigma crosstrack errors which in some cases are larger than a ± 2nm route width. Measured results on Loran-C navigation indicate mean ± 2 sigma crosstrack errors which are close to but do not exceed a ± 2 nm route width. The Loran-C figure, however, includes a bias error of about 1.2nm which was caused by a problem in the prototype receiver. According to the manufacturer, the problem has been corrected. If the bias is subtracted out, the mean ± 2 sigma Loran-C crosstrack error is well within a ± 2nm route width.
The Helicopter Operations Development Plan is designed to provide for upgrading and development of all those criteria, standards, procedures, systems, and regulatory activities which will allow safe, timely and economical integration of the helicopter into all-weather operations in the National Airspace System. It describes a five-year development program whose objective is to improve the National Airspace System so as to enable helicopters to employ their unique capabilities. It includes the collection of data (both near and long term) for use by the FAA and others to ensure full integration into the NAS of this rapidly growing segment of aviation. These areas are covered in the plan: (1) IFR Helicopter Operations; (2) Navigation Systems Development; (3) Communication Systems Development; (4) Helicopter Air-Traffic Control; (5) Weather Environment; (6) All-Weather Heliport Development; (7) IFR Helicopter Certification Standards; (8) Helicopter Icing Standards; (9) Helicopter Crashworthiness and (10) Helicopter Noise Characterization. The FAA groups, other Federal Government agencies and other organizations participating in this effort are identified. Program management responsibilities are addressed. A program schedule with milestones is presented and program funding requirements are identified.
This report describes the collection and analysis of data related to the behavior of the wake vortices of departing aircraft. The test site was located on the departure end of Runway 23L at Toronto International Airport, Toronto, Ontario, Canada. Three arrays of Ground Wind Vortex Sensing Systems and one Monostatic Acoustic Vortex Sensing System were used to detect, track and measure the strength of the vortices.

The data were analyzed to determine vortex lifetimes, transport characteristics and decay mechanism.

The results of the data analysis were used to generate an elliptical wind rose criterion similar to that used in the Vortex Advisory System for reduction in interarrival aircraft spacings.

Appendix A contains the results of a series of measurements on the vortices generated by a Boeing Vertol 114 (H47 Chinook) helicopter.

16. Abstract

17. Key Words

Vortex Sensing Tests, Acoustic Sensors, Wind Sensors, Aircraft Wake Vortices

18. Distribution Statement

DOCUMENT IS AVAILABLE TO THE PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VIRGINIA 22161

19. Security Classif. (of this report) Unclassified

20. Security Classif. (of this page) Unclassified

21. No. of Pages 216

22. Price

Form DOT F 1700.7 (8-72)
HELIICOPTER AIR TRAFFIC CONTROL OPERATIONS

The problems which inhibit the integration of IFR operations in the ATC system were examined, and recommendations were made to resolve these problems. Revisions in TERPS criteria and in the ATC Handbook are necessary, to minimize interference between fixed-wing and rotary-wing aircraft. The use of 2 nm radar separation between IFR helicopters in terminal areas is recommended to increase capacity by reducing the time interval between helicopter approaches to a value consistent with the time interval between fixed-wing approaches. Helicopters have a special need for low-altitude RNAV capability and the ATC system needs to be better adapted to handle the random route traffic that helicopters will generate in exploiting their special capabilities. To this end, it is recommended that the FAA develop software to call up and display, on the ATC PPI, random waypoints and connecting routes, on an as-needed basis.

Helicopters operating offshore and in remote areas are often beyond the coverage of surveillance radar, thus requiring the use of procedural control. They also operate below the coverage of VHF communications and VOR/DME, requiring alternate types of systems, several of which are recommended. The need for special controller training in procedural control, and in helicopter characteristics and limitations was made apparent during the study.
This report reviews the Airworthiness Standards for Certification of Helicopters for Instrument Flight Rules Operation. It specifically reviews the Interim Criteria, Federal Aviation Regulations, Advisory Circulars and other pertinent documents associated with the certification of Helicopters for Instrument Flight. A review of current technology, existing data applicable to IFR helicopter operation and certification procedures is accomplished. Identification of specific airworthiness requirements for helicopters operating in IFR conditions is studied and special attention is given to aircrew manning configurations, pilot flight-control workloads, helicopter trim, static stability, dynamic stability, handling qualities, analysis of time history data and documentation procedures, augmentation systems, autopilots and a review of certain flight test techniques. An analysis was made of the numerous helicopters recently certified for IFR flight in order to establish the various systems utilized including avionics systems, display systems and autopilot type systems. Special emphasis was centered on the study of the most critical IFR flight phases depicted by high workload cruise conditions and marginal stability conditions due to c.g. conditions, descent, and high climb rate conditions during IFR approaches and missed approaches for Category I procedures.
The results of a two-phased program to investigate powered-lift aircraft handling quality degradation due to both naturally-occurring and computer-generated atmospheric turbulence are presented and discussed. In Phase I, an airborne simulator was used to simulate a powered-lift aircraft on final approach. The atmospheric conditions included calm air, moderate to heavy turbulence, and frontal-type wind shears. In Phase II a ground-based simulator with a moving cockpit and a colored visual display was used to represent the same powered-lift aircraft. During Phase II, the Dryden model of atmospheric turbulence was used as well as the naturally-occurring wind profiles recorded during Phase I.

Analysis of the data showed that the handling quality assessments obtained in the airborne and ground-based simulators were similar, but wind shear was responsible for more of the differences than turbulence. The comparison of the handling quality assessments and selected measures of combined pilot-vehicle performance obtained with the naturally-occurring and computer-generated turbulences demonstrate that the Dryden model can yield optimistic ratings of airplane handling qualities and an optimistic estimate of combined pilot-vehicle performance degradation in turbulent landing conditions.
A review was made of the Interim Criteria, Federal Aviation Regulations, Advisory Circulars and other pertinent Documents associated with certification of Helicopters for Instrument Flight. A review of publications pertaining to workload definitions and evaluation, applicable to IFR Helicopter operations was accomplished. The report identifies the role of aircrew workload in the IFR certification process and develops a rationale to allow determination of that portion of a pilot’s attention and effort available for aircraft control. Performance objectives for required maneuvers are delineated and the interdependence of performance and workload is identified. Workload/performance implications for single and dual pilot IFR operations are reviewed. A series of flight maneuver patterns for use as IFR certification assessment tools is developed. A flying qualities workload evaluation scheme is offered for use in the FAA certification process for IFR approval of helicopters.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FAA RD-79-99</td>
<td>AD-A077900</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRBORNE RADAR APPROACH SYSTEM</td>
<td>October 1979</td>
<td></td>
</tr>
<tr>
<td>FLIGHT TEST EXPERIMENT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Larry D. King and Richard J. Adams</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. Performing Organization Name and Address</th>
<th>10. Work Unit No (TRAIS)</th>
<th>11. Contract or Grant No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systems Control, Inc. (Va)</td>
<td></td>
<td>DCT-FA79WA-4293</td>
</tr>
<tr>
<td>1801 Page Mill Road</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palo Alto, California 94304</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Transportation</td>
<td>Final Report</td>
<td></td>
</tr>
<tr>
<td>Federal Aviation Administration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systems Research and Development Service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20591</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Champlain Technology Industries, A Division of Systems Control, Inc. (Va)</td>
<td>This report presents the results of a comprehensive flight test experiment of an Airborne Radar Approach (ARA) system. The tests were performed within a 60 nautical mile radius of NAFEC in Atlantic City, N.J. The test environment involved three distinct sites: airport, remote and offshore. The test aircraft was a NASA CH53A helicopter manufactured by Sikorsky Aircraft and currently based at NAFEC. The test period was from July 1978 to December 1978. Flight tests for ARA accuracy and procedures development were performed in both skin paint (and passive reflector) and single beacon radar operating modes. The flight test profiles and procedures were developed for the following reasons: 1) to assist the FAA and the user community in developing and certifying standard ARA procedures, associated weather minimums and obstacle clearance requirements; 2) to define and quantify specific ARA system functions and characteristics for use in a Minimum Operational Performance Standards (MOPS) document. The primary conclusions of this flight test experiment were: the Airborne Radar Approach System tested performed satisfactorily from both an accuracy and an operational viewpoint in the single beacon mode for all three airspace environments; the ARA performance in the skin paint mode showed two significant problems, 1) distinguishing landside targets was quite difficult and could cause operational problems, 2) offshore targets such as oil rigs provide bright returns but are not distinguishable from boats, lighthouses and buoys; the ARA performance in the reflector mode showed that very large reflector cross sections are required to provide positive target identification. Further flight experiments are planned to evaluate additional radar operating modes such as combined skin paint and beacon modes, and techniques of cockpit display to aid the pilot in his "track keeping" function.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Key Words</th>
<th>18. Distribution Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airborne Radar Approach (ARA)</td>
<td>This Document is available to the public through the National Technical Information Service, Springfield, Virginia 22161</td>
</tr>
<tr>
<td>Single Beacon</td>
<td></td>
</tr>
<tr>
<td>Skin Paint</td>
<td></td>
</tr>
<tr>
<td>Passive Reflector</td>
<td></td>
</tr>
<tr>
<td>MOPS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>127</td>
<td></td>
</tr>
</tbody>
</table>

Form DOT F 1700.7 (8-72) Reproduction of this page authorized
Title and Subtitle

TEST AND EVALUATION OF AIR/GROUND COMMUNICATIONS FOR HELICOPTER OPERATIONS IN THE OFFSHORE NEW JERSEY, BALTIMORE CANYON OIL EXPLORATION AREA

Author(s)

James J. Coyle

Performing Organization Name and Address

Federal Aviation Administration
National Aviation Facilities Experimental Center
Atlantic City, New Jersey 08405

Sponsoring Agency Name and Address

U.S. Department of Transportation
Federal Aviation Administration
System Research and Development Service
Washington, D.C. 20590

Abstract

Helicopter instrument flight rules (IFR) operations in the offshore oil drilling areas are creating a need for low-level extended range air/ground (A/G) communications. This report describes the communications equipment and concepts used for helicopter IFR operations in the offshore New Jersey, Baltimore Canyon oil exploration area. Various types of very high frequency (VHF) high-gain directional antenna arrays were installed and flight tested to determine the degree of A/G communications coverage provided. Both the flight test data and more than 1 year of operational experience have shown that reliable A/G communications that can support IFR operations are obtainable throughout the offshore New Jersey oil exploration area by using high-gain directional antennas.
This report describes an evaluation of the Northeast Helicopter Corridor Routes (NEC). The Northeast Corridor is an experimental route between Boston and Washington, D.C., consisting of two, one-way, reduced width airways designed expressly for helicopter operations. The evaluation is a joint effort of the Federal Aviation Administration (FAA) and the Helicopter Association of America (HAA). The data being gathered is in the form of data extraction tapes from Automated Radar Terminal Service (ARTS) equipped air traffic control (ATC) facilities along the routes and flight logs submitted by the helicopter pilots after each corridor test flight. The test flights are being made as cooperating corporate helicopter operators fly the corridor in the course of their normal operations.

The data collection phase of this evaluation began July 15, 1979, and will continue until July 15, 1980.

Key Words

Northeast Corridor
Helicopter IFR
Area Navigation
This report presents preliminary results of a flight test evaluation of a radar cursor technique to be used as an aid in acquiring and tracking the desired ground track during airborne radar approaches. The test was performed using a Sikorsky CH-53A helicopter on loan from NASA and based at NAPEC. The airborne radar system used was a BENDIX RDR-1400A modified to electronically produce a radar cursor display of course error. Airborne radar approaches were made to an offshore and an airport test environment located within a 60 nautical mile radius of NAPEC. Systems Control, Inc. (SCI), provided contractor services in the areas of test planning, data reduction, and final report preparation. The specific purpose of the test was to evaluate the practical utility of the radar cursor as an aid to performing airborne radar approaches. The preliminary conclusion of this test was that the use of the radar cursor improved course acquisition and ground tracking significantly with pilotage errors and total system cross-track errors reduced by one-half or better. The radar cursor technique showed potential in reducing airspace requirements for airborne radar approaches. SCI is presently completing data reduction and analysis and will publish a final report in the near future.
This report examines the communications requirements of helicopters operating in the National Airspace System in the 1985-1990 time frame. The technical options that exist or are forecast to exist in that time frame are examined for suitability in meeting the requirements, and their pros and cons are discussed. A research plan is formulated for developing the required capabilities.
16. Abstract

A flight test series investigating the airborne radar approach (ARA) for helicopters is discussed. Passive and active target enhancement methods and their relative merits are examined. A description of systems and methods involved in the ARA are presented along with subjective insights and conclusions. It is concluded that the ARA is a practical approach aid in the absence of conventional navigation aids (NAVAID's) subject to certain limitations as discussed herein.
A limited amount of new data has been obtained on the icing environment during initial airborne measurements aimed at developing environmental icing criteria for use in certifying helicopters for flight into icing conditions. Supercooled cloud characteristics are reported for 12 icing events encountered at temperatures from -10°C to 0°C at altitudes from 3500 to 6500 ft above the surface of Lake Erie and Lake Michigan. Recorded droplet size spectra from a Particle Measuring Systems' Axially Scattering Probe (ASSP) were used to compute droplet mass (volume) median diameter (MMD) and, in addition to a Johnson-Williams LWC Indicator, the liquid water content (LWC). A review of available historical data from 1944-1950, upon which the atmospheric icing standards of Appendix C, FAR 25 were based, reveals that data obtained from measurements of ice accretion on multidiameter cylinders are subject to a number of significant errors of both signs. These probable errors, which will continue to be evaluated, may be responsible for the conclusions that 1) the historical LWC values are generally larger than those observed in the flights described in this report, 2) the historical MMDs appear to be generally too small for all values of LWC and 3) the historical droplet size distributions are unreliable, as is acknowledged in the later historical literature.
The purpose of this effort, a preliminary to design and testing of Heliport Instrument Flight Rules (IFR) Lighting and Marking System, was to conduct a review of the state-of-the-art development of such systems. Visits were made to organizations presently conducting IFR helicopter operations in the U.S. and abroad. Inquiries were made as to the types of IFR helicopter operations being conducted and the types of lighting and marking systems used.

In summary, the conduct of the IFR lighting and marking survey had revealed that there are, at present, virtually no visual guidance systems in being or planned that are capable of supporting either nonprecision or precision helicopter approaches for landing at helipads or heliports. Thus, the developmental work to be accomplished at NAFEC within the framework of the All Weather Heliport Lighting and Marking Project will have to be done without benefit or prior operational experience.
Flight tests of a long range navigation (LORAN-C) airborne navigator were conducted in the Gulf of Mexico oil exploration and production area. Two systems were installed in a CV-580 aircraft to examine simultaneously the performance from two different LORAN-C triads. Four separate test routes were flown over a period of 3 days. These routes covered the eastern, central, and western test areas, and an overland route from Houston, Texas, to Lafayette, Louisiana. An inertial navigation system (INS) was used as a position reference standard. The INS data were updated to correct for drift. Accuracy of the position reference from the corrected INS data was ±0.3 nautical miles (nmi). The flight test data collected indicated that both the Malone, Raymondville, Jupiter and the Malone, Raymondville, Grangeville triads provided en route LORAN-C navigation capability which met Federal Aviation Administration (FAA) Advisory Circular AC-90-45A accuracy requirements except when operating near the baseline extension of the Malone-Grangeville baseline when using the Malone, Raymondville, Grangeville triad.
Abstract:

In an effort to provide data needed to examine the feasibility of new procedures and criteria for terminal instrument procedures, this study effort addresses helicopter IFR operations in two parts. First, it documents, in a collective sense, the IMC and VMC performance capabilities of currently IFR-certified helicopters. A number of proposed helicopter procedures are analyzed for their suitability for further consideration or experimental testing, considering the current helicopter parametric performance envelopes. Second, helicopter instrument procedures are addressed in the long-term sense and recommendations are offered for development of post-1985 operations.
The Helicopter TERPS Development Program is designed to collate and coordinate all inputs received from government-sponsored and other projects which relate to helicopter TERPS in order to: assure that data generated by each project is developed, coordinated and applied in such a way as to avoid duplication of effort while achieving results in minimum time. It describes a development program whose objective is to develop criteria which will maximize the efficiency of terminal area and enroute operations with helicopters, by applying the unique maneuver-performance capabilities of helicopters. It includes both a near-term and long-term review of TERPS, both of which are expected to generate modification of the U.S. Standard for Terminal and Enroute Instrument Procedures and the criteria and procedures contained therein. The FAA, other Federal Government agencies, and organizations participating in this effort are identified. Program management responsibilities are addressed and a program schedule with milestones is presented.
Airborne Radar Approach Flight Test Evaluating Various Track Orientation Techniques

Larry D. King
Systems Control, Inc. (Vt)
1801 Page Mill Road
Palo Alto, California 94304

Sponsoring Agency Name and Address
Department of Transportation
Federal Aviation Administration
Systems Research and Development Service
Washington, D.C. 20591

Champlain Technology Industries, A Division of Systems Control, Inc. (Vt)
A subsidiary of Systems Control, Palo Alto, California

Abstract

This comprehensive report presents the results of a flight test experiment of an Airborne Radar Approach (ARA) System utilizing various track orientation techniques and operational modes. The tests were performed in the immediate area of NAFEC in Atlantic City, N.J. The test environment involved the airport terminal area and offshore sites. The test aircraft was a NASA CH53A helicopter manufactured by Sikorsky Aircraft and currently based at NAFEC. The test period was from January 1979 to February 1979 and from June 1979 to August 1979. Flight tests for ARA accuracy and procedures development were performed in six distinct operational modes. These were as follows: beacon w/cursor, multiple beacon, skin paint, skin paint w/cursor, combined and beacon-only modes. The specific program objectives can be summarized as follows: 1) to evaluate the ability of the radar operator to guide an aircraft along a predetermined path using various track orientation techniques, namely: the cursor and multiple beacon techniques; 2) to assist the FAA in developing and certifying standard ARA procedures and weather minimums; 3) to define and quantify specific ARA system functions and characteristics for use in a Minimum Operational Performance Standards (MOPS) document.

The primary conclusions of this flight test experiment were: the ARA system performed satisfactorily from both an accuracy and an operational viewpoint in all six operational modes, the ARA performance utilizing the track orientation techniques showed marked decrease in the overall Total System Cross Track (TSCT) and Flight Technical Error (FTE) quantities; the cursor and multiple beacon techniques also eliminated the tendency to "home" to station; in the skin paint mode distinguishing offshore targets such as lighthouses from ships and other surface objects is virtually impossible.

Key Words

- Airborne Radar Approach (ARA)
- Beacon w/cursor
- Skin Paint
- Multiple Beacon
- MOPS

Security Classification

- Unclassified

Distribution Statement

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161

<table>
<thead>
<tr>
<th>Report No.</th>
<th>FAA-RD-80-60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title and Subtitle</td>
<td>Airborne Radar Approach Flight Test Evaluating Various Track Orientation Techniques</td>
</tr>
<tr>
<td>Authors</td>
<td>Larry D. King</td>
</tr>
<tr>
<td>Sponsoring Agency Name and Address</td>
<td>Systems Control, Inc. (Vt) 1801 Page Mill Road Palo Alto, California 94304</td>
</tr>
<tr>
<td>Key Words</td>
<td>Airborne Radar Approach (ARA) Beacon w/cursor Skin Paint Multiple Beacon MOPS</td>
</tr>
<tr>
<td>Security Classification</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized
Title and Subtitle
A Piloted Simulator Investigation of Static Stability and Stability/Control Augmentation Effects on Helicopter Handling Qualities for Instrument Approach

Abstract
A motion-based simulator was used to compare the flying qualities of three generic single-rotor helicopters during a full-attention-to-flight control task. Terminal-area VOR instrument approaches were flown with and without turbulence. The objective of this NASA/FAA study was to investigate the influence of helicopter static stability in terms of the values of cockpit control gradients as specified in the existing airworthiness criteria, and to examine the effectiveness of several types of stability control augmentation systems in improving the instrument-flight-rules capability of helicopters with reduced static stability. Two levels of static stability in the pitch, roll, and yaw axes were examined for a hingeless-rotor configuration; the variations were stable and neutral static stability in pitch and roll, and two levels of stability in yaw. For the lower level of static stability, four types of stability and control augmentation were also examined for helicopters with three rotor types: hingeless, articulated, and teetering. Pilot rating results indicate the acceptability of neutral static stability longitudinally and laterally and the need for pitch-roll attitude augmentation to achieve a satisfactory system.

Keywords
- Helicopter
- Handling Qualities
- Instrument Approach
Helicopter Northeast Corridor Operational Test Support

Glen A. Gilbert

Helicopter Association of America
1156 15th St. N.W.
Washington, D.C. 20005

Department of Transportation
Federal Aviation Administration
800 Independence Avenue S.W.
Washington, D.C. 20591

The Helicopter Northeast Corridor Evaluation was conducted by the Helicopter Systems Branch of the Navigation and Landing Division under the direction of Raymond J. Hilton, Program Manager. This report and a companion report from the FAA Technical Center entitled "Northeast Corridor Operational User Evaluation", RD 80-17, reflect the results of the evaluation.

With the growing importance of helicopters to the national air transportation system, a demand is developing for more IFR (virtually all-weather) helicopter capability. At the same time, it is essential that helicopters be able to take advantage of their unique features and operate within the common ATC system without conflict to or from conventional fixed wing air traffic. A "test bed" operation was established progressively by the FAA in cooperation with the HAA during the period 1975-1978 to develop real world applications of these and other helicopter operational concepts in the Northeast Corridor (NEC) of the United States. During mid-1979 to early 1980 a nine month controlled NEC test and evaluation project was carried out jointly by the HAA and the FAA. This HAA report describes the methodology and procedures followed, results obtained during the controlled test period, and conclusions and recommendations reached. The complementary FAA Technical Center report referred to in item 15 above will be issued separately.
A helicopter ATC system for the Gulf of Mexico is set forth. It embodies a concept of evolutionary growth in four phases as follows:

Phase 1, The Present System (period of use: 1980). IFR navigation is obtained primarily with Loran-C, or VLF/OMEGA. Back-up systems are ADF and Airborne Weather Radar. VOR/DME is used over land. ATC is by procedural control and separation standards because no radar or other surveillance system is available off shore.

Phase 2, LOFF (Loran-C Flight Following)(Period of Evaluation: 1981). The LOFF system is placed in operation for experimentation and evaluation. While ATC is still performed by procedural control, LOFF will assist ground controllers by reducing workload, improving flexibility, etc. Experiments will also be performed on secondary radar systems (ATCRBS & VLATME) to provide surveillance.

Phase 3, Augmented LOFF (Period of use: 1983 and beyond). IFR helicopters will be able to fly direct, offset or segmented RNAV routes. ATC will be essentially equivalent to the NAS. Navigation by Loran-C will expand. Surveillance will be by LOFF and/or secondary radar. Area of control will be 1,500' to 10,000' over entire Gulf.

Phase 4, RNAV Traffic Control (Period of use: 1985 and beyond). IFR helicopters will be able to use any of a number of certified navigation systems. ATC systems will adapt to varying accuracies of these systems. ATC will be based on surveillance provided by aircraft reporting of position information and/or secondary radar. Separation standards will be reduced and equivalent to Northeast Corridor.
This effort was sponsored by the Systems Research and Development Service, Navigation and Landing Division, Helicopter Systems Branch under the direction of Raymond J. Hilton, Program Manager.

Excessive use of flight simulation and ATC simulation was recommended in order to reduce the time and cost of evaluating the potential improvements. The steps of the recommended simulation program were arranged in the order of ascending cost, to learn as much as possible about the subject as quickly as possible and to weed out or revise impractical solutions before they reach a more expensive stage of evaluation or development. A detailed simulation program was prepared using a modified factorial design in order to isolate the effects of changes in various parameters.
1. Title and Subtitle
PRELIMINARY TEST PLANS OF ATC CONCEPTS FOR LONGER TERM IMPROVEMENT
(HELICOPTER OPERATIONS DEVELOPMENT PROGRAM)

2. Author(s)
D.J. Freund
T.K. Vickers

3. Performing Organization Name and Address
Vitro Laboratories Division
Automation Industries, Inc.
14000 Georgia Avenue
Silver Spring, MD 20910

4. Sponsoring Agency Name and Address
Department of Transportation
Federal Aviation Administration
Office of Research and Engineering
Helicopter Systems Branch
Washington, D.C. 20590

5. Report Date
May 1980

6. Type of Report
Final Report

7. Supplementary Notes
This effort was sponsored by the Systems Research and Development Service, Navigation and Landing Division, Helicopter Systems Branch under the direction of Raymond J. Hilton, Program Manager.

8. Abstract
Test and simulation planning is documented for longer-term improvements in helicopter ATC concepts, which are classified into the following categories:

1. Offshore Route Structure in the Gulf of Mexico
2. Secondary Radar
3. Analysis of Navigation Errors in the Gulf
4. Offshore Surveillance and Communications to 300 NM Range
5. Real-Time Reporting of Aircraft-Derived Position
6. VHF Communications Study in the CONUS
7. ATC Implications of Alternate Airports for Helicopters
8. Wake Vortex Separation

9. Key Words
Longer Term ATC Concepts for Helicopters
Helicopter ATC Concepts

10. Distribution Statement
Document is available to the U.S. public through the National Technical Information Service, Springfield, VA, 22161.

11. Security Classification
Unclassified

12. Security Classification (of this page)
Unclassified

13. No. of Pages
49

14. Price

Form DOT F 1700.7 (8-72)
Reproduction of completed page authorized
Recommended Short Term ATC Improvements for Helicopters

Vol. I Summary of Short Term Improvements for Helicopters

Vol. II Recommended Helicopter ATC Training Material

Vol. III Operational Description of Experimental Loran Flight Following (LOFF) in the Houston Area

Abstract

The recommended Short Term ATC Improvements for Helicopters are documented in three volumes, i.e.:

- Vol. I is a summary report of all improvements studied. Improvements are categorized as those that can be recommended for immediate operational consideration or use and those that require limited short term simulation or test.

- The recommendations for immediate use include: (1) Helicopter ATC training material, (2) Operational Description of LOFF, (3) Recommendations concerning military training routes and (4) Survey data for use in Gulf communications and route structure planning.

- The recommendations for short term simulation include: (1) Dual waypoint holding patterns, (2) other holding patterns and (3) shortened entry procedures for intercepting final approach path.

- Vol. II is the complete training material for helicopter ATC. It contains major sections on Helicopter Capabilities and Limitations, on Helicopter Navigation and on Helicopter Control Procedures.

- Vol. III is the complete Operational Description of the Experimental Loran Flight Following (LOFF) in the Houston Area. It describes both airborne and ground components and states the objectives that are being sought in the experiment.

Key Words

Helicopter ATC, Helicopter Air Traffic Control, Helicopter ATC Controller Training, Loran Flight Following (LOFF), Helicopter Holding Patterns
The recommended Short Term ATC Improvements for Helicopters are documented in three volumes, i.e.:

- Vol. I is a summary report of all improvements studied. Improvements are categorized as to those that can be recommended for immediate operational consideration or use and those that require limited short term simulation or test.

 The recommendations for immediate use include: (1) Helicopter ATC training material, (2) Operational Description of LOFF, (3) Recommendations concerning military training routes and (4) Survey data for use in Gulf communications and route structure planning.

 The recommendations for short term simulation include: (1) Dual waypoint holding patterns, (2) other holding patterns and (3) shortened entry procedures for intercepting final approach path.

- Vol. II is the complete training material for helicopter ATC. It contains major sections on Helicopter Capabilities and Limitations, on Helicopter Navigation and on Helicopter Controller Procedures.

- Vol. III is the complete Operational Description of the Experimental Loran Flight Following (LOFF) in the Houston Area. It describes both airborne and ground components and states the objectives that are being sought in the experiment.
The recommended Short Term ATC Improvements for Helicopters are documented in three volumes, i.e.:

- Vol. I is a summary report of all improvements studied. Improvements are categorized as to those that can be recommended for immediate operational consideration or use and those that require limited short term simulation or test. The recommendations for immediate use include: (1) Helicopter ATC training material, (2) Operational Description of LOFF, (3) Recommendations concerning military training routes and (4) Survey data for use in Gulf communications and route structure planning.

- The recommendations for short term simulation include: (1) Dual waypoint holding patterns, (2) other holding patterns and (3) shortened entry procedures for intercepting final approach path.

- Vol. II is the complete training material for helicopter ATC. It contains major sections on Helicopter Capabilities and Limitations, on Helicopter Navigation and on Helicopter Control Procedures.

- Vol. III is the complete Operational Description of the Experimental Loran Flight Following (LOFF) in the Houston Area. It describes both airborne and ground components and states the objectives that are being sought in the experiment.
This report documents the review and evaluation of real estate and airspace requirements as set forth in applicable U.S. heliport design criteria. International criteria are reviewed to discern their rationale for various requirements. Helicopter performance during normal and failure-state operations is analyzed. The suitability of current criteria is examined with respect to various operational profiles. Modifications to current criteria are suggested which would accommodate various operational requirements and varying levels of terminal instrument procedures capability. Recommendations include a revised heliport classification scheme with corresponding changes to real estate and airspace criteria for IFR operations; helicopter performance chart standardization for flight manuals with specific data requirements; consideration of obstacle clearance for failure-state operations; additional criteria for offshore facilities; and revised criteria for elevated heliports/ helipads.
Abstract

This flight test plan is designed to determine the suitability and accuracy of LORAN-C nonprecision approaches for helicopters in the Northeast Corridor. Results will be compared with Advisory Circular (AC) 90-45A requirements for total system accuracy. Conclusions will be drawn with regard to the accuracy of LORAN-C nonprecision approaches for helicopters. Specific objectives are:

- **a.** To collect data on LORAN-C system errors to support decisions relative to possible certification of LORAN-C for nonprecision approaches in the Northeast Corridor.

- **b.** To obtain specific operational data on performance of LORAN-C for nonprecision approaches and missed approaches in the Northeast Corridor.

- **c.** To obtain data on flight technical error associated with LORAN-C nonprecision approaches.

- **d.** To obtain data on area propagation anomalies in the Northeast Corridor.

- **e.** To obtain performance and operational data on LORAN-C using various triad configurations for the 9960 LORAN chain.

- **f.** To obtain data on LORAN-C signal strength and availability.

Key Words

- LORAN-C
- Nonprecision Approaches
- Northeast Corridor
- Helicopter Flight Technical Error
The development of techniques and criteria permitting the release of a helicopter into known (i.e., forecast) icing situations is actively being investigated by both military and civilian agencies through ongoing test programs and study efforts. As part of this overall effort, helicopter icing characteristics, available ice protection technology, and test techniques are discussed in this technical treatment. Recommendations are provided in the areas of icing certification procedures and icing research.

One of the key issues addressed in this report is the test environment, i.e., the use of inflight evaluation in natural icing only, or, the use of a simulated icing environment to supplement and/or expand the certification envelope. Involved in this issue is the shape (and extent) of the rotor ice (natural vs simulated) as it affects the aerodynamics and dynamics of the rotor system, together with the shedding characteristics as it affects the behavior and safety of the complete vehicle.
The helicopter community has a need for adequate instruments for safe instrument flight. The three-cue flight director has been found to be suitable during Instrument Meteorological Conditions. With the increased use of flight directors by civil operators, questions have been raised regarding the collective command's (the third cue) sensing. A literature search was conducted to determine what work had been done with the collective display format.
A representative area of Appalachia surrounding Charleston, West Virginia is analyzed in terms of existing helicopter traffic patterns and communications facilities. Traffic patterns were established from telephone interviews with pilots flying this area regularly. Communications coverage was established from computer generated coverage contours obtained from the Electromagnetic Compatibility Analysis Center (ECAC) and verified by pilot interviews and one flight test (as reported by the FAA Technical Center). Techniques for improving coverage are discussed. These include two new remote communication outlets located in the mountains west and south of Beckley, W.Va., a high gain antenna at Charleston pointed in a southerly direction, the use of mobile radio telephone to permit pilots to access nearby telephone facilities when on the ground at a remote site, short range less than 150 miles, hf radio, and a discrete frequency for exclusive use by low-flying aircraft.

FAA activities directed at improving communications to helicopter traffic flying to and from offshore oil and gas platforms in the Gulf of Mexico is presented in an Appendix.
Title and Subtitle

FLIGHT EVALUATION OF LORAN-C AS A HELICOPTER NAVIGATION AID IN THE BALTIMORE CANYON OIL EXPLORATION AREA

Author(s)

William A. Lynn

Performing Organization

Federal Aviation Administration
Technical Center
Atlantic City Airport, New Jersey 08405

Sponsoring Agency

U.S. Department of Transportation
Federal Aviation Administration
Technical Center
Atlantic City Airport, New Jersey 08405

Abstract

A series of flight tests were conducted from March through May 1979 to investigate the use of long range navigation (LORAN)-C as a helicopter navigation system in the offshore New Jersey Baltimore Canyon oil exploration area. Tests were flown aboard the Federal Aviation Administration (FAA) Technical Center's CH-53A using a Teledyne Systems TDL-711 LORAN Micro-Navigator. The purpose of the tests was to determine the accuracy and operational usability of LORAN-C for offshore en route navigation and nonprecision approaches. The total system accuracy met or exceeded the requirements of Advisory Circular (AC) 90-45A "Accuracy Requirements of Area Navigation Systems" for terminal and en route phases of flight, provided the proper LORAN triads were selected. The LORAN-C System did not meet AC 90-45A nonprecision approach accuracy criteria.

Key Words

LORAN-C
Helicopter Navigation

Distribution Statement

Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161

Security Classification

Unclassified

Pages

38
Abstract

An analysis of National Icing Facilities requirements was performed at the request of the Federal Aviation Administration. This effort consisted of a five-month investigation to determine the scope and character of current and future icing facilities needs. This investigation included current aircraft needs as well as facilities that might be required for icing research, development and certification testing through the year 2000.

The information used for this study included all icing certification regulations for both fixed wing airplanes and rotorcraft. These regulatory requirements for icing certification were supplemented by a comprehensive analysis of current and future aircraft operational requirements. This independent facility requirements assessment was then compared to a previously published NASA review of icing facilities capabilities.

The conclusion was reached that the need for an inventory of National Icing Facilities currently exists and will become intensified in the next decade. The technical characteristics of these facilities were described and it was recommended that a joint FAA/NASA/DOD Task Force be established to formulate and spearhead the development of a National Icing Facilities Program.
A helicopter performance related heliport classification method is developed which accommodates an applicable range of operating conditions and factors which impact helicopter performance. Dimensional values for use in planning both real estate and airspace surfaces are determined for application to the identified heliport classifications. Those values are incorporated into generalized guidelines for heliport planners to meet site-specific and non-standard operational conditions. Requirements for flight manual performance charts and published heliport information are also identified.
Improved Weather Services for Helicopter Operations in the Gulf of Mexico

Arthur Hilsenrod *

Current weather services in support of the more than 800 helicopters operating in the Gulf of Mexico is reviewed and the limitations noted. Means of improving these services based on currently available facilities and ongoing research and development efforts are presented. Immediate improvements in weather services can be attained by the implementation of a plan agreed upon by personnel of the FAA, NWS and helicopter operators. Near-term (to 1986) and longer-term (beyond 1986) developments in observations, forecasts, and communications that can improve weather services are presented.
Recommended Changes to ATC Procedures for Helicopters

Glen A. Gilbert, T. K. Vickers, et al

Helicopter Association International
(formerly Helicopter Association of America)
1110 Vermont Ave. N.W.
Washington, D.C. 20005

Department of Transportation
Federal Aviation Administration
800 Independence Ave. S.W.
Washington, D.C. 20591

The study leading to this report was conducted as a result of an initiative by the FAA Helicopter Systems Branch of the Navigation and Landing Division under the direction of Raymond J. Hilton, Program Manager, and is particularly responsive to Recommendation No. 12 of Report No. FAA-RD-80-80.

FAA Air Traffic Control Handbook 7110.65B was reviewed on a paragraph by paragraph basis to identify those changes considered necessary to more efficiently accommodate helicopters in the Air Traffic Control System. As a result of this review, specific proposed changes are set forth in this report. An HAA(HAI) special ATC study working group was established by the HAA program manager to assist in the conduct of the project, and various direct industry contacts were held to solicit inputs.

Document is available to U.S. public through the National Technical Information Service, Springfield, VA 22161

Helicopter
Visual Flight Rules (VFR)
Helicopter Special VFR (HSVFR)
Fixed Wing Special VFR (FW/SVFR)

Unclassified

Unclassified

179
16. Abstract

As part of the Helicopter Operations Development Plan, this document outlines a phased study of area navigation applications in the control of low-altitude IFR helicopter operations, with particular emphasis on methods of reducing controller workload in order to make the use of direct random routes feasible. Each of the four phases of the plan embodies analysis, simulation, and validation. The study is evolutionary; Phase 1 starts with the basic functions of generating conflict-free routes, and maintaining positive separation between aircraft in areas outside of radar coverage. Phase 2 introduces terrain problems in mountainous areas. Phase 3 investigates interactions between fixed and random routes, and between fixed-wing aircraft and helicopters in major terminal areas. Phase 4 provides further complications in the study of off-optimum operations (interruptions in navigation, communications, and surveillance coverage) in which the airborne separation assurance function will be investigated. A broad outline of the entire plan is presented, with a detailed schedule of the first phase.

17. Key Words

Air Traffic Control, Helicopter, IFR, Random Routes, RNAV, Simulation, Separation Assurance

18. Distribution Statement

Document is available to the U.S. public through the National Technical Information Service, Springfield, VA 22161

19. Security Classif. of this report

UNCLASSIFIED

20. Security Classif. of this page

UNCLASSIFIED

21. No. of Pages

24

22. Price

Free
WEATHER DETERIORATION MODELS APPLIED TO ALTERNATE AIRPORT CRITERIA

EDWIN D. McCONKEY

SYSTEMS CONTROL TECHNOLOGY, INC.
2326 S. CONGRESS AVE., SUITE 2A
WEST PALM BEACH, FL 33406

DEPARTMENT OF TRANSPORTATION
FEDERAL AVIATION ADMINISTRATION
SYSTEMS RESEARCH AND DEVELOPMENT SERVICE
WASHINGTON, DC 20590

14. Abstract
Flights under Instrument Flight Rules (IFR) require the filing of a flight plan. The flight plan must contain an alternate airport unless certain conditions at the destination are met. These conditions concern the availability of an instrument approach procedure and anticipated meteorological conditions within one hour of the estimated arrival time. Certain other conditions must be met for an airport to qualify as an alternate airport. These conditions also are based on instrument approach procedure availability and forecast meteorological conditions. Relaxation of the current requirements regarding alternate airports could benefit some aircraft operators by improving schedule reliability and reducing the number of weather related departure delays.

The investigation quantified the increased risk of ceilings and visibilities being below landing minimums at several cities in the conterminous U.S. if requirements are relaxed. The study methods utilized climatology data and weather deterioration models to calculate the probability of an airport being below precision and non-precision approach minimums.

The preliminary findings indicate that relaxing the current alternate airport criteria would increase the risk that an airport would be below landing minimums. It was also shown that this increase in risk could be offset by limiting the relaxation of the regulations to those flights which are of short duration (less than two hours). Possible changes to the current Federal Aviation Regulations regarding alternate airports are presented.

17. Key Words
WEATHER MODELS
FEDERAL AVIATION REGULATIONS
ALTERNATE AIRPORTS
CLIMATOLOGY

18. Distribution Statement
Document is available to the U.S. public through the National Technical Information Service, Springfield, VA 22161

UNCLASSIFIED
The Federal Aviation Administration (FAA) Technical Center Helicopter Project is designed to provide actual flight test data to the FAA Office of Flight Operations (AFO) to aid in the updating and streamlining of helicopter terminal area procedures and criteria. The data gathered here will be used toward the revision of chapter 11 of the Terminal Instrument Procedures (TERPS) Manual which deals with "helicopter only" terminal operations. This project will deal primarily with the approach and missed approach phases of helicopter terminal operations. The project will explore and provide data on precision and non-precision instrument landing system (ILS) and omnidirectional radio range (VOR) approaches. The project will document the actual operating characteristics of representative Instrument Flight Rules (IFR) certificated helicopter types now in civil and military use.

To aid in the determination of total system error in the terminal/approach phase subject helicopter pilots of varying backgrounds and experience levels will be utilized.
Technical Report Documentation Page

<table>
<thead>
<tr>
<th>1. Report No.</th>
<th>FAA-ED-18-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Government Accession No.</td>
<td></td>
</tr>
<tr>
<td>3. Recipient's Catalog No.</td>
<td></td>
</tr>
<tr>
<td>4. Title and Subtitle</td>
<td>ENGINEERING AND DEVELOPMENT PROGRAM PLAN — HELICOPTER ICING TECHNOLOGY RESEARCH</td>
</tr>
<tr>
<td>5. Report Date</td>
<td>June 1981</td>
</tr>
<tr>
<td>6. Performing Organization Code</td>
<td>FAA-CT-81-180</td>
</tr>
<tr>
<td>7. Author(s)</td>
<td>Flight Safety Branch, ACT-340</td>
</tr>
<tr>
<td>9. Performing Organization Name and Address</td>
<td>Federal Aviation Administration Technical Center Atlantic City Airport, New Jersey 08405</td>
</tr>
<tr>
<td>10. Work Unit No. (TRAIS)</td>
<td></td>
</tr>
<tr>
<td>11. Contract or Grant No.</td>
<td>182-340-000</td>
</tr>
<tr>
<td>12. Sponsoring Agency Name and Address</td>
<td>U.S. Department of Transportation Federal Aviation Administration Systems Research and Development Service Washington, D.C. 20590</td>
</tr>
<tr>
<td>13. Type of Report and Period Covered</td>
<td>Program Plan</td>
</tr>
<tr>
<td>15. Supplementary Notes</td>
<td>This program plan forms the basis of the section on helicopter icing in the agency Helicopter Operations and Airworthiness Research and Development Plan (Report Number FAA-RD-78-101, dated September 1978).</td>
</tr>
<tr>
<td>16. Abstract</td>
<td>The Federal Aviation Administration (FAA) program discussed in this plan is established to provide an identification of the helicopter icing problem as it is currently known, the methodology, and the resource requirements for conduct of the efforts necessary for resolution of known problem areas. This program plan defines four specific subprograms: (1) Icing Atmospheric Research for helicopters (which may be applicable to other low-altitude, slow-flying, fixed-wing aircraft); (2) Test and Operational Technology necessary to enhance safety during helicopter icing testing and ice protection operations system technology for application to helicopters; (3) the technology such as simulation testing and analytical techniques for development and testing of helicopters for flight in icing conditions; and (4) the development of technology for use by the FAA in its regulatory and advisory documentation efforts to assure safe, timely, and cost effective certification of helicopter ice protection. Results of efforts under this program are intended to be directed primarily to regulatory authorities of the FAA for implementation as appropriate and necessary.</td>
</tr>
<tr>
<td>17. Key Words</td>
<td>Helicopter Icing Ice Protection Icing Test Facilities Simulation</td>
</tr>
<tr>
<td>18. Distribution Statement</td>
<td>Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161</td>
</tr>
<tr>
<td>19. Security Classif. (of this report)</td>
<td>Unclassified</td>
</tr>
<tr>
<td>20. Security Classif. (of this page)</td>
<td>Unclassified</td>
</tr>
<tr>
<td>21. No. of Pages</td>
<td>34</td>
</tr>
<tr>
<td>22. Price</td>
<td>Unrestricted</td>
</tr>
</tbody>
</table>

Reproduction of this page authorized
INSTRUMENT APPROACH AIDS FOR HELICOPTERS

Abstract

This report identifies the various instrument approach procedures that are available to the helicopter operator. Emphasis is placed on the recently approved "Helicopter Only" procedures, the criteria for which are contained in Chapter 11 of the Terminal Instrument Procedures Handbook.

The objective of this study was to examine currently available solutions to helicopter approach needs. The study also covers new and innovative solutions to helicopter approach requirements. This was accomplished by:

- Identifying the various navigation aids now being used which may have general application to U.S. helicopter operations.
- Describing typical locations of use, typical approach procedures, and minimums for each of these aids.
- Providing estimated equipment costs for both the ground and airborne portions of these systems.
- Discussing the rationale used to support the use of a particular aid at a particular location or in a specific operational environment.

Results of this investigation are presented in the form of a series of helicopter instrument approach options for the user.

Key Words

INSTRUMENT APPROACH PROCEDURES
NAVIGATION
HELICOPTERS

Distribution Statement

Document is available to the U.S. public through the National Technical Information Service, Springfield, VA 22161
Flight tests of two Loran-C airborne navigators were conducted in the Gulf of Mexico oil/gas exploration and production area. Two systems were installed in a Federal Aviation Administration (FAA) CV-580 aircraft to examine simultaneously the performance of a Loran-C receiver operated in an area-calibrated mode and one operated in an uncalibrated mode. Two separate test routes were flown over a period of 2 days. These routes covered the central and western test areas of the Gulf of Mexico and an overland route from Palacios, Texas, to Lafayette, Louisiana. An Inertial Navigation System (INS) was used as a position reference standard. The INS data were updated to correct for drift. Accuracy of the position reference from the corrected INS data was ±0.3 nautical mile.

The flight tests indicated that the use of area calibration greatly increased the area of compliance with Advisory Circular 90-45A en route accuracy requirements in the flight test.

This report is a followup of report No. FAA-RD-80-47 (FAA-CT-80-18), "Flight Test Investigation of Loran-C for En Route Navigation in the Gulf of Mexico."
The Federal Aviation Administration (FAA) received a Navigation System Using Time and Ranging (NAVSTAR) Global Positioning System (GPS) Z-set for independent test and evaluation after this receiver was acceptance tested aboard a United States Air Force C-141 aircraft over the Yuma Proving Ground instrumented range. This report describes the initial familiarization studies conducted by the FAA in a twin turboprop engine Grumman Gulfstream with the Z-set in a stand-alone configuration. The familiarization studies included satellite shielding tests, satellite acquisition/reacquisition tests, nonprecision approaches to five east coast airports, and operations in high noise/radiofrequency interference (RFI) environments (over airports, cities, and television towers).
This report describes Federal Aviation Administration (FAA) acceptance tests on the Navigation System Using Time and Ranging (NAVSTAR) Global Positioning System (GPS) Z-set receiver which were conducted in a United States Air Force (USAF) System Command C-141 aircraft over the instrumented range located at the Yuma Proving Ground. The Yuma laser tracking system computed a reference trajectory against which the GPS receiver solution was compared. Data from five flights, totaling over 6 hours, are presented with the objective of assessing Z-set capabilities to meet civil aviation requirements for nonprecision approaches.
The purpose of this task was to develop a 3D Loran-C Navigator by configuring an interface unit between an airborne Loran-C navigator (Teledyne TDL-711) and an Altitude Alerter/VNAV Guidance system (Intercontinental Dynamics model 541). The digital computer-based interface unit was designed to allow the flight crew to specify the approach slope (3.0 to 9.9 degrees). This report documents the hardware and software in the interface unit, and interconnection with the other involved systems.

The availability of accurate, three-dimensional approach guidance information at airports where no ILS is available provides significant operational advantages, to helicopter operators in particular. The 3D Loran-C navigator system was bench tested and flight demonstrated. Smooth, accurate (within the limitations of Loran-C) descent guidance information was obtained.
Flight tests were conducted in the central Appalachian Region of the United States to measure en route Loran-C position accuracies at low altitudes in mountainous terrain. Receivers were configured to use the Northeast and Great Lakes Chains of Loran-C transmitters during the flights while position information and receiver status were recorded. Comparisons were made between each of the recorded Loran positions and position information derived from the Inertial Navigation System. The results were compared against Advisory Circular (AC) 90-45A accuracy criteria for the en route phase of flight. It is concluded that both the Northeast United States Chain and the Great Lakes Chain meet AC 90-45A en route accuracy criteria over the entire flight test area.
APPLICATION OF THE MICROWAVE LANDING SYSTEM TO HELICOPTER OPERATIONS

E.D. McConkey, J.B. McKinley and R.E. Ace

E.D. McConkey, J.B. McKinley and R.E. Ace

SYSTEMS CONTROL TECHNOLOGY, INC.
2326 SOUTH CONGRESS AVENUE, SUITE 2A
WEST PALM BEACH, FLORIDA 33406

Department of Transportation
Federal Aviation Administration
Systems Research and Development Service
Washington, D.C. 20590

This report identifies ways in which the Microwave Landing System (MLS) can be utilized to aid helicopter operations. Consideration is given to the following study areas:

- helicopter instrument approach requirements by type of operation
- helicopter instrument approach requirements by operational area
- types of potential approach procedures that could be used by helicopters
- helicopter performance considerations during approach, landing and missed approach procedures
- ground and airborne MLS equipment
- benefits and costs associated with the use of MLS in helicopter operations

The operational areas considered in the study are: city centers, major hub airports, non-hub airports, remote areas, and offshore oil rig support. MLS procedures can be applied to each of these operational areas. From an economic standpoint, operations at city center heliports, major hub airports, non-hub airports, and remote areas will have benefits that exceed costs if operations counts are sufficiently large. Offshore operations will not have benefits that exceed costs due to the availability of alternative approach procedures.
This report presents area reduced navigation accuracy test flight data collected along an experimental area navigation route structure — the so-called Northeast Corridor. This corridor is an experimental helicopter airway structure extending between Washington, D.C., and Boston, Mass. It consists of 2 one-way, reduced width (4 nautical miles (nmi)) airways including one route spur from Allentown, Pa. These flight tests were a joint effort of the Federal Aviation Administration and the Helicopter Association International (HAI). The objective was to determine if the NEC could be navigated within the 4-nmi airway boundary at the 95 percent confidence level required by Advisory Circular (AC) 90-45A, "Approval of Area Navigation Systems for Use in the U.S. National Airspace System."
EMC ANALYSIS OF A PROTOTYPE CIVIL-USE GPS RECEIVER ON FOUR AIRCRAFT CONFIGURATIONS

The co-site electromagnetic compatibility aspects were evaluated for the simultaneous operation of a prototype civil-use GPS receiver and other avionic systems on board four specific aircraft configurations.
The Federal Aviation Administration Technical Center performed this effort under the Technical Program Document 04-109, subprogram 049-311, project Navigation Satellite Timing and Ranging (NAVSTAR)/Global Positioning System (GPS). The report covers the exploratory laboratory test in 1981 and 33-hour flight test from June through July 1981 of the single channel GPS receiver (Z-set) manufactured by Magnavox and procured by the Department of Defense (DOD). The report documents the performance of the Z-set in the laboratory and during different flight profiles including rectangles, orbits, radials, nonprecision approaches, and area en route flights to the Philadelphia, Dulles, Norfolk, Wilmington, and John F. Kennedy Airports during periods when up to five satellites were visible to the antenna.
This report describes a flight test designed to investigate the suitability of Loran-C as a nonprecision approach aid in the Northeast Corridor (NEC). Approaches were flown at six selected airports in the NEC by a CH-53A helicopter using Loran-C for course guidance. Accuracy criteria specified in Advisory Circular (AC) 90-45A were used as the standard for acceptability. Data were recorded for Loran in area calibrated and uncalibrated modes along with very high frequency omnidirectional radio range (VOR)/distance measuring equipment (DME) raw sensor data for comparison. The results show that the group repetition interval (GRI)-9960 Northeast U.S. Loran-C chain met AC 90-45A requirements for nonprecision approaches in all cases when a local area calibration was applied. The uncalibrated mode met AC 90-45A requirements at four of the six airports. It was determined that the Seneca, Nantucket, Carolina Beach triad should be used for navigation throughout the flight test area.
Flight Test Route Structure Statistics of Helicopter GPS Navigation with the Magnavox Z-Set

Author(s): Robert D. Till

Performing Organization Name and Address:
Federal Aviation Administration Technical Center
Atlantic City Airport, New Jersey 08405

Sponsoring Agency Name and Address:
Federal Aviation Administration Technical Center
Atlantic City Airport, New Jersey 08405

Abstract:

The Federal Aviation Administration (FAA) Technical Center conducted this test project under Technical Program Document (TPD) 04-150 to determine the operational suitability of the Navigation Satellite Timing and Ranging Global Positioning System (NAVSTAR GPS) for rotary wing aircraft. The flight tests were conducted in a CH-53A helicopter using a prototype low cost GPS receiver, the Magnavox Z-set. Over 15 hours of radar tracked en route and nonprecision approach flight tests were flown with two-dimensional GPS derived guidance (crosstrack and distance-to-go) used as the primary navigation system.

This report includes tabulated statistical analysis of navigation errors for the flight test route segments flown. The results of the data presented in this report are summarized, analyzed, and discussed in the FAA Technical Center final report number FAA/CT-82/74, "Helicopter GPS Navigation with the Magnavox Z-Set."

Key Words:

- NAVSTAR
- GPS
- Z-set
- Helicopter

Security Classification:

- Unclassified

Distribution Statement:

Unclassified
With the increasing number of IFR certificated helicopters and improvements in electronic approach guidance systems, many helicopters will soon be capable of executing IFR approaches to heliports. In order to support these operations, an IFR lighting and marking system is required.

This project plan describes an effort to develop and evaluate Visual Guidance Systems to support heliport operations during Instrument Meteorological Conditions (IMC). Project to include the following:

a. Survey of Instrument Flight Rules (IFR) heliport visual aids presently in use and review of previous flight test reports.

b. Development of new and modified visual guidance aids/systems.

c. Flight testing of the proposed system at an operational heliport.

A formal report detailing results of the developmental testing and evaluation, and giving recommendations for components and configuration of a standard IFR heliport lighting and marking system will be issued.

Heliport Lighting
Visual Guidance Systems
The Federal Aviation Administration Technical Center conducted this test project under Technical Program Document (TPD) 04-150 to determine the operational suitability of the Navigation Satellite Timing and Ranging Global Positioning System (NAVSTAR GPS) for rotary wing aircraft. The flight tests were conducted in a CH-53A helicopter using a prototype low-cost GPS receiver, the Magnavox Z-set, over a period of performance from July 1981 to January 1982. Over 15 hours of radar tracked en route and nonprecision approach flight tests were flown with two-dimensional GPS derived guidance (crosstrack and range to go) used as the primary navigation system.

This report includes laboratory and flight test results that demonstrate perturbational effects from the following conditions: multipath, satellite shielding, user-satellite geometry, vehicle dynamics, weather, and navigation satellite constellation change. The flight test data were analyzed in this report for compliance with the requirements of Advisory Circular (AC) 90-45A and the technical and operational issues specified in the Federal Radionavigation Plan (FRP).
This report contains the description and results of a Loran-C flight test program conducted in the State of Alaska. The testing period was from August 1982 to September 1982. The purpose of the flight test was to identify applicable Loran-C accuracy data for the Alaskan air taxi and light aircraft operators so that a Supplemental Type Certificate (STC) can be issued in the Alaska Region for the Loran-C system tested (Teledyne TDL-711).

Navigation system errors were quantified for the Loran-C unit tested. The errors were computed from knowledge of position calculated from ground truth data and the indicated position of the navigator. Signal coverage, bias and flight technical error data were also obtained. Multilateration ground truth, photographic ground truth, and data acquisition systems were carried aboard the test aircraft.

The tests were concentrated in the southwest part of the Alaskan mainland. An interconnecting network of routes west of Anchorage and south of a line from Fairbanks to Kotzebue were flown for data collection. Of particular interest was the area around, and to the west of, Bethel where there are currently very few aids to air navigation.

The North Pacific Loran-C chain with stations at St. Paul Island (Master), Port Clarence (Yankee) and Narrow Cape (Zulu) was used in this area. Test results indicate that Loran-C has sufficient signal coverage and accuracy to support aircraft enroute navigation in much of the test area. In the area around Anchorage the test unit failed to consistently acquire and track the signal, however. Further analysis of the data and testing are required in the Anchorage area.
This report is a compilation of general aviation safety research issues extracted and summarized from recent studies conducted by the Federal Aviation Administration (FAA), other government agencies, and the aviation industry. It offers an overview of conclusions and recommendations that highlight current and future problem areas in general aviation. The report addresses the expressed needs as defined by these studies which counsel research and development relevant to the interrelationships of man, machine, and environment to effectively improve the general aviation safety record.
A Federal Aviation Administration (FAA) research program is presented to identify the aircraft icing problem and discuss the methodology and resource requirements planned to resolve them. This program plan is divided into three subprogram areas: (1) Atmospheric Criteria — The development of meteorological icing certification criteria to permit safe flight operations for all types of aircraft in all types of icing conditions; (2) Procedures and Technology — The development of technical data necessary to enhance certification and operational use of advanced ice protection concepts; (3) Simulation Techniques — The use of computer and facility icing simulation technology to enhance the certification process. All program efforts described fall into the area of regulatory development and technical support.

Heavy reliance is placed on cooperative efforts with other government agencies with expertise and icing facilities.
A NEW DATA BASE OF SUPERCOOLED CLOUD VARIABLES FOR ALTITUDES UP TO 10,000 FT AGL AND THE IMPLICATIONS FOR LOW ALTITUDE AIRCRAFT ICING

Richard K. Keck

Naval Research Laboratory
4555 Overlook Avenue, SW
Washington, DC 20375

U.S. Department of Transportation
Federal Aviation Administration Technical Center
Atlantic City Airport, NJ 08405

A variety of analyses are illustrated which yield these principal conclusions: The NACA and modern CONUS measurements generally agree in most aspects for similar amounts of data in similar cloud and weather conditions. The Intermittent Maximum and Continuous Maximum "envelopes" in the Federal Aviation Regulations, Part 25 (FAA-25), Appendix C, do not correctly describe the icing environment for altitudes up to 10,000 feet AGL. The average ice accretion rate appears to be independent of altitude between 2000 and 10,000 feet AGL.

Liquid Water Content
Icing Conditions

Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161

Unclassified

Reproduction of this page authorized
A new characterization of supercooled clouds below 10,000 feet AGL

Authors:
Charles O. Masters

Performing Organization Name and Address:
FAA Technical Center
Aircraft and Airport Systems Technology Div., ACT-300
Atlantic City Airport, New Jersey 08405

Abstract:
Icing envelopes which effectively characterize supercooled clouds from ground level to 10,000 feet above ground level over the conterminous United States have been generated from a new data base of aerial observations. This data base, recently established via an interagency agreement between the FAA and the Naval Research Laboratory is the largest, most significant compilation of low-altitude supercooled characteristics currently in existence. It is intended that this new characterization serve as a basis for the establishment of design criteria and regulations that pertain to ice protection systems and equipment for low performance aircraft which typically operate below 10,000 feet. This new characterization groups the supercooled cloud properties for all cloud types observed into three temperature ranges and presents their associated values of liquid water content (LWC), range of median volume droplet diameters (MVD), and icing event duration. Details of the analysis process are discussed which use a least squares logarithmic regression estimation technique to predict the extreme values of supercooled cloud properties.

Distribution Statement:
Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161

Security Classification (of this report)
Unclassified

Security Classification (of this page)
Unclassified

No. of Pages: 47
This report contains the description and results of a Loran-C flight test program conducted in the continental United States (CONUS). The data collection period was during July 1983. The purpose of the program was to collect Loran-C signal coverage and accuracy data representative of low altitude, low speed operations typical of helicopters and general aviation aircraft.

The test aircraft used was a Beechcraft Queen Air, Model 65. The aircraft was configured with a data collection palate and multipin electrical connectors located in the aircraft cabin. A Teledyne TDL-711 navigation receiver was used in the test, utilizing an E-field antenna mounted on the top of the fuselage. A microprocessor controlled data collection system, utilizing a scanning DME and other aircraft navigation instruments, was used to record data and establish aircraft reference position.

Route segments, totaling over 9500 nm covering much of CONUS, were flown during the project. Data were recorded on all route segments. Over 12,000 data points were used in the accuracy analysis. Calibration procedures, used at five locations, reduced errors throughout an area within a 75 nm radius of the calibration point.
Rotorcraft operating characteristics may require a collision avoidance system to perform a substantially different function than is provided to conventional fixed-wing aircraft by Traffic Alert and Collision Avoidance System (TCAS) I or the Minimum TCAS II. This paper has been prepared to provide analysis of environmental conditions and operational characteristics of near mid-air collision situations involving rotorcraft. The analysis is intended to provide data in establishing preliminary human factors and procedural design requirements for a rotorcraft collision avoidance system. The information should be used to establish TCAS Rotorcraft Program experimental requirements.
This test plan describes a series of tests that will be conducted over the next several years to evaluate Global Positioning System (GPS) receivers in different phases of navigation, different physical situations, and environmental conditions. The test plan will consist of a number of detailed test descriptions that will be incorporated into the plan as the GPS test program continues and the need arises.
This flight test plan describes the methodology for determining an optimum azimuth and elevation course width for Microwave Landing System (MLS) approaches to a collocated MLS installation at a heliport. The flights will be conducted at the Federal Aviation Administration (FAA) Technical Center, Atlantic City Airport, New Jersey, using a UH-1H helicopter. This effort will provide a data base for determining the course width to be utilized in future helicopter MLS flight test activity scheduled to be conducted at the Technical Center. The data collection and data reduction and analysis of the flight test data are discussed, and a schedule for the completion of the associated tasks is presented.
This flight test plan describes the methodology for a data collection flight test using the Microwave Landing System (MLS) for precision approaches to a collocated MLS installation at a heliport. The flight tests will be conducted at the Federal Aviation Administration (FAA) Technical Center, Atlantic City Airport, New Jersey, using the Center's Sikorsky S-76 helicopter. This effort will provide a data base for procedures specialists to develop departure procedures and MLS approach procedures to a helipad. The test development, test equipment, data collection, and data reduction and analysis of the flight data are discussed. A schedule for the completion of the associated tasks is presented.
Guidelines for snow and ice control on heliports are presented for the purpose of both enhancing the operational utility of heliports, and employing the unique capabilities of the rotorcraft to the maximum extent. These guidelines consider manual methods of snow and ice control such as plowing and chemical application, and automated methods through pavement heating systems. Cost and design considerations are provided for each system. Benefit/cost decision guidelines are provided with estimated annual operating cost data for 32 U.S. cities, and six snow and ice control methods. In addition, selection guidelines provide a methodology to assist heliport planners and designers with the selection of the most appropriate snow and ice control system.
Current structural design guidelines for heliports are analyzed using data obtained from the literature and from surveys of helicopter manufacturers, heliport design consultants, and heliport operators. Primary topics of interest in these analyses are the loads on heliport structures caused by helicopter hard landings, rotor downwash, and helicopter vibrations. A new analysis, based on reliability theory, is proposed for determining the helicopter hard landing load magnitudes appropriate for structural design. Results from this analysis indicate that the current FAA heliport structural design guidelines are adequate for medium to high volume heliports and conservative for low volume facilities. Additional analyses indicate that rotor downwash pressures and helicopter-induced vibrations are not critical loading conditions for most heliport structures. Guidelines for appropriate load combinations for heliport structural design are also presented.
EVALUATING WIND FLOW AROUND BUILDINGS ON HELIPORT PLACEMENT

This report presents a heliport wind assessment methodology for evaluating and potentially minimizing the influences of building-induced wind on heliport operations.

Descriptions and illustrations of wind flow patterns and characteristics for both isolated and multiple building configurations are provided to assist heliport planners, operators, and helicopter pilots in understanding the problems associated with building-induced winds. Based on geometric flow patterns, general guidelines for ground level and rooftop heliport placement are provided.

Additional guidelines for determining the area of wind influence about isolated and multiple building configurations are detailed. Rules for calculating the distance from the sides of buildings for heliport siting is provided, as well as, rules for calculating the area of influence from any wind direction. Lastly, rules are defined for calculating the area of influence of buildings with respect to the prevailing climatic wind conditions.

Recommendations are delineated for further data gathering and evaluation to validate and enhance the heliport wind assessment methodology.
A procedure is developed for providing weather forecasting guidance over the short period between 1 to 60 minutes. It uses automated surface observation elements as predictors and predictands. The same equations project probabilistic predictions iteratively minute-by-minute. The model is founded on a Markov assumption and utilizes multivariate linear regression as the statistical operator. Details are given on how the model is constructed and how it compares with other objective methods such as climatology and persistence. Tests are performed on a new nonlinear approach.
HELIQUOPTER IFR LIGHTING AND MARKING PRELIMINARY TEST RESULTS

Author: Paul Jones

Performing Organization Name and Address:
Federal Aviation Administration
Technical Center
Atlantic City Airport, New Jersey 08405

Sponsoring Agency Name and Address:
U.S. Department of Transportation
Federal Aviation Administration
Technical Center
Atlantic City Airport, New Jersey 08405

Abstract:
Various approach lighting configurations, intended to support helicopter Instrument Flight Rules (IFR) approach and landing operations, have been developed and tested at the Federal Aviation Administration (FAA) Technical Center, Atlantic City Airport, New Jersey and at Fort George G. Meade, Maryland. This report outlines details of the test and evaluation procedure and provides preliminary test results. It also contains recommendations for a nonprecision helicopter approach lighting system suitable for installation and inservice evaluation at IFR demonstration heliports. The proposed system includes front and rear approach lights, enhanced pad perimeter lights, wing bars, and inset touchdown area lights.

Key Words:
- Heliports
- Visual Guidance
- Approach Lighting

Distribution Statement:
Document is on file at the Technical Center Library, Atlantic City Airport, New Jersey 08405

Unclassified

Reproduction of this document is authorized for the use of the DOT and its contractors for research and development purposes only.

Page 18 of 22
This report documents a series of tests designed to provide recommended range of locations for a landing pad which would be satisfactory sites for Microwave Landing Systems (MLS) precision heliport approaches during instrument meteorological conditions (IMC) for minimally equipped helicopters. The dependent variable for this experiment was deceleration distance and the independent variables were decision height (DH), range rate, and elevation angle. Twenty-eight data flights, using 56 flight hours and eight subject pilots to complete, were conducted at the Federal Aviation Administration (FAA) Technical Center parallel to runway 13/31. The subject pilots were required to fly hooded, inbound 125° or 310° azimuth, through elevation angle capture and DH, to a visual deceleration landing to full stop. Real estate availability was not considered as a constraint in this study. The data show that as the elevation angle to a desired DH is increased, an angle will be reached which requires that the antenna system be moved from a location adjacent to the heliport to a location in front of the heliport. This separation distance increases as a function of increasing elevation angle (i.e., the helicopter must fly past the MLS antenna to reach the heliport). For a given elevation angle, as the DH is decreased, a DH will be reached which requires that the MLS antenna again be moved from a location adjacent to the heliport to locations in front of the heliport. This separation increases in distance as a function of decreasing decision height. In situations where real estate is limited, steeper angle approaches and lower minima could be obtained by increasing the capabilities of the aircraft and/or the crew.
This report covers the 1984 Federal Aviation Administration (FAA) tests using a single channel Global Positioning System (GPS) receiver under the turning rotor blades of a Sikorsky twin-turbine 4-composite bladed S-76 Helicopter and an Army 2-metal bladed UH-1H helicopter. The report cites the performance of the Magnavox Z-Set GPS receiver during acquisition and operation at various rotor speeds on the ground.
Abstract: During the last 18 months, the coordinated efforts of the Federal Aviation Administration (FAA), state/local governments, and the helicopter industry have been directed toward the upgrading of the existing Heliport Design Guide. In response to industry's request, the FAA sponsored a 3 day workshop on November 27-29, 1984. The major objective was to assemble a cross section of the helicopter community to discuss the critical issues related to IFR/VFR heliport design and to document industry's position as an input to a revised Heliport Design Guide. The open workshop was widely attended and the 80 participants came from all aspects of the helicopter community: regulators, manufacturers, operators, consultants, and the aviation trade press. Following a plenary session, the issues were addressed individually in one of four working groups: 1. Flight Operations, Airspace and Maneuver Area, 2. Support Facilities and Services, 3. Ground Safety, 4. Planning and Environmental Aspects. Critical issues were assigned to these smaller working groups in order to facilitate meaningful treatment of each identified subject.

Upon completion of working group deliberations, the four group chairman presented their results at a second plenary session in order to achieve a broader consensus. This report contains the industry recommendations which came out of this workshop. The three volume report is laid out as follows:

Volume I: Executive Summary
Volume II: Appendixes
Volume III: Viewgraphs

This document will be distributed to all who attended the workshop. A limited number of additional copies are also available from the sponsoring agency (see block 12).
Technical Report Documentation Page

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PM-85-3-LR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume II: Appendixes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. Performing Organization Name and Address</th>
<th>10. Work Unit No. (TRAIS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systems Control Technology, Inc.</td>
<td></td>
</tr>
<tr>
<td>West Palm Beach, Florida 33406</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Contract or Grant No.</th>
<th>12. Sponsoring Agency Name and Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTFAO1-80-C-10080</td>
<td>U.S. Department of Transportation</td>
</tr>
<tr>
<td></td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td></td>
<td>800 Independence Ave., S.W. Washington, D.C. 20591</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Report</td>
<td>APM-720</td>
</tr>
<tr>
<td>November 27-29, 1984</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. Supplementary Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Abstract</th>
<th>17. Distribution Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>During the last 18 months, the coordinated efforts of the Federal Aviation Administration (FAA), state/local governments, and the helicopter industry have been directed toward the upgrading of the existing Heliport Design Guide. In response to industry's request, the FAA sponsored a 3 day workshop on November 27-29, 1984. The major objective was to assemble a cross section of the helicopter community to discuss the critical issues related to IFR/VFR heliport design and to document industry's position as an input to a revised Heliport Design Guide. The open workshop was widely attended and the 80 participants came from all aspects of the helicopter community: regulators, manufacturers, operators, consultants, and the aviation trade press. Following a plenary session, the issues were addressed individually in one of four working groups: 1. Flight Operations, Airspace and Maneuver Area, 2. Support Facilities and Services, 3. Ground Safety, 4. Planning and Environmental Aspects. Critical issues were assigned to these smaller working groups in order to facilitate meaningful treatment of each identified subject. Upon completion of working group deliberations, the four group chairmen presented their results at a second plenary session in order to achieve a broader consensus. This report contains the industry recommendations which came out of this workshop. The three volume report is laid out as follows: Volume I: Executive Summary Volume II: Appendixes Volume III: Viewgraphs</td>
<td></td>
</tr>
<tr>
<td>This document will be distributed to all who attended the workshop. A limited number of additional copies are also available from the sponsoring agency (see block 12).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Key Words</th>
<th>19. Security Classification of this report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heliport Design Guide</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>130</td>
<td></td>
</tr>
</tbody>
</table>

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized
<table>
<thead>
<tr>
<th>1. Report No.</th>
<th>PM-85-4-LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Government Accession No.</td>
<td></td>
</tr>
<tr>
<td>3. Recipient's Catalog No.</td>
<td></td>
</tr>
<tr>
<td>4. Title and Subtitle</td>
<td>Heliport Design Guide, Workshop Report</td>
</tr>
<tr>
<td></td>
<td>Volume III: Viewgraphs</td>
</tr>
<tr>
<td>5. Report Date</td>
<td>January 1985</td>
</tr>
<tr>
<td>6. Performing Organization Code</td>
<td></td>
</tr>
<tr>
<td>7. Author(s)</td>
<td>Systems Control Technology, Inc. West Palm Beach, Florida 33406</td>
</tr>
<tr>
<td>8. Performing Organization Report No</td>
<td></td>
</tr>
<tr>
<td>9. Performing Organization Name and Address</td>
<td></td>
</tr>
<tr>
<td>10. Work Unit No (TRAIS)</td>
<td></td>
</tr>
<tr>
<td>11. Contract or Grant No.</td>
<td>DTFA01-80-C-10080</td>
</tr>
<tr>
<td>12. Sponsoring Agency Name and Address</td>
<td>U.S. Department of Transportation</td>
</tr>
<tr>
<td></td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td></td>
<td>800 Independence Ave., S.W.</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20591</td>
</tr>
<tr>
<td>13. Type of Report and Period Covered</td>
<td>Final Report November 27-29, 1984</td>
</tr>
<tr>
<td>15. Supplementary Notes</td>
<td></td>
</tr>
<tr>
<td>16. Abstract</td>
<td>During the last 18 months the coordinated efforts of the Federal Aviation Administration (FAA), state/local governments, and the helicopter industry have been directed toward the upgrading of the existing Heliport Design Guide. In response to industry's request, the FAA sponsored a 3-day workshop on November 27-29, 1984. The major objective was to assemble a cross section of the helicopter community to discuss the critical issues related to IFR/VFR heliport design and to document industry's position as an input to a revised Heliport Design Guide. The open workshop was widely attended and the 80 participants came from all aspects of the helicopter community: regulators, manufacturers, operators, consultants, and the aviation trade press. Following a plenary session, the issues were addressed individually in one of four working groups: 1. Flight Operations, Airspace and Maneuver Area, 2. Support Facilities and Services, 3. Ground Safety, 4. Planning and Environmental Aspects. Critical issues were assigned to these smaller working groups in order to facilitate meaningful treatment of each identified subject. Upon completion of working group deliberations, the four group chairmen presented their results at a second plenary session in order to achieve a broader consensus. This report contains the industry recommendations which came out of this workshop. The three volume report is laid out as follows: Volume I: Executive Summary Volume II: Appendixes Volume III: Viewgraphs</td>
</tr>
<tr>
<td>17. Key Words</td>
<td>Heliport Design Guide</td>
</tr>
<tr>
<td>18. Distribution Statement</td>
<td>This document will be distributed to all who attended the workshop. A limited number of additional copies are also available from the sponsoring agency (see block 12).</td>
</tr>
<tr>
<td>19. Security Classif. (of this report)</td>
<td>Unclassified</td>
</tr>
<tr>
<td>20. Security Classif. (of this page)</td>
<td>Unclassified</td>
</tr>
<tr>
<td>21. No. of Pages</td>
<td>85</td>
</tr>
<tr>
<td>22. Price</td>
<td></td>
</tr>
</tbody>
</table>
This report discusses the results of a 1-year test conducted by the Federal Aviation Administration (FAA) Technical Center in the Gulf of Mexico to determine both long and short term stability of Loran C signals in this region for helicopters on nonprecision approaches.

The data collected were analyzed at the Technical Center. Plots of the data demonstrate the long and short term stability and, based on the analysis, conclusions concerning operations in the Gulf of Mexico were made.
This document describes the data collection methodology, and the results obtained from the Traffic Alert and Collision Avoidance System (TCAS) User Survey. The survey was conducted during the fall, spring and early summer of 1984. The survey examined helicopter operator and pilot responses in three particular areas of interest: 1) The nature of helicopter near mid-air collision encounters, 2) Pilot Display Preferences, and 3) User price thresholds for a helicopter TCAS.

The survey revealed that only a small percentage of near mid-air collisions involving helicopters are reported, although pilots assert that mid-air collisions pose a significant hazard to flight safety. This report contains breakdowns, by operator group, of significant characteristics of helicopter operations and their associated NMAC hazards which should be addressed in the design of a helicopter specific TCAS.
This document contains information on the utilization of the Microwave Landing System (MLS) at heliports and helipads. It was designed to familiarize heliport operators and users with the features of the MLS and its capabilities in supporting heliport operations. For this reason the major sections of the document present information on MLS siting, operational characteristics, selecting and specifying an MLS system. In addition, other sections provide additional MLS information to familiarize pilots with MLS avionics, pilot training requirements and aircraft performance considerations.
This publication addresses the problems helicopter operators face when using VHF communications within typical operating environments where coverage by the network of ground stations may be deficient. This is of particular interest to IFR helicopter operators. The specific reasons why communications effectiveness can be limited in mountainous or remote regions, considering typical low helicopter operating altitudes, are reviewed. Recommendations to operators for improving the airborne VHF installation, and therefore improving its coverage capabilities, are presented.

Several installation-related factors are addressed. These include the characteristics of the hardware, i.e. the transceiver and the antenna, and the characteristics of the installation, including antenna installation and resulting coverage pattern, the cable run, the effects of signal availability and ways of maximizing the capture of the available signal. A set of procedures is presented which allows operators to evaluate numerically the benefit in terms of signal strength or sensitivity they may expect given that they make specific improvements to a given actual, or planned, installation.
A review was conducted of U.S. civil helicopter accidents occurring between 1974 and 1978 to determine impact conditions and injuries to the occupants. This report describes the distribution of impact conditions. Also, six typical impact scenarios were developed to represent classes of accidents. A rank-ordered analysis of crash hazards is presented. The report also contains an evaluation of computer techniques available for structural crash dynamics simulation and a comparison of the civil and military helicopter crash environments. Recommended crashworthiness design criteria for civil rotorcraft are presented.
This report describes the results of an inflight evaluation of azimuth (AZ) and elevation (EL) course widths associated with a Microwave Landing System (MLS) approach to a helipad. The flight test data were recorded during straight-in precision approaches using raw-data course guidance information to fly 3°, 6°, and 9° elevation angles to a collocated MLS site at the helipad. The flight test was conducted in an Army UH-1H helicopter provided through an Army/Federal Aviation Administration (FAA) interagency agreement. The purpose of this program was to determine an optimum course width for future flight test evaluations of MLS at the Technical Center.

The data analysis demonstrated that the optimum azimuth course width for an approach to an MLS collocated at the helipad is between +3.25° and +3.75° that the optimum elevation course width is the magnitude of the selected elevation angle divided by 3 (EL/3). This document describes the flight test facilities, methodology, and presents an analysis of the flight test data.
This report documents the results of helicopter nonprecision approaches using second generation Loran C receivers. The approaches were made to five airports in the Northeast Corridor. Six different Loran C receivers were used throughout the study. Results of this study were comparable to previous Loran C helicopter nonprecision Area Navigation (RNAV) approaches which were flown in the Northeast Corridor. When the receivers were area calibrated the navigation systems cross-track error and along-track error met requirements of Advisory Circular (AC) 90-45A. Additionally, the flight technical error which results when Loran C approaches are made with a helicopter met requirements of AC 90-45A.
An Automated Weather Observing System (AWOS) will be installed at the Federal Aviation Administration (FAA) Technical Center’s interim Concept Development Heliport, Atlantic City Airport, New Jersey. This test plan describes the methodology for installation and determination of optimum siting of an AWOS at a heliport. The resulting siting and installation criteria will be incorporated in DOT/FAA Order 6560, "Installation and Siting Criteria for Automated Weather Observing System (AWOS)," paragraph 14, which has been reserved for applicable heliports. Data collection, reduction, and analysis of test data are discussed and a schedule for completion of tasks is presented.
This report documents the Federal Aviation Administration (FAA) Technical Center's Helicopter Terminal Instrument Approach Procedures (TERPS) project. This project was undertaken in response to the Aviation Standards National Field Office (AVN) to provide data for use in streamlining and updating chapter 11 of the TERPS manual.

Data were collected for Instrument Landing System (ILS) and very high frequency omni-directional radio range (VOR) precision and nonprecision approaches. Data collection was performed using helicopters from various weight classes.

After the data were collected, it was reduced and formatted and forwarded to AVN for analysis and use in the updating of helicopter TERPS criteria.
Summary of Artificial and Natural Icing Tests Conducted on U.S. Army Aircraft from 1974 to 1985

Harry W. Chambers and John Y. Adams

U.S. Army Aviation Systems Command
ATTN: AVSAV-E
4300 Goodfellow Boulevard
St. Louis, MO 63120-1798

U.S. Department of Transportation
Federal Aviation Administration Technical Center
Atlantic City Airport, NJ 08405

The U.S. Army Aviation Systems Command (USAAVSCOM) conducts airworthiness qualification testing on aircraft under artificial and natural icing conditions. A JCH-47C helicopter with a Helicopter Icing Spray System (HISS) installed is used for generating a simulated natural icing environment. The artificial icing tests are followed by natural icing tests to assure a wide variety of flight conditions are tested and to verify artificial icing test results. The JCH-47C/HISS has been used since 1974 for conducting research, engineering, development, and qualification testing for U.S. Army, U.S. Navy, NASA, and various contractor aircraft. The USAAVSCOM has compiled an extensive artificial and natural icing test database. The data is summarized in this report. Detailed time histories of selected natural icing encounters have been provided under separate cover to the Federal Aviation Administration (FAA).

This report documents unclassified U.S. Army, other U.S. Government agencies, and commercial icing test programs. Also discussed is the use of deice and anti-ice systems; the impact of ice accretion and shedding characteristics, performance considerations, stability and control, and vibration characteristics; and the cloud parameters measurement equipment and test aircraft instrumentation used for documenting test data. The test methodology and requirements used for qualifying aircraft for flight into icing conditions, instrumentation, and special equipment are summarized, and the details for test conducted are contained in the references. The report documents in part 14 years of U.S. Army experience in conducting in-flight aircraft icing tests and is provided to the FAA under interagency agreement in the preparation of manuals and other documents relative to the certification of civil aircraft as appropriate.
A specially modified version of the Traffic Alert and Collision Avoidance System (TCAS) was installed in a Bell Long Ranger helicopter in order to investigate the feasibility of TCAS operation in rotorcraft. This installation employed TCAS air-to-air surveillance to provide automated traffic advisories that were displayed in the cockpit on a color cathode ray tube display.

As part of this study, 12 subject pilots evaluated the utility of the installation through brief test flights in the vicinity of a major airport. Among the topics investigated were the rate of alarms, the computer logic for issuing advisories, the bearing accuracy, and the display symbology. Several recommendations for adapting TCAS to the rotorcraft environment resulted from the testing.
This test plan outlines a three-part development effort for a Traffic Alert and Collision Avoidance System (TCAS) for helicopters. The installation and planned flight test of a TCAS experimental unit (TEU) in a composite aircraft, the Sikorsky S-76, are described.
This report documents a series of tests designed to provide a recommended range of locations for a Microwave Landing System (MLS) at a heliport to support precision approaches in instrument meteorological conditions (IMC) for minimally equipped helicopters. An objective of the tests was to achieve the lowest practical decision heights (DH's). Eight subject pilots completed 36 data flights totalling 67 hours of flight time. The subjects flew simulated IMC approaches through glidepath capture and DH, to a visual deceleration landing to a full stop at the Federal Aviation Administration Technical Center heliport. Results show that for a 90-knot approach (to any of the DH's) the separation distance between the collocated MLS and the heliport (i.e., the MLS in front of the helipad) is 1400 feet. For a 60-knot approach the separation distance is 550 feet. Data also illustrated that for the 90-knot approaches a lateral separation of the inbound course centerline from the heliport centerline of 600 feet is satisfactory, and 400 feet is the maximum lateral separation for 60 knots. Maximum recommended glidepath angles were between 7° and 10°, depending on approach speed and DH.
PILOT INFILIGHT EVALUATION OF MLS
PROCEDURES AT HELIPORTS

This report describes the Helicopter Microwave Landing System (MLS) Collocated Flight Test project recently completed by the Guidance and Airborne Systems Branch at the Federal Aviation Administration (FAA) Technical Center. It describes the flight test facilities, methodology, and addresses topics such as how flight test data are collected and its application. It also describes each of the helicopter procedures flown during the project and provides an analysis of the pilot's subjective opinions concerning the acceptability and workload associated with these procedures.

It was concluded that subject pilots were able to fly single pilot raw data guided MLS precision approaches at elevation (glidepath) angles ranging from 3° to 9° to decision heights within 0.5 m of the helipad, when the azimuth angular course width was set to +3.6°, and the elevation angular course width was set to the magnitude of the selected elevation angle divided by 3 (SEL/3).

The data presented herein also suggests that some pilot training on the techniques of tracking steep glidepaths and the importance of speed control for precision approaches to a helipad are required.
During the winter and spring of 1985, the Federal Aviation Administration (FAA) Eastern Region in conjunction with the Guidance and Airborne Systems Branch at the FAA Technical Center conducted a demonstration of a Microwave Landing System (MLS) located at a downtown heliport.

This report describes both the industry/user and FAA Technical Center activities during the evaluation period. It describes the evaluation methodology and addresses topics concerning both technical and operational issues. It also describes the helicopter procedures flown during this evaluation and provides an analysis of signal coverage and the user's subjective opinions concerning the acceptability and perceived workload associated with these procedures.

It was concluded that MLS to heliports is a viable asset to the helicopter Instrument Flight Rules (IFR) community, however, its full benefits may not be realized in the Battery Park/Wall Street area without revisiting the necessity and demand for the New York Terminal Control Area (TCA) Visual Flight Rules (VFR) operating exclusion area.
Results of part 1 of a three-part Traffic Alert and Collision Avoidance System (TCAS) evaluation are contained in this report. Part 1 evaluation consisted of the installation and initial checkout of a TCAS Experimental Unit (TEU) in a Sikorsky S-76 helicopter.

The results show that the installation was verified except for an unintended 15 decibel (dB) loss in the top mounted antenna.
This report covers the design, analysis, and flight test of a Computed Centerline Microwave Landing System (MLS). This system enables final approaches to be made to runways which have azimuth units offset from the runway centerline. The system was successfully flight tested at the Federal Aviation Administration (FAA) Technical Center, Atlantic City Airport, NJ, and at the Washington National Airport. Hardware design schematics and software listings are included in addition to flight test data plots.
This Technical Note describes the methodology for data collection flight tests to determine critical area boundaries about a Microwave Landing System (MLS) facility in which unlimited operations could degrade signal integrity to user helicopters. Test procedures, data collection, and data reduction and analysis are discussed.
This report contains the results of bench tests which were performed on the Traffic Alert and Collision Avoidance System (TCAS) Experimental Unit (TEU) delivered by the Massachusetts Institute of Technology (MIT) Lincoln Laboratory. The TEU was used in the Technical Center's helicopter TCAS flight test evaluation.

The results show that the TEU was functioning as designed.
A preliminary flight investigation was carried out to highlight deficiencies of helicopters handling qualities when performing low speed instrument approaches. Steep decelerating MLS approaches to a decision height of 50 feet, simultaneously decelerating to 20 knots, were performed in the NAE Airborne Simulator, a variable-stability Bell 205A helicopter.

Tracking performance, in terms of height, azimuth and speed errors was of an acceptable standard, but pilot workload was extremely high, especially during the overshoot phase. Benefits of different levels of control system augmentation were not readily apparent in this high workload environment.

In view of the results of this investigation, a follow-on program is proposed where further attempts will be made to determine the effects of display and control sophistication on pilot workload during slow-speed helicopter instrument procedures.
A procedure is developed for providing weather forecasting guidance over the short period of 10, 20, 30, ..., 60 minutes. It uses automated surface observation elements as predictors and predictands. The model is founded on Markov assumption and utilizes multivariate linear regression as the statistical operator. Details are given on how the Generalized Equivalent Markov (GEM) model is constructed and how it compares with other objective methods such as climatology and persistence. Tests are performed on an independent data sample. Overall, GEM succeeds in bettering persistence and does so uniformly over the 6 projection periods of 10, 20, 30, ..., 60 minutes.
The Helicopter MLS Flight Inspection Project was conducted jointly by the FAA Technical Center and the AVN Standards National Field Office, Oklahoma City, Okla. FAA Tech Center Project Engineer, Scott B. Shollenberger. Data reduction software support was from Tech Center mathematicians D. Gallagher and P. Maccagnano.

This report describes test procedures and results of a series of tests designed to identify microwave landing system (MLS) heliport flight inspection procedures. The tests, conducted in November 1985, demonstrated the feasibility of using a helicopter to perform some portion of the flight inspection of the MLS at heliports. Significant findings included the fact that radio theodolite techniques could be used for tracking a helicopter not equipped with stability augmentation equipment. Constituent parts of a portable flight inspection package were also identified and tested.
In order to take full advantage of the helicopter's unique flight characteristics, enhanced terminal instrument procedures (TERPS) need to be developed for a variety of non-standard operational situations. These include non-standard landing navigation aids, precision and non-precision approach profiles, landing sites, and avionics systems. Currently, TERPS criteria are largely established by extensive flight testing. This study examined the requirements for using helicopter cockpit simulators in place of flight testing to generate data necessary for enhanced TERPS development. Specifically, this report identifies and defines which parts of TERPS may be evaluated with the present state of the art in simulator technology. The report also recommends a test plan for benchmark simulator-based TERPS evaluation of standard ILS and MLS approaches using NASA Ames helicopter simulators. Included as part of this investigation were a survey and summary of the current state in modeling of navigation systems, environmental disturbances and helicopter dynamics plus visual and motion simulation; these summaries are included as appendices.
Current approved terminal instrument procedures (TERPS) do not permit the full exploitation of the helicopter's unique flying characteristics. Enhanced TERPS need to be developed for a host of non-standard landing sites and navigation aids. Precision navigation systems such as MLS and GPS open the possibility of curved paths, steep glide slopes, and decelerating helicopter approaches. This study evaluated the feasibility, benefits, and liabilities of using helicopter cockpit simulators in place of flight testing to develop enhanced TERPS criteria for non-standard flight profiles and navigation equipment. Near-term (2-5 year) requirements for conducting simulator studies to verify that they produce suitable data comparable to that obtained from previous flight tests are discussed. The long-term (5-10 year) research and development requirements to provide necessary modeling for continued simulator-based testing to develop enhanced TERPS criteria are also outlined.
1. Report No
DOT/FAA/CT-TN86/17

2. Government Accession No

3. Report Date
June 1986

4. Title and Subtitle
LORAN OFFSHORE FLIGHT FOLLOWING PROJECT PLAN

5. Author(s)
Jean Evans and Frank Lorge

6. Performing Organization Code
ACT-140

7. Performing Organization Name and Address
U.S. Department of Transportation
Federal Aviation Administration
Technical Center
Atlantic City Airport, NJ 08405

8. Work Unit No. (TRAIS)
T0702K

9. Type of Report and Period Covered
Project Plan
April-October 1986

10. Sponsoring Agency Name and Address
U.S. Department of Transportation
Federal Aviation Administration
Program Engineering and Maintenance Service
Washington, DC 20590

11. Sponsoring Agency Code
APM-450, APM-210

12. Supplementary Notes
APM-450 Helicopter Program Branch
APM-210 En Route Automation Program

13. Abstract
This project plan describes a series of ground simulation and flight tests designed to
determine the suitability of Loran Offshore Flight Following (LOFF) in the Gulf of
Mexico. LOFF is an automatic dependent surveillance system which will provide
a display of traffic outside radar coverage for use by air traffic control. Equipped
aircraft will have Loran receivers and an interface unit that will convert Loran
derived position to a LOFF message which will then be transmitted by VHF radio.
Equipment will be installed in Houston Center which will convert this LOFF message for
input to the enhanced direct access radar channel. Target information will then be
displayed conventionally on a controller's plan view display.

The testing described in this plan will verify operation and measure accuracy of the
converter unit. Flight tests will also be conducted to determine the VHF coverage
area and performance of the LOFF system in areas of radar overlap.

14. Document Tyr-on file at the Technical
Center Library, Atlantic City Airport,
New Jersey 08405

15. Key Words
Loran
LOFF
Flight Following
Automatic Dependent Surveillance

16. Security Classification of this report
Unclassified

17. Security Classification of this page
Unclassified

18. No. of Pages
24

19. Price

20. Reproduction of this page authorized

21. DOT F 1700.7 (8-72)
This document describes the work performed to determine whether an electroluminescent (E-L) panel helipad lighting system possesses sufficient potential to warrant a full-scale evaluation at the Federal Aviation Administration (FAA) Technical Center.

Flight testing was conducted using the FAA's S-76 helicopter to fly approaches to and orbits around the 60-foot E-L helipad.

Results of the flight testing showed that the E-L system has insufficient intensity and inadequate cut-off angle to support nighttime helicopter operations and therefore does not warrant further evaluation at the Federal Aviation Administration (FAA) Technical Center.
This report catalogs the aircraft avionics suitable for advanced approach applications. The configuration and model numbers of avionics used in navigation and approaches for landing are provided for 79 different types of aircraft. Aircraft are grouped into five user communities which cover Major Air Carriers, Regional Air Carriers, Executive Jets, General Aviation Aircraft, and IFR Helicopters.

Avionics evaluation includes VOR NAVs, ADFs, DMEs, RNAVs, AFCS, weather radar and the associated display instruments. These navigation systems are the most popular units for navigation and landing in today's aircraft. ILS glideslope receivers, marker beacon systems, navigation management systems, vertical navigation systems, and long range navigation systems are not covered.
INVESTIGATION OF HAZARDS OF HELICOPTER OPERATIONS AND ROOT CAUSES OF HELICOPTER ACCIDENTS

Abstract:
During 1983 and 1984, Systems Control Technology, Inc. conducted a survey of civil helicopter pilot organizations from throughout the United States who were involved in a wide range of helicopter operations for the purpose of determining the hazards of helicopter operations and the root causes of the high rate of helicopter accidents. The survey was administered through personal interviews, meetings, and questionnaires. The derived questionnaire data included census data, profiles of the pilots work environment and procedures and their own perspectives on the hazards of helicopter operations and root causes of helicopter accidents. These data were compared with historical National Transportation Safety Board accident reports and accident briefs to determine more specifically the root causes of helicopter accidents. The results of the analysis include a list of hazards and probable root causes of accidents, as well as technological, training, and standardization remedies to the causes.

Key Words:
Helicopter, accidents, autorotation, hazards, pilot error

Distribution Statement:
Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161.
An Automated Weather Observing System (AWOS) was installed at the Federal Aviation Administration (FAA) Technical Center's Interim Concept Development Heliport. This was done in order to evaluate the siting, installation, and operational suitability of the AWOS at a heliport. The principal recommendations of this report have been incorporated in FAA Advisory Circular (AC) 150/5220-16, Automated Weather Observing Systems (AWOS) for non-federal applications.
This report describes the "trend analysis" evaluation of the Sikorsky S-76A missed approach profiles following precision microwave landing system (MLS) approaches at glidepath angles of 3°, 6°, and 7.5° at a minimum instrument meteorological conditions airspeed (V_{min}) of 40 knots indicated airspeed (KIAS). It describes the flight test facilities, methodology, and addresses topics such as how flight test data are collected and what is done with it. It also describes each of the helicopter procedures flown during the project and provides an analysis of the pilots subjective opinions concerning the acceptability and workload associated with these procedures.

It was concluded that the "trend" indicates that no current terminal instrument procedures (TERPS) criteria would be violated by reducing V_{min} to 40 KIAS. The plots indicated that there were no penetrations of the 20:1 surface missed approach surface. The maximum deviation allowed by TERPS for the height loss at missed approach rises along a 20:1 plane which begins at the surface or 250 feet below the missed approach point. For this test that meant that the 20:1 obstacle free surface began at ground level. At most, only a 40-foot fly under at decision height (DH) was noticed during the 24 missed approaches flown.

However, this information should be considered indicative rather than conclusive due to the small sample size (24 approaches). Additional testing would be required to provide TERPS quality data.
Aeronautical Decision Making for Helicopter Pilots

R. J. Adams, J. L. Thompson

12. Sponsoring Agency Name and Address
U. S. Department of Transportation
Federal Aviation Administration
800 Independence Avenue, S.W.
Washington, D.C. 20591

16. Abstract
Aviation accident data indicate that the majority of aircraft mishaps are due to judgment error. This training manual is part of a project to develop materials and techniques to help improve pilot decision making. Training programs using prototype versions of these materials have demonstrated substantial reductions in pilot error rates. The results of such tests were statistically significant and ranged from approximately 10% to 50% fewer mistakes.

This manual is designed to explain the risks associated with helicopter flying activities, the underlying behavioral causes of typical accidents, and the effects of stress on pilot decision making. It provides a means for the individual pilot to develop an "Attitude Profile" through a self-assessment inventory and provides detailed explanations of pre-flight and in-flight stress management techniques. The assumption is that pilots receiving this training will develop a positive attitude toward safety and the ability to effectively manage stress while recognizing and avoiding unnecessary risk.

This manual is one of a series on Aeronautical Decision Making prepared for the following pilot audiences: (1) Student and Private (2) Commercial (3) Instrument (4) Instructor (5) Helicopter (6) Multi-Crew.

17. Key Words
Human Factors Judgment
Human Performance Decision Making
Aviation Safety Helicopter Pilot
Aviation Training Helicopters
Pilot Error Rotorcraft

18. Distribution Statement
This document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161.

19. Security Classiﬁ. (of this report) Unclassified
20. Security Classiﬁ. (of this page) Unclassified
21. No. of Pages 117
22. Price

Reproduction of this page authorized

165
A MLS flight test was conducted to a helipad using the Sikorsky S-76. Fifteen pilots each flew 24 approach procedures following a standardized videotaped briefing while using the 1020 IMC simulator, a new view limiting device. Tests were flown at the FAATC, Atlantic City, New Jersey. Approach angles were 3°, 6°, and 9°. Tracking of aircraft was by laser ground tracker. Airborne data were also recorded. Analyses were made of TSE, FTE, and NSE. A comprehensive pilot questionnaire was accomplished after flight. It was found that while 3° and 6° approach angles were acceptable, the 9° angle was not. Course sensitivity used was acceptable. A two-pilot crew would be desirable for IFR operations. There is altitude loss below the DH on missed approach.
END
1-81
DTIC