ABSTRACTS OF THE INTERNATIONAL SYMPOSIUM ON GAS KINETICS (9TH) HELD IN VALENCE (FRANCE) ON 20-25 JULY 1986(U) BIRMINGHAM UNIV (ENGLAND) 29 JUL 86

UNCLASSIFIED

K/D-5358-CH-82 DAJ45-85-H-0071

F/G 7/4
UNIVERSITY OF BORDEAUX

BORDEAUX
20-25 JULY 1986

ABSTRACTS

9TH. INTERNATIONAL SYMPOSIUM ON GAS KINETICS

Under the auspices of the Gas Kinetics Group of the Royal Society of Chemistry of Great Britain and the Division de Chimie-Physique de la Société Française de Chimie.
INTERNATIONAL ORGANISING COMMITTEE

F. BARONNET (Nancy)  
G. LE BRAS (Orléans)  
R. LESCLAUX (Bordeaux)  
R. MARX (Orsay)  
M.J. PILLING (Oxford)  
I.W.M. SMITH (Birmingham)

LOCAL ORGANISING COMMITTEE

F. CARALP  
P. CAUBET  
M. COSTES  
M. DESTRIAU  
G. DORTHE  
P. HALVICK  
R. LESCLAUX  
C. NAULIN  
J.C. RAYEZ  
M.T. RAYEZ  
B. VEYRET
UNIVERSITY OF BORDEAUX

BORDEAUX
20 - 25 JULY 1986

ABSTRACTS

9TH. INTERNATIONAL SYMPOSIUM ON GAS KINETICS

Under the auspices of the Gas Kinetics Group of the Royal Society of Chemistry of Great Britain and the Division de Chimie-Physique de la Société Française de Chimie.
CONFERENCE PROGRAMME

Registration and scientific sessions will take place in the grounds of the law school of the University, avenue Léon Duguit.

**SUNDAY 20 JULY**

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.00 - 21.00</td>
<td>Registration</td>
</tr>
</tbody>
</table>
| 19.00 - 21.00| Get-together and buffet in the Confer-
|              | rence Hall                           |
MONDAY 21 JULY

09.00 - 09.20 Official Welcome

SESSION A – THEORY AND DYNAMICS

09.20 - 10.00 A1 Dynamical bottlenecks and tunneling path for chemical reactions.
D.G. Truhlar

10.00 - 10.20 A2 Study of the H + H₂ (V = 1) reaction and its isotopic analogs.

10.20 - 10.40 A3 Reduced dimensionality rate constant calculations for O(³P) + H₂ (D₂, HD) → OH (OD) + H(D) : comparison between theory and experiment.
A.F. Wagner, T.H. Dunning, Jr. and J.M. Bowman

10.40 - 11.20 Coffee

11.20 - 11.40 A4 Reactions on attractive potential energy surfaces : connections between rate and potential parameters.
J. Troe

11.40 - 12.00 A5 A theoretical prediction of rate coefficients for reactions involving intermediate complex formation.
J.A. Miller, C.F. Melius and N.J. Brown

12.00 - 12.20 A6 The dynamics of the reactions of O¹ D₂ with hydrogen-containing halocarbons.
P.M. Aker, B. Niefer, J.J. Sloan and H. Heydtmann.
MONDAY 21 JULY


13.00 Lunch

SESSION B - MOLECULAR BEAMS.

14.30 - 15.10 B1 Reactivity of Van der Waals complexes. C. Jouvet, M.C. Duval, W.H. Breckenridge, B. Soep


15.30 - 15.50 B3 Molecular beam study of the radical group effect in the K + RI → KI + R(R = CH₃, C₂H₅, nC₃H₇) reactive collisions. V. Saez Rabanos, F.J. Aoiz, V.J. Herrero, E. Verdasco and A. Gonzalez Urena

15.50 - 16.10 B4 Laser induced fluorescence study of reactions of Ca with CH₃I and CF₃I in the molecular beam-gas apparatus. Guo-zhong He, Jue Wang, R.S. Tse and Nan-quan Lou

16.10 - 16.40 Coffee

MONDAY 21 JULY

17.00 - 17.40  B6  Topological study on three and four atom indirect exchange reactions. Application to the processes C\(^{3}\)P + NO(X\(^2\)II) and C\(^{3}\)P + N\(_2\)O(X\(^1\)Σ\(^+\)).
M.T. Rayez, P. Halvick, B. Duguay and J.C. Rayez

17.40 - 18.00  B7  Dynamical processes of detachment in Cl\(^-\)/H\(_2\).
M. Barat, J.C. Brenot, M. Durup-Ferguson, J. Fayeton, J.C. Houyer and J.B. Ozenne

19.00  Reception at City Hall.
TUESDAY 22 JULY

SESSION C – ATMOSPHERIC REACTIONS

09.00 - 09.40 C1 Some current problems in atmospheric trace gas chemistry, the role of chemical kinetics.
R.A. Cox

09.40 - 10.00 C2 Absolute rate constants for the gas-phase reaction of NO₃ radicals with reduced sulfur compounds.
T.O. Wallington, R. Atkinson, A.M. Winer and J.N. Pitts

10.00 - 10.20 C3 Thermal stability of peroxynitrates.
A. Reimer and F. Zabel

10.20 - 10.40 C4 The sticking of gas molecules to water surfaces.

10.40 - 11.20 Coffee

11.20 - 11.40 C5 Discharge flow determination of the rate constants for the reactions OH + SO₂ + He and HOSO₂ + O₂.
D. Martin, J.L. Jourdain and G. Le Bras

11.40 - 12.00 C6 High resolution Fourier transform spectroscopy of gas phase radicals and reaction products.
J.B. Burkholder, P.D. Hammer and C.J. Howard

12.00 - 12.20 C7 Kinetics and mechanism of atmospheric CS₂ oxidation.
TUESDAY 22 JULY

12.20 - 12.40 C8 Examination of the temperature dependence for the reaction of OH radicals with heterocyclic aromatics (imidazole, furan, pyrole and thiophene) and the unimolecular decay of the adducts imidazole-OH and thiophene-OH.
F. Witte and C. Zetzsch

13.00 Lunch

SESSION D—UNIMOLECULAR REACTIONS

14.30 - 15.10 D1 The chemical dynamics of highly vibrationally excited molecules.
F.F. Crim

15.10 - 15.30 D2 Mode selectivity in reactions induced by vibrational overtone excitation.
J.E. Baggott, D.W. Law, P.D. Lightfoot and I.M. Mills

15.30 - 15.50 D3 Analytic solution of relaxation in a system with exponential transition probabilities.
W. Forst and Guo-Ying Xu

15.50 - 16.10 D4 Mode specificity in intramolecular vibrational relaxation and unimolecular reactions: a semi-classical analysis.
V. Aquilanti, S. Cavalli and G. Grossi

16.10 - 16.50 Coffee

16.50 - 17.10 D5 The "a priori" calculation of collisional energy transfer in highly vibrationally excited molecules.
K.F. Lim and R.G. Gilbert
TUESDAY 22 JULY

17.10 - 17.30 D6 Multiphoton ionization studies on collisional energy transfer and unimolecular reactions of excited benzene derivatives.
H.G. Löhmannsröben, K. Luther and K. Reihs

17.30 - 17.50 D7 Is propylene oxide cation radical behaving non-ergodically in its dissociation reactions?
C. Lifshitz, T. Peres, N. Ohmichi, I. Pri-Bar and L. Radom

17.50 - 18.10 D8 Energy selected ion chemistry by photoelectron photoion coincidence and laser induced dissociation.
T. Baer, L. Bunn, S. Olesik and J.C. Morrow

18.30 Dinner


SESSION E – POSTER SESSIONS

20.10 - 21.00 Odd numbers.

21.00 - 21.50 Even numbers.

E1 Direct versus indirect microscopic mechanisms in the Li + HF reaction: an isotopic and orientational study.
J.M. Alvarino, F.J. Basterrechea and A. Lagana

E2 A trajectory surface-hopping study of Cl⁻+H₂ reactive collisions.
M. Sizun, E.A. Gislason and G. Parlant

E3 Quasiclassical trajectory study of X + H₂ type reactions on realistic potential energy surfaces.
B. Laszlo, G. Lendvay and T. Bérces

E4 Dynamics of Collision-Induced Dissociation.
J.E. Dove, M.E. Mandy, N. Sathyamurthy and T. Joseph
TUESDAY 22 JULY

E5  A dynamical investigation of the Li + HCl reaction.  
A. Lagana, E. Garcia, J.M. Alvarino and P. Palmieri

E6  Theoretical study of the \( \text{O}(^{3}P) + \text{CS}_2 \) gas phase reaction. Potential energy hypersurface.  
R. Sayos, M. Gonzalez, J. Bofill and A. Aguilar

E7  Molecular beams studies of atom-molecule interactions : the adiabatic route from scattering information to anisotropic potentials.  
V. Aquilanti, L. Beneventi, G. Grossi and F. Vecchiocattivi

E8  Reactive collision of O + H\(_2\) produced with excited states in a crossed beam experiment.  
A. Lebèhot, J. Marx, F. Aguillon and R. Campargue

E9  Rotational excitation of the MgCl reaction product in the harpooning Mg (\(^1S\)) + Cl\(_2\) reaction.  
B. Bourguignon, M.A. Gargoura, J. McCombie, J. Rostas and G. Taieb.

E10 A \((^2\Sigma^+)\) production by 193 nm photolysis of nitrous acid.  
D. Soljadi, F. Lahmani, E. Hontzopoulos and C. Fotakis

E11 U.V. photoexcitation of rovibrationally excited NO.  
J. Deson, C. Lalo, F. Lempereur, J. Masanet and J. Tardieu de Maleissye

E12 193 nm photolysis of ammonia : The intermediate in the 2-photon formation of NH(A\(^3\Pi\)).  
R.D. Kenner, F. Rohrer, R. Browarzik, A. Kæs and F. Stuhl

E13 Photodissociation of molecular beams of chlorinated benzene derivatives.  
T. Ichimura, Y. Mori, H. Shinohara and N. Nishi

E14 Single- and two-photon dissociation of CClF\(_2\)NO in the visible.  
J.A. Dyet, M.R.S. McCoustra and J. Pfab

E15 HgBr(B \(\rightarrow\) X) fluorescence emission induced by KrF laser multiphoton dissociation of HgBr\(_2\).  
P. Papagiannakopoulos and D. Zavgolis

E16 Picosecond laser fluorescence study of the collisionless photodissociation of nitrocompounds at 266 nm.  
J.C. Mialocq and J.C. Stephenson

E17 Product Vibrational State Distributions in the Photodissociation of Iodine - Rare Gas Clusters.  
J.M. Philippoz, H. Van den Bergh and R. Monot

E18 Vibrational and electronic collisional relaxation of C\(_2\) \((d^3\Pi_{y, v'})\) and \((C^1\Pi_y, v')\) states.  
P. Bartolomé, M. Castillejo, J.M. Figuera and M. Martin
TUESDAY 22 JULY

E19  The collisional quenching of Ca(4s3d(1 D2)) by H2 and D2.
D. Husain and G. Roberts

E20  Collisional Electronic Quenching of OH(A2 Σ+) radical.
A. Vegiri, S.C. Farantos, P. Papagiannakopoulos and C. Fotakis

E21  Collisional quenching of OH(A2 Σ +, v' = 0) by NH3 from 250-1400K.
J.B. Jeffries, R.A. Copeland and D.R. Crosley

E22  Formation of XeCl(B2 Σ1/2) and XeI(B2 Σ1/2) by reaction of electronically excited ICl with Xe.
J.P.T. Wilkinson, E.A. Kerr, R.J. Donovan, D. Shaw and I. Munro

E23  Quenching of NO3 (2 E') by N2 : a potential photochemical source of N2O.
K.G. Petrlich, F. Ewig and R. Zellner

E24  The electron swarm method as a tool to investigate the three-body electron attachment processes.
I. Szamrej, I. Chrzascik and M. Forys

E25  The role of Van der Waals dimers in the electron capture processes.
I. Szamrej, I. Chrzascik and M. Forys

E26  Reactions of ion-pair states of Cl2.
E. Hontzopoulos and C. Fotakis

E27  The association reactions of NO+ with NO and N2 in N2 carrier gas.
R.R. Burke and I. McLaren

E28  Hot atoms in ionosphere.
I.K. Larin and V.L. Talrose

E29  The Chemistry of Sodium in the Mesosphere: Absolute Rates of the Reactions Na + O3 → NaO + O2 and NaO + O → Na (2Pj, 2S1/2) + O2.

E30  Parameters of Activation Barriers for Hydrogen Atom Transfer Reactions from Curved Arrhenius Plots.
H. Furue and P.D. Pacey

E31  Mass spectrometric determination of rate constants and mechanism of atomic fluorine reactions in gas phase.
N.I. Butkovskaya, E.S. Vasiliyev, I.I. Morozov and V.L. Talrose

E32  Kinetic study by mass spectrometry of the reaction of hydrogen atoms with isobutane in the range 295-407 K.
J.P. Sawerysyn, C. Lafage, B. Meriaux and A. Tighezza

E33  Kinetics of some gas phase muonium addition reactions between 155 and 500 K.
D.M. Garner, M. Senba, I.D. Reid, D.G. Fleming, D.J. Arseneau, R.J. Mikula and L. Lee
E34 Rate constant measurements for the reactions of ground state atomic oxygen with tetramethylethylene, 299 K < T < 1005 K, and isobutene, 296 K < T < 1019 K.
J.F. Smalley, R.B. Klemm and F.L. Nesbitt

E35 A discharge flow-mass spectrometry study of the rates of the reactions of diacetylene with atomic oxygen and atomic chlorine.
M. Mitchell, J.B. Bruning, W. Payne and L. Stief

E36 Reaction of O(^3P) + SiH4 in the gas phase.
0. Horie, P. Potzinger and B. Reimann

E37 Rate constant for the reaction of O(^3P) with 1-butene.
R.B. Klemm, F.L. Nesbitt and J.F. Smalley

E38 Direct measurements of the reactions NH2 + H2 = NH3 + H at temperatures from 670 to 1000 K.
W. Hack and P. Rouveirolles


E40 Reaction kinetics of gas-phase boron atoms and boron monoxide with oxygen.
R.C. Oldenborg and L. Baughcum

E41 Pulsed laser photolysis study of the reaction of O(^3P) with 1-butene.
I.W.M. Smith and G. Yarwood

E42 The kinetics of O(^3P) decay and spectroscopy of species formed in the gas-phase reaction of NH2 + H2 = NH3 + H.
A. Mellouki, G. Poulet and G. Le Bras

E43 Temperature and pressure dependance of the rate constant for the association reaction C3H3 + O2 = C3H5O2.
J.M. Davila and G.D. Harman

E44 The gas-phase reaction of ethyl radicals with NO3.
C. Canosa-Navas, S.J. Smith, S. Toby and R.F. Wayne

E45 The kinetics of C3H3 reaction with NO3.
I. Shanahan

E46 Pulsed measurements on the NO + NO2 = N2O3 reaction using a pulsed laser absorption technique.
F. Caralp, A.M. Dognon and R. Leclaux

E47 Temperature and pressure dependence of the rate constant for the reaction of O(^3P) with 1-butene.
F. Caralp, A.M. Dognon and R. Leclaux

E48 CX3 - O2, Bond Dissociation Energies.
L. Batt and P. Stewart
TUESDAY 22 JULY

E49 Dissociation energy of C-O bond in the CF₃O₂ radical.
V.I. Vedeneev, M.Y. Goldenberg and M.A. Teitelboim

E50 Relative rate studies for reactions of silylene.
C.D. Eley, H.M. Frey, M.C.A. Rowe, R. Walsh and I.M. Watts

E51 Detection of radicals in the photo-oxidation of aldehydes.
G.K. Moortgat, J.P. Burrows, G.S. Tyndall, W. Schneider, R.A. Cox,
B. Veyret and K. McAdam

E52 Optical detection of OH(Σ⁺) radicals during oxidation of ethylene in
a jet-stirred reactor.
A. Chakir, F. Gaillard, P. Daguaut, M. Cathonnet, J.C. Boettner and
H. James

E53 Probe sampling and ESR detection of labile species for kinetics studies
in flames.
J.F. Pauwels, M. Carlier and L.R. Sochet

E54 Two-photon laser-excited fluorescence study of H and O atoms:
temperature-dependent quenching and laser photolysis for combustion
applications.
U. Meier, K. Kohse-Höinghaus and Th. Just

E55 An expert system for gas phase reaction mechanisms.
P.B. Ayscough, D.L. Baulch and S.J. Chinnick

E56 Simulation of the three P-T explosion limits in the H₂ - O₂ system
including detailed chemistry and multi-species transport.
U. Meas and J. Warnatz

E57 Study of reaction mechanisms by sensitivity analysis.
T. Turanyi, T. Bérces and S. Vajda

E58 Implementation of the rapid equilibrium approximation on a computer
for kinetics in complex systems.
R.A. Alberty

E59 The selfreaction of CH₂OH - radicals and the CH₃OH - CL - CL₂
system.
H.H. Grotheer, G. Riekert and Th. Just

E60 The role of decomposition reactions in flames.
J. Vandooren, B. Walravens and P.J. Van Tiggelen

E61 Pyrolysis of cyclohexane/n-decane/steam mixtures at ca. 810°C.
F. Billaud and E. Freund

E62 High temperature pyrolysis of toluene at very low initial concentrations.
M. Braun-Unkhoff and P. Frank
TUESDAY 22 JULY

E63 Kinetic study and modelling of propene hydrogenation-hydrogenolysis in pyrex vessels at about 500°C.
J.M. Beral, C. Richard and R. Martin

E64 Kinetics of the hydrogenation of propylene at 950 K.
D. Perrin and M.H. Back

E65 The chain NF₃ reactions.
Y.R. Bedjanian, Y.M. Gershenzon, O.P. Kishkovitch and V.B. Rozenshtein
WEDNESDAY 23 JULY

SESSION F – EXCITED STATES

09.00 - 09.40 F1 Transient gain-versus-absorption laser probing of spin-orbit states, kinetics and dynamics.
S.R. Leone

09.40 - 10.00 F2 Energy partitioning in the electronically excited NO formed by the photolysis of the NO dimer.
O. Kajimoto, K. Honma, Y. Achiba, K. Shobatake and K. Kimura

10.00 - 10.20 F3 The Raman spectrum of predissociating H$_2$S.
K. Kleinermanns and R. Suntz

10.20 - 11.00 Coffee

11.00 - 11.20 F4 Vibrational and rotational distributions of the CO product of H + CO($v = 0, J \geq 0$) with hot hydrogen atoms.
P.L. Houston

11.20 - 11.40 F5 Energy disposal in O($^1$D) + NH$_3$ → NH$_2$ + OH reaction.
S.G. Cheskis, A.A. Logansen, P.V. Kulakov A.A. Titov and O.M. Sarkisov

11.40 - 12.00 F6 Formation and reactions of electronically excited HCl.
M.A. Brown, P.C. Cartwright, R.J. Donovan, P.R.R. Langridge-Smith, K.P. Lawley

12.00 - 12.20 F7 ArF-laser photolysis of hydrazoic acid : formation and kinetics of NH(C$^\text{II}$I).
F. Rohrer and F. Stuhl

12.30 Lunch
WEDNESDAY 23 JULY

13.45 Excursions (departure from university).
20.00 Banquet
THURSDAY 24 JULY

SESSION G: BIMOLECULAR REACTIONS

09.00 - 09.40 G1 Recent advances in free radical kinetics of oxygenated hydrocarbon species. R. Zellner

09.40 - 10.00 G2 Structure-reactivity relationships in the reaction series OH + RCHO. S. Dobé, T. Béroles and F. Marta

10.00 - 10.20 G3 On gas phase kinetics probed by a diode laser. R.J. Balla and L. Pasternack

10.20 - 10.40 G4 Kinetic microwave spectroscopy of reaction intermediates: atomic oxygen reactions with olefins. S. Koda, S. Tsuchiya, Y. Endo, C. Yamada and E. Hirota

10.40 - 11.20 Coffee


11.40 - 12.00 G6 The reaction O₂⁺ + CH₄ → H₂COOH⁺ + H. E.E. Ferguson

12.00 - 12.20 G7 Kinetics of ion molecule reactions at very low temperature: the cresu technique. C. Rebrion, J.B Marquette, B.R. Rowe and G. Dupeyrat


13.00 Lunch
THURSDAY 24 JULY

SESSION H — HIGH TEMPERATURE REACTIONS

14.30 - 15.10  H1  Integration of theory and experiment in high-temperature chemical kinetics.
D. Gutman

15.10 - 15.30  H2  The mechanism of the reaction $\text{C}_2\text{H}_5 + \text{O}_2 \rightarrow \text{C}_2\text{H}_4 + \text{HO}_2$.
R.R. Baldwin, K. McAdam and R.W. Walker

15.30 - 15.50  H3  Hydroxyl-radical reactions with unsaturated hydrocarbons: effects of deuterium substitution.
F.P. Tully, A.T. Droge and J.E.M. Goldsmith

15.50 - 16.10  H4  OH + olefin reaction rates at high temperatures.
G.P. Smith

16.10 - 16.50  Coffee

16.50 - 17.10  H5  The ketenyl yield of the elementary reaction of ethyne with atomic hydrogen at $T = 280 - 550$ K.
J. Peeters, M. Schaekers and C. Vinckier

17.10 - 17.30  H6  The reaction of CH radicals with $\text{H}_2$ from 372 to 675 K.
S. Zabarnick, J.W. Fleming and M.C. Lin

17.30 - 17.50  H7  A direct study of the reaction $\text{CH}_2 (X^3 \text{B}_1) + \text{C}_2\text{H}_4$ in the temperature range $296 \text{ K} < T < 728 \text{ K}$.
T. Böhländer and F. Temps
THURSDAY 24 JULY

17.50 - 18.10  H8  Kinetics and thermodynamics of the reaction
                $\text{H} + \text{NH}_3 \rightleftharpoons \text{NH}_2 + \text{H}_2$ by the flash photo-
                lysis-shock tube technique.
                J.W. Sutherland and J.V. Michael

18.30  Dinner

SESSION I – POSTER SESSIONS

20.00 - 20.50  Odd numbers.

20.50 - 21.40  Even numbers.

11  Reaction of atomic hydrogen with monosubstituted halomethanes.
    A MNDO analysis of the importance of the different channels.
    M. Gonzalez, R. Sayos, J. Bofill and M. Alberti

12  Experimental determination of the energy distribution in photode-
    composition. Diazirines and diazocompounds.

13  A study of energy transfer processes at the collision of a polyatomic
    molecule with an inert gas atom by the method of classical trajectories.
    V.I. Vedeneev, M.Y. Goldenberg, A.A. Levitsky, L.S. Polak and
    S.Y. Umansky

14  Transition-state theory calculations for reactions of OH with
    haloalkanes. II. Haloethanes.
    N. Cohen

15  Theoretical studies of hydrogen atom addition to carbon monoxide
    and the thermal dissociation of the formyl radical.
    A.F. Wagner and L.B. Harding

16  Resonant electronic excitation in electron-$O_2$ collision.
    D. Teillet-Billy, L. Malegat and J.P. Gauyacq

17  Van der Waals, charge transfer and “mixed” states of molecular
    complexes formed in supersonic jets.
    M. Castella, A. Tramer and F. Piuszi
THURSDAY 24 JULY

18 Electronic structure of mercury-argon complexes.
O. Benoist d’Azy, W.H. Breckenridge, M.C. Duval, C. Jouvet and
B. Soep

19 Reactions of metastable rare gas atoms with N₂O; chemiluminescence
of RgO⁺; Rg = Xe, Kr, Ar.
A. Kvaran, A. Luoviksson, W.S. Hartree and J.P. Simons

110 A lifetime study on the second maximum of predissociation of the
iodine B⁢³ Π (O₉ₓ⁺) state.
F. Castano, E. Martinez and M.T. Martinez

111 Measurement of rotational energy transfer rates for HD(y = 1) in
collisions with thermal HD.
D.W. Chandler and R.L. Farrow

112 Laser induced fluorescence of SiH₂ A¹ B₁ – X¹ A₁ in the supersonic
free jet.
K. Obi and S. Mayama

113 High temperature collisional energy transfer in highly vibrationally
excited molecules. II. Isotope effects in iso-propyl bromide systems.
T.C. Brown, K.D. King and R.G. Gilbert

114 Unimolecular reactions following single uv-photon and multi ir-photon
excitation.
B. Abel, B. Herzog, H. Hippler and J. Troe

115 Laser pyrolysis of dimethylnitramine and dimethylnitrosamine.
S.E. Nigenda, A.C. Gonzalez, D.F. McMillen and D.M. Golden

116 IR laser-induced decomposition of oxetanes and alkanols.

117 Use of Doppler broadening by the 254 nm Hg absorption line to
monitor v–r. t energy transfer in vibrationally excited gases.
W. Braun, M.D. Scheer, R.J. Cvetanovic and V. Kaufman

118 Analysis of multiple decompositions in chemically activated reactions.
P.R. Westmoreland, J.B. Howard and J.P. Longwell

119 Wavelength dependent isomerization of allyl isocyanide.
J. Segall and R.N. Zare

120 A study of the effect of excess energy on the collisional deactivation of
highly vibrationally excited 7-ethylcycloheptatriene.
Gui-Yung Chung and R.W. Carr, Jr
THURSDAY 24 JULY

121 A simple FTIR instrument for emission studies.
P. Biggs, F.J. Holdsworth, G. Marston and R.P. Wayne

122 Multiphoton ionization as a kinetic probe.
H.H. Nelson and B.R. Weiner

123 Intracavity detection applied to reaction rate measurements.
J.E. Allen, Jr. and W.D. Brobst

124 On the errors of arrhenius parameters and estimated rate constant values.
K. Héberger, S. Kemény and T. Vidoczy

125 The National Bureau of Standards chemical kinetics data base.
J.T. Herron and R.J. Cvetanovic

126 Spectroscopy of HO$_2$ and CH$_3$O$_2$ radicals and kinetics of their mutual reaction.
K. McAdam, H. Forges and B. Veyret

127 The kinetics of hydroxyl radical reactions with alkanes studied under atmospheric conditions.
S.J. Harris and J.A. Kerr

128 Rate constant and mechanism of the reaction OH + HCOOH.
G.S. Jolly, D.J. McKenney, D.L. Singleton, G. Paraskevopoulos and A.R. Bossard

129 The reactions of hydroxyl radicals with aromatic compounds.
D.L. Baulch, I.M. Campbell and S.M. Saunders

130 Measurement of the rate constant of the reaction OH + H$_2$S $\rightarrow$ products in the range 243 - 473 K by discharge flow laser induced fluorescence.
P. Devolder, C. Lafage and L.R. Sochet

131 Reactions of OH radicals with reduced sulphur compounds.
I. Barnes, V. Bastian and K.H. Becker

132 Reactions of hydroxyl radicals with sulphur containing compounds.

133 Rate constants for the reactions of OD with DNO$_3$ and NO$_2$.
A.R. Bossard, D.L. Singleton and G. Paraskevopoulos

134 The kinetics of the reactions of the hydroxyl radical with molecular chlorine and bromine.
R.B. Boodaghians, I.W. Hall and R.P. Wayne
THURSDAY 24 JULY

135 Reactions of OH radicals with acetates and glycols.  
D. Hartmann, D. Rhäsa, A. Gédra and R. Zellner

136 Kinetics of the reactions of SH with NO₂ and O₂.  
R.A. Stachnik and M.J. Molina

137 Laser-induced fluorescence studies of the CH₃S radical.  
G. Black and L.E. Jusinski

138 Oxidation of the H₂S by the atmosphere components.  
V.P. Bulatov, M.Z. Kozliner and O.M. Sarkisov

139 Relaxation and reactions of NCO (X² Π).  
C.J. Astbury, G. Hancock and K.G. McKendrick

140 Kinetic measurements of the NCO radical reaction with ethene over an extended temperature range.  
R.A. Perry

141 Direct rate studies of HCO radical reactions.  
J.E. Baggott, H.M. Frey, P.D. Lightfoot and R. Walsh

142 Reactions of CH(X² Π) radicals with selected species at low pressure.  
K.H. Becker, P. Wiesen and K.D. Bayes

143 The temperature and pressure dependence of the reaction : CH₃ + O₂ + M → CH₃O₂ + M.  
M. Keiffer, M.J. Pilling and M.J.C. Smith

144 Kinetics of the reactions of polyatomic free radicals with molecular chlorine.  
R.S. Timonen, J.J. Russell and D. Gutman

145 On the methyl radical-initiated thermal reaction of 2,3-dimethylbutene-2.  
T. Körtvélyesi and L. Seres

146 Rate constants for some hydrocarbon radical combinations.  
L. Seres and A. Nacsa

147 Kinetics of the chlorination of C₂H₅Br and the competitive bromination of C₂H₅Cl, CH₃CHCl₂, C₂H₅Br, and CH₃CHBr₂.  
E. Tschuikow-Roux, D.R. Salomon, F. Faraji and K. Miyokawa

148 The chemistry of triplet vinylidene radicals : reaction with molecular oxygen.  
A. Fahr and A.H. Laufer
THURSDAY 24 JULY

149 On the kinetics and thermochemistry of cyanoacetylene and the ethynyl radical.
J.B. Halpern and G.E. Miller

150 The radical-radical NF₂ reactions.
Y.R. Bedjanian, Y.M. Gershenson, O.P. Kishkovitch and V.B. Rozenshtein

151 Formation of molecular hydrogen by the thermal decomposition of n-disalkyleroxides in oxygen.
K.A. Sahetchian, A. Heiss, R. Rigny and J. Tardieu de Maleissye

152 Reaction mechanisms for decomposition of energetic materials.
C.F. Melius and J.S. Binkley

153 The pressure dependent decomposition of the trifluoromethoxy radical.
L. Batt, M. MacKay, I.A.B. Reid and P. Stewart

154 Synthesis and Pyrolysis of Perfluoroazo -2- propane.
K.V. Scherer Jr., L. Batt and P. Stewart

155 Experimental and theoretical study of the ethyl radical unimolecular dissociation.
Y. Simon, J.F. Foucaut and G. Scacchi

156 The photochemical and thermal decomposition of some simple α-dicarbonyl compounds in the gas phase.
R.A. Back

157 UV-laser induced decomposition of 1,2-dichloropropane.
M. Schneider, R. Weller and J. Wolfrum

158 The thermal decomposition of unsymmetrical dimethylhydrazine.
K. Brezinsky, F.L. Dryer, D. Schmitt and D. Lourme

159 Oxidation of formaldehyde at low oxygen concentration.
M. Vanpee, K. Sahetchian, V. Viossat and J. Chamboux

160 Pseudoflame front for methane in a lean methane air mixture.
M. Vanpee

161 Dilute hydrocarbon oxidation in the presence of the CO/H₂O/O₂ reaction between 960 – 1250 K at 1 atm.
R.A. Yetter and F.L. Dryer

162 Kinetic and chemical study of the gas-phase oxidation of isobutane and propane.
B. Vogin, G. Scacchi and F. Baronnet
A simplified chemical kinetic reaction mechanism for propane oxidation. 
A.Y. Abdalla, J.C. Boettner, M. Cathonnet, P. Dagaut and F. Gaillard

Gas-phase oxidation of benzene and derivatives; formation and further conversion of phenols.  
R. Louw and P. Mulder

High-temperature propane oxidation.  
R.I. Moshkina, S.S. Polyak and L.B. Romanovich

The initial stage of methane oxidation at high pressures.  
V.I. Vedeneev, M.Y. Goldenberg, N.I. Gorban', M.A. Teitelboim
FRIDAY 25 JULY

09.00 - 09.40  POLANYI Memorial Conference: Bond dissociation energies : a continuing story.
S.W. Benson

SESSION J — COMPLEX REACTIONS

09.40 - 10.00  J1  Kinetics of the halogen catalysed elimination of HCl from 1, 1, 1-trichloroethane.
A.S. Rodgers and J. Perus

10.00 - 10.20  J2  Computer programs and data bases for the kinetics of gas phase reactions.
G.M. Côme, G. Scacchi, Ch. Muller, P.M. Marquaire and P. Azay

10.20 - 10.40  J3  The thermal decomposition of n-hexane.
F.E. Imbert and R.M. Marshall

10.40 - 11.20  Coffee

11.20 - 11.40  J4  Chain kinetics in igniting hydrocarbon-air mixtures studied by transient OH fluorescence following photolytic perturbation.
C. Morley and L.J. Kirsh

11.40 - 12.00  J5  Modeling nitric oxide formation in combustion.
A. Miller

12.00 - 12.20  J6  Modelling of the gas phase free radical chemistry of the plasma etching process: CF₄ and CF₃/O₂ mixtures.
I.C. Plumb and K.R. Ryan

12.20 - 12.40  J7  Reaction of CF₃ radicals on SiO₂ and Si surfaces between 300 - 600 K.
R. Robertson, M.J. Rossi and D.M. Golden
FRIDAY 25 JULY

12.40 Concluding remarks.
13.00 Lunch

End of conference.
I will present the concepts involved in variational transition state theory and multidimensional semiclassical tunneling calculations. Emphasis will be placed on vibrationally adiabatic potential curves, free energy of activation profiles, and a least-action variational principle for the analytic continuation of classical mechanics to tunneling regimes. The concepts will be illustrated by applications to determine dynamical bottlenecks and tunneling probabilities for microcanonical, thermal, and state-selected reaction rates.

This work is supported in part by the United States Department of Energy, Office of Basic Energy Sciences.
Study of the H + H₂ (v=1) reaction and its isotopic analogs.

Rozenshtein V.B., Gershenzon Yu.M., Ivanov A.V., Il'in S.D.,
Kucheryavii S.I., Umanskii S.Ya

Institute of Chemical Physics, Moscow 117977, USSR

The goal of the present study is to determine the rate constants of different channels of the reactions of vibrationally excited hydrogen molecules with hydrogen atoms and its isotopic analogs. The rate constants of following processes have been measured (k₄ in cm³/molecule s):

1. H + H₂ (v=1) → H₂(v=0) + H, k₁ = 5.10⁻¹¹ exp(-1450/T), 255-300 K
2. D + H₂ (v=1) → DH (v=1) + H, k₂ = 2.1.10⁻¹⁰ exp(-1600/T), 254-367 K
3. D + H₂ (v=1) → DH (v=0) + H, k₃ = 1.0.10⁻¹⁰ exp(-1550/T), 254-367 K
4. D + H₂ (v=1) → D + H₂ (v=0), k₄ ≤ 2.7.10⁻¹³, 254-300 K
5. H + D₂ (v=1) → HD (v=1) + D, k₅ = 4.8.10⁻¹⁰ exp(-3325/T), 298-367 K
6. H + D₂ (v=1) → HD (v=0) + D, k₆ = 1.3.10⁻¹⁰ exp(-2125/T), 298-367 K
7. H + D₂ (v=1) → H + D₂ (v=0), k₇ = 3.10⁻¹¹ exp(-2125/T), 298-367 K
8. D + D₂ (v=1) → D + D₂ (v=0), k₈ ≤ 1.0.10⁻¹³, 300 K

The experiments were carried out in a flow-tube apparatus. Atoms were produced in microwave discharge. Vibrationally excited H₂ and D₂ molecules were generated in quartz furnace or in microwave discharge. The H- and D- concentrations were measured by EPR method. The thermometric method was used to measure the concentrations of H₂(v=1) and D₂(v=1) molecules.
There were the experimental conditions the V-V exchange between HD(v=1) molecules and H_2(v=0) or D_2(v=0) molecules proceeded or was absent. This gave us an opportunity to find the rates of different channels of the reactions studied.

The results obtained are in a good agreement with the results of the recent theoretical studies.
Reduced Dimensionality Rate Constant Calculations for
\[ \text{O}(^3\text{P}) + \text{H}_2(\text{D}_2, \text{HD}) \rightarrow \text{OH(OD)} + \text{H(D)}: \]
Comparison between Theory and Experiment

A. F. Wagner, T. H. Dunning, Jr. and J. M. Bowman*
Argonne National Laboratory
Argonne, IL 60439
USA

Exact quantum dynamics and quasiclassical trajectory dynamics calculations on an \textit{ab initio} and a semiempirical LEPS collinear effective potential energy surface are presented. The surfaces adiabatically incorporate the bending degree of freedom. All hydrogenic isotopic combinations of the \text{O}(^3\text{P}) + \text{H}_2 reaction are examined. The results display the effects of skew angle and adiabatic barriers. The collinear dynamics studies are incorporated with reduced dimensionality techniques into transition state theory to produce fully dimensional rate constants for comparison to experiment. The results for the \textit{ab initio} surface are in near quantitative agreement with available experimental results. The results for the semiempirical surface are less satisfactory. In particular, even though the two potential energy surfaces have almost exactly the same barrier to reaction, the experimental isotope effects alone (i.e., ratios of rate constants) clearly distinguish between these two surfaces. These calculations can also be compared favorably with variational transition state theory rate constant calculations by Truhlar and Garrett.

*Consultant. Permanent address: Emory University, Atlanta, GA., 30322, USA
Reactions on Attractive Potential Energy Surfaces: Connections between Rate and Potential Parameters.

J. Troe
Institut für Physikalische Chemie der Universität Göttingen, Tamannstraße 6, D-3400 Göttingen, Germany

Simple short-range/long-range switching models of attractive potential energy surfaces are implemented in the statistical adiabatic channel model. By explicit determination of channel eigenvalues, state-resolved channel threshold energies are determined and investigated with respect to their dependence on the potential parameters. The treatment is applied to thermal ion-molecule capture processes over very wide temperature ranges (1 - 1000 K), to elementary thermal bimolecular reactions with redisso- ciation of the collision complex (O + OH → O₂ + H and other examples), to thermal radical and ion recombination processes at high pressures, and to state-resolved simple bond fission reactions of excited neutral and ionic mole- cules. With known short-range and long-range potential data, the model becomes free from further adjustable parameters. In a series of thermal reactions, the comparison with experimental results indicates excellent agreement over very wide temperature ranges.
A THEORETICAL PREDICTION OF
RATE COEFFICIENTS FOR REACTIONS
INVOLVING INTERMEDIATE COMPLEX FORMATION*

James A. Miller and Carl F. Hellus, Combustion Research Facility, Sandia
National Laboratories, Livermore, CA 94550
and
Nancy J. Brown, Applied Science Division, Lawrence Berkeley Laboratory,
Berkeley, CA 94720

The emphasis in this work is on the prediction of rate coefficients
and branching ratios for chemical reactions that occur over one or more
potential wells. Such reactions are complicated by a number of factors.
One factor is that the complex formed initially from the reactants may
isomerise any number of times and each isomer may dissociate into several
different product channels. In the first two projects discussed here,
we use the strong-coupling (or RRK) approximation to treat two such
reactions important in the nitrogen chemistry of flames. In the third
project, we use quasi-classical trajectory methods to elucidate the
apparent violation of the strong-coupling approximation in the reaction
0 + ON 0 0 + B. This latter reaction, viewed from the reverse
direction, is the single most important reaction in combustion

\[
\begin{align*}
&1) \quad 0 + ON \rightarrow NCO + B \quad (a) \\
&2) \quad NB + CO \quad (b)
\end{align*}
\]

Using BAC-NP4 potential surface parameters, we have treated this reaction
with several statistical-theoretical methods:

(a) Canonical theory, CT
(b) Canonical theory with Vigner tunneling correction, CT-V
(c) Microcanonical theory, uCT (conserves energy)
(d) Microcanonical/J – conservative theory, uJ (conserves energy and angular momentum)
(e) Microcanonical/J – conservative theory with one-dimensional tunneling, uJT-T.

At the high end of the temperature range investigated (300 K to 2500 K),
the experimental results available are predicted accurately by even the
crudest theoretical treatment (canonical theory). At lower temperatures,
the theoretical predictions, at all levels of approximation, using the
basic BAC-NP4 parameters are too low. However, adjustments to the BAC-NP4
energy barriers within their anticipated error limits lead to satisfactory
agreement with experiment over the entire temperature range. At high
temperature, both \( k \) and \( k' \) are independent of the level of approximation
of the statistical theory. At low temperature, the total rate
coefficient, \( k = k + k' \), is also relatively independent of the level of
approximation. However, at low \( T \) the branching ratio \( k/(k + k') \) strongly
depends on energy and angular momentum conservation and tunneling. Each
successive refinement in the theory produces larger values of \( k' \).
We have treated these reactions using CT, uJT, and uJT-T with BAC-HP4 potential parameters. As shown in Fig. 1, our prediction for $k = k + k + k$ is in excellent agreement with the high-temperature flame results. We find that $k$ is the dominant part of $k$ at high temperature, whereas $k$ is dominant at low temperature; $k$ is never more than 10 percent of the total. Energy and angular momentum conservation have no effect on either $k$ or $k$; however, tunneling has a very large effect on $k$ at the low end of the temperature range investigated (500 K to 250 K). As indicated by Fig. 1, the importance of this reaction in flame chemistry is limited to conditions where the abstraction reaction

$$\text{OH} + \text{CH} \rightarrow \text{CH} + \text{H}_2\text{O}$$

is nearly equilibrated.

We have compared quasi-classical trajectory calculations of this rate coefficient (Mellius-Blint potential) with experiment and with the variational transition-state theory calculations of Rai and Truhlar using the same potential. The most important result of this study is that all the discrepancy with experiment of the VTST predictions is made up by the trajectories. Most of the difference is due to recrossing effects, apparently violating the strong-coupling (RRKM) assumption. Figure 2 shows the comparisons.

† Author to whom correspondence should be addressed.

* Work supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences.
Figure 1. Comparison of experimental and theoretical results. The experimental results are from Fenimore, Hayes, Horley and Szekely, Hanson and Bowman.

Figure 2. Arrhenius plot of \( k_1 \cdot O + \frac{1}{2}O_3 \rightarrow O_2 \). Variational transition state theory results are from Heli and Truhlar (RT). Trajectory results are from J. A. Miller, J. Chem. Phys. 70, 5170 (1979). Marked Ref. 1 on the figure and from this work. Experimental results are from Smith and Howard (SH), Schott (S), Brandt, Holle and Graham (BBB), Charlot, Wehmann and Wagner (EWW), and Kurzus and Baudart (BB).
We have used an implementation of time-resolved Fourier transform spectroscopy, recently developed in this laboratory, to study the dynamics of U.V. laser-initiated reactions of O(\(^{1}D_{2}\)) with several small hydrogen-containing freons. The reagent atoms are prepared in the \(^{1}D_{2}\) electronic state with a narrow translational energy distribution by the 248 nm laser photofragmentation of ozone. State- and time-resolved observations of the products are made via low-pressure Fourier transform infrared emission spectroscopy. The instrument used for this is a slightly-modified commercial Fourier transform spectrometer to which a timing computer has been added. This timing computer monitors the operation of the computer in the commercial instrument and synchronizes the initiation of the reaction with the operation of the interferometer. As a result, the high-resolution infrared spectra of the reaction products are measured at a known time after the creation of the O(\(^{1}D_{2}\)) reagent. The time-dependences of the energy distributions give both the initial product energy distributions and the way these change due to gas phase energy transfer processes. This permits the considerable (throughput and multiplex) advantages of the Fourier transform technique to be used in kinetics and dynamics measurements.

Presently, the accuracy of the time-resolved measurement is limited to about 15 microseconds. The spectral resolution is limited to about 0.02 cm\(^{-1}\). The experiments are carried out in the millitorr pressure range so that the collision time approximately matches the minimum time-resolution. In most experiments, the products can be observed before vibrational deactivation occurs and in selected cases, before rotational deactivation as well. Energy transfer information can also be obtained using this technique. By increasing the pressure in the reaction chamber and by delaying the observation time, the number of gas phase collisions involving the products can be increased in a known, controllable way. Thus observations of the distributions can be made at known times during their deactivation and the way in which their shapes change during deactivation can be observed directly. Using a master equation or other suitable procedure, this information can be used to obtain detailed energy transfer rate constants.

This technique has previously been applied to the measurement of energy partitioning in the reactions of O(\(^{1}D_{2}\)) with several small molecules. The first study was the reaction with H\(_{2}\). Here, the product OH(\(^{2}P,J')\) was...
observed at a minimum time corresponding to about 10 gas kinetic collisions after its formation. Although the OH deactivation probability in collisions with ozone is high, this measurement provided the initial vibrational distribution for the reaction. The rotational distribution had been thermalized before observation, however. The observed vibrational distribution, \( P(v' = 2:3:4) = 0.29:0.32:0.25:0.13 \), is slightly inverted, suggesting specific, rather than statistical energy partitioning. These results, combined with dynamical calculations and laser-induced fluorescence measurements of the rotational distributions made in other laboratories, provide a complete picture of the reaction dynamics. The very high rotational excitation observed in the laser induced fluorescence experiments suggests an insertion mechanism which forms highly-excited OH. The inverted vibrational distribution dictates that this intermediate exists for only one or two vibrational periods before decomposing into OH and H. Thus, although this reaction is an insertion, it has the same time scale as a direct abstraction in which products are formed in a single OH collision without the formation of the HO intermediate.

The work to be discussed in this Symposium involves reactions of \( \text{O}(^1\text{D}_2) \) with small hydrogen-containing halocarbons. These are all very fast and are typical of many similar reactions which make a substantial contribution to the chemistry of the ozone layer through the NO, and ClO, cycles. The initial measurements include the reactions with \( \text{CHCl}_3, \text{CHF}_3, \) and \( \text{CIF}_3. \) These systems are more complicated than the triatomic case as they have the possibility for multiple reaction channels forming chemically different products. In addition, the vibrational deactivation rates in collisions with the unused halocarbon reagents are high and there is the possibility for fast second reactions among the radical products of the primary reaction. All of these factors complicate the interpretation of the long-time behaviour observed in these systems. In the work to be discussed, we have observed two primary reaction branches - one a direct abstraction forming OH and one an addition-elimination in which the primary product is a hydrogen halide. Work in other laboratories has suggested that there is also a channel in which the halogen oxide is formed directly, but this process would not be observable in our experiment.

In the \( \text{CHCl}_3 \) reaction, the branching ratios indicate that the direct hydrogen abstraction channel and the addition-elimination (forming HCl) have comparable importance. The dynamics of the two channels, however, are not the same. The initial distribution of the HCl is very "cold" - the vibrational populations decrease rapidly with increasing vibrational level. This indicates that the interaction time for this process is long and a statistical amount of the large reaction exoergicity (650 kJ/mole) is retained by the \( \text{COCI}_2 \) fragment. CO is also observed as an initial product of this reaction, suggesting that the energized \( \text{COCI}_2 \), decomposes into CO and either 2 Cl or Cl₂. The OH vibrational distribution is more excited than that of the HCl, indicating that it is likely formed in a simple, direct abstraction process. A secondary reaction, forming HCl with strong vibrational excitation, is observed at later times in this system. The identity of the latter reaction is presently unknown.

Results of experiments of the \( \text{CHF}_3 \) reaction are broadly similar to these, but differ in some details. In this case, no OH is observed within the signal to noise of the present data. Since the infrared transition probabilities of OH are extremely weak, however, the abstraction reaction may
still be occurring. No CO is observed in this reaction and since this product should be observable, its absence suggests that the energetic COF$_2$ does not decompose as readily as COCl$_2$. Although the initial HF vibrational excitation is low, it has substantial rotational excitation, indicating that the HF elimination involves the transfer of the H atom from an extended C-H configuration so that an orbiting motion about the F atom is created. The results of the CHF$_2$Cl experiments are similar in many ways to the CHF$_3$ observations. In this case as well, HF is formed with low vibrational, but high rotational excitation. HCl is produced in substantially less than the statistically-expected amount, however, and the initial data contain no evidence for the H-abstraction channel or for any detectable secondary reaction within the time-frame available to the experiment.
LIF Measurements on Product State Distributions in Radical-Radical Reactions

Brian J. Orr, Ian W.M. Smith, Richard P. Tuckett

Department of Chemistry, University of Birmingham, P.O. Box 363, Birmingham B15 2TT, U.K.

Collisions between free radicals (species with one or more unpaired electron) are likely to proceed via a transition collision complex, since the formation of a new chemical bond can lead to a deep minimum on one of the potential energy surfaces which correlate with the reaction products. Such reactions have no activation energy, and measurements of the rovibrational product state distribution can indicate the role, if any, played in the dynamics by the formation of the complex. Measurements of this kind are rare, and we are using laser-induced fluorescence (LIF) to probe the product state distribution from a number of such reactions, especially those producing NO X 'Π. We expect to report detailed vibrational, rotational, spin-orbit, and Λ-doublet distributions for the products of the following exothermic reactions:

$$
\begin{align*}
\Delta H^\circ & \text{ kJ/mol} \\
\text{H}^*(S) + \text{NO}_2(x^2\text{A}_1) & \rightarrow \text{OH}(X'\Pi) + \text{NO}(X'\Pi) \quad -123.6 \\
\text{O}^*(P) + \text{NO}_2(x^2\text{A}_1) & \rightarrow \text{O}_2(x^3\Sigma^-) + \text{NO}(X'\Pi) \quad -193.0 \\
\text{N}^*(S) + \text{OH}(X'\Pi) & \rightarrow \text{H}^*(S) + \text{NO}(X'\Pi) \quad -203.7
\end{align*}
$$

The reactions are carried out in a low pressure chamber under near collision-free or arrested relaxation conditions, so that we try to observe the initial product state distributions prior to relaxation occurring.

The H + NO reaction is exothermic enough to populate up to OH v''=3 and NO v''=5. We have probed both fragments by single photon LIF via the OH A'Σ' - X'Π (308 nm) and NO A'Σ+ - X'Π (226 nm) band systems. This reaction has been studied by other groups [e.g. 1,2,3], but they have all only probed...
the OH distribution. This is the first published observation of the NO distribution by LIF. Our initial results can be summarised as follows:

a) The OH is produced rotationally and vibrationally hot.

b) The OH $X^2\Pi$ A-doublets are unequally populated, with the $\Pi^+$ levels (from which P,R branches originate) preferentially populated over the $\Pi^-$ levels (from which Q branches originate).

c) The NO is produced vibrationally cold with Population $(v=1)/$ Population$(v=0) < 0.02$.

d) We have not yet attained a low enough pressure to prevent rotational relaxation of NO, so NO$(v=0)$ shows a thermalised rotational distribution.

References

1. R.P. Mariella, B. Lantzasch, V.T. Maxson and A.C. Luntz,

2. J.A. Silver, W.L. Dimpfl, J.H. Brophy and J.L. Kinsey,

3. J.C. Polanyi and J.J. Sloan,

Permanent address: Department of Chemistry, University of New South Wales,
P.O. Box 1, Kensington, Australia 2033.
REACTIVITY OF VAN DER WAALS COMPLEXES

C. Jouvet, M. C. Duval, W. H. Breckenridge, B. Soep
Laboratoire de Photophysique Moléculaire
Bât. 213 - Université de Paris-Sud
91405 - ORSAY Cedex - France.

We have developed a method which initiates selectively a photochemical reaction. We prepare the reactants within a van der Waals complex which is then lifted into the reactive surface by tunable selective laser excitation. These reaction conditions similar to a photodissociation at the low temperatures of supersonic free jets, are experimentally simple and provide the least averaging over the various collision parameters.

This technique applied to the complex Hg, H₂ has revealed an orbitally selective reaction. The reaction pathways within the excited complex (3P₁) region depend upon the orientation of the 6p mercury orbital perpendicular or parallel to the Hg - H₂ internuclear axis.

The reaction is shown to proceed directly when the 6p orbital is oriented perpendicular to the internuclear axis by an insertion mechanism through the hydrogen band exactly as could be foreseen. On the contrary, the reaction is indirect for a non perpendicular orientation of the Hg 6p orbital.

Furthermore the method prepares the reactants with very low angular momentum thus reducing the averaging over the final distributions. The rotational distribution of the HgH fragment gives us some insight into the transition state region of the reaction.
THE DYNAMICS OF REACTIVE COLLISIONS OF ATOMIC CARBON

G. Dorthe\textsuperscript{a}, M. Costes\textsuperscript{a}, C. Naulina, Ph. Caubet\textsuperscript{a}, C. Vaucamps\textsuperscript{b} and G. Nouchib

\textsuperscript{a} - Laboratoire de Photophysique et Photochimie Moléculaire
\textsuperscript{b} - Centre de Physique Moléculaire Optique et Hertzienne
Université de Bordeaux I - 33405 Talence Cedex - France.

Many reactions of atomic carbon are very exoergic, presumably exhibiting pathways with no or very small activation barriers and leading to electronically excited products. These reactions could be of interest for electronic transitions chemical lasers, interstellar chemistry and combustion.

In flow experiments at 300 K the reactions with \textsuperscript{14}N\textsubscript{2}O, \textsuperscript{14}NO\textsubscript{2}, \textsuperscript{32}SO\textsubscript{2}, DCS and \textsuperscript{34}H\textsubscript{2}S have been shown to give electronic chemiluminescence from CN, NO, SO and CS. The chemiluminescences from C + \textsuperscript{14}N\textsubscript{2}O and C + \textsuperscript{32}SO\textsubscript{2} appear interesting for an electronic transition chemical laser. Rate constants for these reactions at 300 K will be given.

The study of the dynamics of such reactions has been undertaken in crossed pulsed supersonic molecular beams. Atomic carbon is generated by graphite vaporisation with an excimer laser. Products are probed by laser induced fluorescence with a pulsed dye laser. Collision energies are ranging from 0.05 eV to 0.3 eV. The C + NO → CH + O reaction has no activation barrier since CN signal remains unchanged when increasing collision energy. Conversely the C + \textsuperscript{14}N\textsubscript{2}O → CN + NO reaction has an activation barrier < 0.08 eV since CN signal begins to be detected at a collision energy of 0.08 eV and increases sharply when increasing collision energy. CN vibrational distribution decreases smoothly from \( v'' = 0 \) to \( v'' = 4 \) with a sharp cut-off at \( v'' = 5 \) for the C + NO reaction. CN produced from C + \textsuperscript{14}N\textsubscript{2}O + CN + NO exhibits a vibrational population inversion with a maximum population at \( v'' = 4 \). The study of the dynamics of other reactions is in progress.
MOLECULAR BEAM STUDY OF THE RADICAL GROUP EFFECT IN THE K + RI → KI + R(=CH₃, C₂H₅, nC₃H₇) REACTIVE COLLISIONS(*)

Departamento de Química Física. Facultad de Química. Universidad Complutense, Madrid-28040, SPAIN.

(*) Support of this work by the Comision Asesora of Spain (grant 963/81) is gratefully acknowledged.
ABSTRACT

Differential reaction cross-section for the $K + RI \rightarrow K^+ + R(R=CH_3, C_2H_5, C_3H_7)$ systems have been measured as a function of the collision energy by using our molecular beam apparatus. The analysis of the center-of-mass angular and recoil velocity distribution of the products indicated: (a) a backward peak character as correspond to a direct, rebound mechanism (b) that the average translational energy of the products $<E_T>$ increases approximately linearly with (increasing)collision energy, $<E_T>$ as follows $<E_T>/KJ.mol^{-1} = a <E_T>/KJ.mol^{-1} + b$ where $(a,b)$ are $(0.65, 66.5), (0.56, 58.4)$ and $(0.28, 30.3)$ for the methyl, ethyl and propyl iodide reactions respectively. Whereas in the methyl and ethyl reactions the fraction of the available energy that appears in translation, $f_T$, is about 0.65-0.55 in the propyl case it reduces to ca. 0.3.

A comparison with photofragmentation studies for the alkyl iodides, RI, has shown a similar dynamics involving a "quasi-diatomic" C-I excitation followed by recoil of a "soft" radical. An information theoretical analysis of the products' recoil velocity distribution revealed that the (direct) dynamics involving the rupture of the same C-I bond can recover the experimental differential reaction cross-sections providing that the statistical contribution, associated with the degrees of freedom of the different radical groups, is properly increased. In particular the enhancement of the energy disposal for the propyl reaction could be associated to the presence of the symmetric C-C-C bending motion.
LASER INDUCED FLUORESCENCE STUDY OF REACTIONS OF Ca WITH CH₃I AND CF₃I IN THE MOLECULAR BEAM-GAS APPARATUS

Guo-zhong He, Jue Wang, R. S. To, and Nan-quan Lou
Dalian Institute of Chemical Physics, Academia Sinica, P.R. China

One of the major topics in molecular dynamics is to study the distribution of available energy to internal state of the nascent reaction products by the molecular beam techniques as well as the laser induced fluorescence method.

In this paper we present a beam-gas experiment on the exothermic reactions

\[ \text{Ca} + \text{CH}_3\text{I} \rightarrow \text{CaI} + \text{CH}_3 \]  

and

\[ \text{Ca} + \text{CF}_3\text{I} \rightarrow \text{CaI} + \text{CF}_3 \]

for which the vibrational populations of nascent product CaI are probed by means of LIF. The beam-gas apparatus employed is shown schematically in Fig.1. A calcium beam effuses from an orifice (0.8 mm) on the top of a cylindrical crucible, heated to 1050 K by thermal radiation from a sleeved graphite electrical resistant heating tube, and passes through a slit (2.5 mm) into the scattering chamber, which is filled with CH₃I (or CF₃I) at pressures of (1-20)×10⁻⁵ torr. The pulsed laser beam from a YAG:Nd laser pumped tunable dye laser (Quanta Ray, DCR-1 and PDL) intersects the Ca beam perpendicularly in the center of the scattering chamber. The dye laser is scanned in wavelength to generate an excitation spectrum of the CaI product using the $^2Π-X^2Σ^+$ band system. The linewidth of the dye laser beam is about 0.2 Å. The fluorescence is viewed by a photomultiplier (R943). A PAR model 162,165 boxcar integrator is used to amplify and average the fluorescence signals. The output of the boxcar drives a stripchart recorder.

Laser excitation of the $^2Π_{3/2}-X^2Σ^+$ CaI band system in the region 6375-6395 Å is used to determine the internal state distribution of the reaction product. Fig.2 shows the variation of total fluorescence intensity with excitation wavelength for the CaI $ΔV=0$ sequence of the Ca+CH₃I and Ca+CF₃I reactions. In the CaI $^2Π_{3/2}-X^2Σ^+$ band system, heads are formed in the $Q_2$ and $P_{21}$ branches at almost the same frequency and value of $J$.

\[ \frac{Q_2(P_{21})}{P_2(P_{21})} = \frac{(2\hat{B}' - B_{\text{eff}})}{2(2\hat{B}' - B_{\text{eff}})} \]

and in the $P_2$ branch at $J_{\text{head}} = \frac{(B_{\text{eff}} + 2\hat{B}')}{2(B_{\text{eff}} - 2\hat{B}')}$. For the $(0,0)$ band of the $^2Π_{3/2}-X^2Σ^+$ transition $J_{\text{head}} = 34$ and $J_{\text{head}} = 104$. 
The presence of the heads of the \((0,0),(1,1),(2,2),(3,3),(4,4)\) bands for reaction (a) and the \((8,8),(9,9),(10,10),(11,11)\) bands for reaction (b) indicated that the substantial rotational excitation of the product \(\text{CaI}\) occurred.

Computer simulation of the observed LIF spectra revealed that the average vibrational energy of the \(\text{CaI}\) for reaction (a) was about 10\% of the total available energy, and that of the reaction (b), about 40\%. The relative vibrational state distribution of \(\text{CaI}\) formed in the reactions(a) and (b) are shown in Fig.3. For reaction (a), the vibrational distribution of \(\text{CaI}\) was produced preferentially around \(v=2\), while for reaction(b) the peak shifted to \(v=10\).

A comparison is made of the fraction of the total energy going into vibrational energy, \(f_v = E_v(\text{CaI})/E_{tot}\), for four reactions. The results are shown in the following table:

<table>
<thead>
<tr>
<th></th>
<th>(\text{CH}_3)I</th>
<th>(\text{CF}_3)I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba</td>
<td>41%</td>
<td>69%</td>
</tr>
<tr>
<td>Ca</td>
<td>19%</td>
<td>40%</td>
</tr>
</tbody>
</table>

(from reference \((1)\))

For the series of reactions \(\text{M+CH}_3\)I \((\text{CF}_3\)I) with \(\text{M}=\text{Ba, Be}\), there is an increasing \(f_v\) as the atomic mass of the alkaline earth metal atom increase.

Surprisal analysis of the vibrational population suggests that the vibrational excitation of radical \(\text{CH}_3\)(\(\text{CF}_3\)) must be taken into account for reaction mechanism analysis.

DIPR model is used to calculate the \(f_v\) of these two reactions.

Comparisons with other reactions, such as \(\text{K+CH}_3\)I \((\text{CF}_3\)I) and \(\text{Be+CH}_3\)I \((\text{CF}_3\)I), are given and some similar features are pointed out.

**Reference**


*Visiting scientist from Dept. of Chemistry, University of Hong Kong*
Fig. 2 Excitation spectra for (a) Ca+CH₄ and (b) Ca+CP₃.

Fig. 3 Vibrational state distribution of CaI formed in the reactions (a) Ca+CH₄ and (b) Ca+CP₃.

Fig. 1 Schematic of experimental apparatus.
Energy and Angular Momentum Disposal in Chemiluminescent Electronically Excited Atomic Reactions

Keith Johnson, Agust Kvaran*, John P Simons and Peter A Smith

Chemistry Department, The University, Nottingham NG7 2RD, England
* Science Institute, The University of Iceland, 107 Reykjavik, Iceland

In addition to their intrinsic interest in the field of u.v./visible laser systems, the chemiluminescent reactions of electronically excited atoms have many features attractive to the student of molecular reaction dynamics. Translational energy utilisation can be probed through measurements of the intensity of the chemiluminescence excited by collision of superthermal reagent beams; internal energy disposal and product branching ratios can be determined from the analysis of resolved chemiluminescence spectra under both static and molecular beam conditions; differential cross-sections can be obtained through measurements of the depletion of elastically scattered reagent beams at large scattering angles; the influence of molecular spatial or electronic orbital alignment prior to collision can be probed by polarised laser excitation techniques; the collisional energy dependence of product rotational alignment and angular momentum disposal can be obtained through measurements of the chemiluminescence polarisation excited under molecular beam conditions; resolution of the chemiluminescence spectrum may reveal the dependence of the alignment on the product vibrational state. Many more measurements are possible when the excited atom is itself fluorescent. The chemiluminescent interaction of electronically excited rare gas atoms Rg(np^5(n+1)s) provides an ideal system for dynamical
studies which exploit this wide variety of techniques. Resembling in some ways the 'harpoon' chemistry of the alkali metal atoms \([I]\) their dynamics are both complicated and enriched by the electronic excitation; excitation transfer channels can now compete with the alternative atom transfer reactions.

\[
\begin{align*}
\text{e.g. } \text{Xe}(^3P_g) + X_2 & \rightarrow \text{XeX(B, C, D)} + X \\
\text{Xe} + (X, (D'(2g)) & \rightarrow \text{Xe} + (X \text{ retention of excitation})
\end{align*}
\]

Unravelling the dynamics of such systems requires a careful and systematic analysis of the intensities of the overlapping bound-free oscillatory spectral continua, their polarisations and their dependence on the collision energy. Interpretation of the experimental data should address the degree to which purely kinematic rather than dynamical factors govern the observed behaviour, the degree to which the competing physical channels (II) may influence the dynamics of the reactive channel (I) and an assessment of which observables are most sensitive to particular features of the potential energy surfaces. The chemiluminescence polarisation for example, reflects the degree of product rotational alignment which in turn reflects the partitioning of angular momentum between orbital and internal motion; this, in its turn, may be sensitive to the repulsive release of potential energy in the exit channel, to the preferred collision geometry at the head of the exit channel and/or to the duration of the collision.

The lecture will review recent experimental studies of the reaction dynamics in the kinematically constrained systems

\[
\text{Xe}(^3P_g) + HX \rightarrow \text{XeX(B, C)} + H, \ X = \text{Cl, Br, I}
\]

and in the unconstrained systems (I) and (II)[2]. These will be compared with the analogous alkali metal atom reactions to see how far the analogy
is realistic, and measured against the predictions of a hierarchy of
'minimum detail' theoretical models. These include a purely kinematic
model ('physics-free') [3], the DIPR model (exit repulsion and collision
geometry) [4], a phase space model [5] (purely statistical) and a
constrained phase space model ('conservation laws plus').

Discussion Chem. Soc. (1979) 67 255
K Johnson, R Pease, J P Simons, P A Smith and A Kvaran, Faraday
Topological study on three and four atom indirect exchange reactions. Application to the processes $C(^3P) + NO(X^2\Pi)$ and $C(^3P) + N_2O(X^1\Sigma^+)$

M.T. Rayez, P. Halvick, B. Duguay and J.C. Rayez
Laboratoire de Physicochimie Theorique
Université de Bordeaux 1 - 33405 Talence Cedex

Since the work of Polanyi and coworkers, it is now admitted that the location of the barrier, the inner repulsive wall and the relative values of the masses of the atoms play an important role on the nascent energetic distribution on the products of a three atom exchange reaction.

Due to the difficulty of the theoretical approach joined to the lack of experimental dynamical studies, few analogous investigations have been undertaken in the case of reactive processes involving three and four atoms and exhibiting at least one well along the route from the reactants to the products i.e. indirect processes. A recent paper of M.K. Osborn and I.W. M. Smith (Chem. Phys. 91, 13, 1984) reports a quasi classical trajectory (Q.C.T.) study of vibrational energy transfer in inelastic collisions on potential energy surfaces (P.E.S.) possessing potential minima.

In order to analyze the role played by different topological factors on the products energetic distribution of a reactional process, we present a Q.C.T. study based on three and four atom model analytical potentials describing the reactions $A + BC \rightarrow AB + C$ and $A + BCD \rightarrow AB + CD$ (masses: $A = 12$, $B = 14$, $C = 16$ in $BC$, $C = 14$ and $D = 16$ amu in $BCD$).

In the case of a three atom reaction, 1D and 3D approaches have been performed, but in the case of a four atom reaction, only a 1D study has been undertaken owing to the difficulties we encountered for the elaboration of realistic 3D analytical potentials.

The 3-atom analytical models are built by the mixing of a L.E.P.S function and a polynomial expression containing quadratic, cubic and quartic terms which describes the well. The L.E.P.S. function simulates the asymptotic behaviours of the system.

The 4-atom analytical models are constructed on the same scheme but the polynomial expression must obey several requirements: i) the
representation of the stable BCD system alone by an ad hoc well, ii)- the simulation of the four atom well which lies on the reaction route and iii)- the continuous passage from the first well to the second as long as the A atom approaches the BCD molecule.

These models are flexible enough to allow the change almost independently of their topological features. Therefore, we have modified the energetic difference between products and reagents, the location of the well, its concavities and its depth. In fact, the location of the well and its curvatures at the minimum (quadratic, cubic and quartic forces constants) are kept linked by an empirical relation which has been well established on real molecules. The 1D QCT calculations are performed with the initial conditions: relative translational energy $T = 0.1$ eV, zero point vibrational levels for BC and BCD.

Among the different topological parameters investigated at the 1D level (3 and 4-atom cases), we show that the anisotropy of the intermediate well and its location are the important factors which govern the nascent distribution of the energy of the reaction on the products, the others, playing a minor role. Hence, a mapping of the percentage of the average vibrational energy of the newly formed diatomic molecules versus the location of the well - that is to say the curvatures at the minimum - can be easily elaborated. As long as the intermediate well becomes more and more elongated in the products direction, it appears an increase of the energy channeled on the vibration of the diatomic molecule formed. A consequence of this fact is the reduction of the number of reactive outcomes since the transfer of momentum in the direction of the products is less and less efficient.

The 3-atom - 3D investigation (rotational level $J_{BC} = 0$) does not change drastically the previous conclusion. In fact, we observed that the complex keeps a small bent shape associated with a less deep well than the linear structure. This change leads to a greater anisotropy of the well and consequently, favours an increase of the vibrational excitation of the AB molecule.

Ab-initio determination of the fondamental sheet potential energy (implied in the reaction $\text{C}(3\text{P}) + \text{NO}(X^2\Sigma^-) \rightarrow \text{CN}(X^2\Sigma^+) + \text{O}(3\text{P})$ (exoergicity $= -1.35$ eV) shows an intermediate well of 4.2 eV depth (with respect to reactants energy), related to a linear structure CNO (equilibrium distances: $r_{\text{CN}} = 1.22\text{Å}$ and $r_{\text{NO}} = 1.23\text{Å}$) of principal force constants respectively equal to $k_{\text{CN}} = 18$ mdyn/Å and $k_{\text{NO}} = 15$ mdyn/Å. QCT calculations on an analytical surface possessing these features lead to vibrational population of $\text{CN}(X^2\Sigma^+)$ which does not exhibit any inversion and which is in
satisfying agreement with supersonic pulsed crossed beams experiments

Semi-empirical determination of lowest energy sheet of potential energy associated with the process \( \text{C}(^3\text{P}) + \text{N}_2\text{}(^1\Sigma^+) \rightarrow \text{CN}(^2\Sigma^+) + \text{NO}(^2\Pi) \) reveals the existence of a well of 4.65 eV depth corresponding to a structure CNNO of principal force constants equal to \( k_{\text{CN}} = 17.6\text{ mdyne/Å}, \)
\( k_{\text{NN}} = 12.8\text{ mdyne/Å} \) and \( k_{\text{NO}} = 19.2\text{ mdyne/Å} \). QCT calculations performed on an analytical representation of the potential energy surface leads to an inversion of the vibrational population of \( \text{CN}(^2\Sigma^+) \) around \( v^- = 2 \) which is only in fair agreement with experiments (the maximum is located around \( v^- = 4 \)). Several arguments can be raised to explain this difference.
DYNAMICAL PROCESSES OF DETACHMENT IN Cl⁻/H₂

M. Barat, J.C. Brenot, M. Durup-Ferguson*, J. Fayeton, J.C. Houver and J.B. Ozenne

L.C.A.M., Bâtiment 351, Université de Paris-Sud, 91405 Orsay
*L.P.C.R., Bâtiment 350

The various channels enhanced by kinetic energy of Cl⁻ ion in Cl⁻ on H₂ collision produce two independently detectable species: a fast neutral HCl or Cl and an ionized particle H⁻ or e⁻. A coincident detection of the two detectable products allows an unambiguous analysis of the various competing channels.

In this crossed beam experiment a multicoincident detection is used fig. (1) which has been previously settled in LCAU). This technique directly gives complete time and spatially resolved product distributions. At a given collision energy the ultimate result of the data processing gives the relative probability of each channel as a function of the CM deflection angle of the fast neutrals and of the amount of kinetic energy transferred to internal energy of the products. The contour map of each competing channel can be drawn fig. (2).

The main conclusions for the Cl⁻H₂ system are the following: the two reactive channels giving ClH + H⁻ and ClH + H + e⁻ proceed through the same reactive path on the potential surface they are both severely peaked at the same angle. The reactive detachment occurs when the trajectory would lead to HCl vibrational excitation above v=3 a transition through a temporary HCl⁻...H occurs which immediatly autodetaches giving HCl + e⁻ + H.(2)

The generality of this competition process between reaction and reactive detachment has been checked on other halogene⁻/H₂ systems. In I⁻/H₂ the transitory IH⁻H does not detach therefore the reactive detachment is not observed. In Br⁻/H₂ the reactive detachment proceeds from the reaction path for vibrational excitation of BrH of v=2 in agreement with the position of the surfaces crossing BrH H⁻ - HBr⁻ H. At collision energy lower 10 eV the reactive detachment is the most important detachment process at higher collision energy other detachment processes compete: one involving vibrational excitation of H₂ but not yet fully understood. An other one proceeding through a spectator mechanism by which just one H atom is involved in the collisional
process the other one staying at rest. The Cl atom is backward scattered and H₂ molecule dissociates.

Another process still more strange where the H₂ vibration is frozen. The H₂ molecule reacts like an He atom of mass 2 which can be accompanied with an excitation of Cl which in this case is back scattered.

References
Fig 2

\[ \Delta E = 3.4 \text{ keV} \]
\[ \Delta E = 9 \text{ keV} \]
\[ \Delta E = 12 \text{ keV} \]

\[ V_{\text{cm}} \cdot \text{H}_2 \]

\[ 0^\circ \]
\[ 90^\circ \]
\[ 180^\circ \]

\[ E_{\text{cm}} = 17.2 \text{ eV} \]

\[ \ldots \text{ detachment} \]
\[ \text{H}_2 \text{ frozen} \]
\[ \ldots \text{ H}_2 \text{ vib. freq.} \]
\[ \ldots \text{ H} \text{ ion speed} \]
\[ \ldots \text{ H} \text{ excited} \]
Some Current Problems in Atmospheric Ozone Chemistry - Role of

Chemical Kinetics

R.A. Cox

Combustion Centre, Harwell Laboratory, Didcot, Oxon, U.K., OX11 ORA.

Atmospheric ozone is produced and removed by a complex series of elementary gas-phase photochemical and chemical reactions involving O₃, NOₓ, NO₂, ClOₓ and hydrocarbon species. Concern about changes in the balance and distribution of ozone as a result of man's activities has led to an intense research effort to study the kinetics and mechanisms of the reactions controlling atmospheric ozone.

At the present time there is a good knowledge of the basic processes involved in ozone chemistry in the stratosphere and the troposphere and the kinetics of most of the key reactions are well defined. There are a number of difficulties in the theoretical descriptions of observed ozone behaviour which may be due to uncertainties in the chemistry. Examples are the failure to predict present day ozone in the photochemically controlled region above 35km altitude and the large reductions in the ozone column in the Antarctic Spring which has been observed in recent years.

In the troposphere there is growing evidence that ozone and other trace gases have changed appreciably from pre-industrial concentrations, due to chemical reactions involving man-made pollutants. Quantitative investigation of the mechanisms by which these changes may occur requires a sound laboratory kinetics data base.
**ABSOLUTE RATE CONSTANTS FOR THE GAS-PHASE REACTION OF NO₃ RADICALS WITH REDUCED SULFUR COMPOUNDS**

Timothy J. Wallington, Roger Atkinson, Arthur M. Winer and James N. Pitts, Jr., Statewide Air Pollution Research Center University of California, Riverside, California 92521, U.S.A.

In-situ long pathlength spectroscopic studies have shown that the NO₃ radical is a common constituent of continental nighttime atmospheres [1], with mixing ratios of 10-100 parts-per-trillion being routinely observed at several arid/semi-desert locations in California [2]. Laboratory kinetic studies have shown that the NO₃ radical reacts rapidly with the more highly alkyl-substituted alkenes (including the monoterpenes), hydroxy-substituted aromatics and dimethyl sulfide, and that these reactions can be important as nighttime tropospheric loss processes for the NO₃ radical and/or these organic compounds [3]. Until very recently [4,5], however, the available kinetic data were all obtained from relative rate studies carried out at room temperature and atmospheric pressure of air.

In order to allow the determination of absolute NO₃ radical reaction rate constants, we have constructed and utilized a flash photolysis-visible absorption apparatus, and report here recently obtained rate constant data for a series of reduced sulfur compounds over the temperature range 270-350 K.

NO₃ radicals were generated by the flash photolysis of F₂-HNO₃ mixtures in helium, nitrogen or argon diluent

\[ F_2 + hv \rightarrow 2 F \]
\[ F + HNO₃ \rightarrow HF + NO₃ \]

and monitored by long pathlength visible absorption at 662 nm.
Absolute rate constants have been determined for the reduced sulfur compounds CH₃SH, CH₃SSCH₃ and CH₃SH over the temperature and pressure ranges 280-350 K and 50-400 torr total pressure, respectively. These reactions are all at the high pressure limit, and the rate constants obtained are given in Table 1. In addition, upper limit rate constants were obtained at 298 K for the reactions of the NO₃ radical with H₂S and SO₂, and these data are also given in Table 1.

Table 1. Absolute Rate Constants for the Gas-Phase Reaction of the NO₃ Radical With CH₃SH, CH₃SSCH₃, CH₃SSH₂, SO₂ and H₂S

<table>
<thead>
<tr>
<th>Reactant</th>
<th>280 K</th>
<th>298 K</th>
<th>350 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃SH</td>
<td>(8.0 ± 1.4)</td>
<td>(8.1 ± 0.6)</td>
<td>(5.4 ± 0.7)</td>
</tr>
<tr>
<td>CH₃SSCH₃</td>
<td>(8.8 ± 1.2)</td>
<td>(8.1 ± 1.3)</td>
<td>(7.7 ± 0.7)</td>
</tr>
<tr>
<td>CH₃SSH₂</td>
<td>(5.3 ± 0.8)</td>
<td>(4.9 ± 0.8)</td>
<td>(4.3 ± 0.6)</td>
</tr>
<tr>
<td>SO₂</td>
<td>-</td>
<td>&lt;0.004</td>
<td>-</td>
</tr>
<tr>
<td>H₂S</td>
<td>-</td>
<td>&lt;0.3</td>
<td>-</td>
</tr>
</tbody>
</table>

*Indicated errors represent two standard deviations.

Least squares analyses of these data yield the Arrhenius expressions

k(CH₃SH) = (4.7±2.6) x 10⁻¹³ e(170 ± 130)/T cm³ molecule⁻¹ s⁻¹

k(CH₃SSCH₃) = (1.0±2.6) x 10⁻¹³ e(600 ± 400)/T cm³ molecule⁻¹ s⁻¹

k(CH₃SSH₂) = (1.9 ± 0.3) x 10⁻¹³ e(290 ± 50)/T cm³ molecule⁻¹ s⁻¹
where the error limits given are two least squares standard deviations. These rate constants will be compared with the available literature data, and the atmospheric implications discussed.

References

Thermal Stability of Peroxynitrates

A. Reimer and F. Zabel

Bergische Universität - GH Wuppertal, Physikalische Chemie
Fachbereich 9, 56 Wuppertal 1, West Germany

Within the last ten years evidence has increased that, in the atmosphere, a large part of NO$_x$ and of peroxy radicals may be tied up in peroxynitrates. For example, acetyl peroxy nitrate (PAN) seems to be an ubiquitous compound in the troposphere, with a background mixing ratio of 50 - 100 pptv [1]. Other peroxynitrates (including peroxy nitric acid, HOONO$_2$) have not been detected yet in field experiments, but their existence in higher altitudes is suggested from the results of laboratory experiments (e.g. [2-4]).

The importance of peroxynitrates for the chemistry of the atmosphere will largely depend on the rate constants of reactions

\begin{align}
(1) \quad & \text{ROO} + \text{NO}_2 \rightarrow \text{ROONO}_2 \\
(2) \quad & \text{ROONO}_2 \rightarrow \text{ROO} + \text{NO}_2 \\
(3) \quad & \text{ROO} + \text{NO} \rightarrow \text{RO} + \text{NO}_2 \\
(4) \quad & \text{ROONO}_2 + \text{OH} \rightarrow \text{products} \\
(5) \quad & \text{ROONO}_2 + \text{hv} \rightarrow \text{products}
\end{align}

and on the products of reactions (4) and (5). In this work, reaction (2) has been investigated for R = CH$_3$, CH$_3$CO, CCl$_3$, and CCl$_2$F in a temperature controlled 420 l reaction chamber from Duran glass which is surrounded by 20 photolysis lamps. The reaction chamber has a built-in White mirror system for long-path absorption measurements which is coupled to a Fourier-transform infrared spectrometer (NICOLET 7199). Experimental conditions include temperatures between -20 and +50 °C and total pressures between 10 and 800 mbar. N$_2$ and O$_2$ were used as buffer gases. The peroxynitrates were prepared in situ by photolysis of the following gas mixtures: azomethane/N$_2$/O$_2$/NO$_2$ (for CH$_3$OONO$_2$), Cl$_2$/CH$_3$CHO/O$_2$/N$_2$/NO$_2$ (PAN), Cl$_2$/CHCl$_3$/O$_2$/N$_2$/NO$_2$ (CCl$_3$OONO$_2$), Cl$_2$/CCl$_2$F/O$_2$/N$_2$/NO$_2$ (CCl$_2$FOONO$_2$). The initially established equilibrium between reactions (1) and (2) was disturbed by addition of large amounts (~0.3 mbar) of NO, giving rise to reaction (3). Using high [NO]/[NO$_2$]
ratios, the effective first order decay rate constant of ROONO$_2$, as measured by IR absorption, was equal to $k_2$.

Rate constants $k_2$ thus obtained are strongly temperature and pressure dependent. They are presented in figures 1 and 2 for

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{fig1}
\caption{Thermal decomposition of methyl peroxynitrate}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{fig2}
\caption{Thermal decomposition of acetyl peroxynitrate}
\end{figure}

CH$_3$OOONO$_2$ and CH$_3$C(O)OOONO$_2$, respectively. Each point represents at least 4 individual measurements. The rate data were evaluated according to the modified Kassel treatment of unimolecular react-
ions as proposed by Troe [5]. Fitting the experimental data points to the 3-parameter-equation

\[
\log \left( \frac{k}{k_\infty} \right) = \log \frac{k_0}{k_\infty} \frac{1 + k_0/k_\infty}{1 + \left( \frac{1}{N_c(F_c)} \right)^{N_c(1/F_c)}} + \frac{\log F_c}{1 + \left( \frac{1}{N_c(F_c)} \right)^{N_c(1/F_c)}},
\]

with the \( F_c \) values held fixed at their theoretical strong collision values [2], the following parameters were obtained:

\[ \begin{align*}
CH_3OONO_2 & \rightarrow \text{CH}_3\text{OO} + \text{NO}_2; \\
F_c &= 0.47 \\
k_o/\left[ \text{N}_2 \right] &= 8.5 \times 10^{-4} \times \exp(-20.5 \text{ kcal mol}^{-1}/\text{RT}) \text{ cm}^3\text{molecule}^{-1}\text{s}^{-1} \\
k_\infty &= 2.3 \times 10^{16} \times \exp(-21.4 \text{ kcal mol}^{-1}/\text{RT}) \text{ s}^{-1} \\
k_{o^2}/k_o^{N_2} &= 1.2 \pm 0.2 \\
\Delta H_{r,298}^0 &= (21.9 \pm 0.8) \text{ kcal/mol (using literature data on } k_1) \\
\end{align*} \]

\[ \begin{align*}
\text{CH}_3\text{C(O)OONO}_2 & \rightarrow \text{CH}_3\text{C(O)OO} + \text{NO}_2; \\
F_c &= 0.27 \\
k_o/\left[ \text{N}_2 \right] &= 6.3 \times 10^{-2} \times \exp(-25.4 \text{ kcal mol}^{-1}/\text{RT}) \\
k_\infty &= 2.2 \times 10^{16} \times \exp(-26.7 \text{ kcal mol}^{-1}/\text{RT}) \\
k_{o^2}/k_o^{N_2} &= 0.9 \pm 0.2 \\
\end{align*} \]

Experiments on the thermal decomposition of CCl_3OONO_2 and CCl_2FOONO_2 are still in progress.

When these results are combined with literature data it may be estimated that in the upper troposphere mole fractions of the same order of magnitude (10 - 100 ppt) are present for the different reactive nitrogen species (NO+NO_2), HOONO_2, CH_3OONO_2, and CH_3C(O)OONO_2. Similarly, the halomethyl peroxynitrates possibly represent reservoirs for reactive halogen and NO_x in the stratosphere.

References

Abstract for the 9th International Symposium on Gas Kinetics, Bordeaux, France, July 20-25, 1986

THE STICKING OF GAS MOLECULES TO WATER SURFACES

James Gardner, Lyn Sharfman, Yusuf G. Adewuyi and Paul Davidovits, Boston College, Department of Chemistry, Chestnut Hill, MA 02167 U.S.A.
Mark S. Zahniser, Douglas R. Worsnop and Charles E. Kolb, Aerodyne Research, Inc. 45 Manning Road, Billerica, MA 01821 U.S.A.

Many important atmospheric reactions occur inside the water droplets of clouds and mists. These processes begin with the precursor gas molecules such as \( \text{SO}_2 \) or \( \text{NO}_2 \), for example, hitting the surface of the droplet and crossing into the interior. The probability that a molecule striking the surface, sticks to it and enters the droplet is called the sticking or accommodation coefficient. This is the key parameter linking gas phase to liquid phase chemistry and it often governs the kinetics of heterogeneous reactions in the atmosphere. An experimental technique has been developed to measure these accommodation coefficients. The apparatus is shown schematically in figure 1. A controllable stream of mono-dispersed droplets is produced by a vibrating nozzle jet. The droplets enter a flow system containing the atmospheric trace species. The droplets are turned on and off while the density of the species is monitored spectroscopically. The details of the flow system, temperature control and droplet switching are not shown. The reacting gas can be introduced at three different points in the flow tube. In this way the length of the interaction region can be varied. \( \text{SO}_2 \) was the first gas
studied in this way. In the insert of figure 1 we show a plot of the change in \( \text{SO}_2 \) density due to the water droplets as a function of the length of the interaction region. With the flow rates and other experimental parameters known, the accommodation coefficient can be calculated from such a plot. For \( \text{SO}_2 \) the value of this parameter is \((2.4 \pm 0.4) \times 10^{-3}\). The results of
accommodation coefficient measurements for several other gases of atmospheric interest will be presented.

A kinetic model has been developed which predicts the size of the accommodation coefficients. In this model it is assumed that a molecule which hits the water surface will enter the interior if during its residence time on the surface a hole in the liquid sufficiently large to accommodate the molecule appears at the surface site. The predictions and implications of this model will be discussed.

Acknowledgements
This work was sponsored by: The National Science Foundation, U.S. Environmental Protection Agency, Coordinating Research Council and the Electric Power Research Institute.
DISCHARGE FLOW DETERMINATION OF THE RATE CONSTANTS FOR THE REACTIONS

OH + SO₂ + He AND HOSO₂ + O₂.

D. MARTIN, J.L. JOURDAIN and G. LE BRAS.

(Centre de Recherches sur la Chimie de la combustion et des Hautes Températures - C.N.R.S 45071 ORLEANS cedex 2 - FRANCE.)

The main atmospheric oxidation steps of SO₂ : SO₂ + OH + M → HOSO₂ + M (1) and HOSO₂ + O₂ → HO₂ + SO₃ (2) have been studied at room temperature using the discharge flow - EPR - mass spectrometric method. The rate constants of these reactions were determined by EPR monitoring of the OH decay in the presence of excess SO₂, successively in the absence and presence of O₂. HO₂ produced in reaction (2) was converted into OH by NO addition either together with the reactants SO₂ and O₂ or separately, just upstream of the EPR cavity. Heterogeneous processes were minimized by coating the wall of the reactor with halocarbon wax.

The reaction SO₂ + OH + M → HOSO₂ + M (1) was studied in the absence of O₂ at pressures ranging from 1 to 6.4 Torr of helium, with partial pressures of SO₂ in the range 0.01 - 0.15 Torr. Both graphical and mathematical treatments of the data led to the following values of the rate constants for reaction (1) with respectively SO₂ and He as the third body :

\[ k_{11}^{SO₂} = (1.33 \pm 0.40) \times 10^{-30} \text{ cm}^6 \text{ molecule}^{-2} \text{ s}^{-1} \]
\[ k_{11}^{He} = (8.1 \pm 0.2) \times 10^{-32} \times |M| + (2.4 \pm 0.4) \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \]

The third order rate constant obtained with SO₂ as the third body and the apparent second order rate constant determined with He as the third body are in good agreement with the data of LEU [1]. This experimental expression of \( k_{11}^{He} \) compares well with recent theoretical calculations of WINE et al [2] which indicate that the reaction would be in the fall off regime in the pressure range considered (1 - 6.4 Torr).
The rate constant for the reaction $\text{HOSO}_2 + \text{O}_2 \rightarrow \text{HO}_2 + \text{SO}_3$ (2) was measured from a computer fitting of the OH decay curves obtained in the absence and presence of $\text{O}_2$ and NO. In a first series of experiments where NO was added separately, just upstream of the EPR cavity, the possible $\text{HOSO}_2 + \text{NO}$ reaction was negligible. However, a first order reaction rate of $50 \text{ s}^{-1}$ had to be considered for $\text{HOSO}_2$ to fit the data obtained over the entire range of $\text{O}_2$ concentrations used ($3.5 \times 10^{14} - 1.5 \times 10^{15}$). This additional sink of $\text{HOSO}_2$ could be a wall reaction. An example of experimental data is given in the figure below (the solid lines represent the experimental decay curves of OH and the dashed lines the calculated ones).

In a second series of experiments where NO and $\text{O}_2$ were flowed together, an upper limit of $5 \times 10^{-13}$ was determined for the $\text{HOSO}_2 + \text{NO}$ reaction.

From the series of experiments, the following value was obtained for $k_2$:

$$k_2 = (3.5 \pm 1) \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

This value is in good agreement with the flash photolysis measurement of MARGITAN [3] ($k_2 = (4 \pm 2) \times 10^{-13}$) also obtained from a computer simulation of his experimental data. The agreement is also good with a
further discharge flow determination of HOWARD [4] \( k_2 = (4.4 \pm 0.9) \times 10^{-13} \) where \( \text{HO}_2 \) and \( \text{HOSO}_2 \) were respectively detected by LMR and chemical ionization.

The present value of \( k_2 \) confirms the STOCKWELL and CALVERT [5] hypothesis concerning the occurrence of reactions (1) and (2) in the atmosphere and the subsequent \( \text{HO}_x \) conservation in the gas phase oxidation of \( \text{SO}_2 \) in the atmosphere.

References

4- C.J. HOWARD : Communication at the seventeenth symposium on free radicals, Granby, Colorado, USA, August 18-23 1985.
HIGH RESOLUTION FOURIER TRANSFORM SPECTROSCOPY OF GAS
PHASE RADICALS AND REACTION PRODUCTS

James B. Burkholder, Philip D. Hammar, and Carleton J. Howard

National Oceanic and Atmospheric Administration
Aeronomy Laboratory, R/E/AL2
Boulder, Colorado 80303
U.S.A.

and

C.I.R.E.S., University of Colorado
Boulder, Colorado 80309
U.S.A.

Recent results using a high resolution Fourier transform spectrometer optically coupled to a fast flow multipass absorption cell for the spectroscopic study of gas phase radicals and reaction products will be presented.

High sensitivity infrared and microwave spectroscopic techniques are viable methods for monitoring transient species in both laboratory and field studies. For these techniques to be successful detailed spectroscopic information of the transient species is required. In the past high resolution infrared spectra of transient species have been recorded using LMR, diode laser, and difference laser techniques. To date high resolution Fourier transform spectroscopy (FTS) has been used to study relatively stable species. In this report FTS high resolution infrared absorption spectra of H2O, DO2, FO, CLO, SO, CS and several other short lived radicals will be presented.

The implication of these results to atmospheric chemistry will be discussed.
Oxidation of CS₂ in the earth's atmosphere is believed to yield COS and SO₂. Previous work had indicated that the reaction of OH with CS₂ was too slow for it to be important. Recently we have obtained evidence to show that OH adds very rapidly to CS₂ to form CS₂OH adduct which in the presence of O₂ undergoes further reactions. In the absence of O₂ (or other reactants) the CS₂OH adduct thermally decomposes to give back OH and CS₂.

Using 248 nm pulsed laser photolysis of H₂O₂ to produce OH followed by pulsed laser induced fluorescence detection of OH, we have directly observed the equilibrium,

$$\text{CS}_2 + \text{OH} \rightarrow \text{CS}_2\text{OH} + \text{H} \quad \text{X (1)}$$

Figure 1. Temporal Profile of OH in the presence of $1.84 \times 10^{16} \text{ cm}^{-3}$ CS₂, 43 torr N₂, and $3.5 \times 10^{14} \text{ cm}^{-3}$ H₂O₂ at 262K.
Figure 1 shows a temporal profile of OH following H₂O₂ photolysis in CS₂. Using such temporal profiles, the equilibrium constant K has been measured as a function of temperature in the range 259-318K. Figure 2 shows a plot of log kp vs 1/T. From the slope of this plot the heat of reaction 1 is calculated to be -(12.4 ± 0.5) kcal/mole and the heat of formation of CS₂·OH at 298K calculated to be 25.0 kcal/mole. In addition, using the same experimental method as above, the rate coefficient for the reaction,

\[ \text{CS}_2\text{OH} + \text{O}_2 \rightarrow \text{Products} \]  

has also been measured. The absolute rate coefficients for the reaction of OH with CS₂ in N₂/O₂ mixtures have been measured as a function of total pressure, composition, and temperature and they are listed in Table I. Lastly, experiments are underway to identify and quantify the products of reaction (2) using an LMR spectrometer coupled to a discharge flow system. When completed, this work will map out the course of CS₂ oxidation in the atmosphere. It already has shown that OH indeed initiates CS₂ oxidation in the troposphere.

Work performed at NOAA was supported by NOAA as a part of the National Acid Precipitation Assessment Program. Work performed at Georgia Tech was funded by the National Science Foundation.
Table I. The rate coefficients for the reaction of OH with CS\textsubscript{2} under various conditions of composition and Temperature.

<table>
<thead>
<tr>
<th>Temp, K</th>
<th>Pressure, torr</th>
<th>[OH]\textsubscript{0}, 10\textsuperscript{15} cm\textsuperscript{-3}</th>
<th>[CS\textsubscript{2}], 10\textsuperscript{3} cm\textsuperscript{-3}</th>
<th>k' (a), 10\textsuperscript{-12} cm\textsuperscript{3} molecule\textsuperscript{-1} s\textsuperscript{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>251</td>
<td>690</td>
<td>14 4</td>
<td>0-2</td>
<td>0.076</td>
</tr>
<tr>
<td>253</td>
<td>690</td>
<td>185 12</td>
<td>0-9</td>
<td>0.036-68</td>
</tr>
<tr>
<td>252</td>
<td>180</td>
<td>145 3</td>
<td>0-10</td>
<td>0.066-88</td>
</tr>
<tr>
<td>253</td>
<td>680</td>
<td>180 16</td>
<td>0-12</td>
<td>0.5-51</td>
</tr>
<tr>
<td>253</td>
<td>680</td>
<td>680 6</td>
<td>0-9</td>
<td>0.2-63</td>
</tr>
<tr>
<td>253</td>
<td>140</td>
<td>180 9</td>
<td>0-17</td>
<td>0.3-43</td>
</tr>
<tr>
<td>251</td>
<td>689</td>
<td>184 20</td>
<td>0-7</td>
<td>0.47-42</td>
</tr>
<tr>
<td>270</td>
<td>690</td>
<td>185 7</td>
<td>0-7.7</td>
<td>0.05-31</td>
</tr>
<tr>
<td>287</td>
<td>690</td>
<td>185 12</td>
<td>0-17</td>
<td>0.24-32</td>
</tr>
<tr>
<td>296</td>
<td>685</td>
<td>183 3</td>
<td>0-25</td>
<td>0.08-37</td>
</tr>
<tr>
<td>295</td>
<td>700</td>
<td>1.4 2</td>
<td>0-0.9</td>
<td>0.03-27</td>
</tr>
<tr>
<td>295</td>
<td>690</td>
<td>14 2</td>
<td>0-12</td>
<td>0.06-2.5</td>
</tr>
<tr>
<td>295</td>
<td>280</td>
<td>180 17</td>
<td>0-12</td>
<td>0.4-17</td>
</tr>
<tr>
<td>295</td>
<td>690</td>
<td>185 23</td>
<td>0-16</td>
<td>0.45-35</td>
</tr>
<tr>
<td>295</td>
<td>700</td>
<td>187 4</td>
<td>0-15</td>
<td>0.1-23</td>
</tr>
<tr>
<td>295</td>
<td>690</td>
<td>0 3</td>
<td>0-60</td>
<td>0.06-0.09</td>
</tr>
<tr>
<td>295</td>
<td>140</td>
<td>180 20</td>
<td>0-17</td>
<td>0.4-13</td>
</tr>
<tr>
<td>295</td>
<td>690</td>
<td>185 13</td>
<td>0-8.3</td>
<td>0.3-23</td>
</tr>
<tr>
<td>303</td>
<td>688</td>
<td>185 13</td>
<td>0-20</td>
<td>0.08-20</td>
</tr>
<tr>
<td>303</td>
<td>683</td>
<td>183 9-50</td>
<td>0-40</td>
<td>0.13-40</td>
</tr>
<tr>
<td>328</td>
<td>686</td>
<td>184 5</td>
<td>0-27</td>
<td>0.13-8.4</td>
</tr>
<tr>
<td>348</td>
<td>688</td>
<td>184 5</td>
<td>0-56</td>
<td>0.07-7.3</td>
</tr>
</tbody>
</table>

\(a\). \(k' = k \times [CS_2] \times k_d\) and \(k_d\) is the first order loss rate of OH in the absence of CS\textsubscript{2}. 
EXAMINATION OF THE TEMPERATURE DEPENDENCE FOR THE REACTION OF OH RADICALS
WITH HETERO CYC LIC AROMATICS (IMIDAZOLE, FURAN, PYRROLE AND THIOPHENE) AND
THE UNIMOLECULAR DECAY OF THE ADDUCTS IMIDAZOLE-OH AND THIOPHENE-OH

Franz Witte and Cornelius Zetzsch
Fraunhofer Institut für Toxikologie und Aerosolforschung
Nikolaifuchs Str. 1, D-3000 Hannover 61

In the reaction of OH radicals with aromatic compounds an addition of
OH and a subsequent unimolecular decay of the aromatic-OH adduct back to
the reactants is assumed to be the main reaction path. We have been able
to evaluate the temperature dependence of this equilibrium reaction of OH
with benzene and some benzene-d-derivatives. Since only a few investiga-
tions have been performed on the reaction of OH with aromatic heterocy-
ic compounds, we tried to get some more information about the mecha-
nism for the reaction of OH with imidazole, pyrrole, furan and thiophene.

We use a flash photolysis-resonance fluorescence apparatus to inves-
tigate the temperature dependence of these reactions between room tempe-
ration and 471 K. All experiments have been performed at a total pressure
of 133 mbar with argon as inert gas using a water concentration of
1.6×10^15 cm^-3. A low flash energy of 2 J has been applied to avoid photoly-
sis of the reactants. The initial OH-concentration can be estimated to be
2×10^10 cm^-3 and the detection limit of OH to be 10^7 cm^-3.

In the presence of furan single exponential decays of OH are observed.
Biexponential decays of OH are obtained in the presence of thiophene (442
K < T < 471 K) and imidazole (353 K < T < 425 K). Nonexponential decays of
OH are observed in the presence of pyrrole within the whole temperature
region, and only the initial slope of the decays was considered in the
evaluation.
Figure 2: Arrhenius plots of the rate constants for the unimolecular decay of the adducts imidazole-OH (●) and thiophene-OH (■) back to the reactants.

Figure 1: Arrhenius plots of the addition of OH to heterocyclic compounds pyrrole, imidazole, furan and thiophene.

Figure 1 shows Arrhenius plots of the rate constants for the primary reaction of OH with the reactants. All reactions show negative activation energies indicating an electrophilic addition of OH to the heterocyclic aromatics. The biexponential decays of OH observed in the presence of thiophene and imidazole confirm this assumption.

The evaluation of the ratio of the amplitudes of the biexponential decay curves yield equilibrium constants and hence rate constants for the unimolecular decay of the heterocyclic-OH adduct leading back to the reactants. The corresponding Arrhenius plots are shown in figure 2. Using both activation energies it is possible to derive the bond dissociation energies of these adducts forming back OH. These energies ($\Delta H \pm 2\sigma$) can be determined to be (75±7) kJ/mol for imidazole and (92±14) kJ/mol for thiophene.
<table>
<thead>
<tr>
<th>Reaction</th>
<th>Arrhenius expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>pyrrole + OH</td>
<td>$(1.5\pm0.5)\times10^{-11}\exp(+(690\pm120)K/\text{T}) \text{ cm}^3\text{s}^{-1}$</td>
</tr>
<tr>
<td>furan + OH</td>
<td>$(1.4\pm0.5)\times10^{-11}\exp(+(380\pm120)K/\text{T}) \text{ cm}^3\text{s}^{-1}$</td>
</tr>
<tr>
<td>imidazole + OH</td>
<td>$(1.74\pm0.4)\times10^{-12}\exp(+(930\pm40)K/\text{T}) \text{ cm}^3\text{s}^{-1}$</td>
</tr>
<tr>
<td>thiophene + OH</td>
<td>$(2.94\pm0.2)\times10^{-12}\exp(+(800\pm40)K/\text{T}) \text{ cm}^3\text{s}^{-1}$</td>
</tr>
<tr>
<td>imidazole-OH -&gt; imidazole + OH</td>
<td>$5'10^9\exp(-(7800\pm700)K/\text{T}) \text{ s}^{-1}$</td>
</tr>
<tr>
<td>thiophene-OH -&gt; thiophene + OH</td>
<td>$5'10^9\exp(-(10300\pm1800)K/\text{T}) \text{ s}^{-1}$</td>
</tr>
</tbody>
</table>

References

  Contamin. Toxicol. 12, 691 (1984)
The Chemical Dynamics of Highly vibrationally Excited Molecules

F. Fleming Grim
Department of Chemistry
University of Wisconsin
Madison, Wisconsin
USA

The combination of direct excitation of overtone vibrations with time resolved spectroscopic detection is a means of probing the spectroscopy, kinetics, and dynamics of highly vibrationally excited molecules in great detail.

Spectroscopic studies, in both room temperature samples and free jets, monitor the products of a vibrational overtone initiated unimolecular reaction as a function of excitation wavelength. The resulting vibrational overtone predissociation spectra help reveal the nature of the prepared state and the types of interactions that are likely to be responsible for the structure in the spectrum. Measurements on both bound and predissociative states of molecules cooled in a supersonic expansion are particularly informative in this regard.

Kinetic measurements directly determine the rate of a vibrational overtone initiated unimolecular reaction of a fairly complex molecule (tetramethyldioxetane) that is cooled in a free jet expansion. The small initial thermal energy content of the molecules permits a particularly straightforward comparison with theory.

Dynamics studies use laser induced fluorescence detection to probe the individual quantum state populations of the OH fragments from the vibrational overtone induced reaction of hydrogen peroxide. Comparing the measured populations with theoretical predictions shows a clear distinction between different models that is most apparent near the threshold energy for the reaction.
Mode Selectivity in Reactions Induced by Vibrational Overtone Excitation

J.E. Baggott, D.W. Law, P.D. Lightfoot and I.M. Hills
Department of Chemistry, The University, Whiteknights, P.O. Box 224, Reading RG6 2AD, U.K.

1. Introduction

Unimolecular reactions induced by direct one-photon excitation of stretching overtones of X-H bonds (X = C or O) have been studied extensively in recent years in attempts to observe mode-selective photochemistry. The basis for the suggestion that such states might not satisfy the requirements of rapid statistical energy redistribution, a fundamental assumption of RRKM theory, comes from the interpretation of overtone spectra in terms of the local mode model. In this model, the overtone transitions and intensities are analysed according to a diatomic Morse oscillator formalism implying localisation of excitation energy within selected bonds.

However, the problem of 'contamination' remains, i.e. it is unclear in many cases to what extent the local mode might be mixed with other molecular vibrations. Such mixing may be thought to provide channels for ultrafast relaxation from some initially prepared pure local mode state or to simply prevent the preparation of such a state. Such contamination might explain why statistical (RRKM) behaviour has been observed in many of the reactions studied, although the sensitivity of some overtone excitation experiments to subtle deviation from statistical behaviour is open to question.

Recent spectroscopic studies by Quack and co-workers have revealed the presence of 'near-universal' stretch-bend Fermi resonances in molecules containing isolated C-H bonds. This is exactly the kind of interaction which may lead to contamination of local mode states and consequent rapid energy redistribution and we have, therefore, studied the C-H stretch fundamental and overtone spectra of cyclobutene in order to determine if such resonances arise in polyatomic molecules with symmetrically equivalent C-H bonds. Cyclobutene was chosen as an example of one of the few molecules which undergo unimolecular reaction following overtone excitation in the visible region.
2. Experimental
Infrared spectra of gas phase cyclobutene below 900 cm$^{-1}$ were taken on a Nicolet 7199 FTIR system using Si/quartz and Ge/KBr beamsplitters and Hg-Cd-Te and In-As detectors. Overtone spectra in the near infrared and visible regions were measured using intracavity laser photoacoustic techniques as described previously.

3. Results and Discussion
A portion of the infrared spectrum of gas phase cyclobutene in the region of the C-H stretch fundamentals is shown in fig. 1. We have analysed these bands in terms of separable effective vibrational Hamiltonians for the olefinic and methylenic C-H bond systems, using both a local mode and normal mode basis. Our modelling studies reveal that the olefinic C-H stretch fundamental of $A_1$ symmetry is in Fermi resonance with $2v_3$, where $v_3$ is the ring C-C stretch. Similarly, the methylenic C-H stretch fundamental of $A_1$ symmetry is in Fermi resonance with both $2v_4$ and $2v_{16}$, where $v_4$ and $v_{16}$ are the in-phase and out-of-phase combinations of the $>CH_2$ group scissor vibrations, and the stretch fundamental of $B_2$ symmetry is in Fermi resonance with the $v_4 + v_{16}$ combination.

Using our model vibrational Hamiltonians, we are able to predict that these resonances are of little consequence in the region of the v=4-6 C-H stretch overtones which lie above the threshold to unimolecular reaction. However, for the methylenic C-H we do observe additional splitting at v=5 (see fig. 2) which we have analysed in terms of a Fermi resonance with ring C-C stretch vibrations using an approximate model Hamiltonian.

With evolution operator techniques we can use our model vibrational Hamiltonians to determine the timescale of the decay of probability of an initially prepared pure local mode. For the methylenic C-H bond at v=5 the presence of Fermi resonant ring C-C stretch vibrations causes decay of the initial state with a lifetime of ca. 0.12 ps, destroying rapidly any selectivity obtained. These results contrast with the olefinic C-H bond which, according to our modelling calculations, behaves as an 'almost' pure local mode. Further details of our calculations will be presented and the implications for mode-selective photochemistry discussed.

References

Fig. 1. Part of a FTIR spectrum of gas phase cyclobutene in the region of the C-H stretching fundamentals. The stick spectra give the band positions and intensities predicted by our model.

Fig. 2. Laser photoacoustic spectra of gas phase cyclobutene in the region of the v=5 and 6 methylenic C-H stretch overtones.
ANALYTIC SOLUTION OF RELAXATION IN A SYSTEM WITH EXPONENTIAL TRANSITION PROBABILITIES

Wendell Forst* and Guo-Ying Xu, Department of Chemistry and CRAM, Laval University, Quebec, Canada GIK 7P4

Several years ago, we have obtained an analytic solution for what we call the exponential model Model B in the form of an infinite series expansion for \( c(x,t) \), the fractional population, per unit energy, of molecules having energy \( x \) at time \( t \) (see eqs. 7-13 in ref. 1). The number of terms which effectively contribute to the \( c(x,t) \) series increases from one (the first term) at equilibrium \((t\to\infty)\) to infinity at time zero \((t\to0)\). Since it is obviously impractical to generate an infinite, or even very large, number of terms, the analytic solution suffers from the disadvantage that \( c(x,t) \) cannot be obtained in its infinite series expansion form at very short times. The purpose of this work is to show that the problem can be solved by an alternative approach which leads to simple and tractable expressions.

Let \( q(x,y) \) be the per-collision probability of the transition \( x \leftarrow y \), and suppose that at \( t = 0 \) the energy distribution of the molecule of interest is a delta function at \( y = y_0 \). Thus \( c(y,0) = \delta(y - y_0) \). The first collision results therefore in the energy distribution \( c(x,n=1) = q(x,y_0) \) where the number of collisions \( (n) \) now replaces time \( n = \omega t \), where \( \omega = \text{collision frequency} \). This distribution of final energies becomes the initial distribution of initial energies for the next collision, and so on; thus the energy distribution after \( n \) collisions is

\[
c(x,n) = \int c(y,n-1) q(x,y) \, dy \quad (1)
\]
For this kind of approach to be reasonably tractable, it is necessary to take the exponential transition probability in the simple form,

\[ q(x,y) = \begin{cases} \mathcal{C} \exp[-(y-x)/\alpha] & x < y \\ \mathcal{C} \exp[-(x-y)/\beta] & x > y \end{cases} \]  \tag{2}

where \( \alpha \) measures the strength of the coupling to the heat bath, \( \mathcal{C} = 1/(\alpha + \beta) \) and \( \beta = \alpha kT/(\alpha + kT) \). Substituting (2) into (1) yields, after some lengthy but straightforward manipulation, the result that the energy distribution after the \( n \)-th collision is

\[ c(x,n) = \begin{cases} P(n) \mathcal{C}^n \exp[-(y_o - x)/\alpha], & x < y_o \\ P(n) \mathcal{C}^n \exp[-(x - y_o)/\beta], & x > y_o \end{cases} \]  \tag{3}

where \( P(n) \) is a polynomial of degree \( n-1 \) given by

\[ P(n) = \sum_{k=1}^{n} \binom{n-k}{n-1} \frac{n-k}{(n-k)!!} \mathcal{C}^{k-1} \]  \tag{4}

with \( \mathcal{C} = \alpha \beta/(\alpha + \beta) \) and \( z = (x - y_o) \) or \( (y_o - x) \) for \( x > y_o \) and \( x < y_o \), respectively. Fig. 1 shows a plot of \( c(x,n) \) of eq. (3) for \( n = 1, 2, 3, 4, 5 \) and 10, assuming \( y_o = 5000 \text{ cm}^{-1} \), \( \alpha = 250 \text{ cm}^{-1} \).

Various bulk averages can be now easily calculated, in particular the decay, after \( n \) collisions, of average energy and its square:

\[ \langle \langle y \rangle \rangle = y_o - n(\alpha + \beta) \]  \tag{6}

\[ \langle \langle y^2 \rangle \rangle = y_o^2 + 2ny_o(\beta - \alpha) + n(\alpha^2 + \beta^2) + n^2(\alpha - \beta)^2 \]  \tag{7}

Figs. 2 and 3 show \( \langle \langle y \rangle \rangle \) and \( \langle \langle y^2 \rangle \rangle \) of eqs. (6) and (7) as the continuous line, while the dotted line represents result obtained from the more accurate series solution. It can be seen that eqs. (6) and (7) give the correct result for the first 500 collisions or so, i.e. until the energy has decayed to less than 1/10th of its initial value.

From eqs. (6) and (7) the mean square deviation of average energy is, after \( n \) collisions
\[ a^2 = \langle y^2 \rangle + \langle y \rangle^2 = n(a^2 + b^2) \]

which may be used to construct a gaussian approximation to \( c(x,n) \):

\[ c(x,n) = (a^2) \exp[-(y - \langle y \rangle)^2 / 2a^2] \]

which shows the population distribution after 91 collisions for an initial delta function distribution at 20,000 cm\(^{-1}\) (left) and 30,000 cm\(^{-1}\) (right) calculated from eq. (9) (continuous line) and compared with the more exact series solution (dotted line).

The analytic formula of eq. (3) for \( c(x,n) \) gives an accurate representation of the initial decay of the population distribution for a delta function distribution initially, and thus is useful as an adjunct to the more accurate series solution at later times. Similar comments apply to any bulk average obtained from \( c(x,n) \). The gaussian approximation (eq. 9) cannot be used very close to \( t = 0 \) since \( c(x,n) \) is asymmetric on account of detailed balance (cf. Fig. 1), but as soon as energy has decayed such that the entire contribution to \( c(x,n) \) comes from the down-part \( (x < y) \), \( c(x,n) \) becomes symmetric (see also Fig. 1), and can be usefully and simply approximated by the gaussian.

* Present address: Département de Chimie Physique des Réactions, 1 rue Grandville, 54042 Nancy Cedex, France.

References

MODE SPECIFICITY IN INTRAMOLECULAR VIBRATIONAL RELAXATION AND UNIMOLECULAR REACTIONS: A SEMICLASSICAL ANALYSIS

V. Aguilanti, S. Cavalli and G. Grossi
Dipartimento di Chimica dell'Università
06100 Perugia, Italy

Advances in experimental techniques (in particular, laser and molecular beams, are promoting developments in the study of intramolecular vibrational relaxation and unimolecular decompositions, thus making it possible to test the statistical assumptions which underlie the current theories. An important goal also for practical purposes is to succeed in obtaining substantial deviations from statistical behavior, thus opening the experimental possibility for greater selectivity for the elementary processes of chemical kinetics and photochemistry.

An analysis of the specificity of unimolecular decompositions and of intramolecular vibrational relaxation can be developed by starting with simple models for coupled oscillators, for which different modes (and transitions between them) have been well characterized in this laboratory. The asymptotic techniques introduced, which are essentially semiclassical in nature, include: the introduction of a reaction radius as an adiabatic variable, the construction of adiabatic curves along which the system evolves in the zero approximation, the evaluation of nonadiabatic coupling terms, responsible of transitions between curves. The present investigation relates resonance lifetimes and unimolecular dissociation rates: reference problems are studied, for the inclusion of the nonadiabatic couplings which are responsible of the intramolecular redistribution of energy. Such a redistribution is localized to take place at orthogonal trajectories in the potential energy surface (ridges). Computational examples are presented.
The *a priori* calculation of collisional energy transfer in highly vibrationally excited molecules.

Kieran F. Lim and Robert G. Gilbert

Department of Theoretical Chemistry, University of Sydney, N.S.W. 2006, Australia.

Information on collisional energy transfer between a highly vibrationally excited molecule and a bath gas is important in the study of unimolecular and termolecular reactions. One wishes to find $P(E, E')$ (the probability that a molecule with initial internal energy $E_i = E'$, will have a final energy $E_f = E$, after collision with another molecule) or its first moment ($\langle \Delta E \rangle$, the average energy transferred per collision).

An *a priori* calculation of $P(E, E')$ has been carried out, based on the "biased random walk" model\(^1\). The mathematical derivation and all technical details for this model are given in Ref. 1, but can be summarized as follows.

The biased random walk model assumes that, during a collision, energy exchange between the internal degrees of freedom (of the excited molecule) and the other degrees of freedom is essentially random but for certain constraints. This implies that the time evolution of the internal energy distribution (of an ensemble of molecules) would be governed by a Smoluchowski equation. The required $P(E, E')$ will be the value of the internal energy distribution at the end of the collision, subject to the constraint that the energy distribution before the collision is a delta function centred on $E'$. Two important constraints on the internal energy must be considered. First, the activation and deactivation rates are related by detailed balance; the Smoluchowski equation must contain a term which arises from this microscopic reversibility. Second, total energy (of the two body system) must be conserved: this places a boundary condition on the
Smoluchowski equation.

The Smoluchowski equation can be solved with these constraints, yielding a specific form for \( P(E,E') \) for a given impact energy of the bath gas. This form of \( P(E,E') \) is then averaged over a Boltzmann distribution of impact energies to yield the final expression for \( P(E,E') \). This final expression is in terms of a single quantity, \( s^2 = D_e t_c \), where \( D_e \) is an "energy diffusion coefficient" and \( t_c \) is the average duration of a collision. The value of \( s^2 \) can be obtained from classical trajectory simulations by assuming that for any one trajectory, a generalised Langevin equation can be used to describe the flow of energy in and out of the molecule. The overall energy transfer, \( \langle A E \rangle \), or the downward average energy transfer, \( \langle A E_{\text{down}} \rangle \), can then be easily calculated from \( P(E,E') \).

The assumptions given above permit \( P(E,E') \) to be evaluated \( a \ priori \) from only a small number (say, 10-50) trajectories. This use of a dynamical assumption to give a vast reduction in the number of trajectories is completely analogous to fundamental assumptions in the molecular dynamics simulation of transport properties in liquids, where the linear response formulation yields transport coefficients from only a small sample of phase space. The only difference between this method and our treatment for collisional energy transfer in gases is that our linear response hypothesis is made in "energy space".

Calculations for the deactivation of excited azulene by various monatomic bath gases, employing realistic inter- and intra-molecular potentials show good agreement with the experimental results of Rossi et al.\(^2\) and Hippler et al.\(^3\). This suggests that the extended model may be reliably and economically used to calculate appropriate energy transfer quantities.

Moreover, a number of general trends seen in experimental results can be rationalised with the model.
Table I:

Average downward energy transfer values\(^4\) for the deactivation of azulene by three bath gases at 300 K. (All quantities in cm\(^{-1}\).)

<table>
<thead>
<tr>
<th></th>
<th>This work</th>
<th>Hippler et al.(^3)</th>
<th>Rossi et al.(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(&lt; \mathbf{E'} &gt;)</td>
<td>17 500 30 644</td>
<td>17 500 30 644</td>
<td>17 500 30 644</td>
</tr>
<tr>
<td>He</td>
<td>160 225</td>
<td>190 184</td>
<td>117 190</td>
</tr>
<tr>
<td>Ne</td>
<td>295 353</td>
<td>330 332</td>
<td>185 279</td>
</tr>
<tr>
<td>Ar</td>
<td>218 344</td>
<td>354 360</td>
<td>250 366</td>
</tr>
</tbody>
</table>

4) "Experimental" average downward energy transfers have been calculated from published data by an exponential \(P(E,E')\).
MULTIPHOTON IONIZATION STUDIES ON COLLISIONAL ENERGY TRANSFER AND UNIMOLECULAR REACTIONS OF EXCITED BENZENE DERIVATIVES.

H. G. Löhmannsröben, K. Luther, and K. Reihs

Institut für Physikalische Chemie der Universität Göttingen, Tammannstraße 6, D-3400 Göttingen, FRG

+ Institut für Physikalische und Theoretische Chemie der Universität Braunschweig, Hans-Sommer-Straße 12, D-3300 Braunschweig, FRG

Intramolecular reaction steps and energy transfer in collisions of highly excited molecules are observed by time-resolved resonant MPI.

Vibrationally highly excited molecules are prepared monoen-ergetically via laser excitation followed by a fast intramolecular step like an internal conversion or a dissociation. A detection scheme of selective ionization by kinetic control (SIKC) allows to follow the time evolution of the molecular population in a narrow section on the vibrational energy scale during the course of collisional deactivation. Thus information is gained on the average energy removal per collision and on changes in time of the energy distribution in the relaxing molecular manifold. Specific rate constants, \( k(E) \), of intramolecular reaction steps like intersystem crossings from vibrationally highly excited states are measured in direct pump and probe experiments.

Recent results from our studies on anilin, benzene, and alkylated benzenes will be presented.
IS PROPYLENE OXIDE CATION RADICAL
BEHAVING NON-ERGODICALLY IN ITS DISSOCIATION REACTIONS?

C. Lifshitz*, T. Peres*, M. Ohmichi*, I. Pri-Bar** and L. Radom***
*Department of Physical Chemistry
The Hebrew University of Jerusalem, Jerusalem, Israel
**Radiochemistry Department
Nuclear Research Centre – Negev, Beer Sheva, Israel
***Research School of Chemistry
The Australian National University, Canberra, Australia

Intramolecular energy redistribution in polyatomic molecules is a
topic of great current interest in chemical kinetics and dynamics. In-
tramolecular energy redistribution in polyatomic cations has been re-
viewed recently.\(^1\) It has been demonstrated that isomerization can lead
to nonrandom dissociation paths by channeling vibrational energy into a
limited number of degrees of freedom.

We have studied the unimolecular dissociation reaction of propylene
oxide cation-radical to acetyl cation plus methyl radical. We have em-
ployed carbon-13 labelling, tandem mass spectrometry techniques and ab
\(\textit{initio}\) calculations. Propylene oxide cation radical isomerizes to the
methoxymethyldiene radical cation, \(\text{CH}_3\text{-C-O-CH}_3^+\), which may either disso-
ci ate directly in a reaction possessing a high reverse activation ener-
y or in turn isomerize to acetone radical-cation, having an internal
energy of \(\approx 51\) kcal/mol, in large excess of the critical energy for dis-
sociation (see Figure 1).

The main question which we have addressed is, — if acetone ion is
indeed an intermediate, — is the newly formed methyl lost preferential-
ly to the preexisting methyl. This would mean non-ergodic dissociation
following isomerization — as has been observed previously for the enol
ion of acetone. In order to answer this question, we have measured the relative abundances for losses of $^{13}\text{CH}_3$ versus $^{12}\text{CH}_3$ from $\text{CH}_2-\text{CH}_2-^{13}\text{CH}_2^+$ as well as kinetic energy releases for these reactions and have calculated transition state energies along the potential energy profile. The possible roles of excited electronic states and isomeric ion structures such as $\text{CH}_3\text{OC}^+$ have also been explored.

Energy Selected Ion Chemistry by Photoelectron Photoion Coincidence and Laser Induced Dissociation

Tomas Baer, Thomas L. Bunn, Susan Olesik, and J.C. Morrow
Chemistry Department
University of North Carolina
Chapel Hill, NC 27514

ABSTRACT

Ions can be energy selected in photoionization experiments by detecting ions in coincidence with energy selected electrons. The electrons serve not only to identify the ions of interest, but also provide a start signal for measuring the ion time of flight (TOF). The ion TOF in turn yields information about the mass, and more interestingly, about the dissociation rate and kinetic energy released in the dissociation process. The derived microcanonical decay rate, \( k(E) \), can be easily compared to that predicted from the statistical theory of unimolecular decay (RRKM or QET).

Recent applications to be discussed include the dissociation of halogen atom loss from the dihalobenzenes ions. The measured rates, shown in Figure 1, are in the \( 10^{-10} \) to \( 10^{-11} \) s\(^{-1} \) range. However, extrapolation of these rates to the dissociation onset indicate that the ion lifetimes at the onset are in excess of 10 sec. The calculated rates of dissociation in conjunction with other thermochemical information are used to obtain C-X bond dissociation energies, which are listed in the Table. It is evident that the C-X bond energies in the mono- and di-halobenzenes are similar. However, the C-H bond energies are different.

![Dissociation rates and RRKM calculations](image)

**TABLE 1.** C-X and C-H Bond Energies in C\(_x\)H\(_y\)Cl\(_z\) Ions (kcal/mol)

<table>
<thead>
<tr>
<th>Ion</th>
<th>C-H</th>
<th>C-Cl</th>
<th>C-Br</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(_6)H(_6)</td>
<td>65.2 ( ^{1} )</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C(_6)H(_5)Cl(_2)</td>
<td>59.7 ( ^{2} )</td>
<td>74.8 ( ^{4} )</td>
<td>-</td>
</tr>
<tr>
<td>C(_6)H(_5)Br(_2)</td>
<td>59.4 ( ^{2} )</td>
<td>-</td>
<td>64.6 ( ^{6} )</td>
</tr>
<tr>
<td>C(_6)H(_5)Cl(_3)</td>
<td>-</td>
<td>77.2 ( ^{3} )</td>
<td>-</td>
</tr>
<tr>
<td>C(_6)H(_5)Br(_3)</td>
<td>-</td>
<td>-</td>
<td>64.6 ( ^{8} )</td>
</tr>
</tbody>
</table>
Previous photoelectron photoion coincidence (PEPICO) studies of isomeric systems have demonstrated that some of these ions isomerize to the lowest energy structure prior to dissociation. This is concluded on the basis of the similarity of the dissociation rate of the various isomers, even though they have different apparent activation energies. The heights of these barriers is not known, however. A new technique for probing such barriers has been developed by combining the energy selection capability of PEPICO with laser induced dissociation. Figure 2 shows the experimental set-up. Ions are prepared in the usual PEPICO manner, by photoionization using a vacuum UV cw light source and energy selected by collecting only zero energy electrons. Although ions are formed in a distribution of internal energy states, pulsing the laser only when a zero energy electron has been detected, insures that ions of a specific internal energy are photodissociated. Both the internal energy of the ion as well as the laser wavelength can be varied thereby making this a very versatile technique for the study of ion spectroscopy and dynamics.

The initial investigations have included the photodissociation of nitrobenzene ions (see Figure 3) and C$_4$H$_6$ ions. In the latter study, butadiene, 1-butyne, and 2-butyne ions have been photodissociated, and the results used in order to probe the ion structure as a function of the ion internal energy. Butadiene and butyne ions can be easily distinguished because the former ion has several accessible dissociative excited states that can be reached with the laser photon, where as the butyne ions have large energy gaps between the ground and excited states. However, when the butyne ions are prepared with sufficient internal energy to cause them to isomerize to the butadiene structure, they can be photodissociated. This onset for photodissociation is shown in Figure 4. This determination makes possible the construction of the energy diagram shown in Figure 5. Not surprising is the fact that the barriers for 1- and 2-butyne ions are the same, because the reaction involves just H atom transfer steps.
References


![Fig. 3. Examples of ion TOF distributions for three indicated VUV and laser energies (a) and (b) use VUV light only, while (c) includes a 2.1 eV laser photon.](image_url)

![Fig. 4. Photodissociation signal as a function of C\textsubscript{6}H\textsubscript{6} internal energy.](image_url)

![Fig. 5. Potential energy diagram derived from PEPICO-PD results.](image_url)
DIRECT VERSUS INDIRECT MICROSCOPIC MECHANISMS IN THE
Li+HF REACTION: AN ISOTOPIC AND ORIENTATIONAL STUDY

J.M. Alvariño, Departamento de Química Física, Facultad de
Química, Universidad de Salamanca, 37008 Salamanca, Spain,
F.J. Basterrechea, Departamento de Química Física, Facultad
de Ciencias, Universidad del País Vasco, Bilbao, Spain, and
A. Laganà, Dipartimento di Chimica dell' Università, Perugia,
Italy.

Introduction

In a previous paper /I: J.M. Alvariño et al., J. Mol.
Structure, 120, 187 (1985)/ we have reported a peculiar effect
of the incoming atom orientation for the reaction Li+HF(v=J=0)
LiF+H. By running batches of quasiclassical trajectories on the
CSCM potential energy surface /S. Carter and J.N. Murrell,
Molec. Phys., 41, 567 (1980)/ at different collision energies
we found, in fact, that reactive attacks onto the HF target
preferentially occur via approaches from the H side in spite of
the fact that the product molecule is LiF. Such an indirect
mechanism was tentatively interpreted in paper I in terms of
the vibrational excitation to be pumped into the HF ground
state molecule in order to allow the overcoming of the late
barrier. This mechanism should be influenced by changes in the
mass of the F partner in HF, and so we extended the investiga-
tion to the Li+XF(v, j=0) systems with X=M, H, 3H and 17H, v=0,
1 and 2, and collision energy of 15 kcal mol⁻¹. The dynamical
study was carried out by running batches of 200 trajectories
in three dimensions starting from a given value of the approach-
ing angle θ (called θ in paper I is the angle included between
Li and F distances from the centre of mass of HF and centered
Results and discussion

A study of the angular dependence of the total cross section led us to suspect that the nature of the indirect mechanism is not exclusively related (as suggested in paper I) to the amount of vibrational energy pumped into the target molecule, but it has to do with some other quantity depending on the mass of the F partner. Therefore in order to assess in more detail the nature of the indirect reactive mechanism, we have studied the evolution of the trajectory by following step by step the variation of the internuclear distances during the integration of the motion equations.

The most important finding of the present study was evidenced in this way. In fact, by looking at the Li+MuF system starting from $v=0$ and attack by the Mu side ($\theta=180$ degree), it was put in evidence that during the central part of the collision the MuF molecule can easily rotate so as to end up in a geometry with $\theta$ about 90 degree. In fact, at the beginning of the collision $r(LiF)$ equals $r(LiMu)+r(MuF)$ indicating that the initial collinear configuration is kept up. However, when $r(LiMu)$ decreases to about 2 \AA the MuF molecule rotates up to about $\theta=140$ degree. Then, after being reflected back to $\theta<90$ degree it ends up with an orientation of about 90 degree at which the curves $r(LiMu)$ and $(r^2(LiF)+r^2(MuF))^\frac{1}{2}$ cross, and Mu can be more easily expelled into the exit channel. This explains the high reactivity of this system: the very small mass of Mu leads to a very small reduced mass and, consequently, moment of inertia of MuF which in turn facilitates the rotation of the molecule up to the perpendicular configuration. For this geometry the barrier height is minimal and slightly above the vibrational energy content of $v=0$, so that it can be overcome. Therefore
at least for the Mu case, it can be concluded that an energy transfer from translational to the more effective (from the point of view of reaction) vibrational motion, as we speculated in paper I, is not the leading mechanism for reaction. The role of T-V transfer is, eventually, to supply an amount of energy of few kcal mol$^{-1}$ needed to reactants for having, at the saddle point, enough velocity parallel to the exit channel to end into it.

An extensive graphical research of this kind undertaken for all isotopomers, vibrational energy and angles of attack leads us to the following conclusions. The unexpected reactivity at the X end (as compared to the one at the F end) of XF when X=Mu or $^1$H and v=0 is essentially due to potential (dynamical) induced rotation of XF which brings the system into a perpendicular configuration where the vibrational energy defect is minimal and reaction can thus take place. The strong angular forces operating in this system are able to induce a considerable rotation of MuF or $^1$HF on Li attacks by the light end of the molecules, but the rotation is only modest when the heavy (F) end is attacked. On the other hand, rotation of the heavier molecules ($^3$HF, $^{10}$HF) is very difficult and reactivity in these cases is only appreciable when no rotation (v=2) or little rotation (v=1) is necessary.
A TRAJECTORY SURFACE-HOPPING STUDY OF Cl⁻ + H₂ REACTIVE COLLISIONS

Muriel SIZUN*, Eric A. GISLASON** and Gérard PARLANT***
* Laboratoire de Collisions Atomiques et Moléculaires, Bât 351,
** Laboratoire de Résonance Electronique et Ionique, Bât 350,
*** Université Paris-Sud 91405 Orsay Cedex France
** Department of Chemistry, University of Illinois at Chicago, Chicago
Illinois 60680, USA

The collision of Cl⁻ + H₂ produces different accessible channels indicated in table 1. Experiments on this system were conducted recently by Barat et al[1] in the relative energy range of 5.6 to 12 eV. They observe all the various channels, except those involving the Cl⁻ ion. Relative cross sections are measured and normalized to the total cross-section measurements of Huq [2]. The most remarkable feature of the experiment concerns the R and RD channels: products HCl were strongly peaked in the com frame near 50-60 deg, by contrast the HCl vibrational distributions were quite different in the two channels.

In our theoretical approach we want to obtain a semi-quantitative interpretation of the experimental results and a better understanding of the reaction dynamics. The first step is to construct potential energy surfaces (p.e.s.) for the ClH₂ system. So the DIM (Diatomics-in-Molecules) method is used in the zero-overlap approximation to obtain the two lowest p.e.s. of the system. The atomic basis set is restricted to the ground state of each neutral atom or atomic ion. The diabatic curves are introduced in the DIM matrix for all the diatomic fragments, neutral (HCl ¹l⁺, H, H₂ ¹l⁺) or negative resonance ion (HCl⁻ ²l⁺, the two H₂ ²l⁺ with their coupling and the two HCl⁻ ²l⁺ with their coupling given by the formula of Olson). From the DIM matrix (5x5) it is possible to extract the adiabatic p.e.s. of ClH₂ or the diabatic p.e.s. which are more useful to carry out trajectory calculations: on figure 1 are represented the diabatic p.e.s correlated to the configuration Cl⁻ + H + H (a) and the lowest of the four p.e.s. correlated to Cl⁻ + (H-H)⁻ (b), in the colinear geometry. The dashed curve shows the seam between the surfaces. For the neutral ClH₂ surface which is needed to describe detachment products, the LEPS surface of Persky [3] is used. The seam between the neutral surface and each diabatic ionic surface
is indicated on figure 1 by the dotted line.
The set of 3 surfaces is used to calculate the reaction dynamics with the "classical trajectory surface-hopping method". The calculations are performed as usual except when a trajectory on either ionic surface reaches a crossing with the neutral surface. In this case, we do not allow it to continue on the ionic surface, rather we assume that the electron is immediately ejected, and consequently the trajectory remains on the neutral surface until the collision ends.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1}
\caption{Figure 1}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2}
\caption{Figure 2}
\end{figure}
In this way the various detachment products such as HCl + H + e⁻ are obtained. Our procedure assumes that all electrons are ejected with zero energy. This agrees reasonably well with the experimental values (1) which lie in the range -0.2 ± 0.2 eV.

Five different sets of trajectories were run at E_{rel}=9.7 eV. The preexponential factor in the coupling between the 2 p.e.s. and the position in energy of the neutral surface relative to the ionic p.e.s. are treated as variable parameters. In each case the sum of all of the cross-sections is of the order of 2 Å². The small overall reactivity is due to the fact that all product channels are endothermic by at least 2.9 eV. Our best result are obtained when the neutral surface is raised by 0.2 eV.

The overall agreement between these values and the experiments of Barat et al (1) and Huq et al (2) is fairly good. The angular and energy distributions for the six product channels were determined for each of the 5 sets of calculations. It was found that the shape of a particular distribution was rather insensitive to the particular choice of potential parameters used in the calculation. All of the computed differential cross-sections agree well with experiments as do most of the internal energy distributions (See figure 2). The one exception is P(E_{int}) for the R channel which peaks at a much higher energy than the experimental distribution. Our calculations indicate that the dynamical model which appear to work the best to explain the R and RD channels results in the elastic stripping model.

QUASICLASSICAL TRAJECTORY STUDY OF XH$_2$ TYPE REACTIONS ON REALISTIC POTENTIAL ENERGY SURFACES

B. László, G. Lendvay and T. Béres
Central Research Institute for Chemistry, Hungarian Academy of Sciences, Budapest, Hungary.

The recently proposed BSBL (Bond-Strength-Bond-Length) method [1] proved to be successful in the estimation of rate coefficients and Arrhenius parameters for A+BC $\rightarrow$ AB+C type atom transfer reactions. The treatment defines a minimum energy path (MEP) as

$$ \exp(-2\beta_{AB}X_{AB}) + \exp(-2\beta_{BC}X_{BC}) = 1 $$

where $X_{ij} = R_{ij} - R_{ij}^0$ is the extension of the bond and $\beta_{ij}$ is the appropriate Morse parameter. The potential energy along the MEP is obtained in terms of variable $a = \exp(-2\beta_{AB}X_{AB})$ by

$$ V(a) = V_{BC} + (1-a)V_{BC} + aV_{AB} + A_{AC} a^{\beta_{AC}/\beta_{AB}} (1-a)^{\beta_{AC}/\beta_{BC}} $$

where the energies for AB and BC are given by the Morse functions

$$ V_{AB} = V_{AB}^0 [a - 2a^{1/2}] $$

and

$$ V_{BC} = V_{BC}^0 [(1-a)^2 - 2(1-a)^{1/2}] $$

respectively and $A_{AC}$ is a constant in the endgroup contribution term.

In this work we extended the BSBL treatment and made it suitable for the calculation of collinear potential energy surfaces (PES). Potential profiles perpendicular to the MEP were calculated from a Morse-type function in which the $\beta$ parameter was taken as

$$ \beta = a\beta_{AB} + (1-a)\beta_{BC} $$
The PES obtained by the described procedure has a triple-valued region which is normally of little importance at energies considered in trajectory calculations made for thermal rate coefficient determinations. In cases where this is not so, the deficiency can be mitigated by interpolation over the triple-valued region.

PES calculation and trajectory study was carried out for the series of X+H₂ (X=F,Cl,Br,I) reactions. As the PES is given in terms of variables a and b (where b is the least linear distance from the MEP in the X_AB - X_BC plane) and no explicit formulas exist for these variables beyond the MEP, the derivatives \( \frac{\partial V}{\partial X_{AB}} \) and \( \frac{\partial V}{\partial X_{BC}} \) were stored in a tabulation. Actual values for the forces were obtained from the data of the table by quadratic interpolation. In the trajectory calculation, the energy was conserved to 0.01%.

State-to all one dimensional rate coefficients were obtained for a vibrational level \( v \) from

\[
v_{k1D}(T) = (2\pi \nu kT)^{-1/2} \int_{0}^{\infty} \exp\left(-E_{rel}/kT\right) V_p(E_{rel})dE_{rel}
\]

where \( E_{rel} \) is the collisional energy. As an illustration we present one dimensional Arrhenius parameters for \( v = 0 \), together with some PES characteristics in the Table below:

<table>
<thead>
<tr>
<th>Reaction</th>
<th>V / kJ mol(^{-1})</th>
<th>R(_{NH})/Å(^{0})</th>
<th>R(_{HH})/Å(^{0})</th>
<th>E(_A)/kJ mol(^{-1})</th>
<th>log A</th>
</tr>
</thead>
<tbody>
<tr>
<td>F+H(_2)</td>
<td>13.59</td>
<td>1.40</td>
<td>0.77</td>
<td>11.46</td>
<td>4.89</td>
</tr>
<tr>
<td>Cl+H(_2)</td>
<td>38.17</td>
<td>1.38</td>
<td>1.03</td>
<td>14.30</td>
<td>4.80</td>
</tr>
<tr>
<td>Br+H(_2)</td>
<td>92.10</td>
<td>1.45</td>
<td>1.26</td>
<td>68.43</td>
<td>4.39</td>
</tr>
<tr>
<td>I+H(_2)</td>
<td>168.40</td>
<td>1.63</td>
<td>1.46</td>
<td>non-reactive trajectories only</td>
<td></td>
</tr>
</tbody>
</table>
Three-dimensional rate coefficients were obtained by a method [2] called "collinear QCT transmission coefficient correction to TST". In this method, dynamical information is introduced into TST through a collinear transmission coefficient calculated as the ratio of one dimensional QCT and TST rate coefficients:

\[ V_{1D}(T) = V_{QCT,1D}(T) / V_{TST,1D}(T) \]

Finally, the method which actually corresponds to a dynamical treatment for the collinear motion and a statistical treatment for all other degrees of freedom yields the corrected state-to-all TST rate coefficient:

\[ V_k(T) = V_{1D}(T) V_{TST,3D}(T) \]

Equilibrium rate coefficients were obtained by Boltzmann averaging of state-to-all rate coefficients.

Kinetic results calculated and non-Arrhenius behavior observed for the hydrogen atom transfer reactions X+H\(_2\) will be discussed.

Dynamics of Collision-Induced Dissociation

John E. Dove and M. E. Mandy
Department of Chemistry, University of Toronto,
Toronto, Ontario, Canada M5S 1A1

and
N. Sathyamurthy and T. Joseph
Department of Chemistry
Indian Institute of Technology,
Kanpur 208 016, India

Quasiclassical trajectory studies have been made of collision-induced dissociation in the atom-diatom systems H + H₂, He + H₂, and He + H₂⁺ over a wide range of initial translational, rotational, and vibrational energies. The dependence of the dynamics of the dissociation process on the initial energy distribution and on the interaction potential is examined. While there are substantial differences in the behavior of these three systems, in general collinear approach is disadvantageous for dissociation. A substantial contribution to the dissociation process comes from low impact parameter broadside collisions.
A DYNAMICAL INVESTIGATION OF THE Li + HCl REACTION

A. Lagana, E. Garcia, J.M. Alvarino, P. Palmieri

Dipartimento di Chimica, Universita' di Perugia (I)

Departamento de Quimica Fisica, Universidad de Salamanca (E)

Istituto di Chimica Fisica e Spettroscopia, Universita' di Bologna (I)

Crossed molecular beams measurements of reactive cross sections and product distributions for the reaction

\[ \text{Li} + \text{HCl} \rightarrow \text{LiCl} + \text{H} \]

have been reported in the literature.\(^1\) For this reaction, a DIM potential energy surface has been suggested by Zeiri and Shapiro/2/. This PES has a collinear transition state located in the entrance channel 11.3 kcal/mol above the reactants' asymptote. Collinear quantum calculations have shown that the barrier of the DIM PES is too large for allowing a rationalization of both the low threshold energy and the large reactive cross section obtained from the experiment and that the collinearity of its transition state is in contrast with the experimental product distribution/3/.

For these reasons, we decided to perform an accurate quantum calculation of the potential energy of the Li + HCl system/4/. At each value of the approaching angle(\(\theta\)) considered (\(\theta\) is defined as the LiClH angle) the potential energy was calculated for a matrix of 50 points. Additional values were calculated for geometries close to that of the
transition state.

As anticipated in ref./4/, in order to render the calculated potential energy values suitable for scattering calculations, we fitted the computed ab initio points using a Bond Order (BO) functional form/5/. A large fraction (80%) of the fitted points deviate less than 1 kcal/mol from the modified ab initio values. Larger deviations occur in the repulsive part of the BO1 surface which are of scarce relevance for dynamics. The overall rms deviation is 2.5 kcal/mol. On the interpolated surface it is possible to localize the transition state and to single out its geometry. For our system it corresponds to $\theta = 53^\circ$ and to LiCl and HCl internuclear distances of 2.30 Å and 1.55 Å respectively.

As already mentioned, experimental data of the Li + HCl reaction for reactants in the ground vibrational state and at a temperature of about 60 K, show that the LiCl product is mainly scattered sideways in the forward hemisphere with respect to the incoming Li atom/1/. The strongly bent geometry of the transition state given by our calculations is in agreement with these data. Also its almost half-way location along the minimum energy path agrees with the non-negligible translational energy dependence of the reactivity upon collision energy. On the contrary, the height of the transition state of the BO1 surface is of 11.4 kcal/mol (similar to the one of the ZS PES) and therefore still inadequate to explain experimental reactivity in terms
of classical trajectories.

Therefore, we decided to modify the height of the transition state to a value approximately corresponding to the lowest total energy at which the experiment gives reaction and to fit to the modified points a new HO surface. On this surface we have performed trajectory calculations. Our results show that, although the threshold energy slightly high, the dependence of the reactive cross section upon the collision energy is reasonable.

REFERENCES


THEORETICAL STUDY OF THE \( ^3P \) + \( \text{CS}_2 \) GAS PHASE REACTION. POTENTIAL ENERGY HYPERSONFACE.

a) Ramón Sandoval, Miguel González, Josep Nofill and Antonio Aguilar.

a) Departamento de Química Física.
b) Departamento de Química Orgánica.
Facultat de Química, Universitat de Barcelona.
Avda. Diagonal 647, 08028 Barcelona, Spain.

Abstract

The gas-phase reaction \( ^3P \) + \( \text{CS}_2 \) constitutes an important step in the mechanism of \( \text{CS}_2/O_2 \) chemical lasers/1/. This reaction has been widely studied experimentally, but not so theoretically. Three reaction channels have been identified for this system/2/:

\[
\begin{align*}
(1) & \quad \text{CS}(X^3\Sigma^+) + \text{SO}(X^3\Sigma^-) + 21-31 \text{ Kcal/mol} \\
(2) & \quad \text{OCS}(X^3\Sigma^+) + \text{S}(^3P) + 54 \text{ Kcal/mol} \\
(3) & \quad \text{S}_2(X^3\Sigma^+) + \text{CO}(X^3\Sigma^+) + 83 \text{ Kcal/mol}
\end{align*}
\]

with channel (1) being the most important one (80%).

In several crossed molecular beams experiments made until now, following only the main channel, a strong forward scattering in products (75%) has been found and a stripping mechanism has been concluded for collisional energies ranging 3.2-9.2 Kcal/mol. In addition, a considerable large fraction of the reaction energy is disposed into vibrational (26%) and rotational (40%) energies of \( \text{CS} \) and \( \text{SO} \) products/3,4/.

Scant attention has been given to theoretical interpretation of these reaction channels. Only collinear trajectories/3,5/ on several LARS-like hypersurfaces and a CNDO/II study/6/ on the lowest singlet potential energy hypersurface (PEH) have been performed about this interesting system.

In order to rationalize this bulk of information, we have carried out an extensive study of the ground triplet PEH by means of the MNDO/3 MRD atom-multiplet method. In the search of transition states (TS's) and intermediates along minimum energy reaction paths (MERP's), connecting reactants and products on the \( \text{OCS}_2 \) lowest triplet PEH, it was found that all planar structures belonged to the \( ^3\Sigma^+ \) PEH which correlated adiabatically reac-
tants with products from all three channels (under Cs symmetry). Several intermediates, wells on the PEI, and TS connecting them with each other have been located. These intermediates are connected with reactants and products along HERP's without significant TS's (barriers of potential arising only from endothermicities). It was observed that when an incoming oxygen atom approaches to $\text{CS}_2$ molecule, firstly a cis or trans planar OSCS intermediate was formed which can dissociate to $\text{CS} + \text{SO}$ or evolve to another intermediates which originate the products of reaction channels (2) and (3). These intermediates allow to explain better the vibrational and rotational energy distributions into CS and SO products with regard to a simple HERP (only with a TS between reactants and products).

On the other hand, the short lifetimes estimated by the RRK model for the possible collision complexes are even compatible with the stripping mechanism of channel (1). Furthermore, these short lifetimes and the difficult O-migration to the carbon atom across sinuous HERP's which originates products of channels (2) and (3), seem to indicate that channel (1) will have a greater extent, as can be seen experimentally. In fact, channel (1) only implies one new bond formation and one bond breaking, while channels (2) and (3) involve many more new bond formations and breakings.

A dynamical study/7/ however, would be necessary in order to account quantitatively for the different branching ratios of these three channels and other interesting dynamical features.

References

/7/ R.Sayós, H.González and A.Aguilar, In progress.
MOLECULAR BEAMS STUDIES OF ATOM-MOLECULE INTERACTIONS: THE ADIABATIC ROUTE FROM SCATTERING INFORMATION TO ANISOTROPIC POTENTIALS

V. Aquilanti, L. Beneventi, G. Grossi and F. Vecchiocattivi
Dipartimento di Chimica dell’Università
06100 Perugia, Italy

Detailed experimental information is being accumulated in our laboratory on scattering properties of atoms by diatomic molecules. This information, which includes absolute integral cross sections for scattering of atomic beams with magnetic analysis, and differential cross sections by crossed atomic and molecular beams, requires an accurate theoretical inversion scheme for the extraction of properties of the interaction potentials. A technique developed for this purpose is presented: it is based on the construction of adiabatic states which describe the systems in their evolution from a given molecular rotational state to the inner interaction region where the role of potential anisotropy is strongest; nonadiabatic coupling terms are also computed and their localization in terms of features of the potential energy surface is assessed. When coupling is introduced, the technique is essentially exact and tends to the Infinite Order Sudden Approximation when the latter is valid, but allows to very simply go beyond when the rotational structure of the target is important. In particular, it is possible by this technique to take into account the effect on the glory structure due to the rotational temperature of the molecule; such an effect, which has been well documented by experiments in this laboratory, cannot be dealt with by a simpler approach such as the IOS.
REACTIVE COLLISION OF O + H₂ PRODUCED WITH EXCITED STATES IN A CROSSED BEAM EXPERIMENT
A. Lebdhdt, J. Marx, F. Aguillon, and R. Campargue

Laboratoire des Jets Moléculaires
Département de Physico-Chimie
Centre d’Études Nucléaires de Saclay, 91191 Gif-sur-Yvette, France

The investigation of chemically reacting systems, with excited state channels, is of fundamental interest in the dynamics of molecular collisions\(^1\). In this work, the small triatomic system \( O + H₂ \) is investigated in the following channels which are important in the combustion of hydrogen and also in the upper atmosphere chemistry:

\[
\begin{align*}
O(^3P) + H₂(X^1Σ_g^+, ν) &\rightarrow OH(X^2Π, ν') + H \quad (1) \\
O(^1D) + H₂(X^1Σ_g^+, ν) &\rightarrow OH(X^2Π, ν') + H \quad (2) \\
&\rightarrow OH(A^2Σ^+, ν') + H \quad (3)
\end{align*}
\]

Reaction (2) is exothermic\(^2\), while the other reactions are possible only if a minimum amount of energy is available in the entrance channel because of a small activation barrier for reaction (1), or an endo-ergicity\(^3\) which is for instance 2.2 eV for reaction (3) produced with \( H₂ (ν = 0) \). The missing energy can be obtained by vibrationally exciting \( H₂ \) at least up to \( ν = 1 \) for reaction (1) yielding \( OH \) with only rovibrational excitation and up to \( ν = 5 \) for reaction (3) yielding \( OH \) with electronic excitation.

The reactive scattering experiment is performed by crossing \( O \) and \( H₂ \) molecular beams skimmed from free jet zones of silence\(^3\). The dissociation of \( O₂ \) is produced by radiofrequency discharge (22 MHz) in the reservoir of a quartz nozzle, with an efficiency of about 50 or 90\%, in He or Ar seeded mixtures, respectively\(^4,5\). Thus, the atomic oxygen beam is generated with
at least two electronic states $O(^{1}D, ^{3}P)$.

Reaction (2) is produced selectively thanks to the barrier encountered for reaction (1). The internal energy distribution of the OH emitted in the direction of the O beam axis, is probed by the time-of-flight technique with a good vibrational resolution. The results (Fig. 1) derived from the TOF spectra, show that the OH($X^{2}Π$, $v'$) product are vibrationally excited up to $v' = 4$, with minimum populations on $v' = 1$ or 2.

Also, reaction (3) is produced when $H_2$ is excited vibrationally up to $v > 5$, by means of a low energy electron beam (< 100 eV) operated coaxially to the $H_2$ molecular beam. Thus, the vibrational levels of the ground state $H_2(X^{1}Σ_g^+, v')$ are populated by radiative decay from singlet electronic states excited by electron impact$^6$. In these conditions, reaction (3) is observed by analyzing the spontaneous fluorescence signal emitted from OH($A^2Σ^+$) in the reactive collision zone. The experimental results are compared to a calculated statistical distribution (Fig. 2) taking into account the predicted populations of the vibrational levels of $H_2$ and only the spin $s = + \frac{1}{2}$ of OH.

Due to the difficulty of producing $O(^{1}D)$ alone, reaction (1) has not yet been observed in this experiment.

References
Fig. 1- Typical velocity spectrum derived from TOF measurements, in the axis of the O beam, for OH obtained in reaction (2) with H₂(v=0). The arrows show the theoretical velocities corresponding to the vibrational levels v' = 0 to 4 of OH(X²Π). Also the velocity of O(X²Π) is indicated (4).

Fig. 2- Fluorescence spectrum of the (0-0) band for the A²Σ⁺ - X²Π transition of OH obtained in reaction (3), compared to a theoretical spectrum (dashed line) derived from a statistical model with only the v's spin component of OH.
ROTATIONAL EXCITATION OF THE MgCl REACTION PRODUCT IN THE HARPOONING Mg \((^1S) + Cl_2\) REACTION.

Bernard BOURGUIGNON, Mohammed-All GARGOURA, June McCOMBIE, Joëlle ROSTAS and Guy TAIEB.

Laboratoire de Photophysique Moléculaire du C.N.R.S. *
Université de Paris-Sud, bâtiment 213, 91405 Orsay-Cédex, France.

Harpooning reactions of alkali and alkaline-earth atoms with halogens are known to lead to high vibrational excitation of the reaction product. In the reactions that were experimentally studied, electron jump from the M metal atom to the \(X_2\) molecule occurs at "large" internuclear distance, with respect to the equilibrium distance bondlength of the MX molecule. The dynamics of these reactions was extensively studied in the case of the alkali: although the reaction product may be electronically excited in the alkaline-earth case, experimental data (MX ro-vibrational excitation) show that the reaction dynamics is similar for alkali and alkaline-earth 1. The \(X^-\) ion is formed by the vertical \(X_2 + e^- \rightarrow X^-\) transition, on the repulsive part of the \(X^-\) potential curve. The strong electric field of the \(M^+\) ion causes fast dissociation of \(X^-\), where \(X^-\) takes most of the kinetic energy. The MX bond is formed by electrostatic attraction of the \(M^+\) and \(X^-\) ions, which allows the \(X^-\) kinetic energy to be transferred into MX vibrational excitation 2.

We present here a LIF study of the Mg \((^1S) + Cl_2\) system. The \(A^2\Pi - X^2E^+ (\Delta v=0)\) bands of nascent MgCl were recorded at 0.2 cm\(^{-1}\) resolution in a beam gas apparatus, at Cl\(_2\) scattering gas pressure of 5 \(10^{-4}\) Torr. The experimental spectrum was compared with simulated spectra, assuming a Boltzmann rotational population distribution. We have obtained a rotational temperature as high as 6000 \(\pm\) 2000 K (56 % of the exothermicity \(\Delta E\) of the reaction). Spectrum congestion precludes more detailed analysis of the rotational population at the present resolution. The MgCl vibrational population distribution is not Boltzmann, and the vibrational excitation is only 0.13 eV (14 % the exothermicity of the reaction). Therefore the energy disposal of the Mg \((^1S) + Cl_2\)

* Laboratoire associé à l'Université de Paris-Sud

and: U.E.R. Claude Bernard, Université de Rennes I, 35043 RENNES-CEDEX
system contrasts strongly with that of previously reported systems in which the reaction proceeds through the harpooning mechanism. For example, in the Ca \((^1S) + Cl_2\) system, 70% of the exothermicity goes into CaCl vibration and 10% \((2000 \text{ K})\) in CaCl rotation.

For the Mg \((^1S) + Cl_2\) system, the distance at which the electron jump occurs was estimated to be 2.7 \(\AA\), which is close to the MgCl equilibrium bond length \((2.20 \text{ \AA})\). The corresponding distances for Ca + Cl2 are 3.7 and 2.44 \(\AA\), respectively. Consequently, the MgCl vibration is restrained in the reaction intermediate. The energy is released through dissociation of the MgCl2 or CaCl2 intermediate along the Cl-Cl bond, providing a large impulse on the Cl- ion. This is illustrated on figure 2, where the diabatic ionic potential energy surface (PES) is represented in \(C_{av}\) geometry. Entrance on the surface occurs at point 2 for the Ca + Cl2 system. It is clear that the reaction exergicity is preferentially channelled into CaCl vibration, in order to attain the equilibrium CaCl bond length (figure 3a). The Mg + Cl2 system enters on the surface at point 3 and goes directly into the exit channel. There is no possibility of further stabilisation of the MgCl molecule along the \(r_{\text{Mg-Cl}}\).
coordinate, and the evolution of the system looks like a dissociation of $\text{MgCl}_2$ along the $R_{\text{Cl-Cl}}$ coordinate, where the affect on the $R_{\text{MgCl}}$ distance is no greater than the difference between the bondlength in the diatomic and the triatomic molecules. In a simple mechanical picture where $\text{MgCl}$ is considered as a rigid rod, the $\text{Cl}^-$ ion impulse results in rotational excitation of $\text{MgCl}$, equal to $(m_{\text{Mg}} / m_{\text{MgCl}}) \Delta E = 40 \% \Delta E$ (figure 3b).

In conclusion, the harpooning mechanism provides an explanation for the change from vibrational to rotational excitation of the reaction product from Ca to Mg. The key factor to determine whether rotation or vibration is most excited is the electron jump distance. A more detailed analysis of the (0-0) rotational population, based on higher resolution spectra, is in progress. Reactions of other halogen molecules with Mg are also being investigated.

References:
A \((^2\Sigma^+)^\) PRODUCTION BY 193 nm PHOTOLYSIS OF NITROUS ACID

D. SOLGAU, F. LAHMANI
Laboratoire de Photophysique Moléculaire
Bât. 213 - Université de Paris-Sud
91405 - ORSAY Cedex - France
E. HONTZOPoulos, C. POTAKIS
Research Center of Crete
HERAKLION, (Greece).

The vibrational and rotational state distributions of the OH excited \(A^2\Sigma^+\) fragment produced by photodissociation of nitrous acid (HONO) excited at 193 nm have been investigated. The fluorescence spectrum of the OH \(A^2\Sigma^+\) fragment shows that the \(v' = 0, 1, 2\) levels are formed and the relative population has been found to be 1/0.13/0.017. The OH \(A^2\Sigma^+\) \((v' = 0)\) fragment exhibits a non-Boltzmann rotational distribution peaking at \(N' = 12\) and levels up to \(N' \approx 20\) are populated.

From the linear intensity dependence of the OH A- signal and its time evolution, a single photon dissociation process of HONO seems to be the most probable mechanism and the results show that the most of the excess energy available in the reaction \((\sim 3000 \text{ cm}^{-1})\) is channelled into the internal degrees of freedom of the OH A fragment. Population of rotational levels above the limit imposed by energy conservation may result from the excitation of parent HONO molecule which possesses substantial thermal energy.
U.V. Photoexcitation of rovibrationally excited NO.

J. DESON, C. LALO, F. LEHPEREUR, J. MASANET, J. TARDIEU de MALEISSYE.
C.N.R.S UA 40870 - Laboratoire de Chimie Générale -
Université P. et M. Curie - Tour 55 - 4 Place Jussieu
75005 PARIS - FRANCE

Absorption cross sections in the U.V. range of small molecules can be increased by modifying the rovibrational excitation of initial state.

In the experiment reported here, gas heating by a C.W. CO₂ laser allows the Boltzmann energy distribution in rovibrational levels of the ground state to be shifted toward higher levels.

Electronic transitions from these high rovibrational levels of the ground state molecule to excited states (dissociative or not) can then be more readily induced by U.V. absorption of the radiation at 193 nm from an ArF laser. The formation of these excited states and of excited photofragments can be observed through their emissions in the visible or near U.V.

The experimental setup allowing this double laser excitation I.R. – U.V. is described and some results are presented concerning the photoexcitation at 193 nm of rotationally excited NO.

Experimental.

The I.R. excitation is done with a continuous wave multimode CO₂ laser (Cilas 260) which is grating tunable between 9 and 11 μm with a maximum output power of 160 watts at 10.6 μm.

The U.V. excitation is done with an excimer laser Sopra delivering pulses of 140 mJ at 193 nm (ArF) and 25 ns width at 2 Hz. Both radiations are driven into a stainlesssteel cell fitted with Cl₄Na and MgF₂ windows; luminescences in visible and near U.V. are observed using quartz optics.

Time resolved spectral analysis is carried out by a Commodore CBM 4032 computer monitoring lasers triggering, monochromator Jobin et Yvon scanning and photocounting system.
U.V. absorption of rotationally excited.

The spectroscopic analysis of the NO fluorescence induced by laser excitation at 193 nm shows that rotational levels of three excited electronic states are strongly mixed (1). It appears that at this wavelength the preparation of NO (A, \( v' = 3 \)) can be performed quasi resonantly from high rotational levels of the NO (X, \( v'' = 0, J'' = 50,5 \)).

At room temperature the population of rotationally excited NO with \( J'' \sim 50,5 \) is about \( 10^6 \) times smaller than \( J'' = 28,5 \) with an energy gap between NO (X, \( v'' = 0 \)) \( J'' = 28,5 \) and \( J'' = 50,5 \) close to 3000 cm\(^{-1}\).

Gas heating by an I.R. laser excitation should allow to modify the Boltzmann energy distribution to the benefit of these higher rovibrational levels.

NO is not an absorber of the CO\(_2\) laser radiation. But this one operated at the P\(_{20}\) line at 10,595 \( \mu m \) is absorbed by SF\(_6\) which acts as a photosensitiser (2) in irradiated SF\(_6\)-NO mixtures. Equimolecular mixtures of SF\(_6\)-NO have been irradiated at 0,7 mbar total pressures by the two laser beams; an important increase of the signal corresponding to the emission from NO(3, \( v' = 7 \)) has been observed. Moreover a spectroscopic analysis shows that this emission is red shifted. An energy gap close to 600 cm\(^{-1}\) has been evaluated. More SF\(_6\) must be added to the gaseous mixtures in order to get a higher energy gap.

References.

(1) Shibuya K., Stuhl F.

(2) Tardieu de Maleissye J., Lempereur F., Lalo C., Masanet J.
193 nm PHOTOLYSIS OF AMMONIA:
THE INTERMEDIATE IN THE 2-PHOTON FORMATION OF NH(A \(^3\Pi\))

R. D. Kenner, F. Rohrer, R. Browarzik, A. Kaes and F. Stuhl
Physikalische Chemie I, Ruhr-Universität Bochum
D-4630 Bochum 1, Federal Republic of Germany

Recent results from this laboratory\(^1\) have shown that the mechanism for production of NH(A \(^3\Pi\)) in the 193 nm photolysis of ammonia is secondary photolysis of an intermediate species.

\[
\begin{align*}
\text{NH}_3 + h\nu(193) & \rightarrow \text{intermediate} + \text{products} & (1) \\
\text{intermediate} + h\nu(193) & \rightarrow \text{NH}(A \^{3}\Pi) + \text{products} & (2)
\end{align*}
\]

It was shown at that time that the intermediate species had a lifetime greater than 10 µs. Consideration of the known photochemistry of ammonia (taking into account the energy restriction in reaction 2) indicates that this intermediate species must be either NH\(_2\)(A) or internally excited NH\(_2\)(X). It was previously shown\(^2\) that both these species are produced in the 193 nm photolysis of NH\(_3\).

We have measured lifetimes for the intermediates in the photolyses of NH\(_3\) and ND\(_3\) using two ArF (193 nm) excimer lasers in pump-probe experiments. The measured quenching rate constants for each of the parent molecules and for several added gases are shown in columns 2 and 3 of Table I. Note the close similarity of the results for both the protonated and deuterated species. In addition, we have obtained the zero pressure lifetimes by extrapolation of plots of the reciprocal lifetime as a function of the argon pressure at constant concentration of the parent molecules. The derived values are 250 and 600 µs for the protonated and deuterated species respectively. Both these values have been corrected for diffusion and quenching by the residual concentration of the parent molecules.
TABLE I: Summary of Measured Quenching Rate Constants

<table>
<thead>
<tr>
<th>Quenching gas</th>
<th>Intermediates from NH₃</th>
<th>NH₂(A)₁</th>
<th>NH₂(A)₁</th>
<th>NH₂(A)₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₃</td>
<td>110</td>
<td>190</td>
<td>---</td>
<td>500 a</td>
</tr>
<tr>
<td>ND₃</td>
<td>---</td>
<td>115</td>
<td>180</td>
<td>---</td>
</tr>
<tr>
<td>Ar</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>H₂</td>
<td>10</td>
<td>14</td>
<td>14</td>
<td>30</td>
</tr>
<tr>
<td>O₂</td>
<td>7</td>
<td>6</td>
<td>---</td>
<td>12</td>
</tr>
<tr>
<td>N₂</td>
<td>12</td>
<td>---</td>
<td>7</td>
<td>---</td>
</tr>
<tr>
<td>He</td>
<td>2</td>
<td>---</td>
<td>3</td>
<td>---</td>
</tr>
</tbody>
</table>

All values are given in units of 10⁻¹² cm³ s⁻¹.
Entries marked --- were not measured.
aValue from reference 2.

Since the NH₂(A) formed in the first photolysis step fluoresces, its kinetic properties can be easily measured and directly compared with those reported above. As has been shown previously², this fluorescence shows a multi-exponential decay. We have investigated the species monitored by the faster decaying component of the NH₂(A-X) emission (labeled NH₂(A)₁ in Table I) and find that it shows very different quenching behaviour than the corresponding intermediate (compare columns 6 and 2 of Table I). This "short-lived" component of the NH₂(A-X) fluorescence has been attributed to emission from "pure" NH₂(A) levels². Based on our results these levels cannot be the intermediate species in reactions 1 and 2 above.

On the other hand, for both NH₃ and ND₃, the species characterized by the "long-lived" component of the fluorescence (labeled NH₂(A)₁ and NH₂(A)₂ respectively in Table I) does appear kinetically similar to the intermediate (compare columns 2 and 3 to 4 and 5 in Table I). The differences in the measured results are, however, outside the combined experimental uncertainties. To study this long-lived component of the NH₂(A-X) fluorescence further we have recorded emission spectra using a
delayed gate (10-160 μs) to minimize the contribution from the fast decaying component. In the case of NH₃, the delayed spectrum seems to be dominated by emission from the NH₂(A)(0,ν₂=0)Σ states with ν₂ = 5 and 3 (ν₂ = 1 lies outside the sensitivity range of our photomultiplier). The "long-lived" component of the NH₂(A-X) fluorescence has been attributed to emission from levels of NH₂(A) which are weakly coupled to high levels of the ground state². If this is true, the emission would be a monitor for a particular set of states in the ensemble of energetic ground state NH₂ molecules formed in the first photolysis step. The NH(A-X) fluorescence produced in the second photolysis step could be a monitor for a somewhat different set of these states. In view of the similarity observed in these experiments between the kinetic properties of the "long-lived" component of the NH₂(A-X) emission and those of the intermediate species, we propose that the intermediate species in the production of NH(A 3Π) in the 193 nm photolysis of NH₃ are highly excited levels of the NH₂(X) state (with a similar conclusion for ND₃).

PHOTODISSOCIATION OF MOLECULAR BEAMS OF CHLORINATED BENZENE DERIVATIVES

Teijiro ICHIMURA, Yuji MORI, Hisanori SHINOHARA* and Nobuyuki NISHI*

Department of Chemistry, Tokyo Institute of Technology, Ohokayama, Meguro-ku, Tokyo 152, Japan
*Institute for Molecular Science, Myodaiji, Okazaki 444, Japan

Molecular beams of chlorobenzene, isomers of o-, m-, and p-chlorotoluene, dichlorobenzenes and pentafluorochlorobenzene were photodissociated using an excimer laser at 193 or 248 nm to measure the time-of-flight distributions of fragments (Cl, m/e=35) to investigate the primary processes and the photodissociation dynamics.

A supersonic molecular beam is irradiated by 193 nm ArF or 248 nm KrF excimer laser pulses (50000 shots) at a frequency of 55 Hz. The time-of-flight (TOF) spectrum is generated by synchronously gating a multichannel scaler with the laser firing pulse and detecting photofragments by a quadrupole mass filter (Q-mass) as a function of time after the laser pulse. The Q-mass, operating at unit mass resolution, is separated from the reaction chamber and pumped differentially by a turbo molecular pump and an ion pump. The TOF spectrum is then converted to a center-of-mass total translational energy distribution (P(E_T)) by using a suitable Jacobian factor after subtracting the drift time in the Q-mass tube. The flight path was 16 cm and the time resolution was 1 μs. Low energy fragments than 3 kcal/mol seems to be distorted since the detector axis is perpendicular to the molecular beam axis.

For example, fig. 1 shows the TOF signal of Cl at m/e = 35 for the photolysis of p-ClC_6H_4Cl molecular beams at 193 nm. The total translational energy distribution, P(E_T), of photofragments in fig. 2 has three peaks at about 3, 13 and 30 kcal/mol. The energy difference
between each two peaks of distributions is far beyond the spin-orbit splitting between \( \text{Cl}(2P_{3/2}) \) and \( \text{Cl}^*(2P_{1/2}) \), about 2.5 kcal/mol. Thus, the fragment translational energy distributions should be assigned to the difference in dissociation processes.

The broad distribution with the peak \( E_T \) value of \( \sim 3 \) kcal/mol in fig. 2 can be represented by a Maxwell-Boltzmann function (\( P(E_T) = E_T^{1/2} \exp(-E_T/kT) \)) and higher energy distributions may be explained by a Gaussian function (\( P(t) = t^3 (t^2/t_c^2 + c)^{1/2} \exp(-(t-t_0)^2/\Delta^2) \)). Here the apparatus shape factor and the width originated in the narrow vibrational distribution around the central state 0 were considered.

The fast photofragment energy distribution \( E_T = 30 \) kcal/mol may be compared to those of photodissociation of the C-Cl bond in alkyl chlorides, which are excited into the continuum of a repulsive state by the \( (\sigma^*, \pi) \) transition and immediately undergo direct photodissociation. The \( E_T \) value of about 30 kcal/mol observed for chlorobenzene and chlorotoluenes may be explained by a similar mechanism. This fast fragment was not observed for pentafluorochlorobenzene. This is due to the effect of fluorination to reduce the kinetic energy of fragments.

Two other lower energy components in \( P(E_T) \) observed in fig. 2 should indicate the occurrence of slow dissociation process in the photolysis of p-dichlorobenzene at 193 nm. The broad distribution with peak \( E_T \) value of 13 kcal/mol in fig. 2 cannot be represented by a Maxwell-Boltzmann distribution. Accordingly the most probable exit state to give the slower photofragments may be the highly vibrationally excited triplet state, presumably the \( (\pi^*, \pi) \) transition, generated by a fast intersystem crossing from the initial excited singlet state.

The distribution with the smallest peak \( E_T \) value of around
3 kcal/mol in fig. 2 may be represented by a Maxwell-Boltzmann distribution. The photodecomposition process to give the statistical distribution should occur after thermal randomization of the excess energy. Thus the dissociation process seems to occur from vibrationally excited $S_0$ state to give vibrationally hot chlorophenyl radicals.

Some results obtained in this work are summarized in Table 1.


<table>
<thead>
<tr>
<th>Parent molecule</th>
<th>$D_0$(C-Cl) (kcal/mol)</th>
<th>$E_{av}$ (kcal/mol)</th>
<th>$E_T$ (kcal/mol)</th>
<th>Most probable exit state</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_6H_5$-Cl</td>
<td>97</td>
<td>52</td>
<td>5.0</td>
<td>$S_0^<em>$ + $S_3(n^</em>, \pi)$</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$T^<em>$ + $S_3(n^</em>, \pi)$</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$S(\sigma^*, n)$</td>
<td>0.27</td>
</tr>
<tr>
<td>p-Cl$\text{-}C_6H_4$-Cl</td>
<td>97</td>
<td>52</td>
<td>4.0</td>
<td>$S_0^<em>$ + $S_3(n^</em>, \pi)$</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$T^<em>$ + $S_3(n^</em>, \pi)$</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$S(\sigma^*, n)$</td>
<td>0.23</td>
</tr>
<tr>
<td>p-Cl$\text{-}C_6H_4$-Cl</td>
<td>97</td>
<td>52</td>
<td>5.0</td>
<td>$S_0^<em>$ + $S_3(n^</em>, \pi)$</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$T^<em>$ + $S_3(n^</em>, \pi)$</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$S(\sigma^*, n)$</td>
<td>0.26</td>
</tr>
<tr>
<td>$C_6F_5$-Cl</td>
<td>97</td>
<td>97</td>
<td>6.5</td>
<td>$S_0^<em>$ + $S_2(n^</em>, \pi)$</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$T^<em>$ + $S_2(n^</em>, \pi)$</td>
<td>0.14</td>
</tr>
<tr>
<td>$C_6H_5$-Cl</td>
<td>97</td>
<td>19</td>
<td>3.8</td>
<td>$S_0^<em>$ + $S_1(n^</em>, \pi)$</td>
<td>0.64</td>
</tr>
<tr>
<td>(248 nm Exc.)</td>
<td></td>
<td></td>
<td></td>
<td>$T^<em>$ + $S_1(n^</em>, \pi)$</td>
<td>0.36</td>
</tr>
</tbody>
</table>
SINGLE- AND TWO-PHOTON DISSOCIATION OF CCIF$_2$NO IN THE VISIBLE

J.A. Dyet, M.R.S. McCoustra and J. Pfab
Department of Chemistry, Heriot-Watt University,
Edinburgh, EH14 4AS, Scotland.

The electronic spectroscopy, photophysics and photodissociation dynamics of chlorodifluoronitrosomethane(CCIF$_2$NO) in the 550-710 nm region have been studied both at 300K and in a nozzle-cooled jet. Fluorescence excitation spectra of the $\tilde{X}(^1A''') + \tilde{X}(^1A')(n,v^*)$ transition have been recorded in the 670 to 710 nm region and partially assigned to obtain information on the geometry changes and potential functions associated with the transition. From time resolved measurements of jet-cooled CCIF$_2$NO we have obtained the non-radiative decay rates of most well defined vibronic levels active in the fluorescence excitation spectrum.

Detailed information on the electronic, vibrational and rotational population distributions of the nascent NO ground state fragment has been obtained using pulsed dye laser photolysis and delayed two-photon LIF probing of NO. Photolysis at 300K in the range 560 to 690 nm produces predominantly NO(v=0). The proportion of nascent NO(v=1) is negligible but increases towards short wavelength where a competing two-photon dissociation becomes important leading to a non-linear increase of the NO yield with photolysis pulse power. The rotational population distributions of the nascent NO conform well to a statistical model.

State-selective photolysis of jet-cooled CCIF$_2$NO has been performed at a number of narrow features in the fluorescence
excitation spectrum of the cold parent. Fig. 1 shows a two-photon LIF spectrum of NO(v=0) from the state-selective photolysis of cold CClF₂NO at 646.6 nm as an example. Competition between molecular fluorescence and photodissociation occurs from the electronic origin at 14,187 cm⁻¹ up to roughly 15,000 cm⁻¹ where fluorescence becomes weak due to rapid dissociation. An uncorrected NO photofragment yield spectrum is displayed in Fig. 2. Such spectra have been obtained by monitoring the production of NO(v=0) by two-photon LIF with a fixed probe wavelength while scanning the photolysis laser through the absorption of the cold parent.

The variation of the delay between the dissociation and probe laser pulses provided the appearance times of the NO fragment for several vibronic levels of the $\tilde{X}$-state including the origin of the system. No pronounced state-specific effects have been observed indicating that CCl₂ClNO undergoes relatively slow predissociation with energy randomisation preceding the separation of the fragments.
HgBr(B + X) FLUORESCENCE EMISSION INDUCED BY KrF LASER
MULTIPHOTON DISSOCIATION OF HgBr₂

P. Papagiannakopoulou* and D. Zevgolis**
Research Center of Crete, Institute of Electronic
Structure and Laser, and University of Crete,
Heraklion, Crete, Greece

The UV multiphoton excitation and dissociation of small molecules in
the gas phase with an excimer laser has been an adequate technique for
generation of electronically excited free radicals [1]. In this work we
studied the KrF laser (248 nm) multiphoton excitation and dissociation of
HgBr₂ vapors, and the resulting fluorescence emission of electronically
excited HgBr radicals. This strong emission in the green, corresponds to
the B²Σ→X²Σ transition of HgBr radicals, and provides a good chance of
achieving laser action at 502 nm, with great propagation in air and sea
water.

The photolysis experiments of HgBr₂ vapors performed with a KrF
excimer laser and with a setup described previously [2]. For an unfocused
laser beam with intensity I=30 MW/cm² and a HgBr₂ vapor pressure about
0.1 torr strong fluorescence emission was observed in the visible region
460-502 nm [3]. Figure 1. This emission band presents discrete vibrational
structure and was identified as the B²Σ→X²Σ transition of HgBr radicals.
Its vibrational analysis showed good resolution for the v'=0 → v'=17-22

* Also Department of Chemistry, University of Crete
**Also Department of Physics, University of Crete.
transitions, and the obtained molecular constants are in good agreement with the literature. Furthermore, the fluorescence intensity at 502 nm (ν=0 – ν'=2 transition) was found to depend on the laser intensity, with a power law dependence two. This indicates that the fluorescing HgBr radical has been formed by a two-photon excitation process of the parent HgBr₂ molecule.

The KrF laser photodissociation of HgBr₂ molecules proceeds via two different channels. In the first channel the HgBr₂ molecules are excited by a single KrF photon absorption to a ¹H₁u state, which correlates with a repulsive state of HgBr, and therefore undergo atomization,

$$\text{HgBr}_2(\text{X}^1\text{h}_\text{ν}) \xrightarrow{hv} \text{HgBr}_2(1^1\text{h}_\text{ν}) \rightarrow \text{Hg}(^1\text{S}) + 2\text{Br}(^2\text{P})$$

In the second channel the HgBr₂ molecules are excited to a higher electronic state with the absorption of a second KrF photon and subsequently are decomposed to electronically excited HgBr(2Σ) radicals and Br(2P) atoms

$$\text{HgBr}_2(\text{X}^1\text{I}_\text{ν}) \xrightarrow{hv} \text{HgBr}_2^{**} \rightarrow \text{HgBr}(2^2\Sigma) + \text{Br}(2^2\text{P})$$

Therefore, the formation of electronically excited HgBr radicals takes place via the latter mechanism of two-photon excitation.

For higher laser intensities 300 MW/cm², the HgBr(B – X) emission disappears and strong Hg emission lines are observed. Those lines correspond to the transitions (6^3\text{D} – 6^3\text{P}) (7^3\text{P}_2 – 7^3\text{S}_1) and (7^3\text{S}_1 – 6^3\text{P}) of excited Hg atoms.
The observed emission band $B - X$ of HgBr has been found to increase with the addition of an inert gas, with different efficiency depending on the nature of the gas. The obtained order of efficiency was $N_2$, Ar, Xe and Ne.

References


Figure 1: Emission band $B^2 \Sigma \rightarrow X^2 \Sigma$ of HgBr from the KrF laser photolysis of HgBr$_2$ vapor and 675 torr of Ar; cell temperature is 100°C.
PICOSECOND LASER FLUORESCENCE STUDY OF THE COLLISIONLESS PHOTODISSOCIATION OF NITROCOMPOUNDS AT 266 nm.

Jean-Claude MIALOCQ (CEA - CEN/SACLAY, IRDI/DESICP/DPC/SC0 UA 331 CNRS 91191 GIF sur YVETTE Cedex, France) and John C. STEPHENSON (National Bureau of Standards, Molecular Spectroscopy Division, Gaithersburg, MD 20899, USA)

The picosecond UV photodissociation of nitroalkanes (R-NO₂) and dimethylnitramine (DMNA) is investigated by observing excited NO₂* fluorescence and by laser-induced fluorescence (LIF) probing of ground state NO fragments. After photolysis by picosecond laser pulses at 266 nm, efficient monophotonic collision-free photodissociation of R-NO₂ (R = CH₃, C₂H₅, n-C₃H₇, and i-C₄H₉) or DMNA occurs within 6 ps, in good agreement with calculated NEVMD lifetimes by considering that these electronically excited molecules undergo internal conversion to high vibrational levels of the ground electronic state followed by a statistical unimolecular vibrational predissociation.

Formation of excited NO₂* from DMNA is monophotonic; for nitromethane the excited NO₂* formation is much less efficient and increases faster than linearly with increasing energy in the UV pulse.

EXPERIMENTAL

The laser was an active-passive mode-locked Nd³⁺:YAG oscillator-amplifier system which delivered a 10 ns (1.064 μm) single pulse at 10 Hz. The frequency doubled 532 nm probe pulse was 31 ps duration (FWHM) as monitored by a streak camera. After frequency doubling the green pulse, the 266 nm pump was separated from the optically delayed 532 nm probe pulse. The two pulses were then collinearly recombined as in the experiment of Goldberg et al (1). The areas of the green and UV laser beams were estimated to be 2.7 x 10⁻³ cm² and 3 x 10⁻⁴ cm² respectively. Maximum energies of 200 μJ (UV) and 1.0 mJ (green) were fairly constant from pulse to pulse. The zero time delay between the pump and the probe pulses was determined by probing with 532 nm pulses the photobleaching of rhodamine 6G caused by the 266 nm pulses. RNO₂ or DMNA contained in a Tee shaped 4 cm diameter glass cell equipped with three fused silica windows were excited at 266 nm and the NO₂ ground stage fragment was probed by laser induced fluorescence (LIF) using the delayed 532 nm pulse. The fluorescence emitted in the observed 2 mm long interaction region was collected, spatially and spectrally (λ > 580 nm) filtered to discriminate against scattered laser light and analyzed with a photomultiplier. The signal was averaged with a boxcar averager-integrator, the 50 ns gate being scanned over the NO₂* decay curve in 100 - 1000 seconds according to the nitrocompound investigated. NO₂ diluted in argon was used as an actinometer. No LIF was observed when this mixture was excited at 266 nm above the NO₂ dissociation limit (398 nm). Under 532 nm excitation, the initial NO₂* fluorescence was proportional to the gas pressure and to the laser energy. The Stern-Volmer plot of the NO₂* decay rate constant.
versus the pressure is a straight line. The estimation of the NO$_2$ quantum yields is based on the courageous hypothesis that the 532 nm absorption cross section of NO$_2$ is the same for thermal and photoproduct NO$_2$.

RESULTS AND DISCUSSION

The fluorescence signal from NO$_2^*$ formed by 266 nm photolysis of CH$_3$NO$_2$ followed by (t = 300ps) 532 nm LIF probing of the ground stage NO$_2$ photoproduct is shown in Figure 2. There is a 266-only component of the fluorescence which is about 5% of the value caused by the 532 nm LIF of NO$_2$.  

Fig. 2 - Plot of the NO$_2^*$ fluorescence intensity as a function of time.

The picosecond kinetics of the NO$_2$ formation follows closely that of the R-6G photobleaching observed with the same pump and probe pulses (figure 1) showing that the photodissociation occurs within 6ps. This is consistent with our REM laser lifetimes for CH$_3$NO$_2$ (0.21 ps) and DMNA (4 ps) calculated from literature Arrhenius A factors and Vibrational frequencies [1].

The fluorescence signal from NO$_2^*$ formed by 266 nm photolysis of DMNA and 532 nm probing is shown in Figure 4 [2].

The quantum yields of ground stage NO$_2$ and excited NO$_2^*$ formation are gathered in table 1 [2,3].

<table>
<thead>
<tr>
<th></th>
<th>NO$_2$</th>
<th>NO$_2^*$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_3$NO$_2$</td>
<td>0.17 ± 0.11</td>
<td>&lt; 10$^{-3}$</td>
</tr>
<tr>
<td>DMNA</td>
<td>0.13 &lt; θ &lt; 0.95</td>
<td>0.02 &lt; θ &lt; 0.1</td>
</tr>
</tbody>
</table>

Table 1 - Quantum yields of NO$_2$ and NO$_2^*$ formation in the photolysis of CH$_3$NO$_2$ and DMNA at 266 nm.
Fig. 3 - Photobleaching kinetics of a R-6G solution at 532 nm. NO$_2^*$ LIF formation kinetics (lower curve).

In dimethylnitramine, efficient monophotonic NO$_2^*$ formation is due to the greater available energy after the N-NO$_2$ bond breaking (D(N-NO$_2$) = 44.1 kcal/mole, D(C-NO$_2$) = 58.5 kcal/mole). In the RN$_2$O$_2$ under study, the efficiency of ground stage NO$_2$ formation does not depend on the nature of the alkyl group.

References

Acknowledgement

This work was supported by the Direction des Recherches, Etudes et Techniques under contract N° 84/819.
Abstract:

The photodissociation of $\text{I}_2\text{M}$ van der Waals clusters is studied at several wavelengths above the B state dissociation limit with $\text{M} = \text{He}, \text{Ne}, \text{Ar}, \text{Kr}$ and $\text{Xe}$. The $\text{I}_2$ product vibrational state distributions are obtained by measuring the dispersed $\text{B} \rightarrow \text{X}$ fluorescence and analyzing the resulting spectra. Excitation above the B state dissociation limit leads to significantly different reaction dynamics compared to excitation of the bound levels of the B state studied previously. Among others the recoil energies of the $\text{I}_2$ and $\text{M}$ fragments are much larger, and the distributions of rovibrational states in the $\text{I}_2$ product are much wider in the present experiments. For the five rare gases studied, the photodissociation of $\text{I}_2\text{Ar}$ leads to the smallest amount of relative translational energy in the products, in contradiction with recent quasiclassical trajectory calculations. The fragment recoil energy does not vary strongly with the excitation wavelength.
VIBRATIONAL AND ELECTRONIC COLLISIONAL RELAXATION OF 
\( C_2(d^3 \Pi_g, v') \) AND \( (C^1 \Pi_g, v') \) STATES

P. Bartolomé, M. Castillejo, J.M. Figuera and M. Martín, Inte 
de Quimica Fisica "Rocasolano", CSIC, Serrano 119, 28006 Ma-
drid, Spain.

The collisional processes of the two \( ^1,^3 \Pi_g \) states of the diatomic carbon molecule, are studied for \( \text{Xe}, \text{N}_2 \) and \( \text{O}_2 \) as collision partners.

The \( ^1 \Pi_g \) and \( d^3 \Pi_g \) fragments are produced in the ArF laser multiphoton dissociation of vinyl chloride or vinyl bro-
mide (1) and their fluorescence spectra are recorded in the presence of different pressures of the above collisional gases.

In the presence of \( \text{N}_2 \), population transfer from the higher to the lower vibrational levels is observed to compete with rotational relaxation within each vibrational state.

For \( \text{Xe} \) as the collision partner, a rate constant in reasonable agreement with previously measured values (2), is obtained for the electronic relaxation of the \( d^3 \Pi_g \) state, this value being moderately dependent upon the vibrational quantum number.

More than twice faster rate constant is measured for the electronic quenching by \( \text{O}_2 \), with no measurable dependence on vibrational excitation. Faster rate constants (about 1.5 times faster) are obtained for electronic relaxation of the...
observed levels of the $C_{II}^1$ state, and the fastest relaxation rate is obtained for Xe, which quenches the $C_{II}^1$ state at nearly every collision.

REFERENCES


The collisional quenching of Ca(4s3d1D2)) by H2 and D2.

by David Husain and Gareth Roberts,
Department of Physical Chemistry,
University of Cambridge,
Lensfield Road,
Cambridge, CB2 1EP,
England.

The collisional behaviour of the low-lying, optically metastable states of the alkaline earth metal atoms, Mg, Ca and Sr (nsnp3Pj) in the gas phase, has received considerable attention during recent years from both a theoretical and experimental point of view. Characterisation of the rate of removal of these atomic states by H2 and D2 in particular, is of special interest for both quantitative and qualitative description of the appropriate potential hypersurfaces involving the triatomic species MH2 and MD2, as such systems are clearly most amenable to theoretical investigation. In our laboratory, we have recently determined the temperature dependence of these removal processes for Ca(43Pj) and Sr(53Pj) [1,2], following the earlier studies of Breckenridge and co-workers on Mg(33Pj) + H2, D2 [3,4], and have employed the results to differentiate between the competing roles of physical energy transfer and chemical reaction. Simandiras and Handy have carried out ab initio calculations of the potential hypersurface for the Ca(43Pj) + H2 reaction [5], and have concluded that the activation energy is not significantly higher (< 5 kJ mol-1) than the reaction endoergicity, in support of our earlier kinetic observations.

In this paper, we report an investigation of the collisional removal of Ca(4s3d1D2)), 2.709 eV above the ground state [6], by H2 and D2 over the temperature range 750 - 1100 K. Ca(41D2) atoms were generated in a slow-flow system by direct optical excitation at λ = 457.5 nm via the weak electric-quadrupole allowed transition Ca(4s3d1D2)) +-> Ca(4s21S0)) using a pulsed dye-laser. The subsequent time-resolved emission at this resonance wavelength was optically isolated and monitored photoelectrically with boxcar integration.

The pseudo first-order decay coefficient representing overall removal of Ca(41D2) by all processes may be written:

\[ k' = \Sigma A_{nm} + \beta P_{He} + k_{H2}[H2] \]  

with an analogous expression for D2. The terms on the right hand side of equation (i) represent removal by spontaneous emission, diffusion and collisional quenching respectively. At a given temperature and pressure of helium buffer gas equation (i) becomes:

\[ k' = K + k_{H2}[H2] \]  

where K is fixed for a series of decay measurements in which [H2] or [D2] is varied at a given temperature and constant total pressure. Absolute second-order rate constants for the collisional removal of Ca(41D2) atoms by H2 and D2, as determined from equation (ii), are accurately
described by the following Arrhenius expressions:

\[ k_{H_2} = \left(5.5 \pm 0.9\right) \times 10^{-10} \exp\left(-\frac{14.4 \pm 1.3 \text{ kJ mol}^{-1}}{R T}\right) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \]

and,

\[ k_{D_2} = (3.9 \pm 0.4) \times 10^{-10} \exp\left(-\frac{12.2 \pm 0.8 \text{ kJ mol}^{-1}}{R T}\right) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \]

The activation energies so derived can be considered within the framework of chemical removal to yield electronic and vibrational ground state CaH and CaD plus H(D)(X^2Σ^+) and H(D)(X^2Σ^+):

\[ \Delta H/kJ \text{ mol}^{-1} \{6.7 \}
\]

\[ \text{Ca}^{(4^1D_2)} + H_2 \rightarrow \text{CaH}(X^2Σ^+, ν^\prime=0) + H \quad \geq 6.7 \]

\[ \text{Ca}^{(4^1D_2)} + D_2 \rightarrow \text{CaD}(X^2Σ^+, ν^\prime=0) + D \quad \geq 12.3 \]

Thus the present results are seen to be consistent with the hypothesis that removal of the metastable atomic state by both isotopic species is dominated by a chemical pathway in which there is a small energy barrier over and above the reaction endoergicities yielding the ground state diatomic hydride or deuteride. These measurements do not permit isolation of any quenching pathway, however minor, involving removal of Ca(4^1D_2) by physical energy transfer. Finally in this context, it is of interest to note that our earlier study of the quenching of Ca(4^3P_j) by H_2 and D_2 yielded activation energies for total removal which were also found to be in close agreement with the appropriate reaction endoergicities [1].

The Arrhenius pre-exponential factors also support a model based upon chemical removal of the metastable state, as seen from symmetry arguments employing the weak spin-orbit coupling approximation. We have previously observed that the pre-exponential factors for Ca(4^3P_j) + H_2, D_2 are in reasonable agreement with calculated collision numbers, in accord with a direct correlation between Ca(4^3P_j) + H_2(D_2) and CaH(D)(X^2Σ^+) + H(D) via a surface of 3\A^\prime symmetry [1]. Hence the significantly lower pre-exponential factors determined for the Ca(4^1D_2) + H_2, D_2 reactions may be presumed to reflect the occurrence of non-adiabatic transitions on the chemical pathways connecting the reactants with ground state products.

References.


Collisional Electronic Quenching of OH(A^2E^+) Radical


Research Center of Crete, Institute of Electronic Structure and Laser, Iraklion, Crete, Greece.

Abstract

Recent kinetic studies of OH(A^2E^+) colliding with CO, H_2O and N_2 have shown the dependence of the decay efficiencies on the rotational quantum number N of the diatom [1]. In order to understand the quenching and energy transfer mechanisms of these systems we carry out quantum chemistry calculations[2]. The potential energy surfaces for the ground and excited states of OH with He and CO are constructed. The potentials of He + OH(X^2Π, A^2E^+) are found to be repulsive but with interesting topology. Interaction potential of OH with CO are under investigation.


* Also Physics Department, University of Crete, Iraklion Crete, Greece
+ Also Chemistry Department, University of Crete, Iraklion, Crete, Greece.
COLLISIONAL QUENCHING OF OH(A^2\Pi, v'=0) BY NH_3 FROM 250-1400K

Jay B. Jeffries, Richard A. Copeland, and David R. Crosley
SRI International, Menlo Park, CA 94025

The rate constant for collisional removal of the v'=0 level of the A^2\Pi excited state of the OH radical by NH_3 is measured over the temperature range 250-1400 K. The variation of this rate with collider temperature provides more insight into the mechanism than does just the magnitude of the rate at a single temperature. When long range attractive forces are important, the cross section decreases as the relative translational energy increases. When such a cross section is averaged over a thermal distribution of velocities, it will decrease with increasing temperature. We examine the temperature dependence of quenching rate constants, k_Q, for OH colliding with NH_3, a quencher with a permanent dipole moment which generates a large dipole-dipole attractive term in the interaction potential. The temperature dependence observed is consistent with a quenching mechanism dominated by long range attractive forces.

Two different experimental apparatus were used to cover the range 250 to 1400 K. Between 840 and 1425 K the laser pyrolysis/laser fluorescence (LP/LF) technique is used, and at 255 and 300 K the experiments are performed in a fast flow reactor. The LP/LF technique uses a pulsed CO_2 laser to irradiate a slowly flowing mixture of bath gas (N_2 or CF_4), infrared absorber (SF_6), radical precursor (H_2O_2), and quencher (NH_3). Some of the IR energy is absorbed by the SF_6 and collisional energy transfer heats the entire irradiated volume to a temperature determined by the CO_2 laser pulse energy and the ratio of infrared absorber to bath gas. The low pressure flow reactor uses Ar buffer gas; a microwave discharge in the flow reactor generates hydrogen atoms from the H_2 impurity present in the Ar, and OH is produced from H + NO_2. In both apparatus, laser-induced fluorescence is used to measure a rotational temperature of the OH.

At room temperature the magnitude of the electronic quenching of OH(A^2\Pi, v'=0) varies with rotational level in the A-state. Observed by McDermid and Laudenslager for quenching by N_2 and O_2, this phenomenon has
measured for a more extensive set of rotational levels and collision partners to include NH$_3$. That investigation showed that $k_0$ decreases as the rotational quantum number $N'$ is increased; this produces a variation of the observed quenching rate for different rotational population distributions in the A-state. In both our high and low temperature apparatus, there is sufficient bath gas to produce, by collisional transfer, a thermal rotational population distribution in the excited $A^2E^+$ state. Neither Ar or CF$_4$ is an efficient quencher of the electronic state, but each is an effective collision partner for rotational relaxation of the molecules from the single rotational level initially excited into a thermal population distribution. The flow measurements are done in 8 Torr of Ar and the LP/LF measurements made between 15 and 40 Torr of CF$_4$/SF$_6$ mixture. Both model calculations and diagnostic experiments verify that the quenching rates are obtained for a thermal distribution of rotational level populations of the $A^2E^+$ state as well as a thermal distribution of collision velocities.

To measure the quenching rate, light from a pulsed, frequency-doubled dye laser excites the OH molecules to a specific rotational level in the $A^2E^+$, $v'=0$ state. Following excitation we monitor the temporal evolution of the total fluorescence. By examining the pressure dependence of the fluorescence decay, we obtain the quenching rate constant and the thermally averaged cross section, $Q_0 = k_0/\langle v \rangle$, where $\langle v \rangle$ is the average relative collision velocity. The eleven measurements of the thermally averaged cross section between 255 and 1425 K are plotted versus temperature in Fig. 1. Two important results are evident from the data. First, the quenching cross section, thermally averaged over the rotational level distribution and collision velocity, decreases roughly a factor of two between 300 and 900 K. Second there is no observable change in the value of $Q_0$ between 850 and 1400 K.

The temperature dependence of $Q_0$ contains two distinct contributions. First, $Q_0$ may depend on relative collision velocity. The attractive interactions are modeled by a multipole expansion; the dashed line in Fig. 1 is the temperature dependence of $Q_0$ as calculated by this model. Second, because $Q_0$ decreases as $N'$ increases, a rotationally averaged $Q_0$ will decrease as the temperature increases because the population in the excited $A^2E^+$ state shifts toward higher $N'$. With the assumption that the variation of quenching cross section with rotational level is independent of temperature, we use the data
from Ref. 4 to calculate this effect. The dotted line in Fig. 1 shows the
variation in $\sigma_0$ predicted from only the rotational level dependence.

The solid line in Fig. 1 is the prediction of $\sigma_0$ from the combination of
the rotational level dependence and the attractive forces model. The calcula-
tion predicts a slightly greater temperature variation than we observed over
the entire temperature range studied. In the high temperature region (850-
1400 K), the measured $\sigma_0$ remains constant while the model predicts a 20% decrease. Nonetheless, the comparison between model and measured $\sigma_0$ repre-
ts surprisingly good agreement for such a simple model. The data indicate
that the quenching mechanism is dominated by attractive forces in the tempera-
ture range 250-1400 K.

This work was supported by the Division of Basic Energy Sciences of the
Department of Energy.

(1985).
(1983).

Figure 1. Temperature depen-
dence of the cross section for
quenching of (A$^2\Pi$, $v'$=0) OH by
NH$_3$. Solid symbols are the pre-
sent LP/LF (+) and flow reactor
($) measurements. The open
squares are the previous LP/LF
results (Ref. 5) and the open
circle, the rotationally and
thermally averaged value as com-
puted from the state-specific
cross sections (Ref. 4). The
lines are calculated values, all
normalized to the experimental
value at 300K.
Formation of \( \text{XeCl}(B^2\Sigma_1^+)/2 \) and \( \text{XeI}(B^2\Sigma_1^+)/2 \) by Reaction of Electronically Excited ICI with Xe

J.P.T. Wilkinson, E.A. Kerr and R.J. Donovan
Department of Chemistry, University of Edinburgh,
West Mains Road, Edinburgh EH9 3JJ

D. Shaw and I. Munro
SERC Daresbury Laboratory, Daresbury, Warrington WA4 4AD

Abstract

The ion-pair states of the halogens present an interesting challenge to the spectroscopist. They are difficult to observe using conventional techniques due to both unfavourable Franck-Condon factors from the ground state to low vibrational levels and also because the Franck-Condon accessible regions are dominated by strong transitions to Rydberg states. However, as these Rydberg states are often strongly predissociated they are not observed in fluorescence and thus by observing fluorescence excitation spectra the ion-pair states can often be studied in the absence of overlapping transitions to Rydberg states [1].

We present in Figure 1 the fluorescence excitation spectrum for ICI in the 150-190 nm region recorded using synchrotron radiation. Fluorescence from the first optically accessible ion-pair state of ICI is excited in the 170-190 nm region. When fluorescence excited in this region is dispersed we obtain a spectrum with the characteristic oscillatory continuum structure,
typical of the emission from higher vibrational levels of ion-pair states [2]. Between 160 nm and 170 nm in the fluorescence excitation spectrum we see a second, highly structured, fluorescence system which is probably the result of the interaction between a Rydberg state and an ion-pair state.

As well as direct fluorescence excitation spectra, we have also recorded action spectra for both XeCl(B^2Σ_{1/2}) and XeI(B^2Σ_{1/2}) formation using synchrotron radiation to excite ICl in the presence of excess xenon, see Figure 2. We find that the formation of XeCl(B^2Σ_{1/2}), which is thermodynamically feasible for λ < 200 nm [3], occurs throughout both the 160-170 nm and 170-190 nm systems whereas XeI(B^2Σ_{1/2}) is formed only when the 160-170 nm system is excited.

Further work on both the ICl fluorescence excitation spectra and the XeI(B^2Σ_{1/2}) and XeCl(B^2Σ_{1/2}) action spectra will be reported at the conference.

Figure 1  Fluorescence excitation spectrum for ICl 
\((P_{ICl} = 10 \text{ Nm}^{-2})\)

Figure 2  XeI(B) fluorescence excitation from reaction 
of excited ICl with excess xenon.
QUENCHING OF NO$_3$*(2E') BY N$_2$. A POTENTIAL PHOTOCHEMICAL SOURCE OF N$_2$O.

K.G. Pettrich, F. Ewig and R. Zellner
Institut für Physikalische Chemie, Universität Göttingen, 3400 Göttingen, FRG

The origin of atmospheric N$_2$O is almost exclusively at the earth's surface. In-situ photochemical sources in the troposphere and stratosphere are presently unknown. However, recent evidence obtained in our laboratory suggests that a significant source of N$_2$O may arise from the reaction.

(1) NO$_3$*(A$^2E'$) + N$_2$(X^1Σ_g$^+$) → N$_2$O(X^3Σ$^+$) + NO$_2$(X^2A$_1$)

where the 2E'-state of NO$_3$ is produced upon excitation of NO$_3$ (X $^2A'$) by solar radiation at wavelength between 620-700 nm.

Reaction (1) is exothermic by 134 kJ/mol and spin as well as orbital symmetry allowed. However, it will be in strong competition with the simple energy transfer reaction which is usually assumed to dominate collisional electronic quenching. Direct measurements of the N$_2$O yield are in progress and their result will be presented at the meeting.
THE ELECTRON SWARM METHOD AS A TOOL TO INVESTIGATE
THE THREE-BODY ELECTRON ATTACHMENT PROCESSES

I. Szamrej, I. Chrząstik and M. Foryś

Chemistry Department, Agricultural and Teachers University, 08-110 Siedlce, POLAND

In the recent years a large body of evidence has been collected which demonstrates the importance of the three-body processes in the electron capture in the gas phase. The electron swarm method has been widely used to investigate electron attachment. However up to date was scarcely applied to the important class of the three-body processes especially those where the two molecules of the electron scavenger take a part in the reaction \(^1\). This contribution was aimed to develop the approach which enables one to measure rate constants for such processes which occur at thermal energies.

The swarm chamber has been built basing on the experience of authors from Christophorou's laboratory and the technical details are essentially similar.

Carbon dioxide was used as a diluent gas with wide range of the thermal equilibrium region. To resolve the drift velocity \(W\) problem in the presence of higher concentrations of scavengers \(M\) the reaction of electron capture by \(\text{SF}_6\) was applied.

First, the \(k_{e+\text{SF}_6} = 3.1 \times 10^{-7} \text{ cm}^3\cdot\text{molec}^{-1}\cdot\text{s}^{-1}\) was measured in \(\text{CO}_2\) to be constant over the \(0.3-0.9 \text{ V-Torr}^{-1}\cdot\text{s}^{-1}\) of \(E/P\) using \(W\) from ref.1. Then an electron attachment coefficient \(\alpha\) for \(\text{SF}_6\) was measured in different \(M-\text{CO}_2\) mixtures and \(W\) was determined as \(W = k/\alpha\). The results are shown in Fig.1.
Fig. 1. The influence of the scavengers concentration on the drift velocity in CO$_2$ at E/P = 0.5 V·Torr$^{-1}$·cm$^{-1}$.

- CH$_3$Br
- HBr
- H$_2$S

It is seen that W changes strongly at lowest concentrations of admixtures and then is practically constant over the two-four-fold changes in pressure used in further experiment. Also the changes are not very specific owing to similar polarity of the admixtures.

Next the $k$ values have been measured for CH$_3$Br, H$_2$S, HBr and HCl. The $k$ values were calculated using W shown in Fig. 1. The example results are given in Fig. 2. As in the case of SF$_6$ the $k$ values were constant over the whole range of used E/P which means that the investigated reactions are the thermal ones.

As it is known from our 2/ and Armstrong's 3/ works by gamma
radiolysis method compounds enlisted above tend to accept thermal electrons in more than two-body reactions. Thus, the proper orders were determined by changing consecutively pressures of the participant gases. The results in Table 1 show that except CH₃Br all the processes are of the third order with CO₂ or H₂S acting as the third body. This suggested that neutral van der Waals molecules can possibly be involved in the reaction.

Table 1. The rate constants for the electron capture reactions.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>k/cm⁶·molecule⁻³·s⁻¹/</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>this work</td>
</tr>
<tr>
<td>e⁻ + CH₃Br</td>
<td>6.5x10⁻¹²</td>
</tr>
<tr>
<td>e⁻ + 2H₂S</td>
<td>5.0x10⁻³³</td>
</tr>
<tr>
<td>e⁻ + HBr + CO₂</td>
<td>1.0x10⁻³⁰</td>
</tr>
<tr>
<td>e⁻ + HCl + CO₂</td>
<td>2.2x10⁻³²</td>
</tr>
</tbody>
</table>

* two body rate constant

References
THE ROLE OF VAN DER WAALS DIMERS IN THE ELECTRON CAPTURE PROCESSES

I.Szamrai, I.Chrzééek and M.Foryé

Chemistry Department, Agricultural and Teachers University, 08-110 Siedlce, POLAND

The gamma radiolysis of the low pressure hydrogen sulphide-methyl bromide mixtures has been used as a method to investigate the three-body electron capture processes in the gas phase. Xenon has been chosen as a diluent gas as its ability to stabilize negative ions in a three-particles encounter is known to be very low while the equilibrium constant for formation of VdW dimers is comparable with that for molecular constituent.

The concentration of the final product, methane, was measured gas-chromatographically. A strong dependence of the rate of formation of negative ions on the xenon and hydrogen sulphide total pressure has been observed.

On this basis the following set of reactions has been proposed.

1. $H_2S + H_2S \rightleftharpoons (H_2S)_2$ /1/
2. $CH_3Br + H_2S \rightleftharpoons (CH_3Br\cdot H_2S)$ /2/
3. $CH_3Br + Xe \rightleftharpoons (CH_3Br\cdot Xe)$ /3/
4. $e^- + (H_2S)_2 \rightarrow (H_2S)^- \rightleftharpoons (H_2S)_2^- /4/$
5. $e^- + (CH_3Br\cdot H_2S) \rightarrow (CH_3Br\cdot H_2S)^- \rightleftharpoons (CH_3Br\cdot H_2S)^- \leftleftharpoons (CH_3Br\cdot Xe)^- \rightleftharpoons (CH_3Br\cdot Xe)^- \rightleftharpoons (CH_3Br\cdot Xe)^- /5/$
6. $e^- + (CH_3Br\cdot Xe) \rightleftharpoons (CH_3Br\cdot Xe)^- \rightleftharpoons (CH_3Br\cdot Xe)^- \rightleftharpoons (CH_3Br\cdot Xe)^- /6/$
where M is the total concentration of the molecular components. The rate constants for the formation of the double negative ions have been calculated. They are equal to $(4.2) \times 10^{-11} \text{cm}^3\cdot\text{molecule}^{-1}\cdot\text{s}^{-1}$ for $(\text{H}_2\text{S})^-_2$ and $(6.3) \times 10^{-28} \text{cm}^6\cdot\text{molecule}^{-3}\cdot\text{s}^{-1}$ for $(\text{CH}_3\text{Br}\cdot\text{H}_2\text{S})^-$ and $(\text{CH}_3\text{Br}\cdot\text{Xe})^-$, respectively.

Three-body kinetics of electron capture by H$_2$S at low hydrogen sulphide pressures shows that reaction (4) gives the stable $(\text{H}_2\text{S})^-_2$ dimer ion, which does not decompose as any such process should lead to hydrogen production, which was not observed. It is rather striking behaviour as it is unlikely to other known dimer ions. The observed kinetics excludes also the electron transfer from $(\text{H}_2\text{S})^-_2$ or $(\text{H}_n\text{Sm})^-$ to CH$_3$Br as it would lead to CH$_4$ production and, in consequence, independence of G(CH$_4$) on CH$_3$Br concentration in the CH$_3$Br-H$_2$S mixture.

The dependence of the rate of CH$_4$ production on the $(\text{H}_2\text{S} + \text{Xe})$ term leads to the conclusion that VdW (CH$_3$Br·Xe) and (CH$_3$Br·H$_2$S) molecules are responsible for the CH$_4$ production in electron capture processes by CH$_3$Br. Otherwise the unlikely supposition should have been made that the effectiveness of Xe and H$_2$S in stabilizing the excited dimer ion is nearly equal. If the first statement is true, the used method
appears to be a new one to distinguish between Bloch-Bradbury and VdW molecules ways of formation of dimer negative ions in the case when stabilizing efficiency of the species differs strongly while the equilibrium constants are similar.
Reactions of ion-pair states of Cl$_2$

E. Hontzopoulos$^1$ and C. Fotakis$^1$

Institute of Electronic Structure and Laser
Research Center of Crete
P.O. Box 1527, Iraklio, Crete, Greece

Chemiluminescent reactions between the D($^1\Sigma_u^+$) ion-pair state of molecular halogens and noble gas atoms have recently received great attention [1,2]. Fluorescence from this state and intramolecular energy transfer leading eventually to the population of the lowest ion-pair state D'($^3\Pi_{2g}$) are competitive to reaction and have been studied in some detail. The reactivity of the D' state of Br$_2$ has also been studied [3]. In the present work ion-pair states of Cl$_2$ having a "gerade" parity are populated directly and selectively in a two-photon excitation process from the ground state, by means of a narrow-band tunable KrF laser. Evidence for relaxation processes and chemiluminescent reactions, which are observed in the presence of Ar, Kr and Xe will be presented and compared to those obtained in single photon excitation for the D($^1\Sigma_u^+$) halogen state. Reaction rates are found to be fast, corresponding to a magnitude of several times the hard sphere collision cross sections. This will be interpreted on the basis of a harpooning mechanism. Finally, data will be presented for the reaction of ion-pair states of Cl$_2$ with various hydrocarbons.
References


Also : Dept. of Physics, University of Crete

P.O. Box 470, Iraklio, Crete, Greece
The association reactions of NO+ with NO and N2 in N2 carrier gas

Rudolf R. Burke* and Ian McLaren**, LPCE, CNRS, 45071 Orleans Cedex 2
* now at PMI, USMG & UA 844 du CNRS, CNS-CNET, BP 98, 38243 MEYLAN CEDEX
** now at Department of Chemistry, Howard University, Washington, D.C. 20059

The LPCE supersonic flowing afterglow permits the study of association reactions between 120 and 180 K, and from 0.4 to 0.8 mmHg. For five temperatures and three pressures, the loss rate of NO+ : -d(NO+)/dt = k1[NNO+] was measured as a function of NO addition. The pseudo-first-order rate constant is a linear function of [NO] with a positive intercept : k1 = k1N2 + k2NO[NO]. The slope k2NO yields information on the NO+ + NO -> NO+(NO) association and the intercept k1N2 on the NO+ + N2 -> NO+(N2) association (the NO+(N2) cluster is scavenged by the NO+(N2) + NO -> NO+(NO) + N2 switch). The energy transfer mechanism (ETM) for association reactions predicts k2NO = k3NO[N2], but the experimental results give k2NO = [N2]2.8. If third-order is imposed on the data, one obtains k3NO = 4 x 10^-27 (150/T)^0.3 molecule^-2 cm^-6 s^-1. Extrapolation to 300 K yields the value reported by Kebarle.

The intercept k1N2 is independent of [N2], whereas the ETM predicts k1NO = k3NO[N2]^2. Furthermore, k1N2 = 6 x 10^5 s^-1 is independent of temperature. The mechanism proposed to account for the experimental data consists of chemical activation (ca) NO+ + N2 -> NO+(N2)*, and radiative stabilization (rs) NO+(N2)* -> NO+(N2) + hv in competition with efficient collisional dissociation (cd) NO+(N2)* + N2 -> NO+ + 2N2. Applying the quasi-stationary-state approximation, one obtains k1N2 = krs/kca/kcd, and k1N2 = krs* kca = kcd. This mechanism implies a slow unimolecular decomposition (ud) NO+(N2)* -> NO+ + N2 with kud << 10^7 s^-1.
HOT ATOMS IN IONOSPHERE

I.K.Larin and V.L.Talrose

Institute of Chemical Physics of the Academy of Sciences of the USSR, Moscow, USSR

Mechanisms and processes of hot atoms formation in ionosphere and their possible effect on chemical composition of ionosphere are discussed. The following processes are considered to be the sources of hot atoms: photodissociation, dissociative recombination and precipitation of energetic ions of \( \text{H}^+ \) and \( \text{O}^+ \) in high-latitudinal and medium-latitudinal ionosphere.

In particular it is shown that under conditions of magnetic storm flows of hot oxygen atoms formed as a result of a charge transfer of energetic \( \text{O}^+ \) ions on oxygen atoms, may increase nitrogen oxide content in upper ionosphere of high latitudes by 3-4 orders as compared with undisturbed conditions.

Possible effect of the processes with hot atoms participation on ionic composition and total content of charged particles in ionosphere are analyzed.
The Chemistry of Sodium in the Mesosphere: Absolute Rates of the Reactions $\text{Na} + \text{O}_3 \longrightarrow \text{NaO} + \text{O}_2$ and $\text{NaO} + \text{O} \longrightarrow \text{Na} \left( ^2\text{P}_j, 2^3\text{P}_{1/2} \right) + \text{O}_2$

by

J.M.C. Plane, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149-1098, U.S.A.

D. Hussian, Department of Physical Chemistry, University of Cambridge, Lensfield Rd., Cambridge, CB2 1EJ, U.K.

P. Marshall, Department of Chemical Engineering and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, U.S.A.

The reactions

$$\text{Na} + \text{O}_2 \longrightarrow \text{NaO} + \text{O}_2 \quad k_1$$

$$0 + \text{NaO} \quad k_{2a}$$

$$\text{Na} \left( ^3\text{S}_{1/2} \right) + \text{O}_2 \quad k_{2b}$$

have long been recognized as important in governing the distribution of atomic sodium in the 90km region above the earth's atmosphere, as well as the component of the air-glow emission due to the Na D-line ($\lambda = 589$nm), and D-line emission in meteoric trails.

We present determination of $k_1$ and $k_2$ using two different and novel experimental techniques. Reaction 1 was investigated by time-resolved atomic absorption spectroscopy of Na atoms at $\lambda = 589$nm, following the pulsed photolysis of NaI, in an excess of $\text{O}_3$ that was monitored simultaneously by
steady absorption of the Hg line at \( \lambda = 253.7 \text{ nm} \). We obtain a value for \( k_1 = (4.44 \pm 0.22) \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) at \( T = 500 \text{ K} \).

The absolute rate constant, \( k_2 \), was determined by time-resolved atomic chemiluminescence at \( \lambda = 589 \text{ nm} \), following reaction 2(b) as a spectroscopic marker for reaction (2), overall, subsequent to the pulsed photochemical generation of \( \text{O}(2^3\Pi_j) \) in the presence of excess NaO.

A flow of a known concentration of NaO was created by mixing together a flow of \( \text{N}_2\text{O} \) with an excess of Na vapour entrained in a carrier gas from a heat-pipe oven. The overall rate constant was estimated to be

\[
k_2 = (3.7 \pm 0.9) \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } T = 573 \text{ K},
\]

An upper limit of 0.01 to the branching ratio of reaction (2) was also obtained, which is a rough estimate but may indicate that mechanisms other than reaction (2) are responsible for the observed D-line night-glow emission.
Parameters of Activation Barriers for Hydrogen Atom Transfer Reactions from Curved Arrhenius Plots
H. Furue and P. D. Pacey
Chemistry Department, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J3

Experimental data on the temperature dependence of the rates of gas phase, hydrogen atom transfer reactions have been reviewed and assembled.

The following expression, incorporating a factor, K, for tunneling through an Eckart barrier of effective height $E_e$ and thickness, $\Delta S_{1/2}$, at half height, was fitted by least squares methods to the data for each reaction. Here $A$, $E_e$ and $\Delta S_{1/2}$ were adjustable parameters; $n$ was fixed to match the temperature dependence contributed by other degrees of freedom. For four reactions of $\text{CH}_3$ with organic molecules, values of $\Delta S_{1/2}$ were found to be consistently between 0.05 and 0.06 nm. For reactions of $D$, $O$, $F$, $Cl$ and $\text{CH}_3$ with $\text{H}_2$, fitted values of $A$ agreed within two standard deviations (≤20%) with values calculated from $ab$ initio potential energy surfaces using transition state theory (TST). Similar agreement (2 to 5 kJ mol$^{-1}$) was obtained for effective barrier heights.

It is concluded that TST with a tunnel factor can be applied to such reactions and that curved Arrhenius plots can provide information about the barrier to reaction.
MASS SPECTROMETRIC DETERMINATION OF RATE CONSTANTS AND MECHANISM OF ATOMIC FLUORINE REACTIONS IN GAS PHASE

N.I. Butkovskaya, E.S. Vasiliyev, I.I. Morozov, V.L. Talrose
Institute of Chemical Physics of the Academy of Sciences of the USSR, Moscow, USSR

Reactions of fluorine atoms have been studied in the reactor with a diffusion cloud in flow. Reagents and reaction products, including atoms and free radicals, are directed, as a modulated molecular beam, to a focused electric or magnetic field in which particles with magnetic or dipole moments are focused onto an inlet hole of an ion source of a mass spectrometer. In such a way identification of free radicals is accomplished. It is for the first time that fluorine atoms have been identified by double-charged ions. Rate constants of a series of halogen-containing molecules with fluorine atoms have been determined at a pressure of inert gas of several torr and a room temperature.

Chemical activity of an atomic fluorine is so high that it reacts with glass and quartz walls of the reactor, yielding SiF$_4$ and O$_2$ into a gas phase. To eliminate this effect a discharge tube made of synthetic sapphire has been used. In most of the experiments fluorine atoms have been detected by the line $M/e$ 19.
KINETIC STUDY BY MASS SPECTROMETRY OF THE REACTION OF HYDROGEN ATOMS WITH ISOBUTANE IN THE RANGE 295-407 K.

by J.L. SAVETSYN, C. LAFAIÉ, B. MERIAUX, A. TEGHEZZA

Université des Sciences et Techniques de Lille, Flandres Artois
Laboratoire de Cinétique et Chimie de la Combustion, UA CNRS 876
59655 VILLENEUVE D'ASCQ cedex (France)

If the reaction of hydrogen atoms with alkanes has been largely investigated, only few studies have been devoted to the reaction of hydrogen atoms with isobutane. The rate constant for this reaction has been essentially measured by indirect methods involving the addition of isobutane to a reacting H-D system (1, 2) or investigating the radiolysis of isobutane-propylene system (3).

The present paper describes a study using a discharge-flow system coupled to a quadrupole mass spectrometer in order to make a direct measurement of the rate constant by monitoring the decay of H atoms with time and to propose a mechanism from the analysis of reaction products.

EXPERIMENTAL

All experiments were carried out using a conventional discharge-flow system coupled to a modulated molecular beam-mass spectrometric sampling technique (4). A pyrex tube (2.4 cm internal diameter and 60 cm length) was used as isothermal fast flow reactor. It was thermostatted by an oil jacket making constant to ± 2K the temperature along the heated zone.

Hydrogen atoms were produced by a 2450 MHz microwave discharge in H, highly diluted in N2 in a side tube. The H2 flow passed a liquid nitrogen trap to freeze traces of water.
All surfaces exposed to H atoms were coated with orthophosphoric acid in order to reduce heterogeneous recombinations. Mass spectrometric calibration of H atoms was determined by the measurement of the extent of the H₂ to H conversion and/or by titration with NO₂.

Isobutane (purity 99.95%) was introduced into the reactor through an injector terminated by a multihole sphere. The injector could be moved along the axis of the flow reactor, varying the reaction time which was calculated from the measured flow rates using the assumption of plug flow.

The temperature of the gases was measured by means a chromel-alumel thermocouple mounted in the tip of the moveable injector. Flow rates of different reactants were measured by calibrated mass flow controllers. The pressure in the flow tube was measured upstream by a capacitance manometer. The linear flow velocity in the reactor was set at about 20 m/s at about 1 bar.

RESULTS AND DISCUSSION

The reaction between hydrogen atoms and isobutane has been investigated under pseudo-first order conditions with \( \text{H}_2 = (1- \text{C}_4\text{H}_9) \). over the temperature range of 295-400 K. At 295 ± 2 K, the initial concentration of H atoms ranged from \( 1.3 \times 10^{14} \) to \( 2.5 \times 10^{15} \) atoms/cm³, while the initial concentration of \( \text{C}_4\text{H}_9 \) ranged from \( 1.25 \times 10^{17} \) to \( 3.8 \times 10^{17} \) molecules/cm³. The ratio \( \text{R} = (1-\text{C}_4\text{H}_9)/\text{H}_2 \) was varied between 16 and 266. Results obtained at room temperature (fig.1) show an increase of the overall rate constant \( k \) for the lower values of the ratio \( R \). For \( R \) higher than about 30, \( k \) tends to a constant value equal to \( 2.2 \pm 0.4 \times 10^{-14} \) cm³/molecule at 295 ± 2 K. Such a behavior of \( k \) as a function of the ratio \( (1-\text{C}_4\text{H}_9)/\text{H}_2 \) indicates the occurrence of fast secondary reactions of H atoms with products of the initial and/or secondary steps \( \text{H}_2, \text{C}_4\text{H}_9, \text{C}_4\text{H}_8, \text{C}_4\text{H}_7, \text{C}_4\text{H}_6 \). A mechanism is proposed to interpret the formation of analyzed secondary compounds. The computer simulation of the
Fig. 1 - Plot of the experimental values of the rate constant $k$ as a function of the initial ratio of reactants.

In order to minimize the role played by secondary steps, the temperature dependence of $k$ has been determined for a ratio $\frac{[\text{H}_2]}{[\text{H}]^2}$ of about 50 (fig. 2). The least squares treatment of the data yields

$$k \text{ (cm$^3$/molecule$\cdot$s)} = 9.3 \times 10^{-10} \times \text{exp}(-1840/T)$$

REFERENCES

4. E. Lifshitz, These, Moscow, Leningrad, 1970
Kinetics of Some Gas Phase Muonium Addition Reactions Between 155 and 500K


It is well established that the chemical behaviour of muonium (Mu), the neutral atom consisting of an electron bound to a positive muon, is that of a light isotope of hydrogen with an atomic mass of only 0.114 amu. We report here the bimolecular rate constants for Mu addition to ethylene, fully deuterated ethylene, propene, acetylene, propyne, allene, acetone vapour, carbon monoxide and sulfur dioxide from about 500K to 155K (or the temperature of limiting vapour pressure of the reagent in some cases). All measurements were carried out above the high pressure limit in nitrogen moderator, typically at 800 torr. No pressure dependence was detected in the rate constants at moderator pressures from 500 - 1500 torr.

The data presented in the figures are the results of preliminary analysis, except for the ethylene and ethylene-D4 data which have undergone final data analysis. Final data analysis will have the effect of reducing the error bars in most cases. The lines are not fits, but are simply sketched in to guide the eye. Data for the Mu addition reactions with benzene and 2,3-dimethyl butadiene from an earlier study (Garner, Roduner, et al., unpublished) are included in the figures for comparison.

The dominant features of the data are:
1. Strong Arrhenius plot curvature in the unsaturated hydrocarbon reactions, interpreted as evidence for strong quantum tunnelling in the Mu reactions.

2. The lack of any strong secondary isotope effect in the ethylene versus fully deuterated ethylene data, consistent with the experimental data of Sugawara et al. for the analogous H atom addition reactions. However, a slight secondary isotope effect appears to be indicated with the ethylene-D4 rate constants greater than those for ethylene at high temperature probably due to the difference in vibrational partition functions; conversely, at low temperature addition to ethylene-D4 is slower than ethylene possibly due to the suppression of quantum tunnelling due an increase in reduced mass.

3. Almost perfect overlap over the whole temperature range for the rate constants for Mu addition to the isomers propyne and allene despite the naive expectation the the allene reaction would be faster due to the availability of an extra addition site and entropy considerations.

4. A negative activation energy in the CO reaction and in the low temperature acetone and SO2 reactions.

5. A strong break in the SO2 and acetone data, possibly indicative of a two component branching ratio indicative of Mu addition to O versus Mu addition to C or S.

We expect to present the results of the final data analysis at the conference.
Rate Constant Measurements for the Reactions of Ground State Atomic Oxygen with Tetramethylethylene, 299K<T<1000K, and Isobutene, 296K<T<1019K

by

J. F. Smalley, R. Bruce Klemm and Fred L. Nesbitt
Brookhaven National Laboratory
Upton, New York 11973 (USA)

The title reactions were studied by the method of flash photolysis-resonance fluorescence. For each reaction, the photolytic source of O(3P) atoms was O₂ between room temperature and ~500K while NO was the photolytic source of these atoms at higher temperatures.

In previous studies of the reaction of O(3P) atoms with tetramethylethylene (THE) between room temperature and ~500K, the rate constant was shown to decrease with increasing temperature. The results of the present study confirm this behavior. However, at the higher temperatures attained in the present study, the rate constants for this reaction first became constant between about 550 and 770K and then began to increase at the highest temperatures (see the figure labeled THE). The curve in this figure is a fit of the bimolecular rate constant (k(THE)) data to the following sum of exponentials expression:

\[ k(\text{THE}) = (1.83 \pm 0.01 \times 10^{-11} \text{ cm}^3\text{-molecule}^{-1}\text{-s}^{-1})\exp\left(4.34 \pm 0.02 \times 10^2 K/T\right) + \]
\[ (1.71 \pm 0.24 \times 10^{-10} \text{ cm}^3\text{-molecule}^{-1}\text{-s}^{-1})\exp\left(-2.05 \pm 0.08 \times 10^3 K/T\right) \]  

It is apparent from this figure that eq. 1 is an excellent representation of this data.

Similarly, the rate constants for the reaction of O(3P) atoms with isobutene also decrease with increasing temperature for T<500K and increase with increasing temperature for T>500K (see the figure labeled ISOBUTENE). The following sum of exponentials expression (see the curve in this figure) also provides an excellent
fit of the bimolecular rate constant data for isobutene:

\[
k(\text{isobutene}) = (1.20 \pm 0.01 \times 10^{-11} \text{ cm}^3\text{-molecule}^{-1}\text{-s}^{-1})\exp (1.25 \pm 0.01 \times 10^2 K/T) \\
+ (8.09 \pm 1.13 \times 10^{-10} \text{ cm}^3\text{-molecule}^{-1}\text{-s}^{-1})\exp (-3.72 \pm 0.05 \times 10^3 K/T) (2)
\]

The present rate data for the title reactions will be compared to the results of previous studies. Possible reasons for the anomalous behavior of the rate constants for these reactions will be discussed.


This work was supported by the Division of Chemical Sciences, U.S. Department of Energy, Washington, DC, under contract No. AC02-76CH00016.
In the image, there are two graphs labeled "TME" and "ISOBUTENE." Both graphs show a plot of \( \log_{10}(K) \) against \( 1.0/T \times 10^{-3} \). The graph for TME has a more rounded curve, while the graph for ISOBUTENE shows a more linear decrease.
A DISCHARGE FLOW-MASS SPECTROMETRY STUDY
OF THE RATES OF THE REACTIONS OF
DIACETYLENE WITH ATOMIC OXYGEN AND ATOMIC CHLORINE

M. Mitchell, J. Brunning, W. Payne and L. Stief
ASTROCHEMISTRY BRANCH, LABORATORY FOR EXTRATERRESTRIAL PHYSICS
NASA/GODDARD SPACE FLIGHT CENTER, GREENBELT, MD 20771, USA

The reactions of diacetylene \( (\text{C}_4\text{H}_2) \) with atomic species are of interest for several reasons. Comparison of rate data for this molecule with the more extensive data for acetylene \( (\text{C}_2\text{H}_2) \) may contribute to our understanding of the factors which control the kinetics of the addition of atoms to the carbon-carbon triple bond. The reactions of \( \text{H} \) and \( \text{O} \, (^3\text{P}) \) with \( \text{C}_4\text{H}_2 \) are important for models of the atmosphere of Titan, a satellite of the planet Jupiter, and for their roles in the combustion of acetylene.

The rate constants for the reactions \( \text{O} \, (^3\text{P}) + \text{C}_4\text{H}_2 \, (1) \) and \( \text{Cl} + \text{C}_4\text{H}_2 \, (2) \) have been determined at 298 K using a discharge flow system with collision-free sampling to a mass spectrometer. The total pressure in the flow tube was approximately 1 Torr (He) and the flow velocity was typically 2000 cm\(^3\) s\(^{-1}\). The rate constants were determined by monitoring the decay of \( \text{C}_4\text{H}_2 \) in excess \( \text{O} \, (^3\text{P}) \) or \( \text{Cl} \). The experiments were carried out under pseudo first-order conditions; the ratio \([\text{O}] \) to \([\text{C}_4\text{H}_2] \) varied from 10 to 75 while
that for [Cl] to [C_4H_2] ranged from 2 to 15. Small corrections were made to allow for depletion of the atomic species during the course of the reaction and for axial diffusion of C_4H_2 in the He carrier gas. The result for O(^3P) + C_4H_2 is \( k_1 = (1.49 \pm 0.17) \times 10^{-12} \text{ cm}^3 \text{s}^{-1} \). This is in good agreement with our previous result based on the decay of O(^3P) in a flash photolysis-resonance fluorescence experiment.\(^2\) It is also in good agreement with the results of Niki and Weinstock,\(^3\) but not with the results of Homann et al\(^4\) and Homann and Wellmann\(^5\) which are respectively 50% and 80% larger.

The result for Cl + C_4H_2 is \( k_2 = (4.90 \pm 0.92) \times 10^{-11} \text{ cm}^3 \text{s}^{-1} \). This study represents the first determination of \( k_2 \) and the result will be compared with our results for the analogous Cl + C_2H_2 reaction.\(^6\) Similar comparisons will also be made for the reactions of \( \text{O}^\text{(^3P)}, \text{H} \) and \( \text{OH} \) with C_2H_2 and C_4H_2.

The role of the reactions of C_4H_2 with atomic species in the photochemistry or aeronomy of the atmosphere of Titan will be briefly discussed.

References


Reaction of O($^3P$) + SiH$_4$ in the Gas Phase

O. Horie$^a$, P. Potzinger, and B. Reimann

Max-Planck-Institut für Strahlenchemie, D-4330 Mülheim/Ruhr, F.R.G.

$^a$Present address: Max-Planck-Institut für Chemie, D-6500 Mainz, F.R.G.

Two kinetic studies$^{1,2}$ have been published so far for reaction (1).

$$\text{SiH}_4 + \text{O}(^3P) \rightarrow \text{products} \quad (1)$$

However, the nature of the elementary step remains unclear. In a recent publication$^3$ we have shown that the reaction of (CH$_3$)$_3$SiH with O($^3P$) proceeds via H abstraction with

$$k \ (298 \text{ K}) = (2.6 \pm 0.3) \times 10^{-12} \text{ cm}^3\text{s}^{-1}.$$  

Smaller rate constants have been measured for reaction (1), namely $4.8 \times 10^{-13} \text{ cm}^3\text{s}^{-1}$ (ref.1) and $3.3 \times 10^{-13} \text{ cm}^3\text{s}^{-1}$ (ref.2), although the Si-H bond dissociation energies in silane and trimethylsilane are very similar$^4$. This suggests either that different primary processes are operating in both cases or that H abstraction by O atoms is not a direct process. A matrix isolation study$^5$ revealed that insertion of O into the Si-H bond of SiH$_4$ is an important primary step under these conditions.

Using a discharge flow system coupled to a mass spectrometric detection system$^3$, absolute rate constants for reaction (1) were measured and stable reaction products determined. With $[O]_0 >> [\text{SiH}_4]_0$ or $[\text{SiD}_4]_0$ (at least 70 fold excess), the silane decay was exponential, yielding

$$k \ (O+\text{SiH}_4) = (2.1 \pm 0.4) \times 10^{-13} \text{ cm}^3\text{s}^{-1},$$

$$k \ (O+\text{SiD}_4) = (7.4 \pm 0.4) \times 10^{-14} \text{ cm}^3\text{s}^{-1}.$$
H₂, Si₂H₆, and H₂O were detected as stable reaction products. When the silane concentration was raised such that [O]₀/[SiH₄]₀ < 50, the system became increasingly complex. Non-exponential silane decays and O atom consumptions of up to 20 atoms per SiH₄ molecule were observed.

In static experiments using mercury sensitized N₂O photolysis as a source of atomic oxygen the same products as in the flow system were found. H₂ formation could be completely suppressed upon adding NO.

Of the three most likely primary processes

\[ \text{O} + \text{SiH}_4 \rightarrow \text{OH} + \text{SiH}_3 \]  \hspace{1cm} (1a)
\[ \rightarrow \text{H}_2\text{O} + \text{SiH}_2 \]  \hspace{1cm} (1b)
\[ \rightarrow \text{HSiOH} + \text{H}_2 \]  \hspace{1cm} (1c)

(1c) can be dismissed owing to the fact that H₂ formation is apparently a secondary reaction. A detailed analysis shows that most experimental results can be explained by (1a); the Si₂H₆ yield suggests that step (1b) contributes a maximum of 15% to the overall reaction.

The large isotope effect and the fact that the rate constant decreases from (CH₃)₃SiH to SiH₄ both suggest that (1a) is not a direct abstraction reaction but proceeds rather via a complex, [SiH₄O], that subsequently decomposes into OH + SiH₃, to a minor extent into H₂O + SiH₂, and back to O + SiH₄.

References

Rate Constant for the Reaction of O(3p) with 1-Butene; 300<T<900K
by
R. Bruce Klemm, Fred L. Nesbitt and John F. Smalley
Brookhaven National Laboratory
Upton, New York 11973 (USA)

The kinetics of the elementary reaction of ground state atomic oxygen with 1-butene,
O(3p) + 1-C_4H_8 → products, (1)
was studied using both the discharge flow-resonance fluorescence (DF-RF) method
and the flash photolysis-resonance fluorescence (FP-RF) method. The FP-RF
investigation was quite extensive and covered the entire temperature range from 298K to 875K. The photolytic source of O(3p) atoms in the FP-RF experiments was
O_2 at temperatures between ambient and ~500K; at temperatures above 500K, NO
was utilized.\(^1\) DF-RF experiments were performed at only two temperatures, 294K
and 453K. In the range of temperature overlap, the DF-RF results are in
reasonably good agreement with those from the FP-RF study although they are
consistently lower by about 10-20%.

This study has attained the highest temperature to date for measuring the
rate constant, \(k_1(T)\), for reaction (1). The previous observation that \(k_1(T)\)
increases very gradually with temperature and displays definite non-Arrhenius
behavior was confirmed in the present study as is shown in the figure. The
combined data from eight FP-RF sets and two DF-RF sets were fitted to a sum of
exponentials expression to yield:

\[
k_1(T) = (1.31±0.07)\times10^{-11}\exp(-359±20/T) + (5.98±0.29)\times10^{-10}\exp(-3618±463/T),
\]

where the units are cm\(^3\) molecule\(^{-1}\)s\(^{-1}\) and the exponential term is in degrees
Kelvin. This expression is represented in the figure as a solid line. It is
noted that the highest temperature point, at 942K, is above the extrapolation of this expression. This result remains uncertain even though the operating parameters of flash energy, premixture flow rate, total pressure and isobutene concentration were all varied extensively. Finally, over the common temperature range (298-821K), the agreement of the present results with those reported by Perry\textsuperscript{2} is remarkable.

The present kinetic data for reaction (1) are thoroughly compared with previous results and the temperature dependence of $k_1(T)$ is contrasted to the rate constant for the reaction of $O(3P)$ with ethylene.

References
2. R. A. Perry, private communication.

This work was supported by the Division of Chemical Sciences, U.S. Department of Energy, Washington, DC, under contract No. AC02-76CH00016.
Direct Measurements of the Reactions $\text{NH}_2 + \text{H}_2 \leftrightarrow \text{NH}_3 + \text{H}$

at Temperatures from 670 to 1000 K

W. Hack and P. Rouveiroles

Max-Planck-Institut für Strömungsforschung
Bunsenstr. 10, D-3400 Göttingen / West Germany

The $\text{NH}_2$ radical reactions and the $\text{H}$ atom reactions at high temperatures are both of theoretical and applied interest in the chemistry of ammonia combustion. The knowledge of the Arrhenius parameters of the reaction

$$\text{NH}_2 + \text{H}_2 \rightarrow \text{NH}_3 + \text{H} \quad (1)$$

and the reverse reaction

$$\text{H} + \text{NH}_2 \rightarrow \text{NH}_3 + \text{H}_2 \quad (-1)$$

enables a direct determination of the $\text{H}_2\text{N}-\text{H}$ bond energy in $\text{NH}_2$.

The rates of the reaction (1) and (-1) were measured independently in a discharge flow system. $k_1(T)$ and $k_{-1}(T)$ were obtained in the temperature range 673 K to 1003 K at a pressure of 4 mbar. The main carrier gas was Helium. The surface of the quartz reactor was heated via two coaxial silver cylinders. The $\text{NH}_2$ radicals were produced in the fast reaction $\text{F} + \text{NH}_2 \rightarrow \text{NH}_3 + \text{HF}$, where the $\text{H}$ atoms were obtained in a discharge of $\text{H}_2/\text{He}$ mixture. Pseudo-first order conditions $[\text{H}_2]_0 \gg [\text{NH}_2]_0$ and $[\text{NH}_2]_0 \gg [\text{H}]_0$ were applied; the $[\text{H}]$ radical profiles were measured with laser-induced fluorescence and the $[\text{H}]$ atom profiles were followed by Lyman $\alpha$-absorption.

Gases with highest commercially available purity were used, where $\text{F}_2$ and $\text{H}_2$ were further purified by liquid $\text{N}_2$ and/or without NaP traps, respectively.

The first-order rate constants were obtained from the slopes $\Delta \ln([\text{NH}_2])/\Delta t$ and $\Delta \ln([\text{H}])/\Delta t$, respectively. The heterogeneous reactions ($k_w(\text{NH}_2)$, $k_w(\text{H})$), which determine the $\text{NH}_2$ and $\text{H}$ depletion in the absence of reactant, were followed independently for all experimental conditions.
At the experimental conditions \((6 \cdot 10^4 [\text{H}_2]_0 /[\text{NH}_3]_0 < 15 \cdot 10^4)\) and 
\((2.6 \cdot 10^5 [\text{H}_2]_0 /[\text{H}]_0 < 22 \cdot 10^4)\) the stoichiometric factors were found to be 
close to unity, although \text{NH}_3\) and \text{H}_2\) were present in the system from the 
\text{NH}_3\) and \text{H} atom source, respectively.

The measurements for reaction (1) were done at 13 different temperatures. 
The temperature dependence of the rate constant obeyed an Arrhenius behav-
ior. The Arrhenius parameters:

\[
k_1(T) = 3.6 \cdot 10^{12} \exp\left(-(38 \pm 3) \text{kJ mol}^{-1}/\text{RT}\right) \text{cm}^3 \text{mol}^{-1} \text{s}^{-1}
\]

were deduced from least squares treatments of the bimolecular rate constants, 
 obtained from the plots of the first order rate constants against the reac-
tant concentrations for each temperature, corrected with the stoichiometric 
factors.

The rate of reaction (-1) was measured at 7 different temperatures in 
the temperature range 673 T/K l003 . The following Arrhenius expression:

\[
k_{-1}(T) = 8.1 \cdot 10^{13} \exp\left(-(60.9 \pm 4) \text{kJ mol}^{-1}/\text{RT}\right) \text{cm}^3 \text{mol}^{-1} \text{s}^{-1}
\]

was obtained with the procedure, described above. No curvature was observed 
in the Arrhenius plot \(k_{-1}(T)\) versus \(1/T\) .

The Arrhenius expressions \(k_1(T)\) and \(k_{-1}(T)\), obtained in this study, 
are in fair agreement with earlier determinations by DEHISSEY and LESCLAUX\(^2\) \nand MICHAEL et al.,\(^3\) respectively.

The bond energy \(D(\text{H}_2\text{N-H})\) has been determined either from the mea-
sured activation energies \(E_A\) and \(E_{-A}\) via:

\[
\Delta H^\circ(T_{\text{mean}}) = E_A - E_{-A} = D_p(H-H) - D_p(H_2\text{N-H}) \,
\]

where \(\Delta H^\circ(T_{\text{mean}})\) is the enthalpy of the reaction at a mean temperature 
\(T_{\text{mean}}\), and \(D_p(H-H)\) and \(D_p(H_2\text{N-H})\) are the dissociation energies at 
that temperature, or via the equilibrium constant \(K_p(T)\):

\[-RT \ln K_p(T) = \Delta H^\circ(T) - T \Delta S^\circ(T) = D_p(H-H) - D_p(H_2\text{N-H}).\]

Both methods give as a result:

\[D_{298K}(H_2\text{N-H}) = 455 \text{kJ mol}^{-1}\]
and the enthalpy of formation of $\text{NH}_2$:

$$\Delta H_{\text{f NH}_2}^{(298K)} = 192 \text{ kJ mol}^{-1}.$$ 

The bond dissociation energy $D_{298K}(\text{H}_2\text{N-H})$ lies at the limit of the data, reported in the literature and supports the recommendation of BENSON.  


Ground state Ga($4p^1 2p_{1/2}$) atoms are produced by visible multiphoton dissociation of trimethylgallium and monitored by resonance fluorescence excitation in a pump and probe arrangement. The time dependence of the Ga concentration is observed by scanning the delay time between the pump and probe dye laser pulses. Reactions with CF$_3$X (X = F, Cl, Br, I), SF$_6$, C$_2$F$_4$, N$_2$O, C$_2$H$_2$, C$_2$H$_4$, 1-C$_8$H$_8$ (1-butene), and Ga(CH$_3$)$_3$ are studied under pseudo first-order conditions in a gas cell at room temperature. In most but not all cases an equilibrium is preserved between ground state Ga($4p^1 2p_{1/2}$) and metastable Ga($4P_{3/2}$) (excitation energy 826 cm$^{-1}$) atoms. Abstraction and association reactions are observed and characterized with respect to Ar buffer gas pressure dependence.

For several of the association reactions an equilibration is observed between free Ga atoms and Ga atoms bound in complexes with the reactant molecules. A simple kinetic analysis is used to evaluate equilibrium constants from series of Ga decay traces at different pressures of reactant. From these equilibrium constants and estimated partition functions, approximate gallium atom binding energies (kcal·mol$^{-1}$) are obtained for C$_2$H$_4$ (9±2), 1-C$_8$H$_8$ (9±2), and Ga(CH$_3$)$_3$ (14±2). Bimolecular and termolecular rate constants will be reported and discussed in relation to reaction products and mechanisms.
REACTION KINETICS OF GAS-PHASE BORON ATOMS AND BORON MONOXIDE WITH OXYGEN

Richard C. Oldenborg and Steven L. Baughcum. Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545

The volatile boron-containing compound, BC1₃, is photolyzed in a multiple-photon process using a rare gas-halide excimer laser operating at 193 nm (ArF) to provide an essentially instantaneous source of boron atoms. The boron atoms are produced in a reactive environment containing a known concentration of O₂ in an excess of argon diluent and at a controlled temperature (298 to 1300 K). The rate of oxidation of the atomic boron to BO,

\[ \text{B} + \text{O}_2 \rightarrow \text{BO} + \text{O} \]  \hspace{1cm} (1)

and the subsequent oxidation of BO,

\[ \text{BO} + \text{O}_2 \rightarrow \text{BO}_2 + \text{O} \]  \hspace{1cm} (2)

are studied by examining the temporal histories of the boron-containing species (B, BO, and BO₂) using laser-induced fluorescence (LIF) and chemiluminescent techniques.

The depletion of B atoms under our experimental conditions is due primarily to two reactions, namely Reaction (1) with O₂ and the reaction with undissociated BC₁₃ precursor molecules,

\[ \text{B} + \text{BC}_1 \rightarrow \text{BC} + \text{BC}_2 \]  \hspace{1cm} (3)
The rate constant $k_i$ is obtained from the slope of plots of the B atom decay rate vs $O_2$ pressure and has been measured over the 298-1180 K range. No change in this rate constant is observed with variation in the Ar diluent pressure from 2.5 to 200 torr. The rate constant is large over the entire temperature range, and increases slightly at elevated temperatures. The data have been fit to both an Arrhenius expression and a $T^n$-type function. The results are, respectively,

$$k_1(T) = (1.19 \pm 0.04) \times 10^{-10} \exp(-158 \pm 13/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1},$$

and

$$k_1(T) = (1.00 \pm 0.02) \times 10^{-10} (T/1000)^{0.29\pm0.02} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}.$$

Neither form is obviously a better representation of the data. The temperature dependence of this rate constant is consistent with the results of Fontijn, Felder, and Houghton for the analogous Al + $O_2$ reaction.

By studying the depletion of the atomic B in the absence of $O_2$ as a function of BCl$_3$ concentration, we obtain a room-temperature rate constant $k_3(298 \text{ K}) = (8.5 \pm 0.9) \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. To our knowledge, no previous measurements of this rate constant exist.

The depletion of B0 under our experimental conditions appears to be entirely due to the reaction with $O_2$. In contrast to the B removal data, a significant change in this rate constant is observed with changes in diluent pressure. The rate constant increases rapidly with Ar pressure at low pressures, but is essentially independent of diluent pressure above 25 torr. The limiting value at high pressures is $(2.4 \pm 0.2) \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. This pressure dependence is clearly inconsistent with the simple direct atom-transfer reaction mechanism between B0 and $O_2$. Rather, it suggests that this
This pressure dependence is clearly inconsistent with the simple direct atom-transfer reaction mechanism between BO and O₂. Rather, it suggests that this is not a simple elementary reaction and may involve a stable intermediate. Our SCF/Cl molecular orbital calculations show that an OBO₂ intermediate complex has a potential energy relative to reactants of -57 kcal/mole. This suggests a reaction mechanism analogous to that proposed for the OH + CO reaction, where collisions can stabilize the energized NOCO* intermediate making the overall rate constant pressure dependent. Expanding Reaction (2) in this way yields,

\[
\text{BO} + \text{O}_2 \xrightleftharpoons{a}{d} \text{OBO}^* \xrightarrow{b} \text{BO}_2 + \text{O} \quad \text{cm}^{-1} \text{BOO}_2
\]

The pressure dependent data are well fit by this expanded model, and the resulting fit parameters imply that the stabilized OBO₂ is the primary product of the BO reaction with O₂ at all Ar pressures employed in our experiments (2.5-250 torr).

The temperature dependence of the BO removal rate constant by O₂ at high diluent pressures (Ar ≥ 8 x 10¹⁶ molecules/cc) has also been investigated in the 298-1180 K range. The rate constant shows non-Arrhenius behavior and decreases with increasing temperature, which is consistent with a termolecular reaction to form a OBO₂ product. The data is best fit by a \( T^n \) type function with a small activation barrier in the entrance channel,

\[
k_2(T) = (1.7 ± 0.4) \times 10^{-11}(T/1000)^{-2.23±0.5}\exp(-716 ± 288/T) \text{ cm}^3\text{molecule}^{-1}\text{s}^{-1}.
\]
PULSED LASER PHOTOLYSIS STUDY OF THE O+ClO REACTION

J. M. Nicovich, P. H. Wine, and A. R. Ravishankara *

Molecular Sciences Branch, Georgia Tech Research Institute,
Georgia Institute of Technology, Atlanta, GA 30332

*Present address: Aeronomy Laboratory, NOAA-R/E/AL2,
325 Broadway, Boulder, CO 80303

Recently, we reported on the development of a pulsed laser photolysis technique for studying the kinetics of radical-radical reactions at pressures up to one atmosphere and application of the technique to the O + NO2 reaction [A. R. Ravishankara, P. H. Wine, and J. M. Nicovich, J. Chem. Phys. 78, 6629 (1983)]. We have employed an extension of the same approach to investigate the temperature and pressure dependence of k1:

\[ \text{O} + \text{ClO} \rightarrow \text{Cl} + \text{O}_2 \]  

(1)

A Cl2/NO mixture was photolyzed at 351 nm (XeF laser) to produce Cl atoms in excess over NO. After allowing sufficient time for reaction (2) to titrate NO to ClO, a small fraction (typically 3%) of the ClO was photolyzed at 266 nm to produce O(3P). The decay of O(3P) in the presence of (a known concentration of) ClO was followed by time resolved resonance fluorescence spectroscopy. Two important aspects of the experimental approach are 1) small spatial non-uniformities in the 351 nm laser beam have no effect on the ClO concentration (as long as Cl atoms are in excess) and 2) the O(3P) signal strength immediately after the 266 nm laser fires can be related to the ClO concentration.

Our results are summarized in Table 1. Reported rate constants were obtained from the slopes of plots of pseudo-first order O(3P) decay rate (k') versus ClO concentration. Each reported rate constant determination involved the measurement of 5-8 O(3P) temporal profiles. Within experimental uncertainty, exponential O(3P) decays and linear dependencies of k' on [ClO] were observed under all experimental conditions although, as discussed below, small systematic deviations from exponential...
behavior and linear $k'$ versus $[\text{ClO}]$ behavior were expected, and were accounted for in the data analysis.

The "uncorrected" rate constants in Table I were obtained using measured pseudo-first order rate constants and ClO concentrations determined from the relationship

$$[\text{ClO}] = [\text{O}_3]_0(1-x)$$

(2)

where $x$ is the fraction of ClO photolyzed by the 266 nm laser and $[\text{O}_3]_0$ is the ozone concentration before the XeF laser fired. To obtain the "corrected" rate constants in Table I, $k'$ values were corrected for slight deviations from strict pseudo-first order behavior (these corrections seldom exceeded 1%) and ClO concentrations were corrected for loss of ClO during the time period between ClO formation and the 266 nm laser pulse. ClO loss was observed to be second order and, therefore, due to the ClO + ClO reaction. ClO removal was investigated by monitoring the dependence of fluorescence signal intensity and $k'$ on the time delay between the two lasers. For $P \leq 50 \text{ Torr}$ and $T \geq 298 \text{K}$, very little ClO loss occurred on the time scale of our experiments. However, at lower temperatures and higher pressures ClO removal became much more rapid and rather large corrections to the ClO concentration obtained from equation (2) were required.

Our results show that $k_1$ is independent of pressure but increases with decreasing temperature. A weighted linear least squares analysis of the $\ln k_1$ versus $1/T$ data gives the Arrhenius expression

$$k_1(T) = (1.61 + 0.33) \times 10^{-11} \exp\left[\frac{(255 + 60)}{T}\right] \text{ cm}^3\text{molecule}^{-1}\text{s}^{-1}.$$  

This expression gives a value of $3.79 \times 10^{-11} \text{ cm}^3\text{molecule}^{-1}\text{s}^{-1}$ for $k_1(298 \text{K})$, in good agreement with the four recent discharge flow studies. However, our results suggest that, at stratospheric temperatures, chlorine catalyzed ozone destruction may be somewhat more efficient than previously thought.

This work was supported by The Fluorocarbon Program Panel of the Chemical Manufacturers Association.
<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>Pressure (Torr)</th>
<th>$k_x \times 10^{11}$ (uncorrected) (cc molecule$^{-1}$ s$^{-1}$)</th>
<th>$k_x \times 10^{11}$ (corrected) (cc molecule$^{-1}$ s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>231</td>
<td>25</td>
<td>4.64±0.16</td>
<td>4.99±0.17</td>
</tr>
<tr>
<td>238</td>
<td>25</td>
<td>4.23±0.43</td>
<td>4.47±0.43</td>
</tr>
<tr>
<td>252</td>
<td>200</td>
<td>3.10±0.22</td>
<td>3.72±0.24</td>
</tr>
<tr>
<td>255</td>
<td>25</td>
<td>4.15±0.20</td>
<td>4.42±0.20</td>
</tr>
<tr>
<td>255</td>
<td>200</td>
<td>3.25±0.20</td>
<td>3.76±0.28</td>
</tr>
<tr>
<td>257</td>
<td>25</td>
<td>3.86±0.15</td>
<td>4.10±0.11</td>
</tr>
<tr>
<td>257</td>
<td>25</td>
<td>4.30±0.15</td>
<td>4.47±0.19</td>
</tr>
<tr>
<td>275</td>
<td>25</td>
<td>3.94±0.17</td>
<td>4.10±0.16</td>
</tr>
<tr>
<td>298</td>
<td>15</td>
<td>3.73±0.28</td>
<td>3.79±0.27</td>
</tr>
<tr>
<td>298</td>
<td>15</td>
<td>4.17±0.10</td>
<td>4.31±0.12</td>
</tr>
<tr>
<td>298</td>
<td>25</td>
<td>3.55±0.21</td>
<td>3.61±0.21</td>
</tr>
<tr>
<td>298</td>
<td>25</td>
<td>3.67±0.25</td>
<td>3.59±0.25</td>
</tr>
<tr>
<td>298</td>
<td>25</td>
<td>3.51±0.14</td>
<td>3.62±0.13</td>
</tr>
<tr>
<td>298</td>
<td>25</td>
<td>3.87±0.36</td>
<td>3.93±0.36</td>
</tr>
<tr>
<td>298</td>
<td>25</td>
<td>3.89±0.15</td>
<td>4.07±0.17</td>
</tr>
<tr>
<td>298</td>
<td>50</td>
<td>3.91±0.23</td>
<td>4.06±0.24</td>
</tr>
<tr>
<td>298</td>
<td>50</td>
<td>3.62±0.15</td>
<td>3.90±0.11</td>
</tr>
<tr>
<td>298</td>
<td>50</td>
<td>3.70±0.12</td>
<td>3.89±0.11</td>
</tr>
<tr>
<td>298</td>
<td>50</td>
<td>3.53±0.19</td>
<td>3.74±0.14</td>
</tr>
<tr>
<td>298</td>
<td>50</td>
<td>3.76±0.16</td>
<td>3.97±0.14</td>
</tr>
<tr>
<td>298</td>
<td>100</td>
<td>3.73±0.68</td>
<td>3.95±0.67</td>
</tr>
<tr>
<td>298</td>
<td>200</td>
<td>3.39±0.27</td>
<td>3.62±0.24</td>
</tr>
<tr>
<td>298</td>
<td>200</td>
<td>3.39±0.28</td>
<td>3.62±0.31</td>
</tr>
<tr>
<td>298</td>
<td>200</td>
<td>3.55±0.12</td>
<td>3.72±0.13</td>
</tr>
<tr>
<td>298</td>
<td>500</td>
<td>3.18±0.16</td>
<td>3.80±0.12</td>
</tr>
<tr>
<td>338</td>
<td>25</td>
<td>3.16±0.60</td>
<td>3.26±0.12</td>
</tr>
<tr>
<td>359</td>
<td>200</td>
<td>2.99±0.14</td>
<td>3.09±0.15</td>
</tr>
<tr>
<td>360</td>
<td>25</td>
<td>2.89±0.13</td>
<td>2.96±0.12</td>
</tr>
<tr>
<td>367</td>
<td>25</td>
<td>3.35±0.13</td>
<td>3.46±0.13</td>
</tr>
</tbody>
</table>

(a) Errors are 2σ and represent precision only.
The kinetics of C1O decay and spectroscopy of species formed.

R.A. Corr, J.M. Davies and G.D. Hayman
Environmental and Medical Sciences Division,
A.E.R.E. Harwell,
Oxon, OX11 0RA.
England.

The role of C1O in the catalysis of O₂ decomposition in the stratosphere has been recognised since 1974 and the rate constants for the reactions involved in the C1O₅ catalytic cycle have been determined with good precision. In the present day stratosphere, the catalytic efficiency of the C1O₅ cycle has been reduced due to the coupling with the NO₆ chemistry. In a possible future 'high chlorine scenario', the concentration of chlorine containing species will be higher and many reactions of minor significance now may become important.

Despite the wealth of data available on the reactions of C1O, there is considerable uncertainty in the rate constants for its bimolecular and termolecular self-reactions (1-4). This program was undertaken to remove some of the uncertainty.

C1O + C1O ----> C1₂ + O₂

C1O + C1O ----> C1 + C100

C1O + C1O ----> C1 + OC1O

M,<--->Cl₂O₂

The kinetic experiments were performed by using a molecular modulation technique. C1O was produced by photolysis of C1₂ in mixtures either with O₂ or with O₅ and N₂. Total pressures from 2 to 760 torr were used at given temperatures in the range 268 to 338 K. The formation and decay of the C1O radical were followed by monitoring its ultraviolet absorption at 277.2 nm, corresponding to the 11-0 vibrational band of the A-X electronic transition.

On photolysis of C1₂, C1O was produced and reached a steady state concentration when its production and decay rates were equal. When the photolysis ceased, the C1O radicals decayed, but at a slower rate. In both cases, the decays were second order with respect to C1O. In the 'light-on' phase of the modulation cycle, there was a high concentration of Cl atoms present which scavenged Cl₂O₂ very efficiently through reaction (5). When the photolysis stopped, the Cl atom concentration dropped rapidly so that the back thermal decomposition reaction (-4) of the dimer became significant leading to a slower net removal of C1O.
The observed bimolecular rate constants for the decay of $\text{Cl}_2\text{O}$ were plotted as a function of pressure at a fixed temperature as shown in figure 1. At low total pressures, the plots are linear. Due to the complication introduced by reaction (4) in the 'light-off' period, the analysis concentrated on the rate constants governing the rise to and establishment of the steady state. The temperature dependences of the slope and intercept obtained from 'light-on' decays yielded the following expressions:

$$k_{\text{slope}} = (2.1 \times 10^{-2}) \exp\left[\left(\frac{312\pm15}{T}\right)\right] \text{ cm}^3 \text{ molecule}^{-2} \text{ s}^{-1}$$

$$k_{\text{intercept}} = (1.4 \times 10^{-12}) \exp\left[\left(-\frac{184\pm400}{T}\right)\right] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

The slope of the plots of the observed rate constant versus the total pressure can be tentatively assigned to the termolecular rate constant, $k_4$. The zero-pressure intercept is the sum of the rate constants for the effective bimolecular reactions removing $\text{Cl}_2\text{O}$.

Complementary to the kinetic experiments, spectroscopic studies were undertaken in an attempt to record the ultraviolet absorption spectrum of $\text{Cl}_3\text{O}_2$.

The apparatus used in the kinetic experiments was modified to allow mixtures to flow through the reaction vessel. Ultraviolet absorption spectra were recorded using a diode array camera which allowed intensities in the wavelength range from 220 to 300 nm to be sampled simultaneously. Three systems were chosen for study.

(1) $\text{Cl}_2 / \text{O}_3(\text{O}_2) / \text{N}_2$

(2) $\text{Cl}_3\text{O} / \text{Cl}_2 / \text{N}_2$

(3) $\text{OC10} / \text{N}_2$

In each case, the differences in absorption with and without photolysis were obtained. After correction for the characteristic absorptions due to $\text{O}_3$, $\text{OC10}$ etc and the $\text{Cl}_10$ produced by photolysis, a residual absorption was seen in all three systems (Figure 2).

The absorption, which became stronger as the temperature was reduced, is similar to $\text{Cl}_3\text{O}_2$, but is shifted some 10 nm to the blue. The most conclusive evidence for assigning the spectrum to $\text{Cl}_3\text{O}_2$ was the dependence of the absorption on the square of the $\text{Cl}_10$. In the three systems used, the Cl atom concentration was kept low by the presence of an efficient scavenger ($\text{O}_3$, $\text{Cl}_2\text{O}_2$ or $\text{OC10}$). This allowed the equilibrium between $\text{Cl}_0$ and $\text{Cl}_3\text{O}_2$ to become established and for high concentrations of the dimer to be produced in contrast to the kinetic experiments.

Current and future work will concentrate on quantifying the absorption spectrum to obtain cross-sections for the dimer in this wavelength region.
FIGURE 1 - PRESSURE DEPENDENCE OF THE OBSERVED BINOLEULAR RATE CONSTANTS AT 308K

FIGURE 2 - RESIDUAL ABSORPTIONS FROM THE THREE SYSTEMS AT 293K
KINETIC STUDY OF THEREACTIONS OF N₂O₅
WITH OH, HO₂, Cl and ClO

A. Mellouki, G. Poulet and G. Le Bras

Centre de Recherches sur la Chimie de la Combustion et des Hautes Températures
C.N.R.S.
45071 Orléans Cedex 2 - France

Recently, N₂O₅ has been detected in the stratosphere (1) at concentrations fully consistent with model predictions (2). If the thermal dissociation of N₂O₅ is the main tropospheric fate of N₂O₅ in day-time, in the stratosphere where the N₂O₅ photolysis is an important process, the reactions of free radicals with N₂O₅ could also play a role. Speculative calculations (3) have shown that, except for the Cl+ N₂O₅ reaction, the other title reactions could contribute to NOₓ chemistry if their rate constants were higher than 10⁻¹³ cm³ molecule⁻¹ s⁻¹.

The present study was performed using the discharge-flow method. N₂O₅, prepared from the reaction of NO with O₃ (4) was used in high excess (up to 4 x 10⁻¹³ molecules cm⁻³) over the free radical concentrations. All measurements were done in helium carrier at room temperature and at low pressure (between 0.8 and 2.6 Torr) in a halocarbon wax coated reactor. Free radicals were detected by E.R.P.R., NO₂ resulting from the slow decomposition of N₂O₅ (1 to 10% of N₂O₅), was also calibrated by E.P.R. after conversion into NO via the addition of excess O atoms. HNO₃, which was an unavoidable contaminant in N₂O₅ (3 to 7% of N₂O₅) was analyzed by mass spectrometry. The side reactions of NO₂ and HNO₃ with the free radicals were taken into account in the data analysis. And independent experiments were done under the same conditions to re-measure the rate constants for the reactions of NO₂ with the four free radicals, generally leading to a good agreement with previous literature data (Table I).
TABLE I: SUMMARY OF THE SECOND-ORDER RATE CONSTANTS FOR NO2 REACTIONS IN HELIUM AT 293K.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>N° of experiments</th>
<th>P (Torr)</th>
<th>k (cm³ molecule⁻¹ s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH + NO₂ → HNO₃</td>
<td>13</td>
<td>0.62</td>
<td>(6.4±1.8) x 10⁻¹⁴</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.76</td>
<td>(1.29±0.13) x 10⁻¹³</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.99</td>
<td>(1.29±0.13) x 10⁻¹³</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>2.44</td>
<td>(1.70±0.20) x 10⁻¹³</td>
</tr>
<tr>
<td>NO₂ + NO₂ → HNO₃</td>
<td>13</td>
<td>2.80</td>
<td>(a)</td>
</tr>
<tr>
<td>Cl + NO₂ → ClNO₂</td>
<td>17</td>
<td>2.10</td>
<td>(7.1±1.3) x 10⁻¹⁴</td>
</tr>
<tr>
<td>Cl + NO₂ → ClNO₃</td>
<td>10</td>
<td>1.80</td>
<td>(8.7±1.0) x 10⁻¹⁵</td>
</tr>
</tbody>
</table>

(a): The rate constant was obtained from computer simulation of the data (due to the interference of the recombination reaction at 293K) and agreed with the low pressure limit of ref. 3: (7.8±1.9) x 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹ at 2.44 Torr in helium.

Reaction OH + N₂O₅:

The apparent first order rate constant for the reaction of OH (produced from the reaction H + NO₂ → OH + NO) with N₂O₅ ranged from 68 to 123 s⁻¹ at 2.44 Torr. After corrections for the interfering reactions (wall loss of OH, OH + NO₂ + He reaction and OH + HNO₃ reaction) and considering both random errors and experimental uncertainties, the upper limit of the rate constant for this reaction was: 5 x 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹.

Reaction HO₂ + N₂O₅:

HO₂ radicals were produced from the chemical source Cl + CH₃ OH + O₂ and were analyzed after conversion into OH through the addition of excess NO upstream from the E.P.R. cavity. The wall loss of HO₂ and the reaction HO₂ + NO₂ + He were found negligible leading to the upper limit for the rate constant: 1 x 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹.

Reaction Cl + N₂O₅:

The apparent decays observed for the Cl atoms, produced by microwave discharge in Cl₂, were mainly due to the side reaction Cl + NO₂ + He. The appropriate corrections for each measurement led to the upper limit for the rate constant: 5 x 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹.
Reaction \( \text{ClO} + \text{N}_2\text{O}_5 \):

\( \text{ClO} \) radicals were produced from the reaction \( \text{Cl} + \text{OClO} \rightarrow 2 \text{ClO} \), with an excess of \( \text{OClO} \). In this case, the corrections due to secondary chemistry were negligible and the upper limit obtained for the rate constant was \( 6 \times 10^{-16} \text{cm}^3/\text{molecule} \cdot \text{s} \).

All the data are summarized in Table II.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>( \Delta H ) cal/mol</th>
<th>( N ) of exp</th>
<th>( k ) ( \text{cm}^3/\text{mol} \cdot \text{s} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \text{OH} + \text{N}_2\text{O}_5 \rightarrow \text{HNO}_3 + \text{NO}_2 )</td>
<td>-27.3</td>
<td>6</td>
<td>( &lt; 5 \times 10^{-15} )</td>
</tr>
<tr>
<td>( \text{HO}_2 + \text{N}_2\text{O}_5 \rightarrow \text{HNO}_3 + \text{NO}_3 )</td>
<td>-19.1</td>
<td>18</td>
<td>( &lt; 1 \times 10^{-15} )</td>
</tr>
<tr>
<td>( \text{Cl} + \text{N}_2\text{O}_5 \rightarrow \text{ClNO}_3 + \text{NO}_2 )</td>
<td>-2.9</td>
<td>18</td>
<td>( &lt; 5 \times 10^{-15} )</td>
</tr>
<tr>
<td>( \text{ClO} + \text{N}_2\text{O}_5 \rightarrow \text{ClNO}_3 + \text{NO}_3 )</td>
<td>8.8</td>
<td>18</td>
<td>( &lt; 6 \times 10^{-16} )</td>
</tr>
</tbody>
</table>

The present kinetic results indicate a very low reactivity of \( \text{N}_2\text{O}_5 \) with free radicals. That confirms the result of a previous study of \( \text{O} + \text{N}_2\text{O}_5 \) reaction (6) for which an upper limit of the rate constant was also given: \( 3 \times 10^{-16} \text{cm}^3/\text{molecule} \cdot \text{s} \).

Finally, these reactions -with the pathways indicated in Table II- cannot be significant stratospheric sources of \( \text{HNO}_3 \), \( \text{HNO}_4 \) and \( \text{ClNO}_3 \) and, more generally, the reactions of \( \text{N}_2\text{O}_5 \) with free radicals can be disregarded in atmospheric chemistry.

- References -

(3) N.D. SZE, private communication.
The Reactivity of the Nitrate Radical with Alkynes and some other Molecules

C. Canosa-Mas, S.J. Smith, S. Toby and R.P. Wayne

Physical Chemistry Laboratory, Oxford University, U.K.

Recent observations on the abundances of alkynes in the atmosphere (1) has stimulated renewed interest in the interactions of these species with atmospherically reactive intermediates (2). We report for the first time the rate constants for the reactions at 295 ± 2 K of the nitrate radical (NO₃) with acetylene, propyne, 1-butyne, 2-butyne, 1-pentyne and 1-hexyne. In addition, rates were measured of the reactions of NO₃ with NO₂, O₂, SO₂, C₃H₄, 1,3-butadiene and 2-methyl propene (isobutene). An absolute method for determining the rate constants was used.

Nitrate radicals were formed in a flow system by the reaction 

F + HNO₃ → HF + NO₃. Molecular fluorine diluted with helium was passed through a microwave discharge and into a stream of nitric acid vapour in a He carrier. The NO₃ concentration was measured by absorption of

λ = 662 ± 2.1 nm light using a four-pass White cell, the system being calibrated by titration with NO. In most cases NO₃ reactions were studied under pseudo-first order conditions. For the fastest reactions, however, the NO₃ and reactant concentrations were sometimes comparable and the data were then treated assuming second order kinetics with 1:1 NO₃/reactant stoichiometry. Results using both sets of conditions were compared and computer simulation was used to investigate the influence of possible secondary reactions which could affect the stoichiometry.

We measured k(NO₃ + NO₂ + M → N₂O₅ + M) in the range 1-8 torr (He diluent) and good agreement with literature values (5) was obtained. No
direct measurements of NO$_3$ decay along the 1 m long reaction tube were made in the absence of added co-reactant but computer simulation showed that any such loss could not have been important, as has previously been noted (3). In the presence of reactants, plots of pseudo first order constants vs reactant concentration sometimes gave small positive intercepts (typically $\sim 0.4$ s$^{-1}$) which may have resulted from the reaction of NO$_3$ with adsorbed reactant.

No detectable loss of NO$_3$ in the presence of SO$_2$ or O$_2$ was found which enables us to put an upper limit of $1 \times 10^{-17}$ cm$^3$ molecule$^{-1}$ s$^{-1}$ on the rate constants for these reactions, thus justifying the use of added O$_2$ in some experiments as a check for possible radical chain reactions. Rate constants are tabulated in Table 1. Comparisons between runs where reactant was used pure, was diluted with helium or was diluted with oxygen showed no significant differences.

In the cases of 2-butyne, 1,3-butadiene and isobutene, where [NO$_3$]$>[\text{reactant}]$, second order kinetic plots were curved. This curvature could be accounted for by additional consumption of NO$_3$ according to the sequence:

$$\begin{align*}
\text{NO}_3 + X &\rightarrow^{1} Y + Z \\
\text{NO}_3 + Y &\rightarrow^{2} \text{Products}
\end{align*}$$

where $k_2 = (1-10) \times 10^{-14}$ cm$^3$ molecule$^{-1}$ s$^{-1}$. These values of $k_2$ are close to those expected when the intermediate $Y \equiv \text{NO}_2$, and this is in accord with the postulation of epoxides and NO$_2$ elimination when NO$_3$ reacts with unsaturated hydrocarbons (9).

Comparisons between the rate constants for NO$_3$ with alkynes and alkenes and those for the corresponding reactions with OH, O($^3P$) and O$_3$ are made and discussed. In addition, the relationship of $k(\text{NO}_3 + \text{alkynes})$
and ionisation energies will be given.

Work is being continued on these systems in order to determine the temperature dependences of the rate coefficients.

Table I. Rate Constants for Reactions of NO₃ at 295 ± 2 K

<table>
<thead>
<tr>
<th>Reactant</th>
<th>$k_{298} \times 10^{16}$ cm$^3$ molecule$^{-1}$ s$^{-1}$</th>
<th>Total pressure range, Torr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Literature values (ref.)</td>
<td>This work $^a$</td>
</tr>
<tr>
<td>acetylene</td>
<td>-</td>
<td>0.6 ± 0.3</td>
</tr>
<tr>
<td>propyne</td>
<td>-</td>
<td>6.2 ± 1.0</td>
</tr>
<tr>
<td>1-butyne</td>
<td>-</td>
<td>6.81 ± 0.35</td>
</tr>
<tr>
<td>2-butyne</td>
<td>-</td>
<td>670 ± 150</td>
</tr>
<tr>
<td>1-pentyne</td>
<td>-</td>
<td>11.6 ± 1.3</td>
</tr>
<tr>
<td>1-hexyne</td>
<td>-</td>
<td>16.4 ± 2.9</td>
</tr>
<tr>
<td>sulfur dioxide</td>
<td>≤ 4 (4)</td>
<td>≤ 0.1</td>
</tr>
<tr>
<td>oxygen</td>
<td>-</td>
<td>&lt; 0.1</td>
</tr>
<tr>
<td>ethylene</td>
<td>1.1 (6,7); 10.9 (8)</td>
<td>8.8 ± 1.1</td>
</tr>
<tr>
<td>2-methyl propene</td>
<td>3100 (6,7); 3300 (3)</td>
<td>3400 ± 700</td>
</tr>
<tr>
<td>1,3-butadiene</td>
<td>-</td>
<td>2200 ± 600</td>
</tr>
</tbody>
</table>

$^a$ error limits are ± 20%

References
The gas phase reaction of ethyl radicals with NO₂.

SHANAHAN, I.
School of Chemical Sciences,
National Institute for Higher Education,
Clasnevin, Dublin 9, Ireland.

The gas phase reaction of ethyl radicals with NO₂ was studied at ambient temperature (298 ± 3 K). Ethyl radicals were produced by the photolysis of ethyl bromide in the wavelength range 220 - 400 nm. The major reaction products were nitroethane and acetaldehyde, but a careful search indicated that ethyl nitrite and formaldehyde were not products of the reaction. The results are interpreted in terms of a mechanism involving the production of nitroethane and ethoxy radicals:

\[
\begin{align*}
C_2H_5^+ + NO_2 & \rightleftharpoons C_2H_5NO_2^+ \overset{+M}{\rightarrow} C_2H_5NO_2 \quad (1) \\
C_2H_5^+ + NO_2 & \rightarrow C_2H_5O^+ + NO \quad (2)
\end{align*}
\]

followed by a complex reaction of \( C_2H_5O^+ \) to form acetaldehyde:

\[
C_2H_5O^+ \rightarrow \text{Acetaldehyde} \quad (3)
\]

The experimental evidence is consistent with the involvement of bromine atoms in the decomposition of the ethoxy radicals, and it is proposed that \( CH_3CHO \) is produced as a result of process 4a and/or 4b:

\[
\begin{align*}
C_2H_5O^+ + Br^- & \rightarrow CH_3CHO + HBr \quad (4a) \\
C_2H_5O^+ + Br^- & \rightarrow CH_3CHOBr \quad (4b)
\end{align*}
\]

The importance of heterogeneous processes on the production of acetaldehyde will also be discussed. The relative importance of the two addition routes of \( C_2H_5^- \) radicals to NO₂ was determined over a wide pressure range, providing an estimate of the high-pressure limiting value of the rate constant ratio, \( k_3/k_2 \).
Kinetic Measurements on the NO + NO₂ = N₂O₃ Reaction using a Pulsed Photolysis - IR Laser Absorption Technique

Ian W.M. Smith and Gregory Yarwood

Department of Chemistry, University of Birmingham, P.O. Box 363, Birmingham B15 2TT, U.K.

Kinetic measurements using time-resolved spectroscopic observations in the infrared are comparatively rare. They are especially useful if the ultraviolet transitions of the transient species are broad dissociative continua, particularly if overlap between such continua occur. Resonance detection methods are then impossible and standard absorption techniques are insensitive and may be difficult to interpret. On the other hand, all molecular species possess relatively narrow, characteristic infrared bands. Using a cw laser as a background source, small absorptions in infrared bands can be measured and the sensitivity is fairly independent of total pressure.

In this paper, we shall report the measurement of rate constants for the system:

\[ \text{NO} + \text{NO}_2 \rightarrow \text{H}_2\text{O}_3 \]

at 210 K and total pressures (M = He, Ar, CF₄) from 50 Torr to several atmospheres. Besides demonstrating the potential of the pulsed photolysis - infrared absorption technique, this investigation is the first in a series designed to study the kinetics of association-dissociation in weakly bound systems. The main components of the apparatus are (i) a conventional, low temperature, flash photolysis reaction cell, and (ii) a line-selective cw CO laser operating at ca 100 K. Mixtures are prepared containing ca 50 mTorr NO₂, 4.5-10 Torr NO,
and diluent gas. The laser is usually operated on the $F_{11,10}$ (14) line which is coincident with a $Q$ branch of the $v_1$ (NO stretch) mode in $N_2O$.\(^1,2\) Pulsed photolysis (200 J flash, FWHM $\approx$ 5 µs) perturbs the equilibrium represented by equation (1) to the left and relaxation to equilibrium is observed by monitoring the transmitted intensity ($I_t$) of the laser line using a room temperature InSb detector.

The single-shot traces of $I_t$ against time are well-matched by single exponentials with the first-order constant corresponding to $k_1[NO][M] + k_{-1}[M] = k_1[NO][M](1 + (k_{-1}/k_1[NO]))$. The term in brackets can be calculated from the known equilibrium constant, $K = (k_1/k_{-1})$, with allowance being made for the small rise in gas temperature as a result of the photodissociation of $N_2O$.

Preliminary analysis of the results yields the following third-order rate constants ($T = 210$ K).

- $k_1^1$ (M=He) = $(2.0 \pm 0.5) \times 10^{-11}$ cm$^6$ molecule$^{-1}$ s$^{-1}$
- $k_1^2$ (M=Ar) = $(2.4 \pm 0.8) \times 10^{-11}$ cm$^6$ molecule$^{-1}$ s$^{-1}$
- $k_1^3$ (M=CF$\,\,_3$) = $(4 \pm 1) \times 10^{-11}$ cm$^6$ molecule$^{-1}$ s$^{-1}$

At the meeting we shall report (i) the results of measurements at total pressures greater than one atmosphere, in order to examine the transition into the fall-off region, and (ii) comparisons of the observed rate constants with those estimated using the methods developed by Troe.\(^3\)

References
2. I.W.M. Smith and G. Yarwood, spectroscopic observations on $N_2O$ to be published.
Temperature and pressure dependence of the rate constant for
the association reaction $\text{CF}_3 + \text{O}_2 + \text{M} \rightarrow \text{CF}_3\text{O}_2 + \text{M}$

F. CARALP, A.M. DOGNON and R. LESCLAUX
Laboratoire de Photophysique Photochimie Moléculaire - UA CNRS N°348
Université de Bordeaux I - 33405 TALENCE CEDEX (France)

The association reaction of methyl and halomethyl radicals
with oxygen are important steps in the oxidation processes occuring
in the atmosphere. However the only experimental kinetic data
available are limited to room temperature (see for instance : [1]
In the case of the CH$_3$ radicals, calculations of the fall-off
parameters as a function of temperature are presented in [4].

In the scope of the study of the chlorofluoromethane
oxidation, we report a detailed investigation of the reaction
$\text{CF}_3 + \text{O}_2 + \text{M} \rightarrow \text{CF}_3\text{O}_2 + \text{M}$ in the pressure and temperature range
1-12 torr and 233-473 K respectively. Measurements have been
performed using pulsed laser photolysis and time resolved mass
spectrometry.

The reaction was found to be in its fall-off region over
our range of experimental conditions. The principal goal of this
study was the determination of the temperature dependence of the
fall-off parameters.

The experimental results have been modelled using the
equation proposed by TROE and coworkers. The three parameters
$k_0$, $k_\infty$, $F_C$ have been determined by fitting this equation to our
experimental data taking into account that the relative values
of these parameters have the constraints imposed by the following
equations :

$$k_0 = k_0^{\infty} \times B_C$$

(1)
where $k_{o}^{sc}$ is the low pressure limiting strong collision rate coefficient and $\beta_{c}$ the collision efficiency

$$F_{c} = F_{wc}^{sc} x F_{sc}^{sc}$$

(2)

where $F_{wc}^{sc}$ and $F_{sc}^{sc}$ are the strong and weak collision factors respectively

$$F_{wc}^{sc} = 0.14$$

(3)

$$\frac{\beta_{c}}{1 - \beta_{c}^{1/2}} = \frac{\langle \Delta E \rangle}{F_{E} RT}$$

(4)

where $\langle \Delta E \rangle$ is the average energy removed by collision and $F_{E}$ a coefficient which accounts for the energy dependence of the density of states.

$k_{o}^{sc}$ and $F_{c}^{sc}$ have been calculated from the values of molecular parameters of CF$_{3}$O$_{2}$ ($\Delta H_{298}^{o} = -147$ kcal mole$^{-1}$ [5] and vibrational frequencies [6]) using the expression developed by TROE.

This analysis has led to a fairly good consistency between the present and previous experimental results, the theoretical approach and the molecular parameters used in the calculations. The expression obtained for the temperature dependence of $k_{o}$ with N$_{2}$ as buffer gas is:

$$k_{o} = (1.9 \pm 0.2) x 10^{-29} (T/298)^{-4.7 \pm 0.4} \text{cm}^{6} \text{ molecule}^{-2} \text{ s}^{-1}$$

The rate expression proposed for $k_{w}$

$$k_{w} = (9 \pm 2) x 10^{-12} (T/298)^{0 \pm 1} \text{ cm}^{3} \text{ molecule}^{-1} \text{ s}^{-1}$$

is consistent with the calculated expression

$$F_{c} = \exp(-T/395)$$

and preceding values reported at room temperature.
(1) NASA JPL Publication 85-37 (1985)


(4) C.J. COBOS, H. HIPPLER, K. LUTHER, R.A. RAVISANKARA and
    J. TROE, J. Phys. Chem. 89 (1985) 4332

    (Engl. Transl.) 21 (1980) 854

The experimentally observed pressure dependence for the reaction

\[
\text{CX}_3 + \text{O}_2 + \text{M} \rightarrow \text{CX}_3\text{O}_2 + \text{M}, \text{ where } \text{X} = \text{H} \text{ or halogen},
\]

was modelled using a full-scale RRKM program. This involved the reverse unimolecular decomposition reaction and the employment of the principle of microscopic reversibility.

An excellent fit with experiment was obtained in each case, giving the \( \text{CX}_3 - \text{O}_2 \) bond dissociation energies below:

<table>
<thead>
<tr>
<th>( \Delta (\text{CX}_3 - \text{O}_2) \text{ Kcal mol}^{-1} )</th>
<th>29.9</th>
<th>21.6</th>
<th>24.8</th>
<th>35.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \text{CX}_3 )</td>
<td>( \text{CH}_3 )</td>
<td>( \text{CCl}_3 )</td>
<td>( \text{CFCl}_2 )</td>
<td>( \text{CF}_3 )</td>
</tr>
</tbody>
</table>
The role of halogenated peroxide radicals in the oxidation of halogenated hydrocarbons, specifically freons, is as important as that of alkyl peroxide radicals in the oxidation of hydrocarbons. Therefore, thermochemical and kinetic data on these radicals are of considerable interest.

In the present work, comparing new experimental data on the pressure dependence of the reaction rate constant for

\[
\text{CF}_3 + O_2 (+ M) \rightarrow \text{CF}_3\text{OO} (+ M)
\]

with calculations performed in accordance with the RRKM theory, the C-O bond dissociation energy in the \(\text{CF}_3\text{OO}\) radical has been determined: \(D(\text{CF}_3 - O_2) = 143\) kJ/mole. This value differs substantially from \(D(\text{CF}_3 - O_2) = 204\) kJ/mole, obtained by the additivity method, and, on the whole, is in agreement with the value of \(D(\text{CP}_3 - O_2) = 134\) kJ/mole, previously calculated by us based on comparing the calculations performed in accordance with the RRKM theory and the kinetic data then available.

The value of C-O bond dissociation energy in the \(\text{CF}_3\text{OO}\) radical, obtained in the present work, and the reference data on the enthalpy of formation \(\text{CF}_3\), \(O\), \(\text{CP}_3\), and \(\text{CP}_3\text{OOFP}_3\) make it possible to arrive at the following thermochemical quantities:

\[
H_f^0(\text{CF}_3\text{O}_2) = -609\text{ kJ/mole}; \quad H_{298}^0(\text{CP}_3\text{O}_2) = -615\text{ kJ/mole};
\]

\[
D_{298}(\text{CF}_3\text{O} - O) = 209\text{ kJ/mole}; \quad D_{298}(\text{CP}_3 - \text{OOCF}_3) = 423\text{ kJ/mole}.
\]
RELATIVE RATE STUDIES FOR REACTIONS OF SILYLENE

by C.D. Eley, H.M. Frey, M.C.A. Rowe, R. Walsh and I.M. Watts
Department of Chemistry, University of Reading, Whiteknights, P.O. Box 224, Reading RG6 2AD, England

ABSTRACT

The photochemical decomposition of gaseous phenylsilane has been investigated at 206 nm at 298 K (and also 373 K). The formation of benzene and phenylsilane, with and without added oxygen, supports the following mechanism

\[ \text{C}_6\text{H}_5\text{SiH}_3 \xrightarrow{\text{hv}} \text{C}_6\text{H}_6 + \text{SiH}_2 \]

\[ \text{SiH}_2 + \text{C}_6\text{H}_5\text{SiH}_3 \rightarrow \text{C}_6\text{H}_5\text{SiH}_2\text{H}_3 \]

Experiments with added methylsilane give two new products, methyldisilane and phenylmethyldisilane, thus further demonstrating SiH₂ trapping via

\[ \text{SiH}_2 + \text{CH}_3\text{SiH}_3 \rightarrow \text{CH}_3\text{Si}_2\text{H}_5 \]

and also indicating the presence of phenylsilylene, \( \text{C}_6\text{H}_5\text{SiH} \) as an intermediate which is trapped via

\[ \text{C}_6\text{H}_5\text{SiH} + \text{CH}_3\text{SiH}_3 \rightarrow \text{C}_6\text{H}_5\text{SiH}_2\text{SiH}_2\text{CH}_3 \]

This supports earlier evidence for a second primary process

\[ \text{C}_6\text{H}_5\text{SiH}_3 \xrightarrow{\text{hv}} \text{C}_6\text{H}_5\text{SiH} + \text{H}_2 \]

Photolysis in the presence of added substrate gases yields rate constants for the reaction of SiH₂ with these species relative to reaction with phenylsilane. These may be put on an absolute basis by use of recently measured absolute rate constants for SiH₂ by Inoue and Suzuki² using LIF detection, as shown in the Table.

Further investigation of the reaction of SiH₂ with H₂ supports the pressure dependent process

\[ \text{SiH}_2 + \text{H}_2(\text{g}) \rightarrow \text{SiH}_4(\text{g}) \]

RRKM modelling with weak collisional deactivation \( (\text{Ar}, <\text{AE}>_{\text{down}} = 200 \text{ cm}^{-1}) \) leads to a value of \( k'' = 1.9 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) (within a factor of 2). This is consistent with recent direct measurements by Jasinski.³
Taken in conjunction with the reverse decomposition rate constant and measured thermodynamic properties this leads to

$$\Delta H^\circ (\text{SiH}_2) = 65.3 \pm 1.5 \text{ kcal mol}^{-1} \text{ (at 298 K)}$$

The presentation will include discussion of the significance of this value in the light of previous measurements and theoretical calculations.

References

Table: Rate constants for reaction of SiH$_2$(^1A$_g$) at 298 K.

<table>
<thead>
<tr>
<th>Reactant</th>
<th>$10^{12}$ k/cm$^3$ molecule$^{-1}$ s$^{-1}$</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiH$_4$</td>
<td>$110 \pm 20$</td>
<td>2</td>
</tr>
<tr>
<td>Si$_2$H$_6$</td>
<td>$570 \pm 20$</td>
<td>2</td>
</tr>
<tr>
<td>C$_6$H$_5$SiH$_3$</td>
<td>$110 \pm 16$</td>
<td>this work</td>
</tr>
<tr>
<td>MeSiH$_3$</td>
<td>$132 \pm 35$ b</td>
<td>this work</td>
</tr>
<tr>
<td>Me$_3$SiH</td>
<td>$52 \pm 9$</td>
<td>this work</td>
</tr>
<tr>
<td>C$_2$H$_4$</td>
<td>$97 \pm 12$ a</td>
<td>2</td>
</tr>
<tr>
<td>C$_2$H$_2$</td>
<td>$99 \pm 16$</td>
<td>this work</td>
</tr>
<tr>
<td>MeC=CECHMe</td>
<td>$110 \pm 27$</td>
<td>this work</td>
</tr>
<tr>
<td>O$_2$</td>
<td>$1.2 \pm 0.2$</td>
<td>this work</td>
</tr>
</tbody>
</table>

a. Reference value. b. Relative rates measured at 373 K.
DETECTION OF RADICALS IN THE PHOTO-OXIDATION OF ALDEHYDES

G.K. MOORTGAT, J.P. BURROWS, G.S. TYNDALL, W. SCHNEIDER
R.A. COX*, B. VEYRET** and K. McADAM**

Max-Planck-Inst. für Chemie, Air Chemistry Dept. D-6500 Mainz
* AERE Harwell, U.K., ** Université de Bordeaux I, F-Talence

A novel apparatus has been built at the MPI to study the behaviour of reactants, products and intermediates (radicals) during and after photolysis. The apparatus consists of a "double multi-path" spectrometer, combining both ir- and uv-absorption spectrometry with additional capability of modulated photolysis for transient detection. Photolysis experiments were performed in a 46 liter quartz cell equipped with two independent sets of White-optic mirrors, one being used in connection with the Bomem FTIR-spectrometer, the other for uv-visible absorption measurements. Uv-absorption-time profiles are fed into a signal averager and processed by an Apple micro-computer. A schematic diagram is shown in Figure 1.

Absorption-time profiles at selected wavelengths in the 210-275 nm region were recorded in the modulated photolysis of HCHO- and CH₃CHO-air mixtures. Transient absorptions showed a characteristic rise and fall during the alternating photolysis and dark periods.

In the HCHO-air system, HO₂ radicals are produced in the primary photo-oxidation: HCHO + hv, O₂ → 2 HO₂ + CO. However, the observed transient absorption (see Figure 2) contained an
additional superimposed broad band spectrum with a maximum near 240 nm which was assigned to the OOCH\(_2\)(OH) radical formed by the reaction of HO\(_2\) with HCHO:

\[
\text{HO}_2 + \text{HCHO} \rightarrow \text{OOCH}_2(\text{OH}) \quad (\text{RO}_2)
\]

Additional experiments were done in Bordeaux by flash-photolysing up to 20 torr of HCHO and observing the formation of the radicals after the flash using optical absorption at different wavelengths. A value of the equilibrium constant \(K\) was obtained: \(K = 4 \times 10^{-17} \text{ cm}^3 \text{ molecule}^{-1}\) at 305 nm. The absorption cross section at 250 nm was estimated to be near \(5 \pm 1 \times 10^{-18} \text{ cm}^2 \text{ molecule}^{-1}\). A spectrum of the OOCH\(_2\)(OH) radical obtained at Bordeaux (black dots) is shown in Figure 3, together with the uv absorption spectra of HO\(_2\) and CH\(_3\)O\(_2\).

Measurements of absorption-time profiles at 250 nm and 220 nm during modulated photolysis of CH\(_3\)CHO-air mixtures were made using photolysis periods of 6s. Initial CH\(_3\)CHO-photo-oxidation products are CH\(_3\)O\(_2\) and HO\(_2\) radicals:

\[
\text{CH}_3\text{CHO} + \text{hv}, \text{O}_2 \rightarrow \text{HO}_2 + \text{CH}_3\text{O}_2.
\]

At lower concentrations (0.1 Torr CH\(_3\)CHO in 700 Torr Air) absorption at 250 nm was expected to be dominated by CH\(_3\)O\(_2\) radicals, whereas that at 220 nm was expected to contain components due to HO\(_2\) and CH\(_3\)O\(_2\). Kinetic analysis of the data assisted by computer simulation, using several combinations of absorption cross sections of CH\(_3\)O\(_2\) (best fit = 3.2 x 10\(^{-18}\) cm\(^2\).molec.\(^{-1}\)) resulted in a value \(k = 3.7 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\) for the reaction

\[
\text{HO}_2 + \text{CH}_3\text{O}_2 \rightarrow \text{CH}_3\text{OOH} + \text{O}_2,
\]
in excellent agreement with the results obtained from recent computer simulations of the photo-oxidation endproducts by FTIR-analysis.

At higher concentrations, near 10 torr CH$_3$CHO, the transient spectrum (see Figure 4) contained an additional component, which was attributed to the acetylperoxy radical, CH$_3$COO$_2$. This radical is formed by a chain mechanism initiated by the CH$_3$O radical reacting with CH$_3$CHO. The formation of acetic acid in the gas phase oxidation of CH$_3$CHO is believed to occur from the addition reaction of HO$_2$ to CH$_3$CHO to form the CH$_3$CH(OH)O$_2$ radical. A complete mechanism of the CH$_3$CHO photo-oxidation will be presented.
optical detection of OH(2) radicals during oxidation of ethylene in a jet-stirred reactor

A. CHAKIR, F. GAILLARD, P. DAGAUT, M. CATHONNET, J.C. ROETTNER, H. JAMES

C.N.R.S., Centre de Recherches sur la Chimie de la Combustion et des Hautes Températures, 45071 Orleans-Cedex, France.

The recent development in the digital computers and numerical techniques makes possible to model the kinetics of hydrocarbon oxidation. The models have to be validated through comparison with experimental results at wide ranges of operating conditions. The availability of powerful diagnostic techniques would allow to get these required experimental results.

The data we obtained in the past were from plug-flow and jet-stirred reactors. These reactors are suitable for studying the slow oxidation of hydrocarbons in the intermediate temperature range (900-1200 K) and pressures up to 1 Mpa. Up to now, kinetic models have been established for ethylene (1,2) and propane oxidation (3), and only validated through comparisons with experimental results for the molecular species concentrations.

In order to obtain more detailed information on the oxidation process, a new jet-stirred reactor, similar to that used previously (4), was built with quartz windows to allow optical access and detection of some radiative species produced during the reaction. To minimize the quenching due to collisional deexcitation, the experimental rig was designed to be operated at subatmospheric pressures.

Fluorescence light is collected, focused on the entrance slit of a monochromator Jobin-Yvon HRS 2 and detected by a photomultiplier EMI 6256 S connected to a photon counter EGG Instruments.

In the visible range, the existence of a strong continuum prevents the observation of characteristic bands of carbon containing excited species. However, in the near U.V., it has been possible to observe a significant emission whose maximum occurs at 308.9 nm, due to electronically
excited \( \text{OH}^{(+)} \) radicals (fig. 1). The profiles of fluorescence against residence times \((0.01 \rightarrow 0.2 \text{ s})\) have been obtained for pressures between 0.003 MPa and 0.02 MPa, in a wide range of equivalence ratios \((0.4 \leq \phi \leq 2)\); these experimental conditions allowing a good mixing of the reactor.

Gas samples were collected by a quartz sampling probe for analysis by gas phase chromatography, during the same time of optical measurements. An example of concentration profiles of main molecular compounds is given on figure 2, together with profile of emission intensity at 308.9 nm.

The ethylene oxidation at pressures above atmosphere was modelled by a comprehensive detailed kinetic mechanism (5). The same mechanism is used to reproduce the experimental results at sub-atmospheric pressures, after changing some rate coefficients. This is necessary to account for pressure dependant rate constants. A sensitivity analysis is carried out to define these reactions.

This work is in progress and satisfactory comparisons are being obtained between experiments and computations for concentrations of molecular compounds. On the basis of this agreement, computed profiles for radical species could be used to explain the origin of \( \text{OH}^{(+)} \) formation in the mechanism:

- firstly, the kinetic model is investigated to select the exoenergetic processes able to generate these excited species (i.e.):

\[
\begin{align*}
H + O_3 & \rightarrow \text{OH}^{(+)} \\
\text{CH}_2 + O_2 & \rightarrow \text{CO} + \text{OH}^{(+)} \\
\text{CH} + \text{HO}_2 & \rightarrow \text{NCO} + \text{OH}^{+} \\
\text{NCO} + O_2 & \rightarrow \text{CO}_2 + \text{OH}^{+} \ldots
\end{align*}
\]

- then, owing to the assumption that emission results from a balance between the production of \( \text{OH}^{(+)} \) and their collisional deexcitation, comparison between the product of computed concentrations of the above reactant species and the level of fluorescence experimentally measured might lead to determine the part played by each process towards generation of these excited radicals.

REFERENCES

(5) P. DAGAULT et coll.: in progress.
Detection of OH(2^+) during oxidation of C_2H_4 in a jet-stirred reactor: spectrum of fluorescence near 308.9 nm

P = 0.005 MPa
T = 1110 K
\( \Phi = 0.4 \)
(C_2H_4)_init = 1%

slit width = 0.7 mm
count rate = 1 Hz
scanning rate = 0.017 mm s^{-1}

Oxidation of C_2H_4 in a jet-stirred reactor
P = 0.008 MPa; T = 1010 K; \( \Phi = 0.4 \); (C_2H_4)_init = 1%

Profiles against residence times, of:
- concentration of main molecular species (C_2H_4; C, CO; \( \nabla \), CO_2; \( \bigcirc \)
  - CH_2X100; \( \times \); CH_3x100; \( \times \); CH_3COx100; \( \times \); \( \bigodot \)
- intensity of the fluorescence at 308.9 nm
PROBE SAMPLING AND ESR DETECTION OF LABILE SPECIES FOR KINETICS STUDIES IN FLAMES.

J.F. PAUVELS - M. CARLIER - L.R. SOCHET
Laboratoire de Cinétique et Chimie de la Combustion.
UA CNRS 876. Université des Sciences et Techniques de Lille.
59655 Villeneuve d'Ascq Cedex, France.

The analysis of microstructure of flames is an important method to study the kinetics of elementary reactions at high temperature. Recently we have proposed a new development of Westenberg and Pristram's method to detect labile species by ESR in flames (H, O, OH, Cl, Br, NO, SH). The species extracted by a sampling probe are detected at a low pressure of $3 \times 10^{-2}$ Torr after a residence time close to 3.5 ms. In order to take into account the possible destruction of the species within the probe before ESR detection, the pressure inside the probe was changed and the quantitative measurement of the mole fraction $X$ of the species in the flame was obtained by an extrapolation method to zero pressure.

To support the validity of this extrapolation a modelling of the main reactions occurring in the sampling probe ($\text{OH} + \text{OH} \rightarrow \text{H}_2\text{O} + \text{O}$, $k_1 = 1.08 \times 10^{10} \text{cm}^3\text{mol}^{-1}\text{s}^{-1}$), ($\text{O} + \text{OH} \rightarrow \text{H} + \text{O}_2$, $k_2 = 1.98 \times 10^{10} \text{cm}^3\text{mol}^{-1}\text{s}^{-1}$) with wall destruction of H, O and OH has been achieved in the case of an undoped flame. Although the contribution of homogeneous reactions may be relatively important, the results of modelling justify the validity of the linear extrapolation to zero pressure of $\log X = f(p)$, for the determination of the mole fraction of the species in the flame. Examples are provided for the application to the analysis of flame structure.
TWO-PHOTON LASER-EXCITED FLUORESCENCE STUDY OF H AND O ATOMS:
TEMPERATURE-DEPENDENT QUenchING AND LASER PHOTOLYSIS FOR
COMBUSTION APPLICATIONS

U. Meier, K. Kohse-Höinghaus, Th. Just
DFVLR - Institut für Physikalische Chemie der Verbrennung
Stuttgart, West Germany

The understanding of the behaviour of complicated kinetic systems like flames requires the knowledge of number densities of the reacting species and temperature. It is therefore important to obtain experimental data on absolute concentrations of atoms in a combustion environment.

Relative concentration profiles of hydrogen and oxygen atoms in a flame can be measured by laser-induced two-photon excitation followed by fluorescence detection.

To derive absolute number densities from such fluorescence measurements, we demonstrate a calibration method using the detection of known concentrations of H and O atoms produced in a discharge-flow reactor.

When this calibration technique is applied to flame conditions, the large influence of fluorescence quenching has to be taken into account. The fact that fluorescence signals in a flame are strongly affected by quenching is illustrated in fig. 1. Time-resolved fluorescence signals of H atoms in a low pressure H₂-O₂ flame are compared to those resulting from a discharge-flow reactor at about 2 mbar.
The reduction of fluorescence intensity from a certain atom concentration due to quenching is taken into account by calculation of an "effective local quenching rate" under flame conditions. This rate is, in turn, derived from measurements of individual quenching rate constants for different flame-relevant collision partners in the discharge-flow system.

Table 1 shows some examples for quenching of the $n=3$ level of H atoms which was excited by two-photon absorption in our experiments. Similar measurements were performed for O atoms.

For $H_2$, $O_2$ and $H_2O$ we also investigated the temperature dependence of the quenching rate constant. No noticeable temperature dependence was found within a range from 300 to 650 K. This result, together with the very high rate constants for most collision partners at room temperature suggests that long-range interactions are responsible for the
energy transfer during the collision process.

Table 1.
Quenching rate constants for the n=3 state of H atoms

<table>
<thead>
<tr>
<th>collision partner</th>
<th>k_Q (cm³/s)</th>
<th>collision partner</th>
<th>k_Q (cm³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>no effect *</td>
<td>H₂O</td>
<td>(1.1 ± 1.1)·10⁻⁸</td>
</tr>
<tr>
<td>Ar</td>
<td>(4.6 ± 0.5)·10⁻¹⁰</td>
<td>CO₂</td>
<td>(3.9 ± 0.2)·10⁻⁹</td>
</tr>
<tr>
<td>O₂</td>
<td>(2.6 ± 0.1)·10⁻⁹</td>
<td>CH₄</td>
<td>(3.5 ± 0.2)·10⁻⁹</td>
</tr>
<tr>
<td>H₂</td>
<td>(2.2 ± 0.1)·10⁻⁹</td>
<td>C₂H₂</td>
<td>(5.6 ± 0.4)·10⁻⁹</td>
</tr>
</tbody>
</table>

* within the pressure range 0.5 to 10 mbar

Two-photon excitation of atomic species requires very high laser intensities. Therefore, care must be taken to avoid production of additional atoms by laser photolysis of potential precursor molecules. Since this effect may have an influence on absolute concentration measurements, we studied the production of H and O atoms from the parent molecules O₂, H₂, H₂O, and OH. The experiments led to the result that laser photolysis can be neglected at the wavelengths and power levels we usually employed for H and O detection; however, it may become a problem at sufficiently high intensities.

Based on the results on quenching and laser photolysis, experiments are currently under way in which absolute H atom concentrations as well as spatial concentration profiles are measured for various H₂–O₂ - low-pressure - flames. This procedure should basically also be applicable to hydrocarbon flames.
Two objectives of modelling complex chemical systems are
(i) to simulate an experimental or industrial process. (ii) to gain
an understanding of the kinetics involved. For (i) it is often sufficient
to involve a simple model with a small number of empirical parameters.
The model may be conveniently derived by considering a small number of
elementary reaction steps in a pseudo-mechanism. The rate parameters may
then be fitted to experimental observations, but the fitted values have no
fundamental significance.

In order to gain a proper understanding of a complex chemical system,
it is usually necessary to construct an extensive mechanism from a
systematic evaluation of all possible steps to a given order of complexity.
The rate parameters for each step must be found or estimated and the
mechanism translated into a set of differential equations for numerical
integration.

The predicted time-concentration profiles may be compared with
experiment, and further information may be obtained from a sensitivity
analysis, allowing the mechanism to be refined. However, for a
mechanism of 200 steps involving 50 species there are \(-10000\) 1st order
sensitivity co-efficients to interpret.

The development of computer environments for use in Artificial
Intelligence has enabled an alternative approach to be explored. Using
the programming language PROLOG, a computer-representation for chemical
species has been derived which closely parallels simple chemical notation.
It is possible to manipulate these data-structures so as to 'mirror' the
rupture and formation of chemical bonds. In this manner, the following
classes of (free-radical) reactions have been 'coded'.
Reaction Type

Decomposition, Molecular Elimination, Radical Decomposition,
Abstraction, Addition, Isomerisation, Radical Conversion, Olefin Conversion,
Recombination, Disproportionation.

In its crudest form, the computer can thus be used as a systematic
generator of reaction steps in the usual process of modelling. However,
it is possible to constrain the reaction generator by defining sets of
rules representing chemical knowledge or intuition. This then constitutes
an EXPERT SYSTEM.

The phases in which reactions are generated and expert-rules are
invoked is illustrated in the following diagram:

Each distinct phase of the process is described below:
EVALUATE - For a previously unencountered species (i.e. a reactant or new product), the program finds the set of all reaction-types for which the species is a valid reactant. All feasible combinations with existing species for each reaction-type are stored (implicitly) for later consideration. Some 'embryo' reactions may be discarded at this stage using rules of the type:

"Ignore ABSTRACTIONS involving a radical X if the estimated rate of decomposition of X is considerably faster than the maximum rate of abstraction by X."

SELECT - The order in which reactions are 'performed' can have a considerable effect upon the efficiency of the EXPERT SYSTEM. Rules are defined to give priority to the faster steps e.g.:

"Decompose radicals as soon as they are generated."

"Delay termination steps until after propagation steps."

PERFORM - Once an embryo reaction has been selected, all possible products of the reaction step are generated.

ELIMINATE - For reactions with more than one possible pathway, the rate of each reaction is estimated and compared. Slow paths are not included in the mechanism e.g.

"Decomposition via C-H fission is discarded in favour of C-C fission"

An EXPERT SYSTEM for the pyrolysis of small hydrocarbons has been constructed in this manner. The program has been tested by considering ethane and propane at low pressures at around 700K since a body of good experimental data is available for these systems. On entering the structural formula for ethane, the program generated a pyrolysis mechanism involving 18 species in 44 elementary steps, without recourse to any numerical integration or sensitivity analysis. Approximately 400 reactions were considered. Similarly for propane, the program selected 140 steps involving 53 species after consideration of over 3000 possible reactions. The mechanisms produced by the EXPERT SYSTEM are comparable to, and usually form a superset of, those derived empirically in the literature.
Since the detection of P-T explosion limits in hydrogen-oxygen mixtures in the thirtieth and fourtieth, many efforts have been made to explain this phenomenon quantitatively. But all of these attempts had to include some serious restrictions like truncation of the reaction mechanism, quasi-steady state assumptions, or reduction to zero-dimensional systems etc.

The present status of knowledge on reaction kinetics in the hydrogen-oxygen system and recently developed methods for the solution of time-dependent one-dimensional partial differential equation systems now allow the simulation of all of these explosion limits, using a common detailed reaction mechanism (consisting of 37 elementary reactions /1/), a multi-species transport model /2/, and realistic surface chemistry basing on surface collision numbers and experimentally determined surface destruction efficiencies /3/. None of the restrictions mentioned above has to be applied. Solution of the partial differential equation system is done by spatial discretization by finite differences, leading to an ordinary differential/algebraic equation system, which is solved numerically using the computer codes DASSL /4/ or LIMEX /5/.

Calculated P-T explosion limits in the hydrogen-oxygen system at various conditions are presented in Fig.1. As can be seen,
these values are in quite good agreement with the experimental results. Sensitivity analysis identifies the rate-limiting processes and shows areas which should be object of further research.

References

1. J.Warnatz, publication in preparation
    55,1330-1361 (1959)
Fig. 1: Calculated and experimental ignition limits for 2:1 mixtures of hydrogen and oxygen

a) spherical reaction vessel, 7.4 cm diameter;
   ---- calculated, surface destruction efficiency $\gamma = 10^{-2}$
   ------- " , $\gamma = 10^{-3}$
   ------ " , $\gamma = 10^{-4}$

   ● experimental, thinly KCl coated vessel /6/;
   ○ " , heavily KCl coated vessel /6/;
   ◇ " , KCl coated vessel /7/;
   □ " , clean Pyrex vessel /7/;
   □ " , B$_2$O$_3$ coated vessel /8/;

b) first explosion limit in a cylindrical silica reaction vessel, 1.8 cm diameter;
   ---- calculated, $\gamma = 10^{-2}$
   ------- " , temperature dependent $\gamma$ , see /10,11/;
   ◇ experimental /9/.
STUDY OF REACTION MECHANISMS BY SENSITIVITY ANALYSIS

T.Turányi and T.Bérces
Central Research Institute for Chemistry,
Hungarian Academy of Sciences, Budapest, Hungary

S.Vajda
Laboratory for Chemical Cybernetics
L.Eötvös University, Budapest, Hungary

The kinetics of homogeneous chemical processes can be described by a system of ordinary differential equations:

\[ \dot{\mathbf{y}} = \mathbf{f}(\mathbf{y}, \mathbf{k}) \]

where \( \mathbf{k} \) is the vector of rate coefficients, \( \mathbf{y} \) designates the vector of concentrations and \( \dot{\mathbf{y}} \) is its derivative with respect of time. The dependence of the model's predictions on the \( \mathbf{k} \) parameters is usually given by the sensitivity coefficients defined as \( \frac{\partial \mathbf{y}}{\partial k_j} \). These sensitivity coefficients show how the solution of the system of kinetic differential equations changes as a result of variation of the parameters. The sensitivity coefficients are given by the response of the system at time \( t_2 \) on the change of parameter at time \( t_1 \). The lower integration time limit in the solution of the system of kinetic differential equations and in that of the system of sensitivity equations is normally taken to be the same. The sensitivity matrix of a complex chemical reaction for time \( t_2 \) is not only a function of the rate parameters and species concentrations at \( t_2 \) but depends on the pre-history of the system, i.e. it depends on the concentration trajectory connecting \( t_2 \) with \( t_1 \).

A sensitivity matrix which depends only on the values of kinetic parameters and on the actual concentration of the
reactive species appears to be more suitable for the analysis of the reaction mechanisms. We introduce a function of the type

$$Q(a) = \sum_{i=1}^{m} \left[ \frac{\dot{y}_i(a) - \dot{y}_i(a^0)}{\dot{y}_i(a^0)} \right]^2$$

in order to represent the effect of kinetic parameters on the rate of reaction, where $a = \ln k$, while $\dot{y}_i(a^0)$ and $\dot{y}_i(a)$ are the rates of formation of species $i$ calculated with the initial $(a^0)$ and with the changed $(a)$ vectors of the kinetic parameters. The $\partial f/\partial k$ is considered as a sensitivity matrix (designated $F$ matrix) with elements given by

$$\frac{\partial f_i}{\partial k_j} = \frac{v_i R_j}{k_j}$$

where $R_j$ and $k_j$ are the rates and rate coefficients, respectively, of reaction $j$ and $v_i$ is the stoichiometric coefficient of species $i$ in reaction $j$.

The $F$ matrix can be obtained very simply. Principal component analysis of the matrix supplies information on the importance and on the interactions of the elementary reactions of the mechanism. The relation of the $F$ matrix to the conventional sensitivity matrix shall be discussed.

Two complex reaction mechanisms are analysed. These are: pyrolysis of propane and oxidation of formaldehyde. Both the $F$ matrix and the conventional sensitivity matrix have been constructed and orders of importance for the elementary steps have been derived by using the method of principal component analysis. A study of the $F$ matrices corresponding to various
phases of the reaction (i.e. to various reaction times) supply
information on the actual order of importance of the elementary
steps and on the interactions of elementary reactions. Consi-
dering all results obtained for different phases of the reac-
tion, a simplified mechanism is derived (mechanism reduction)
which proves to be practically equivalent to the original
one.

1. S. Vajda, P. Valkó and T. Turányi, Int. J. Chem. Kinet. 17,
Implementation of the Rapid Equilibrium Approximation on a Computer for Kinetics in Complex Systems

Robert A. Albery
Department of Chemistry
Massachusetts Institute of Technology
Cambridge, Massachusetts, USA

When a complicated organic system approaches equilibrium, most of the reactions may remain very close to equilibrium while some slow reaction comes to equilibrium and eventually determines the composition of the system. An example is the conversion of methanol to gasoline using a zeolite catalyst at 700 K(1). For simpler reactions, the rapid equilibrium approximation may be used to derive the rate equation, but for the methanol conversion thousands of species and reactions are involved and so calculations must be implemented on a computer. Since many species of alkanes, alkenes, and alkylbenzenes are produced, equilibrium calculations can be greatly simplified by use of thermodynamic properties of isomer groups(2). The standard Gibbs energy of formation of an isomer group $\Delta_f G^\circ(I)$ is given by

$$\Delta_f G^\circ(I) = -RT \ln \left[ \sum_{i=1}^{N_I} \exp(-\Delta_f G_i^\circ/RT) \right]$$

(1)

where $\Delta_f G_i^\circ$ is the standard Gibbs energy of formation of isomer $i$.

The concept of isomer groups can be extended to whole homologous series by fixing the ethylene partial pressure so that the ratios of successive isomer groups become a function of only temperature. The Gibbs energy of formation of the alkylbenzene isomer groups at fixed partial pressure of ethylene as given by

$$\Delta_f G^\circ(I,C_nH_{2n-6}) = \Delta_f G^\circ(I,C_nH_{2n-6}) - ((n-5)/2)(\Delta_f G^{C_2H_4} + RT \ln P_{C_2H_4})$$

(2)
The standard Gibbs energy of formation of the homologous series is given by

$$\Delta_f G^*(\text{HSG}) = -RT \ln \left[ \sum_{n=0}^{\infty} \exp[-\Delta_f G^*(1, \text{C}_n\text{H}_{2n-6})/RT] \right]$$  \hspace{1cm} (3)

and the equilibrium mole fractions of successive isomer groups are given by

$$Y_{\text{C}_n\text{H}_{2n-6}} = \frac{e^{-\Delta_f G^*(1, \text{C}_n\text{H}_{2n-6})/RT}}{\sum_{n=0}^{\infty} e^{-\Delta_f G^*(1, \text{C}_n\text{H}_{2n-6})/RT}}$$  \hspace{1cm} (4)

The concept of the Gibbs energy of formation of a homologous series may be used to calculate the composition at various stages in the conversion of methanol to gasoline. In this reaction alkenes are formed rather quickly and polymerize to an equilibrium distribution of molar masses. This mixture is converted more slowly to a 1:3 mixture of alkylbenzenes and alkanes that eventually, according to thermodynamics, will yield \( \text{C}_6\text{H}_6 + 3\text{CH}_4 \). At intermediate times the stoichiometry can be represented by

$$\text{CH}_3\text{OH} = \text{H}_2\text{O} + \frac{X}{\text{N+3M}} \text{C}_n\text{H}_{2n+6} + \frac{3X}{\text{N+3M}} \text{C}_n\text{H}_{2n+2} + \frac{(1-X)}{\text{Q}} \text{C}_q\text{H}_{2q}$$  \hspace{1cm} (5)

where \( X \) is the extent of conversion (0 to 1) to alkanes and alkylbenzenes.

In this equation the molecular formulas represent average compositions for the alkane, alkylbenzene, and alkene homologous series groups. Experimental data can be represented quite well by assuming that \( \text{C}_6\text{H}_6 \) and \( \text{CH}_4 \) are alkylated to equilibrium at each value of \( X \) by the ethylene that is present.

Equilibrium compositions can be computed at a series of values of \( PC_2\text{H}_4 \) starting with the high values that occur early in the conversion to essentially zero when the composition is represented by \( \text{C}_6\text{H}_6 + 3\text{CH}_4 \). The equilibrium composition at any stage in the conversion depends on the pressure. At a given \( PC_2\text{H}_4 \) the equilibrium mole fraction of ethylene is
calculated using an analog of Eq. 4. The partial pressure of the alkene homologous series group calculated from

\[ P_{C_2H_4} = \frac{P_{C_2H_4}}{Y_{C_2H_4}} \]  

is subtracted from the total pressure of the hydrocarbons to obtain the sum of the partial pressures of the alkane and alkylbenzene homologous series groups. Each value of \( P_{C_2H_4} \) corresponds with a certain extent of conversion \( X \) and a certain time. For a first order conversion

\[ x = \frac{kt}{e} \]  

The Benson-group method has been used to estimate chemical thermodynamic properties of organic substances at high temperatures when data is lacking. These calculations show that within a homologous series, the chemical thermodynamic properties of isomer groups become linear functions of carbon number as the carbon number increases. Since \( \Delta_f G^\circ(1) \) is a linear function of carbon number after the first several members of a homologous series, analytic functions can be derived for \( N, M, Q, Y_{C_2H_4}, Y_{C_2H_4}, Y_{C_2H_4}, Y_{C_2H_4} \), and \( Y_{C_2H_4} \).

References

H.H.Grotheer, G.Riekert, and Th. Just

THE SELFREACTION OF CH₃OH - RADICALS AND

-------------------------------

THE CH₃OH - Cl - Cl₂ SYSTEM
-------------------------------

The CH₃OH selfreaction was investigated due to its potential importance particularly in the modelling of rich methanol flames. We used the mass spectrometer discharge flow technique with the fast reaction Cl + CH₃OH ---> CH₂OH + HCl as a radical source (All measurements at ambient temperature). In that case besides the radicals there is always an excess of methanol in the reactive flow, together with Cl₂ surviving the discharge. Therefore, for the measurement of the concentration dependent selfreaction of CH₂OH radicals, we had to account for the mechanism:

\[ \text{CH}_3\text{OH} + \text{Cl} \rightarrow \text{CH}_2\text{OH} + \text{HCl} \quad (1) \]
\[ \text{CH}_2\text{OH} + \text{Cl} \rightarrow \text{CH}_2\text{O} + \text{HCl} \quad (2) \]
\[ \text{CH}_3\text{OH} + \text{Cl}_2 \rightarrow \text{CH}_2\text{ClOH} + \text{Cl} \quad (3) \]
\[ \text{CH}_2\text{OH} + \text{CH}_2\text{OH} + \text{M} \rightarrow \text{C}_2\text{H}_6\text{O}_2 + \text{M} \quad (4) \]
\[ \text{CH}_2\text{OH} + \text{CH}_2\text{OH} \rightarrow \text{CH}_2\text{O} + \text{CH}_3\text{OH} \quad (5) \]
\[ \text{CH}_2\text{OH} + \text{wall} \rightarrow \quad (6) \]

This complication cannot be circumvented since there is no other CH₂OH source available.

\( k_I \) is up to now the only known rate coefficient in that mechanism. It has been measured by flash photolysis techniques /1/. We obtained in our flow tube for \( k_I \) the values of \((6.2 \pm 0.9) \times 10^{-11} \text{ cm}^3 \text{s}^{-1}\) in an excess of methanol and of \((5.6 \pm 1.2) \times 10^{-11} \text{ cm}^3 \text{s}^{-1}\) in an excess of chlorine atoms. The absolute chlorine concentrations were determined by titration with Br₂ as well as by their reaction with C₂H₆ /2/.
Reaction (2) was investigated by measuring the CH$_2$OH yields as a function of [Cl] and [CH$_3$OH] for a very short fixed residence time which was determined separately. Computed yields could be fitted to the measured data by using $k_2 = 2 \cdot 10^{-10}$ cm$^3$ s$^{-1}$.

Also the reaction of CH$_2$OH radicals with molecular chlorine is of some importance in our system. Due to the presence of Cl$_2$ surviving the discharge, reaction (3) cannot be measured under pseudo first order conditions in an excess of CH$_2$OH. On the other hand, in an excess of Cl$_2$, the CH$_2$OH decays are interfered by CH$_2$OH reformation via reaction (1). Therefore, we chose conditions for the chain (3) + (1) under which reaction (1) is fast compared to reaction (3), i.e. [CH$_3$OH] $\gg$ [Cl$_2$] $\gg$ [CH$_2$OH]. $k_3$ was deduced from the measured Cl$_2$ and HCl profiles, respectively, to be $k_3 = 1.5 \cdot 10^{-11}$ cm$^3$ s$^{-1}$.

Reactions (4) to (6) were measured in a concentration range of $5 \cdot 10^{11}$ cm$^{-3}$ $<$ [CH$_2$OH] $<$ $10 \cdot 10^{12}$ cm$^{-3}$ at pressures ranging between 0.3 mbar and 20 mbar. The measured decays are of mixed order, with a strong wall loss rate of $k_6$ 20 s$^{-1}$ to 40 s$^{-1}$ depending on the coating (usually Teflon) and the reactor diameter (19, 29 and 40 mm, respectively).

The initial radical concentrations were determined by an absolute detection of the produced formaldehyde while scavenging the radicals at the end of the flow tube via the fast reaction CH$_2$OH + O$_2$ /3/.

Particularly at low concentrations (about $1 \cdot 10^{12}$ cm$^{-3}$) this method yielded results in good accord with the initial Cl concentration. Under our conditions the self-reaction (reaction 4) is in its fall off regime. By fitting our data with the expression
we get for reaction 4:

\[ k_0 = (2.2 \pm 0.8) \cdot 10^{-27} \text{ cm}^6 \text{ s}^{-1} \text{ and} \]
\[ k_m = (2.4 \pm 0.6) \cdot 10^{-11} \text{ cm}^3 \text{ s}^{-1}. \]

These data are similar to current data on CH₃ recombination /4/.

We could not find a significant contribution from the disproportionation channel, i.e. reaction (5).

References


The role of decomposition reactions in flames

by J. Vandooren, B. Walravens and P. J. Van Tiggeelen

Laboratoire de Physico-Chimie de la Combustion
Université Catholique de Louvain
B-1348 Louvain-la-Neuve Belgium

The overall stoichiometric chemical equation corresponding to the combustion process for a fuel with a formula \( C_x^y H_x^z N_x^w \) (noncyclic compounds) can be written as follows:

\[
C_x^y H_x^z N_x^w + (x + \frac{y}{4} - \frac{z}{2}) O_2 \rightarrow x CO_2 + \frac{y}{2} H_2O + \frac{w}{2} N_2
\]  

Such an overall reaction corresponds to a variation of the total number of particles \( \Delta n \). It can refer to molecules or moles. \( \Delta n \) is the difference between the number of mole (or molecules) of products and reactants. It will be dependent on the values of \( y, z \) and \( w \). Three cases can be considered according the value of \( y + 2z + 2w \):

\[\begin{align*}
\Delta n & \text{ is positive if } y + 2z + 2w > 4 \\
\Delta n & \text{ is zero if } y + 2z + 2w = 4 \\
\Delta n & \text{ is negative if } y + 2z + 2w < 4
\end{align*}\]

- Most of the usual fuels will burn with an increase of the total number of particles \( \Delta n > 0 \) for instance:
  \[
  \begin{align*}
  C_2H_6 + 3.5 \ O_2 & \rightarrow 2CO_2 + 3H_2O \quad \Delta n = 0.5 \\
  CH_3OH + 1.5 \ O_2 & \rightarrow CO_2 + 2H_2O \quad \Delta n = 0.5 \\
  NH_3 + 0.75 \ O_2 & \rightarrow 0.5N_2 + 1.5H_2O \quad \Delta n = 0.5
  \end{align*}
  \]

- Other fuels as CH\(_4\), CH\(_2\)O, C\(_2\)H\(_4\) should burn without change of the total number of particles \( \Delta n = 0 \), if the overall stoichiometric equation (1) is valid:
  \[
  \begin{align*}
  CH_4 + 2O_2 & \rightarrow CO_2 + 2H_2O \quad \Delta n = 0 \\
  C_2H_4 + 3O_2 & \rightarrow 2CO_2 + 2H_2O \quad \Delta n = 0 \\
  CH_2O + O_2 & \rightarrow CO_2 + H_2O \quad \Delta n = 0
  \end{align*}
  \]

However, even when \( \Delta n = 0 \), the number of particles in the burnt gases is usually larger than those in fresh gases, since species like CO, OH, H, O are always occurring in the burnt gases.
Nevertheless, some fuels as $H_2$, CO, HCN, $C_2H_2$, as well as polyacetylenic compounds will burn with a decrease of the total number of particles ($\Delta n < 0$).

According to these considerations, it comes out that the majority of fuels burns with an increase of the total number of particles. It means that decomposition reactions must occur and a combustion mechanism has to include this kind of elementary processes besides the usual bimolecular and termolecular reactions.

The analysis of the flame structure, i.e. the measurement of profiles of concentration ($N_i$) of the individual species ($i$), and of the temperature profile, may provide informations on the decomposition processes. However, since for flames diffusion processes are quite important, one has to consider the mole fluxes ($F_i$) of the individual species, instead. They are related to each other by $F_i = N_i (v + V_i)$ when $v$ stands for flow velocity and $V_i$ for the local diffusion velocity of species $i$. Moreover, the total number of particles and the number of chemical bonds are connected directly. The flux of chemical bond ($F_b$) can be estimated at any point throughout the flame by the expression $F_b = \sum b_i F_i$ where $b_i$ is the number of bonds in the species $i$ characterized by a mole flux $F_i$. If we assume that the total number of particles doesn't vary ($\Delta n = 0$), the number of chemical bonds will remain also constant throughout the flame. On the contrary, any variation of $F_b$ will lead to a gradient of the total number of bonds and will correspond to a gradient of the total number of particles. Such gradients have to be ascribed to the occurrence of both termolecular and decomposition reactions

$$\frac{dF_b}{dz} = R_t - R_d = R_b$$

where $z$ is the distance, $R_t$ the reaction rate of recombination, $R_d$ the rate of decomposition and $R_b$ the net reaction rate varying the total chemical bond in the system across the flame front. When $R_b > 0$, the recombination processes dominate. The reaction rate of decomposition, especially in the main reaction zone of low pressure flames, is faster than the reaction rate of recombination.

So, to a first approximation, we get $R_b = - R_d$. 
Using this approach, the rate of decomposition has been determined in flames burning in CH\textsubscript{4}/O\textsubscript{2}, CH\textsubscript{3}OH/O\textsubscript{2}, H\textsubscript{2}/N\textsubscript{2}O, CH\textsubscript{2}O/O\textsubscript{2} mixtures. (1-4)

1. For instance for H\textsubscript{2}/N\textsubscript{2}O flames, the elementary process

\[
N\textsubscript{2}O + M \rightarrow N\textsubscript{2} + O + M \quad (r.1)
\]

is unquestionably the unique decomposition reaction. Thus, one can write - \( R_b = k_1 [N\textsubscript{2}O] (M) \) and deduce therefore the value of \( k_1 \). One obtains the following expression for

\[
k_1 = 1.3 \times 10^{15} \exp (-28500/T) \text{ cm}^3 \text{ mol}^{-1} \text{ s}^{-1}
\]

which agrees fairly well with those measured in shock tubes. (5)

2. A similar analysis in formaldehyde flames leads to ascribe the main decomposition path of the reaction \( \text{CHO} + M \rightarrow \text{CO} + H + M \quad (r.2) \) with

\[
k_2 = 2.5 \times 10^{15} \exp (-9300/T) \text{ cm}^3 \text{ mol}^{-1} \text{ s}^{-1}
\]

In conclusion, the analysis of the flame allows to deduce rate constants for decomposition reactions and to estimate their incidence in the combustion mechanism.

We acknowledge financial support of F.R.F.C. Contract 2.9003.82 (Belgium)

REFERENCES


(2) BALAKHIN, V.P. VANDOOREN, J. and VAN TIGGELEN, P.J., Comb. and Flame 28, p. 165-173 (1977)


(4) J. VANDOOREN, L. OLDENHOVE de GUERTECHIN and P.J. VAN TIGGELEN Comb. and Flame 64, pp. 127-139 (1986)

PYROLYSIS OF CYCLOHEXANE / N-DECANE / STEAM MIXTURES
AT CA. 810°C

F. BILLAUD* and E. FREUND**

* Département de Chimie-Physique des Réactions, UA n° 328 CNRS,
INPL-ENSI, 1, rue Grandville 54042 NANCY Cedex
** Département de Physique et Analyse, Institut Français du
Pétrole, 1 et 4, avenue de Bois Préau, BP 311,
92506 RUEIL-MALMAISON Cedex

The present work is a part of a more general research project
aiming at understanding the reaction mechanism of the production of light
olefins from naphthenic feedstocks. Such feedstocks are currently of great
commercial interest because catalytic hydrogenation processes are under
active consideration as a means of upgrading olefin feedstocks of high
aromatic content; such hydrogenation tends to saturate the aromatic
molecules originally present without ring rupture yielding a high
proportion of alicyclic compounds in the upgraded feedstock that is
eventually pyrolysed.

The model reactant chosen for the present study, cyclohexane,
stands for unsubstituted cycloalkanes within the naphtha boiling range.

From another practical point of view, C₆ cyclanes and especially
cyclohexane are important elements in industrial and fuel mixtures. A
better knowledge of the elementary steps and of the resulting closed
sequences is thus of importance for the understanding of hydrocarbon
cracking and combustion.

The naphthenes have not received nearly so much attention from
the investigators of pyrolytic decomposition as the paraffins. At most, the
few papers found in the literature concern the pure reactants and never mixtures of naphthenes with alkanes; some investigations were also performed in a shock tube by W. TSANG.

As a result of these limited experimental investigations the mechanism of decomposition of cyclanes has not been well established and published data are not sufficient to predict the distribution of the primary products even in the case of one of the simplest compounds, cyclohexane.

The apparatus and the analytical procedures have been described previously [BILLAUD (1983) (1984)] for the pyrolysis of a mixture of n-alkanes chiefly $C_{12}-C_{18}$ at 1053 K.

N-decane pyrolysis [BILLAUD (1984)] is the reference reaction and the pyrolysis of the mixture n-decane-cyclohexane is compared to it.

We describe the primary decomposition of cyclohexane by three closed sequences which lead to the following primary stoichiometries:

1. \[
\text{cyclohexane} = 3 \text{C}_2\text{H}_4
\]
2. \[
\text{cyclohexane} = \text{H}_2 + \text{C}_2\text{H}_4 + 1,3 \text{C}_4\text{H}_6
\]
3. \[
\text{cyclohexane} = \text{H}_2 + \text{C}_6\text{H}_{10}
\]

If we consider the yields of cyclohexene and benzene as a function of residence time, it appears that cyclohexene deshydrogenates easily into benzene and, even at very low conversions, primary stoichiometric equation (3) can be replaced by the secondary stoichiometric equation (3') : \[
\text{C}_6\text{H}_{12} = 3 \text{H}_2 + \text{C}_6\text{H}_6.
\]

In order to determine the distribution of the primary stoichiometries from the yields versus residence time, we define the selectivities in the various decomposition products. As a definition, we
call selectivity of the reactant \( A \) into a product \( B \), \( S_A(B) \), the ratio:

\[
S_A(B) = \frac{\text{number of moles of product } B}{\text{number of moles of } A \text{ transformed}}
\]

In order to confirm the primary mechanism of decomposition of cyclohexane in the presence of n-decane, we have made the following assumptions: the margin of selectivity for each product obtained in the pyrolysis of n-decane and in the pyrolysis of mixtures cyclohexane-n-decane is essentially due to the decomposition of cyclohexane (Hypothesis of non-interaction). Then the selectivities in \( C_3H_6 \), \( CH_4 \), \( 1-C_4H_8 \) and other products of decomposition of n-decane are the same in the presence or in the absence of cyclohexane; therefore these products are not due to cyclohexane decomposition. On the other hand, the selectivities in \( C_2H_4 \), \( H_2 \), \( 1,3 C_4H_6 \), and cyclohexene depend on the conversion of n-decane and we can determine for the lowest conversion of 66% the distribution of the three above-mentioned stoichiometries, respectively 41, 43 and 16%. \( H_2 \) is representative of reactions (2) and (3), \( C_2H_4 \) of reactions (1) and (2) and cyclohexene of reaction (2).

The presence of cyclohexane in a feedstock of pyrolysis is therefore not noxious towards its conversion. Cyclohexane produces \( C_2H_4 \), \( 1,3 C_4H_6 \), and \( H_2 \) in large yields. In a similar way, cyclohexane leads to cyclohexene which can give a secondary dehydrogenation into benzene, which is a valuable molecule, leading to an increase of octane number in gasoline (nevertheless, its toxicity might be a drawback) and above all is largely used as an intermediate in the chemical industry.

Literature cited
High Temperature Pyrolysis of Toluene at Very Low Initial Concentrations

M. Braun-Unkhoff and P. Frank

DFVLR Inst. f. Phys. Chemie der Verbrennung, Stuttgart, V. Germany

The thermal decomposition of toluene to benzyl radicals and H-atoms has been investigated behind reflected shock waves. The results reported here are from a series of investigations on aromatics carried out using a shock tube in conjunction with atomic resonance absorption spectrometry (ARAS) in the temperature range of 1400 to 1800 K and at total pressures between 1.5 and 7.8 bar. The test gas mixtures consisted of argon with relative concentrations of 2 to 30 ppm toluene which were permanently controlled by a chemical analytical method (Ac/c ≤ 5.5 ppm). Due to the very low initial concentrations of toluene it was possible to conduct the experiments under conditions where the influence of subsequent reactions is considerably reduced. The high sensitivity of the ARAS-technique allowed to monitor absorption signals of H-atoms with absolute concentrations of $10^{12}$ to $2 \times 10^{13}$ atoms cm$^{-3}$.

Due to the low initial concentration of toluene it was possible to evaluate the rate coefficient $k_1$ for the initiation reaction R1: $C_7H_8 \rightarrow C_7H_7 + H$ directly from the H-atom formation rate: $k_1 = (d[H]/dt)_{t=0} = [C_7H_8]_0^{-1}$. The evaluated values for $k_1$ showed within the limits of experimental scatter no dependence upon the total pressure in the investigated range. Therefore we
conclude that the reaction proceeds in the "upper part" of the fall-off regime, not far from the high pressure limit.

A least square analysis of all measured points gives rise to $k_1 = 5.1 \times 10^{15}$ exp($-5990/T$) s$^{-1}$ in the temperature range of 1400 to 1700 K.

The $k_1$-values following from recent measurements of Huellner-Markgraf and Troe /1/ are in very good accord with our derived expression. The values derived by Rao and Skinner /2/ from D-atom measurements are about a factor of 2 smaller, but if we take corrections for isotopic effects into account, then sufficient agreement with the present values is obtained.

In the later stages of the reaction time either a maximum (at $p_5 = 1 - 2 \times 10^{-5}$ mol cm$^{-3}$) or an only moderate increase (at $p_5 = 5 - 6.7 \times 10^{-5}$ mol cm$^{-3}$) of the H-atom concentration was observed. For both cases a preliminary interpretation of the experimental profiles was possible with the following additional reactions:

\begin{align*}
R2: \quad & C_7H_8 + H \rightarrow C_6H_7 + H_2 \quad k_2 = 1.2 \times 10^{15} \exp(-7520/T) \\
R3: \quad & C_7H_7 \rightarrow C_5H_3 + C_2H_2 \quad k_3 = 2 - 5 \times k_1 \\
R4: \quad & C_5H_5 + Ar \rightarrow C_5H_4 + H + Ar \quad k_4 = 5 - 10 \times k_1
\end{align*}

Besides this, a second decomposition path of toluene involving cleaving of the C-C bond between the phenyl and methyl group has been discussed /3/.

By restricting our efforts on modelling the experimental profiles only in the early stages of the reaction period, it is possible to derive $k$-values for the reaction $R1a: C_6H_6 \rightarrow C_6H_5 + CH_3$ with a crude reaction scheme consisting of reaction R2 and the phenyl decomposition reaction:
R1a: C_{6}H_{5} \rightarrow C_{6}H_{5} + CH_{3} \quad k_{1a}/k_{1} = 100 \text{ for } T = 1460 \text{ K and } 4 \text{ for } T = 1650 \text{ K}

R5: C_{6}H_{5} \rightarrow C_{2}H_{2} + C_{4}H_{3} \quad k_{5} = 3 - 5 \times k_{1}

R6: C_{4}H_{3} + Ar \rightarrow C_{4}H_{3} + H + Ar \quad k_{6} = 10^{7} - 10^{8} \text{ cm}^{3} \text{ mol}^{-1} \text{ s}^{-1}

The methyl association reaction CH_{3} + CH_{3} \rightarrow C_{2}H_{5} + H, with \quad k = 1.4 \times 10^{13} \text{ exp} (-5660/T) \text{ cm}^{3} \text{ mol}^{-1} \text{ s}^{-1} \text{ for } T \leq 1700 \text{ K} /4/, has no influence under the experimental conditions. The evaluated Arrhenius expression for \ k_{18} \ exhibits a very small value for the energy of activation \ (E_{a} = 10 \text{ kcal/mol}), which is in severe contrast to theoretical and experimental /1,5/ findings.

Together with the results of Troe et al. /1/, who measured the decrease in the toluene concentration during the reaction time, we consider our findings as evidence against an important contribution of an unimolecular process involving cleavage of the C-C bond of the side chain to the overall dissociation reaction rate of toluene.


/3/ K.M. Pamidimukkala and R.D. Kern, Int. Conf. on Chemical Kinetics. NBS, Gaithersburg, MD, poster session (1985)

/4/ P. Frank, M. Braun-Unkhooff, and Th. Just, to be published

The thermal decomposition of propene at about 500°C yields a large variety of primary products: \( \text{H}_2 \), \( \text{CH}_4 \), \( \text{C}_2\text{H}_4 \), \( \text{C}_3\text{H}_6 \), \( \text{C}_4\text{H}_8 \), \( 1,3\text{-C}_4\text{H}_6 \), \( \text{C}_3\text{H}_8 \), methylcyclopentane, methyl-3-cyclopentene,... When mixed with molecular hydrogen, propene gives rise to hydrogenation-hydrogenolysis stoichiometries:

\[
\begin{align*}
\text{H}_2 + \text{C}_3\text{H}_6 & \rightarrow \text{C}_3\text{H}_8 \\
\text{H}_2 + \text{C}_3\text{H}_6 & \rightarrow \text{CH}_4 + \text{C}_2\text{H}_4 
\end{align*}
\]

which add to the properly so-called decomposition stoichiometries. Thus, molecular hydrogen causes a selective orientation of the reaction and tends to convert propene into methane, ethylene and propane. This trend is greatly dependent on the nature of the wall reactor. For instance, the initial yields of methane + ethylene + propane in absence and presence of molecular hydrogen (190 K at 520°C) are respectively 57 and 80 in a pyrex reactor, 62 and 92 in a stainless-steel reactor, in percent of the total products.

The formation rates of several products have been studied at low extent of reaction, in Pyrex vessels. The experimental results are interpreted in terms of a free-radical chain mechanism, the processes of which are mostly homogeneous. From the rates of allene production, it is shown that the main initiation and termination steps in presence and in absence of hydrogen are:

\[
\begin{align*}
2 \text{C}_3\text{H}_6 & \rightarrow \text{products} \quad (i) \\
2 \text{C}_3\text{H}_6 & \rightarrow \text{products} \quad (t)
\end{align*}
\]

and one computes for process (i):
\[ C_3H_5 \rightarrow H_2 + C_3H_4 \quad (1) \]

\[ k_1 = 10^{14} \exp\left(-\frac{51500}{RT}\right) \text{ s}^{-1} \quad \text{(RT in cal.mol}^{-1}\text{)} \]

For the production rates of methylcyclopentane, methylcyclopentene and pentadiene-1,4, we write the following primary processes:

\[ C_3H_5 + H_2 \xrightarrow{3/4} H_2 + C_3H_6 \]

\[ C_3H_5 + C_3H_6 \xrightarrow{5/6} \text{...} \quad (I) \]

\[ C_3H_5 + C_3H_6 \xrightarrow{7/8} \text{...} \quad (III) \]

\[ I \xrightarrow{9/10} \text{...} \quad \text{II} \xrightarrow{10/9} \text{...} \quad \text{III} \]

\[ \text{III} \xrightarrow{12} \text{CH}_3 \cdot + \text{...} \]

Rate constants for processes (3) (5) (9) (10) and (12) have been evaluated.

It is shown that process (10) is almost as difficult as the unimolecular dehydrogenations of (I) (III) and that methylcyclopentene rate is second order in propene at 518°C (process II).

From this point, the kinetic scheme is completed in order to account for the production of methane, propane and ethylene, in presence and absence of hydrogen. Any r. free-radical (H., CH_3·, i C_3H_7·, n C_3H_7·, ...) gives rise to competitive processes:

\[ r. + C_3H_6 \rightarrow rH + C_3H_5 \]

\[ r. + C_3H_6 \rightarrow rC_3H_6 \]

\[ r. + H_2 \rightarrow rH + H_2 \]

\[ r. \rightarrow H_2 + m \]

A detailed modelling of the reaction is achieved by adjusting to the experi-
mental values the initial formation rates computed for methane, ethylene and propane in presence and in absence of hydrogen and in the q.s.s. and long chain approximations. An analysis of sensitivity makes it possible to isolate the determining steps and to evaluate their rate constants. A set of rate constants is obtained which is consistent with all the experimental data and with the thermochemistry or the rare values of the literature (1).

Rate constants for atomic and radical reactions involved in hydrocarbon pyrolyses have, for the most part, been measured at temperatures below about 700 K, yet these values are often required to describe reactions occurring in the neighbourhood of 1000 K. Clearly, measurements of these rate constants in the region of temperature where they will be used would be valuable.

For this purpose the kinetics of the hydrogenation of propylene was studied in the temperature range 900 - 950 K where the reaction occurs through formation and disappearance of n- and iso-propyl radicals. The reaction system was similar to that described in the study of the hydrogenation of ethylene at 1150 K (1). Mixtures of hydrogen with small quantities of propylene, 30 - 120 ppm, were admitted to a quartz reaction vessel of approximately 200 cm$^3$ and the reaction was followed by measurement of the disappearance of the reactant and the appearance of the products, methane, ethylene, ethane and propane. Acetylene was produced only in trace amounts.

In the presence of the large excess of hydrogen, the reaction is initiated by the hydrogen atoms present in thermal equilibrium with hydrogen molecules. Contrary to the situation in the previous studies at 1150 K, the establishment of the equilibrium concentration of hydrogen atoms at 950 K was not fast compared to the other radical reactions occurring in the system, and the assumption of constant concentration of hydrogen atoms throughout the course of the reaction was not valid. Under these conditions the measurement of absolute values for rate constants becomes uncertain and the system is better suited to the extraction of the relative values.

Analysis of the results was based on the mechanism given on the following page. A steady-state solution of these equations gave a series of equations for the rate of disappearance of propylene and appearance of products in terms of the concentration of hydrogen atoms. To obtain equations independent of the hydrogen atom concentration, the rates of formation of the products were expressed in terms of the rate of disappearance of propylene, according to equations A, B, C and D.
\[
\begin{align*}
H_2 & \rightarrow 2H \quad (1) (-1) \\
H + C_3H_6 & \rightarrow i-C_3H_7 \quad (2) (-2) \\
H + C_3H_6 & \rightarrow n-C_3H_7 \quad (2') (-2') \\
i-C_3H_7 + H_2 & \rightarrow C_3H_8 + H \quad (3) (-3) \\
n-C_3H_7 + H_2 & \rightarrow C_3H_8 + H \quad (3') (-3') \\
n-C_3H_7 & \rightarrow C_2H_4 + CH_3 \quad (4) \\
CH_3 + H_2 & \rightarrow CH_4 + H \quad (5) \\
C_3H_6 + H & \rightarrow C_3H_5 + H_2 \quad (6) (-6) \\
C_2H_4 + H & \rightarrow C_2H_5 \quad (7) (-7) \\
C_2H_3 + H & \rightarrow C_2H_6 + H \quad (8) (-8) \\
C_3H_8 & \rightarrow C_2H_5 + CH_3 \quad (10) \\
C_2H_6 & \rightarrow 2CH_3 \quad (11) \\
\end{align*}
\]

(A) \[R_{CH_4} = -R_{C_3H_6} + P_1 \left( \frac{[C_3H_6]}{[K_3]} + R_{C_3H_6} \right) - P_2 \frac{C_3H_8 + R_{C_3H_6}}{C_3H_6 + R_{C_3H_6}} \]

(B) \[R_{C_2H_4} = -R_{C_3H_6} + P_1 \left( \frac{[C_3H_8]}{[K_3]} + R_{C_3H_6} \right) - P_2 \frac{C_3H_8 + R_{C_3H_6}}{C_3H_6 + R_{C_3H_6}} \]

(C) \[R_{C_3H_8} = P_1 \left( \frac{[C_3H_8]}{[K_3]} + R_{C_3H_6} \right) + P_2 \frac{C_3H_8 + R_{C_3H_6}}{C_3H_6 + R_{C_3H_6}} \]

(D) \[R_{C_2H_6} = P_1 \left( \frac{k_3[H_2]}{[K_3]} R_{C_2H_6} \right) + P_2 \frac{C_3H_8 + R_{C_3H_6}}{C_3H_6 + R_{C_3H_6}} \]

with \(P_1 = \frac{b_3}{b_3 + b_5} \); \(P_2 = \frac{b_6}{b_3 + b_5} \); \(P_3 = \frac{b_3}{b_3 + b_5}\)

and \(b_3 = \frac{k_2 \cdot k_7}{k_{b-2} + k_{b-3}[H_2]} + \frac{k_2 \cdot k_7}{k_{b-2} + k_{b-3}[H_2]} \)

\(b_5 = \frac{k_3[H_2]}{k_{b-2} + k_{b-3}[H_2]} \)

\(b_6 = \frac{k_3[H_2]}{k_{b-2} + k_{b-3}[H_2]} \)

\(b_7 = \frac{k_7}{k_{b-2} + k_{b-3}[H_2]} \)
The equations were analyzed using rates and concentrations of reactants and products measured during the reaction of up to 90% of the propylene. $P_1$ and $P_2$ were obtained from equation C, $P_3$ from equations B and D. Equation A was not useful because the yields of methane and loss of propylene were too close. Values were calculated over the pressure range 135 - 300 Torr and the temperature range 906 - 956 K.

The ratios of the rate constants for H-transfer from propane to H-addition to propylene may be expressed in terms of the coefficients $P_1$, $P_2$ and $P_3$ as follows:

\[
\frac{k_3}{k_2} = \frac{P_1}{1-P_1} \cdot \frac{1}{k_2 P_3[H_2]} \cdot \gamma
\]

where the fraction $\gamma$ may be shown, under the present conditions to be close to one.

\[
\frac{k_3}{k_2} = \frac{P_2}{1-P_1}
\]

Using the value for $k_2$, given by Allara and Shaw (2):

\[
k_2 = 10^{9.9-2900/\theta} \quad (R = 1.987 \text{ cal deg}^{-1} \text{ mol}^{-1})
\]

the following values were obtained:

\[
k_3 = 10^{10.365.27-(7300\pm1200)/\theta} \quad (M^{-1} \text{ s}^{-1})
\]

\[
k_3 = 10^{11.075.90-(10800\pm3800)/\theta} \quad (M^{-1} \text{ s}^{-1})
\]

Values of $k_3$ and $k_{31}$ are in good agreement with expressions recommended by Allara and Shaw. Nevertheless, the measurements of the relative values are possibly more useful in the application to thermal reactions of hydrocarbons in this temperature region.

THE CHAIN $\text{NP}_2$ REACTIONS

Bedjanian Yu. R., Gershenson Yu. M., Kishkovitch O. P.
Rosenshtein V. B.
Institute of Chemical Physics, Moscow 117977, USSR

The study was carried out by means of EPR/LMR spectrometer combined with a flow-tube system [1].

Reaction $\text{NP}_2 + \text{H}_2\text{O}_2$. Recently we found that in the reaction $\text{NP}_2 + \text{HO}_2^-$
$\rightarrow \text{OH} + P + \text{FNO}$ a nonactive radical HO$_2$ interacting with a stable radical NP$_2$ (at 300 K and ~10 Torr) gave two chemically active particles OH and P. This fact brought us to discover the branch chain reaction $\text{NP}_2 + \text{H}_2\text{O}_2$. Its mechanism at 300 K and 10 Torr is

(0) $\text{H}_2\text{O}_2 + \text{NP}_2 \rightarrow \text{NP}_2\text{H} + \text{HO}_2$
$\quad \quad \quad k = 1.5 \cdot 10^{-17} \text{cm}^3\text{s}^{-1}$

(1) $\text{HO}_2 + \text{NP}_2 \rightarrow P + \text{OH} + \text{FNO}$
$\quad \quad \quad k = 2.4 \cdot 10^{-12} \text{cm}^3\text{s}^{-1}$

(2) $P + \text{H}_2\text{O}_2 \rightarrow \text{HO}_2 + \text{HP}$
$\quad \quad \quad k = 5.0 \cdot 10^{-11} \text{cm}^3\text{s}^{-1}$

(3) $\text{OH} + \text{H}_2\text{O}_2 \rightarrow \text{HO}_2 + \text{H}_2\text{O}$
$\quad \quad \quad k = 1.7 \cdot 10^{-12} \text{cm}^3\text{s}^{-1}$

(4) $\text{HO}_2 + \text{wall} \rightarrow \text{termination}$
$\quad \quad \quad k = 12 \text{ s}^{-1}$

(5) $\text{OH} + \text{NP}_2 \rightarrow \text{FNO} + \text{HP}$
$\quad \quad \quad k = 1.5 \cdot 10^{-11} \text{cm}^3\text{s}^{-1}$

(6) $\text{HO}_2 + \text{HO}_2 \rightarrow \text{H}_2\text{O}_2 + \text{O}_2$
$\quad \quad \quad k = 1.65 \cdot 10^{-12} \text{cm}^3\text{s}^{-1}$

The rate constants of reactions (1), (4-6) we measured separately. This mechanism describes very good the chain concentration limits and kinetic curves for $\text{NP}_2$ and $\text{HO}_2$.

Reaction $\text{NP}_2 + \text{H}_2\text{O}_2$. The reaction was studied under the following conditions: $p = 13$ Torr, $[\text{NP}_2] = (1.0 - 20) \cdot 10^{14} \text{cm}^{-3}$, $[\text{H}_2\text{O}_2] = 5 \cdot 10^{15} \text{cm}^{-3}$. In this case the limiting stage is the decomposition of $\text{NP}_2$ and therefore the stationary regime is reached during 1 s. High concentrations of the intermediate active species $\text{NP}_2$ and $\text{HO}_2$ are conserved during at least several seconds.

Reaction $\text{NP}_2 + \text{H}_2$. This reaction was investigated under the conditions: $p = 12$ Torr ($[\text{H}_2]/[\text{He}] = 1$), $T = (500 - 850) \text{K}$, $[\text{NP}_2] =$
=\(0.5 - 5\).10^{14}\text{cm}^{-3}\). The specific kinetic features of the branch chain reactions were observed: the induction period, the ignition limit etc. The kinetic data were treated basing on the simplified scheme:

(0) \(\text{NP}_2 + \text{H}_2 \rightarrow \text{NP}_2\text{H} + \text{H}\)

(1) \(\text{H} + \text{NP}_2 \rightarrow \text{NP} + \text{HF}\)

(2) \(\text{NP} + \text{NP}_2 \rightarrow 3\text{F} + \text{H}_2\)

(3) \(\text{F} + \text{H}_2 \rightarrow \text{H} + \text{HF}\)

(4) \(\text{NP} \rightarrow \text{termination}\)

and preliminary value \(2.10^{-10}\exp(-3000/T)\ \text{cm}^3\text{s}^{-1}\) for \(k_2\) was obtained.

Abstract

Transient gain-versus-absorption laser probing of spin-orbit states, kinetics and dynamics

Stephen R. Leone

Joint Institute for Laboratory Astrophysics
National Bureau of Standards and University of Colorado
and Department of Chemistry and Biochemistry
University of Colorado
Boulder, Colorado 80309-0440

A tunable F-center laser at 2710 nm and a diode laser at 1315 nm are used to probe spin-orbit populations of Br and I atoms, respectively, by time-resolved gain-versus-absorption techniques. Highly accurate quantum yields are obtained for pulsed laser photolysis of various compounds by measuring the early time gain or absorption signal relative to the final absorption amplitude when all of the excited atoms are quenched. Inherent in the method is an intrinsic normalization which eliminates many variables that usually contribute to the error in the determination. Thus the yields are insensitive to the pressure of the gas, the absorption coefficient, the tuning of the probe laser, and the power of the photolysis laser. Yields from molecules such as Br₂, IBr, CH₃I, and C₃F₇I are considered in detail.

*Staff Member, Quantum Physics Division, National Bureau of Standards.
In the case of Br$_2$, the continuum yields arising from hot bands are investigated as a function of temperature to fit the shape of the upper repulsive states. The high resolution of the probe lasers allows Doppler velocity effects to be explored. In addition, the differing reactivities of Br$^{(2P_{1/2})}$ and Br$^*^{(2P_{3/2})}$ are studied. For Br + Br, the ground state atom is 40 times more reactive than the total rate of quenching plus reaction of the excited state.

These laser probe techniques and infrared fluorescence methods are used to investigate the process of collisional release in Br$_2$. In this process, Br$_2$ molecules are excited with a narrowed laser to single vibration-rotation levels in the $^3\Pi_{0^+}$ state at energies between 1-5 kT below dissociation. Collisional release is monitored and determined on an absolute scale by measuring the Br$^*$ yield and the total quenching rates. The results show substantial dissociation upwards in energy, even for energies 3-5 kT below dissociation. Results for several collision partners, including He, Ar, Kr and Br$_2$ show that all these molecules, regardless of their strength of interaction with the Br$_2$(B) state, have essentially equal efficiencies of collisional release when compared to the quenching rate of the partner. These results will be discussed in terms of simple models.
Energy Partitioning in the Electronically Excited NO
Formed by the Photolysis of the NO Dimer

O. Kajimoto, K. Honma, Y. Achiba*, K. Shobatake* and K. Kimura*

Department of Pure and Applied Sciences, College of Arts and Sciences, the University of Tokyo, Komaba, Meguroku Tokyo 135 Japan
*Institute of Molecular Sciences, Myodaiji, Okazaki, Aichi 444 Japan

Nitric Oxide dimers, produced by a supersonic expansion of NO/He mixture, were photolyzed at several wavelengths between 193 and 218 nm. The emission appearing upon irradiation were identified as the \( \beta \) and \( \beta' \) bands of NO monomer, indicating the formation of electronically excited NO in its A and B states, respectively.

\[
(NO)\text{\textsubscript{2}} \rightarrow NO + NO*\text{\textsubscript{A,B}}
\]

The laser power dependences of the emission intensity and the NO\textsuperscript{+} ion current further revealed the mechanism of the (NO)\textsubscript{2} photolysis as shown in Fig. 1.

The change of the emission spectra in the \( \beta \) band region with varying photolysis wavelength is shown in Fig 2. By the photolysis at 217.8 nm only the the emission from \( v' = 0 \) level of the A state was observed whereas, at 193 nm, \( v' = 3 \) for the A state and \( v' = 5 \) for the B state are found to be present. On
the basis of the energetics, this observation suggests that the binding energy of the (NO)_2 should lie between 350 and 700 cm\(^{-1}\). The computer simulation of the observed spectra has been performed in order to derive the electronic, vibrational and rotational energy distributions in the electronically excited fragments (Fig. 3). The distributions obtained for the four photolysis wavelengths are given in Fig. 4. The vibrational distribution shows no population inversion except for the B state in the 193 nm photolysis. The total amount of the B state is greater than that of the A state. The rotational temperature for v' = 0 of the A state at 193 nm was also evaluated to be 1500 K from the emission spectra of higher resolution.

The above mentioned features in energy partitioning will be discussed in terms of the modified phase space theory and the crossings between various potential surfaces during the photofragmentation.
Fig. 1 A schematic representation of the mechanism of the photolysis of the NO dimer

Fig. 2 The emission spectra observed by the photolysis of (NO)₂ at several wavelengths.

Fig. 3 The simulation of the observed spectrum.

Fig. 4 The electronic and vibrational energy partitioning. O: A state, Δ: B state.
The Raman Spectrum of Predissociating H₂S

K. Kleinermanns, R. Suntz
Universität Heidelberg, Institut für Physikalische Chemie,
Im Neuenheimer Feld 253, D-6900 Heidelberg,
Federal Republic of Germany, Tel.: 06221/562508

Emission spectroscopy of photodissociating molecules provides interesting insights into the shorttime dynamics of bond ruptures /1,2/. We report here a resolved H₂S photoemission spectrum after excitation at 193 nm, although its electronic spectrum in this wavelength region is diffuse. The electronic spectrum of H₂S between 250 and 170 nm is nearly continuous probably due to predissociation X(A1) → B1 → A2 /3/.

The lifetime of H₂S excited at 193 nm H₂S 193 nm H(2S) + SH(XΠ) is guessed from photofragmentation measurements to be \( \lesssim 10^{-14} \) s /3/, hence the re-emission efficiency is very small \( (\lesssim 10^{-6}) \). A sensitive apparatus is necessary to observe such weak emission. Optimized light baffles consisting of Al/MgF₂ coated highly reflective scimmers as used in molecular beam experiments suppress the scattered light from the 500 mJ excimer laser pulse at 193 nm almost two orders of magnitude better than traditional baffles. The light further outside from the laser beam center is mirrored into the exit baffle system instead of being reflected back into the view region of the photomultiplier /4/. The H₂S is flowed through the cell at 0.2 mbar pressure. The sidearms and the fluorescence window are purged with helium to prevent exces-
sive absorption of the pump beam and re-absorption of the Raman light.

A typical Raman spectrum of H$_2$S excited at 193.4 nm is dominated by the fundamentals, overtones and combinations of the bending and stretch vibrations. Up to five quanta in the bend and 6 quanta in the stretch are seen in the wavelength region 193 - 320 nm. The spectral resolution of the monochromator is 0.6 nm, while the excimer laser bandwidth is $\sim$0.5 nm FWHM. This spectral resolution has to be improved further to distinguish between excitation of the symmetric and antisymmetric stretch ($\tilde{E}(100) = 2622$ cm$^{-1} = 203.7$ nm and $\tilde{E}(001) = 2684$ cm$^{-1} = 204.0$ nm). The intensities of the stretching mode overtones initially decrease in the progression, but regain intensity in combination with the bending mode $v_2$ further along in the progression. The strong activity in the stretch and bending modes indicates that the corresponding normal coordinates are initially, i.e. in the Franck-Condon region, considerably displaced on the upper surface.

Further experiments are directed to improve the spectral resolution of the measurements and to measure the spectrum up to the energy limit at 502 nm (with 3.91 eV as H$_2$S-dissociation energy).

Vibrational and Rotational Distributions of the CO Product of H + CO(v=0, J=0) with Hot Hydrogen Atoms

Paul L. Houston
Department of Chemistry
Cornell University
Ithaca, NY 14853
U. S. A.

H₂S is dissociated at excimer laser wavelengths in an pulsed nozzle beam containing CO. The H atoms produced by the dissociation make 1-2 collisions with the cold CO and excite it vibrationally and rotationally. CO products are then probed by vacuum ultraviolet laser induced fluorescence using a tunable VUV source made by four-wave mixing in Mg vapor. Because of the photolysis conditions for the H₂S, the initial translational energy is well-specified, and because of the expansion, nearly all of the CO is initially in v=0, J=0. The final product distribution can be completely determined; vibrational and rotational distributions will be reported and compared to results predicted by trajectory calculations on an ab initio surface.
ENERGY DISPOSAL IN $\text{O}^\text{1}(\text{D}) + \text{NH} \rightarrow \text{NH}_2 + \text{OH}$ REACTION.

S.G. Cheskis, A.A. Iogansen, P.V. Kulakov, A.A. Titov, and O.M. Sarkisov.

The NH and OH(v) radicals kinetics were directly monitored by LIF-technique after laser photolysis of ozone in 0 : NH : Ar gas system. Room-temperature rate constant for the reaction

$$\text{O}^\text{1}(\text{D}) + \text{NH} \rightarrow \text{NH}_2 + \text{OH} \quad \Delta H^\circ = -40 \text{ kcal/mole} \quad (1)$$

was measured to be $(3.3 \pm 1) \cdot 10^3$ cm molecule$^{-1}$ s$^{-1}$ by studying the ground state NH accumulation profiles.

A kinetic approach was employed for investigation of nascent vibrational energy distribution of NH and OH in the reaction (1). This approach consists in the standard kinetic measurements of collisional quenching of vibrationally excited products and subsequent restoration of their initial distributions on the basis of this kinetic data.

The detailed initial OH(v)-distribution was determined:

$$P(v=0) : P(v=1) : P(v=2) : P(v=3) = 0.2 : 0.32 : 0.33 : 0.15.$$ 

The fraction of NH formed in reaction (1) in the 2 vibrationally excited states was found to be $(58 \pm 8)$%.

Comparison of the obtained data with the previously reported results shows that kinetic approach is a powerful means of the vibrational energy distribution measurements.

The interaction rate constants of the vibrationally excited NH and OH radicals with ozone and ammonia was also obtained.
FORMATION AND REACTIONS OF ELECTRONICALLY EXCITED HCl

M.A. Brown, P.C. Cartwright, R.J. Donovan,
P.R.R. Langridge-Smith, K.P. Lawley

Department of Chemistry, University of Edinburgh,
West Mains Road, Edinburgh EH9 3JJ (U.K.)

The reactions of electronically excited xenon atoms (Xe $^3P_2,1,0$) with ground state hydrogen chloride leading to XeCl exciplex chemiluminescence have been well studied [1,2]. However, little work has been done on the complimentary reaction, namely that of electronically excited HCl with the ground state noble gas atom. Selective excitation of HCl is difficult because of the highly energetic nature of the electronic states involved. From previous high resolution V.U.V. absorption spectroscopic studies [3] and recent ab initio CI calculations [4], it is also clear that these high lying excited state potentials are complex, being dominated by considerable mixing between the valence $\sigma - \sigma^*$ "Ion-pair" state and "Rydberg" states of the same symmetry [5]. Recently Zimmerer et al [6] have reported single photon excitation of HCl using tunable V.U.V. synchrotron radiation. Our approach has been to use laser multiphoton excitation, with tunable U.V. radiation in the region 230-240 nm, produced by optical non-linear frequency doubling and mixing techniques.

Figure 1(a) shows a [2+1] multiphoton ionisation spectrum of HCl for two typical vibronic levels near 10.5 eV. One vibronic level being $v' = 11$ of the "Ion-pair" state and the other, the $v' = 0$ level of a "Rydberg"-like state that is strongly vibronically coupled to the "Ion-pair" state [5]. Dispersed fluorescence spectra following excitation at the Q(3) feature of each vibronic band are shown in Figure 1(b). Fluorescence to the vibrational continuum and highly excited vibrational levels of the ground state is observed. The appearance of XeCl exciplex ($\beta^2\Sigma^+ \rightarrow \chi^2\Sigma^+$) chemiluminescence is seen (Figure 1(c)) following excitation of HCl in the presence of Xe (10 torr). The XeCl exciplex action spectrum (monitored at 308 nm) follows that of the HCl MPI spectrum, showing that electronically excited HCl is responsible for the reactive channel. This and additional results involving reactions with both other electronic states of HCl and different rare gases will be further discussed.

References
Figure 1(a) [2+1] MPI spectrum of electronically excited HCl.

Figure 1(b) Dispersed fluorescence spectra of electronically excited HCl.

Figure 1(c) Dispersed fluorescence showing XeCl(B2π, C Π) and triple chemiluminescence.
ArF-Laser Photolysis of Hydrazoic Acid: Formation and Kinetics of NH(c\\textsuperscript{\textit{\beta}})

F. Rohrer and F. Stuhl
Physikalische Chemie I, Ruhr-Universität Bochum, D-4360 Bochum 1, Federal Republic of Germany

Long Abstract

Recently we have observed the generation of four different excited NH(a\\textsuperscript{\textit{\beta}}, b\\textsuperscript{\textit{\beta}}, c\\textsuperscript{\textit{\beta}}, A\\textsuperscript{\textit{\beta}}) states in the ArF-laser photolysis of HN\\textsubscript{3}. Since kinetic data on the quenching of NH(c\\textsuperscript{\textit{\beta}}) is scarce\textsuperscript{1} and details of the quenching mechanisms of excited small molecules are not well understood we have used this photolysis system to investigate its kinetics in the presence of a number of added gases.

In these experiments, gaseous HN\\textsubscript{3} at pressures ranging from 0.013 to 13 Pa was irradiated by the unfocussed ArF-laser beam (30 mJ/cm\textsuperscript{-2}; 15 ns; 193.3 nm). Excited NH(c) radicals were detected by emissions from their NH(c$\rightarrow$ a and b)-transitions. The NH(c, $v'\neq0$ and 1, $J'$) radicals were produced with a rotational distribution close to that corresponding to $T_{\text{rot}}$=800 K. About 10% of the available energy appears as rotation and $\approx$1% as vibration. The quantum yield for the production of NH(c) was estimated to be 0.0005 assuming no ground state NH(X) is formed.

Lifetimes of the NH(c) fluorescence were determined using a time constant of 30 ns. The zero pressure lifetimes of $v'=0$ and 1 were measured to be 470 $\pm$ 15 and 65 $\pm$ 20 ns, respectively. The value for $v'=0$ is taken to represent the radiative lifetime while that for $v'=1$ is shortened by predissociation.

Rotational relaxation was observed to be very efficient. In the presence of Ar, for example, the addition of 6600 Pa was sufficient to generate a rotational distribution corresponding to room temperature within 50 ns. Quenching cross sections were determined in the presence of Ar, hence, to render a completely relaxed rotational distribution ($T_{\text{rot}}$=300 K). This way, the measured quenching cross sections represent a weighted average over the collisionally coupled, rotational states at room temperature.
Table 1. Cross sections $10^{-16}$ cm$^{-2}$ for the quenching of several excited hydrides

<table>
<thead>
<tr>
<th>Gas</th>
<th>NH(c)a</th>
<th>NH(A)b</th>
<th>OH(A)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>$\pm 0.0004$</td>
<td>$\pm 0.0046$</td>
<td>$&lt;0.0007$ a) this work</td>
</tr>
<tr>
<td>Ar</td>
<td>$\pm 0.001$</td>
<td>$\pm 0.011$</td>
<td>$&lt;0.005$ b) Ref. 2</td>
</tr>
<tr>
<td>Kr</td>
<td>2.58</td>
<td>$&lt;2.44a,d$</td>
<td>$&lt;0.005$ c) Ref. 3 for N'=0-7</td>
</tr>
<tr>
<td>Xe</td>
<td>32.9</td>
<td>6.0</td>
<td>15.6$^{d}$d) for the rotational</td>
</tr>
<tr>
<td>SF$_6$</td>
<td>0.032</td>
<td>$&lt;0.026a,d$</td>
<td>distribution given</td>
</tr>
<tr>
<td>N$_2$</td>
<td>1.64</td>
<td>$\pm 0.0061$</td>
<td>6.7-2.5</td>
</tr>
<tr>
<td>H$_2$</td>
<td>8.01</td>
<td>4.4</td>
<td>11.6-6.5</td>
</tr>
<tr>
<td>D$_2$</td>
<td>7.63</td>
<td></td>
<td>11.0-5.9</td>
</tr>
<tr>
<td>CO</td>
<td>41.8</td>
<td>6.4</td>
<td>49.6-27.6</td>
</tr>
<tr>
<td>O$_2$</td>
<td>24.2</td>
<td>4.3</td>
<td>21-10.5</td>
</tr>
<tr>
<td>NO</td>
<td>71.6</td>
<td>17</td>
<td>47.7-30</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>27.4</td>
<td>0.97</td>
<td>69-20.9</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>88.9</td>
<td></td>
<td>92.9-73.9</td>
</tr>
<tr>
<td>N$_2$O</td>
<td>58.0</td>
<td></td>
<td>70.7-28.2</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>27.3</td>
<td>8.0</td>
<td>34.4-26.3</td>
</tr>
</tbody>
</table>

Fig. 1. Fluorescence intensities of NH(c) and NH(A) in (a) the absence and (b) the presence of O$_2$. Pressures: 0.27 Pa HN$_3$ and 53.2 Pa O$_2$. 

![Fluorescence intensities](image)
The values obtained are listed in Table I together with those previously reported on the quenching of \( \text{NH}(A^2\Pi)^2 \) and \( \text{OH}(A^2\Pi)^3 \). Similarities and differences in Table I will be discussed in terms of attractive forces and calculated potential curves.

The quenching of the unrelaxed original rotational distribution (in the absence of Ar) was observed to be slightly less efficient for several added gases. This trend was found to be reversed for the addition of \( \text{O}_2 \) and \( \text{NO} \). For these quenchers, the removal rate for \( \text{NH}(c) \) can be correlated with the growth rate observed for the \( \text{NH}(A) \) fluorescence. Fig. 1 shows the resulting overall fluorescence intensity changes during a time interval of \( 1 \mu s \) after the laser shot. While the intensity of the \( \text{NH}(c \rightarrow a) \) fluorescence significantly decreases by the efficient quenching by \( \text{O}_2 \), the intensity of the \( \text{NH}(A) \) increases in spite of some quenching by the added \( \text{O}_2 \). Figure 1 additionally shows that \( \text{NH}(A) \) is formed also as a primary product. The relative quantum yields for the primary production of \( \text{NH}(c) \) and \( \text{NH}(A) \) and the appropriate quenching constants were taken into account to calculate the efficiency of the collision induced intersystem crossing to be close to one for both \( \text{O}_2 \) and \( \text{NO} \).

For the addition of \( \text{O}_2 \), Fig. 1 clearly demonstrates the enhancement of \( \text{NH}(A) \) in \( v=2 \) and 1 (besides \( v=0 \)). We propose \( \text{O}_2(a^1\Delta) \) in the vibrational states \( v=0, 2, \) and 4 to be formed in the reaction \( \text{O}_2 + \text{NH}(c) \). For this set of products, total spin is conserved and near resonances exist being slightly endothermic.

The authors acknowledge financial support by the Deutsche Forschungsgemeinschaft (SFB 42).

References

RECENT ADVANCES IN FREE RADICAL KINETICS OF OXYGENATED HYDROCARBON SPECIES

Reinhard Zellner

Institut für Physikalische Chemie, Universität Göttingen, Tammanstraße 6, 3400 Göttingen

The kinetics of oxygenated hydrocarbon radicals are a central element of hydrocarbon oxidation at both low and high temperatures. Among the large variety of such radicals a few of them are accessible to isolated generation and direct time resolved detection using presently available laser techniques. In this presentation recent results obtained for the kinetics and energetics of reactions involving such radicals will be reviewed.

Methoxy (CH$_3$O) and methylperoxy (CH$_3$O$_2$) are the simplest oxygenated hydrocarbon radicals that appear in methane oxidation. From their chemical behaviour they may be considered as the hydrocarbon analogues of OH and HO$_2$, respectively. The kinetics of their reactions therefore deserves special attention both in view of the absolute rate coefficients as well as their theoretical interpretations. As an example for which there is thorough comparative information available for the corresponding reactions of HO$_x$, we will present recent results obtained for reactions of CH$_3$O with O atoms and NO. Although the hydrocarbon system has in general more than one product channel, it will be shown that the gross features of the kinetics can well be represented by assuming the reactions to occur via bound intermediates.

Unlike OH, oxy-radicals of the hydrocarbon system also react with O$_2$. As a representative example we will first present recent results for CH$_3$O + O$_2$, for which we have measured k(T) and the yield of CH$_2$O. Both quantities indicate that the reaction is more complex than simple H atom abstraction.
Possible alternatives will be discussed. A mechanism of still larger complexity is observed for the reaction of vinoxy (CH$_2$CHO) with O$_2$. Here the primary process is probably the addition of O$_2$ to the carbon radical center. This is reflected by the pressure dependence of the overall rate coefficient and its negative activation energy. However, the formation of "bimolecular" products, including OH and CH$_2$O, is also observed. These probably result from the unimolecular break-up of the 1,4-H atom-shifted vinoxy-O$_2$ adduct. A potential diagram accounting for these observations will be presented.

Reactions of OH radicals with aromatics at low temperatures are assumed to form the corresponding adducts. For OH + benzene we have recently succeeded to directly monitor the formation of hydroxy-cyclohexadienyl (HCHD) by long-path UV-laser absorption. The same technique has also been used to study reactions of HCHD in isolation. Results will be presented for direct investigations of the thermal stability of HCHD and for its reactions with NO, NO$_2$, and O$_2$. The consequences of these results for the low temperature oxidation of benzene will be discussed.
STRUCTURE-REACTIVITY RELATIONSHIPS IN THE REACTION SERIES
OH + RCHO

S. Döbő, T. Bérces and P. Mártta
Central Research Institute for Chemistry,
Hungarian Academy of Sciences, Budapest, Hungary

The kinetics of OH radical reactions

OH + RCHO → products (1)

has been investigated in an isothermal fast flow reactor. The OH radicals are generated in the reaction of H-atoms with excess NO₂ and the decay of OH is monitored by resonance fluorescence technique. The reaction temperature has been varied in a wide range using oil thermostating jacket and electric heating.

Rate coefficients and Arrhenius parameters have been determined for reaction (1) for R groups R = CH₃, CCl₃, CF₃.

Reactivities and activation energies follow a trend expected on the basis of the strengths of the formyl C - H bonds. Comparison of experimental kinetic data with estimations based on semiempirical schemes indicate, however, that the correlation with bond energies is only qualitative. Polarity effect appear to play some role in these reactions.
The Arrhenius activation energies were found to be small and to change with temperature. Reasons of deviations from the Arrhenius low are discussed and experimental temperature dependences of the rate coefficients are compared with theoretical results.
CN GAS PHASE KINETICS PROBED BY A DIODE LASER

R. Jeffrey Hella and Louise Pasternack, Chemistry Division, Naval Research Laboratory, Washington, D.C. 20375-5000.

The room temperature kinetics of CN with H2, D2, and CH4 have been studied using a diode laser as a probe for both CN disappearance and HCN appearance. CN is produced by ArF excimer laser (193 nm) photolysis of cyanogen. The P(7) v=0 -> v=1 absorption of CN (X2Σ+) at 2015.2 cm\(^{-1}\) is monitored as it decays following photolysis under pseudo-first-order conditions. We also measure the rise of HCN by monitoring the ν3 vibration near 3311 cm\(^{-1}\). Buffer gases are added to ensure vibrational and rotational equilibration. A typical time resolved scan of the CN absorption is shown in Figure 1.

Absolute rate constants for CN+H2, CN+D2, and CN+CH4 have been measured and are shown in Table 1.

Table 1: Reaction rates of CN

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate constant (cm(^3)s(^{-1}) (+2σ)</th>
<th>Pressure Range (Torr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN+H(_2)</td>
<td>(2.58±0.28) \times 10^{-14}</td>
<td>10-100</td>
</tr>
<tr>
<td>CN+D(_2)</td>
<td>(7.15±0.86) \times 10^{-16}</td>
<td>10-200</td>
</tr>
<tr>
<td>CN+CH(_4)</td>
<td>(7.82±0.86) \times 10^{-15}</td>
<td>1-10</td>
</tr>
</tbody>
</table>
These rates are constant over the pressure range shown in Table 1. A typical plot of the CN+D$_2$ pseudo-first-order reaction rate vs D$_2$ pressure is shown in Figure 2. The reaction of CN+H$_2$ has been studied using ab initio calculations by Bair and Dunning$^1$ and Wagner and Bair.$^2$ In cooperation with the NRL Laboratory for Computational Physics, we have extended these calculations to the CN+D$_2$ reaction in order to determine the predicted kinetic isotope effect. The predicted value of $k$(H$_2$)/$k$(D$_2$) is 3.5, in excellent agreement with our experimental results.

We have also measured the integrated line strength for the P(7) $\nu$=0 -> $\nu$=1 CN($X^2\Sigma^+$) absorption. These experiments are performed under low pressure conditions to ensure only Doppler broadening. A value of $S$=(1.5 ± 0.5) x 10$^{-19}$ cm$^2$ molecule$^{-1}$ cm$^{-1}$ is measured.

REFERENCES:


Figure 1. Time resolved scan of CN absorption. In this scan, P(CN)$_2$ = 0.12 Torr, P(D$_2$) = 2.5 Torr, and total pressure = 98 Torr.

Figure 2. A plot of the pseudo-first-order reaction rate constant, $k^1$, versus reactant pressure for the reaction of CN+D$_2$. The slope corresponds to a second-order rate constant of $7.8 \times 10^{-15}$ cm$^3$ s$^{-1}$. The intercept reflects CN removal by diffusion and reaction with the precursor.
Kinetic Microwave Spectroscopy of Reaction Intermediates:
Atomic Oxygen Reactions with Olefins

Seiichiro KODA*, Soji TSUCHIYA**, Yasuki ENDO, Chikashi YAMADA
and Eiji HIROTA

Institute for Molecular Science, Okazaki 444, JAPAN
* Department of Reaction Chemistry, Faculty of Engineering,
University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, JAPAN
** Department of Pure and Applied Sciences, College of Arts and
Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153,
JAPAN

A microwave spectroscopic method has been developed for
kinetic studies of elementary reactions, in which reaction
intermediates such as free radicals with lifetimes as short as 1
ms are directly analysed in situ condition. This method was
applied to clarifying the primary mechanism of the atomic oxygen
\( \text{O}^{(\text{3P})} \) reactions with ethylene and tetrafluoroethylene.

Recent studies\(^1\) on the reaction of \( \text{O}^{(\text{2P})} \) with ethylene have
shown that both of channel (a) to yield vinoxy + H and channel
(b) to yield \( \text{CH}_3 + \text{HCO} \) play important roles. But the pressure-
derpendency of the branching ratio has not been fully
investigated. A low-pressure experiment is invaluable in order
to clarify whether channel (b) is induced by intermolecular
collisions or not. Microwave kinetic spectroscopy can pursue the
reaction progress at a low pressure such as 0.1 Torr or less by
observing the spectra of transient species as well as products in
real time.

The reaction was initiated by pulsed irradiation of the
253.7 nm mercury resonant line onto an N₂O/ethylene mixture containing a trace amount of mercury vapor. A quartz tube of 1 m in length and 9 cm in inner diameter was used as a reaction/absorption cell, which was surrounded by 15 germicidal lamps of 30 W each. The light pulse was chosen to be typically of 4 ms duration. Sample gases were passed over a mercury reservoir to be saturated with mercury vapor and were then passed through the cell. The time evolution of vinoxy, HCO and H₂CO during and after the light pulse was pursued in terms of the absorption of the 170,17-160,16 (342311.5 MHz), 40,4-30,3 (J=4.5-3.5, F=5-4, 346708.5 MHz), and 51,5-41,4 (351768.6 MHz) transition, respectively. The effective absorption coefficients were estimated on the basis of the dipole moment and the measured line-width at the cell pressure.

Both vinoxy and HCO were found to be formed right after the onset of the light pulse. After some kinetical treatments, the branching ratio was determined to be 0.4±0.1 and 0.5±0.1 for (a) and (b), respectively, at the pressure of 30 mTorr. In the presence of additional argon up to 300 mTorr, the branching ratio remained almost the same within experimental uncertainty. Taking into account the previous studies altogether, the ratio seems to be almost insensitive to the pressure over the wide range from 30 mTorr to 760 Torr. Moreover, the present pressure of 30 mTorr corresponds to the collision frequency of about 3x10⁵ s⁻¹ assuming a hard-sphere collision cross section, and a collision complex of O and ethylene, if exists, is unlikely to survive as long as 3x10⁻⁶ s. Therefore, channel (b) is not collisionally induced, but may take place through an intramolecular path. An
intramolecular conversion between the potential surfaces leading to channel's (a) and (b) may easily proceed if these two surfaces come close each other at some reaction coordinates.

In the reaction of O($^3P$) with tetrafluoroethylene, the production of $^3$CF$_2$ was established on the basis of its phosphorescent emission, but its quantum yield is not determined. Though we have not yet succeeded in detecting $^3$CF$_2$ with the present microwave spectroscopic method, the time evolution of the ground state $^1$CF$_2$ was pursued in terms of the absorption of the $141,14-130,13$ transition at 343135.4 MHz. It was strongly suggested that the $^1$CF$_2$ was mostly produced via quenching of the primarily produced $^3$CF$_2$. The reaction of O with tetrafluoroethylene is thus considered to proceed on a triplet reaction surface.

References
Kinetics of the CH₃ + D reaction: an anomalous isotope effect

M. Brouard and N.J. Pilling

Physical Chemistry Laboratory, South Parks Road, Oxford, OX1 3OZ, U.K.

We recently developed a laser flash photolysis technique for measuring atom plus radical reactions, in which the atom is monitored by time-resolved resonance fluorescence and the radical by time-resolved absorption spectroscopy. The technique has been applied to the CH₃ + H reaction,

\[
\text{CH}_3 + H \xrightarrow{k_a} \text{CH}_4
\]

over the temperature and pressure ranges 300 ≤ T/K ≤ 600; 25 ≤ P/Torr ≤ 600 (Fig. 1). Under these conditions the reaction is well into the fall-off regime and, whilst \( k_a \) may be obtained by extrapolation using, for example, the Troe factorisation technique, the uncertainty in \( k_a \) is significant but difficult to assess.

Over the past few years, considerable theoretical effort has been devoted to reaction (1) and, in particular, to the calculation of \( k_a \). Precise experimental data are required for comparison with these calculations. We have investigated the reaction between CH₃ and D:

\[
\begin{align*}
\text{CH}_3 + D & \xrightarrow{k_a} \text{CH}_3D \\
\text{CH}_3D & \xrightarrow{k_b} \text{CH}_2D + H \\
\text{CH}_2D + H & \xrightarrow{k_c} \text{CH}_3D
\end{align*}
\]

(2)
using the technique employed for reaction (1). Because of zero point energy differences \( k_a \) and the overall rate constant for deuterium atom loss, \( k_2 \), should be close to \( k_a \). The determination of \( k_a \) should enable the limiting high pressure rate constant for reaction (1), \( k_1^* \), to be evaluated by simple correction for mass differences.

As expected, \( k_2 \) was found to be independent of pressure over the range \( 50 \leq P/Torr \leq 600 \) and it is also independent of temperature over the range \( 289 \leq T/K \leq 401 \) with a mean value of \( (1.75 \pm 0.045) \times 10^{-10} \) cm\(^3\) molecule\(^{-1}\) s\(^{-1}\). The corresponding value for \( k_1^* \) is \( (2.47 \pm 0.06) \times 10^{-10} \) cm\(^3\) molecule\(^{-1}\) s\(^{-1}\) and Fig. 2 shows an attempt to fit the 300 K fall-off data for \( k_1 \) with this high pressure limit. The data are clearly incompatible with such a value. Fig. 2 also shows a fit to the data with \( k_1^* = 4.7 \times 10^{-10} \) cm\(^3\) molecule\(^{-1}\) s\(^{-1}\), which is much more satisfactory. It appears from these experimental data that the limiting high pressure rate constant for reaction (1) may not be evaluated from \( k_2 \) by a simple transition state calculation.

References


Fig. 1 Pull-off data for reaction (1) in a helium diluent: O, 100 E; 
•, 400 E; Φ, 600 E; Δ, 800 E. The error bars represent 
95.5% confidence limits.

Fig. 2 Comparison of the experimental pull-off curve for reaction (1) 
at 100 E with the best fit curve evaluated with $k_f$ evaluated 
from $k_2$: O, experimental data; ----, best fit curve with 
$k_f = 3.4 \times 10^{-16}$ cm$^3$ molecule$^{-1}$ s$^{-1}$; ---, best fit curve 
with $k_f$ (fluct. lognormal fit at $k_f = 6.08 \times 10^{-16}$ cm$^3$ 
molecule$^{-1}$ s$^{-1}$).
There have been a number of studies of the reaction between \( \text{O}_2^+ \) and \( \text{CH}_4 \) during the past 20 years. Recent studies at Colorado University have established the product ion to be methylene hydroperoxy cation,\(^1\) in contrast to published reports that it is protonated formic acid. The \( \text{H}_2\text{COOH}^+ \) product ion undergoes \( \text{H}^- \) transfer from alkanes larger than ethane and other hydrocarbons. It transfers the \( \text{OH}^- \) group to \( \text{CS}_2 \) and many other neutrals and it proton transfers to \( \text{H}_2\text{O}, \text{NH}_3 \) and other neutrals of large proton affinity. The ion follows all three of these reaction paths with \( \text{CH}_3\text{C(O)H} \) and \( \text{C}_2\text{H}_5\text{C(O)H} \). The ion does not exchange \( \text{H} \) atoms with \( \text{D}_2\text{O} \). This chemistry is completely different than that of the very much more stable protonated formic acid in \( \text{HCOH}_2^+ \). The value of \( \Delta \text{H}_f(\text{H}_2\text{COOH}^+) \) is found to be 185 ± 3 kcal mol\(^{-1}\).

The reaction rate constant has been measured\(^2\) over the temperature range 20–560K and as a function of relative kinetic energy from 0.01 eV to 2 eV.\(^3\)\(^4\)\(^5\)\(^6\) The reaction rate constant has been determined for the five \( \text{CH}_n\text{D}_{4-n} \) isotopes.\(^5\)

From this wealth of experimental data it has been possible to deduce the reaction mechanism in great detail. The reaction proceeds over a double potential minimum surface. A reversible electrostatically bound complex (well depth 9 kcal mol\(^{-1}\)) with a lifetime ~10\(^{-10}\) sec at 300K is
formed initially. On ~ 0.5% of the collisions (at 300K) an irreversible hydride ion transfer occurs over an 8 ± 1 kcal mol⁻¹ barrier, yielding the stable (but highly excited) ion H₃COOH⁺. The electrostatic well-depth and the barrier height are deduced from recent measurements of Bihringer and Arnold.⁶

Following the irreversible H⁻ transfer from CH₄ to O₂⁺ to produce H₃COOH⁺, an H atom is rapidly ejected from carbon to yield the final product H₂COOH⁺ + H. The overall reaction is 22 ± 3 kcal mol⁻¹ exothermic.

The product ion is stable against exothermic (by 49 kcal mol⁻¹) decomposition into HCO⁻ + H₂O or the even more exothermic (by 74 kcal mol⁻¹) decomposition into H₂O⁺ + CO. A barrier of 23 ± 5 kcal mol⁻¹ exists for decomposition into HCO⁻ + H₂O. This leads to a proton bonding energy of ~ 162 kcal mol⁻¹ for H₂COOH⁺. We believe the neutral products of proton transfer are CO + H₂O. A simple proton transfer leaving H₂COO would be very endothermic.

The reaction rate constant increases almost linearly with number of H atoms going from CD₄ to CH₄ due to the H/D isotope effect of 3 for H⁻/D⁻ transfer in the rate-controlling hydride ion transfer step. The product ion composition, however, is almost statistical (or random) due to the fortuitously off-setting H/D isotope effect in the ejection rate in the final step. Eleven measured isotopic parameters (including internal isotopic distributions for CHD₂O₂⁺ and CH₂DO₂⁺) are explained with the two isotopic parameters, one of which is a theoretically determined parameter.

The reaction rate constant dependence on temperature is well fit by a statistical theoretical model.
References

KINETICS OF ION MOLECULE REACTIONS AT VERY LOW TEMPERATURE: THE CRESU TECHNIQUE

C. Rebrion, J.B. Marquette, D.R. Rowe, G. Dupeyrat
Laboratoire d'Aéothermique du C.N.R.S.
4ter, route des Gardes, 92190 Meudon (France)

1 - INTRODUCTION

A detailed understanding of the formation of complex molecules in dense interstellar clouds requires a good knowledge of ion-molecule reaction kinetics at extremely low temperatures (in the range 10-100K). From a fundamental point of view, very low levels are involved in the reaction at such temperatures, leading to a more tractable theoretical problem. Also, this could allow the determination of the rotational state influence on the reactivity. When the formation of an excited complex is involved, its lifetime is considerably enhanced at the lowest temperatures yielding large effects on the kinetics.

The CRESU technique that we have developed in our laboratory is able to measure rate coefficients with condensable species under true thermal conditions in the range 8-160K. Detailed descriptions of the technique are published elsewhere /1-3/. The low temperature is obtained by the isentropic expansion of a buffer gas, containing both ion parent and neutral reactant gases, through a suitably contoured Laval nozzle. Ions are created close downstream from the nozzle exit by an electron beam. Primary and product ions are monitored by means of a moveable quadrupole mass spectrometer associated with a particle counting system.

2 - RESULTS

In case of fast reactions all theories assume that they are dominated by long-range intermolecular forces /4/. For non-polar molecules the Langevin ion-induced-dipole theory predicts no variation in the rate
coefficient with temperature; for these molecules quadrupole moments or anisotropy of polarizability yield additional terms in the interaction potential, which may cause variations of the kinetics with temperature. In the case of polar molecules various theories (ADO, AADO /4/, ACCSA /5/) predict an increase of the rate coefficient at the lowest temperatures.

Three sets of experimental data have been obtained concerning fast reactions of He+, N+ and C+ ions occurring with non-polar or slightly polar molecules (O2, CH4, CO) /6/, with very polar molecules (H2O, NH3) /7/ and with non-polar molecules presenting very large quadrupole moments (C6F6, C6H12).

It follows from these experiments that, within the stated experimental uncertainty (± 30%), there is no significant change in the reaction rate coefficient for neutrals with important anisotropic polarizabilities or very large quadrupole moments. In contrast the rate coefficients largely increase at the lowest temperatures for polar molecules. This is qualitatively in agreement with ADO theory. For some reactions (C+, N+ + H2O) there is a very good agreement with the ACCSA theory (D.C. Clary, private communication).

Several other reactions have been studied using our technique: association reactions of N2+ with N2 and O2+ with O2 leading respectively to N4+ and O4+ /2/ and slow reactions at room temperature like

\[ N_2^+ + O_2 \rightarrow O_2^+ + N_2 \quad \text{and} \quad O_2^+ + CH_4 \rightarrow CH_3O_2^+ + H \] /1/ In this case the large increase of the rate coefficient towards the lowest temperatures can be seen as a result of the much longer reaction complex lifetime at very low temperatures.

For O2+ + CH4-nDn, 0 ≤ n ≤ 4 a joint research by various groups including our low temperature measurements has led to a very detailed understanding of this reaction /10/.

The reaction of N+ with H2 and D2 is a striking exception to the general
behavior: The rate coefficient dramatically decreases from 300K to 8K. This has been interpreted as a very slight endothermicity /10/.

3 - CONCLUSIONS

The CRESU measurements yield new insights on ion-molecule reaction kinetics. Our present program includes the study of the influence of rotational states on the reactivity using deuterated neutrals to vary the rotational states populations.

REFERENCES

Neutral Reactions on Ions

A.A. Vigiano, C.A. Deakyne and J.F. Paulson
AFGL/LID, Hanscom AFB 01731-5000

Several years ago Rowe et al.\(^1\) observed for the first time an interesting set of reactions in which a neutral clustered to an alkali ion reacts with another neutral. In these reactions, the alkali ion acts mainly as a bystander providing a large electric field in which the reaction can take place. Rowe et al.\(^1\) found that the reaction (1),

\[
\text{N}_2\text{O}_5 + \text{NO} \rightarrow 3 \text{NO}_2, \tag{1}
\]

proceeds at a rate at least 9 orders of magnitude faster when the \(\text{N}_2\text{O}_5\) is clustered to a \(\text{Li}^+\) ion than does the purely neutral reaction. Several reasons can be suggested for the origin of this rate enhancement: (1) the kinetic energy gained during the acceleration in the ion-dipole or ion-induced dipole field is sufficient to overcome the activation energy barrier; (2) the electric field alters the potential energy surface; (3) the lifetime of the complex is enhanced.

In the present work we studied experimentally several systems for which the rate enhancement is seen. We tried to pick systems that would help to distinguish between the various mechanisms for the enhancement. Molecular orbital calculations on the energies and structures of the cluster ions were also performed to aid in understanding the rate enhancement.

The measurements were done in a variable temperature flowing afterglow. The alkali ions were made by heating rhenium filaments coated with a mixture of alkali nitrate, \(\text{Al}_2\text{O}_3\) and \(\text{SiO}_2\). This resulted in good pure signals of the alkali ion of interest after several hours of use. Clustering was enhanced by adding a diaphragm (5 mm hole diameter) between the ion source region and the flow tube. The pressure in the ion source region was on the order of 10 torr and the flow tube pressure was approximately 0.5 torr. The neutral to be clustered to the alkali ion was added downstream of the filament and upstream of the diaphragm. In order to get the best signal of the cluster ion of interest without interference from other ions, the temperature, pressure and buffer gas were varied. Three buffers were used; He, Ar and \(\text{N}_2\).

The preliminary rate constants measured in this study are given in Table 1. These rate constants are all considerably larger than those for the corresponding neutral reactions\(^2\). The largest enhancement is seen for the reaction of \(\text{Li}^+(\text{NO}_2) + \text{CO}\), whose rate is augmented by 30 orders of magnitude over that for the gas phase reaction of \(\text{NO}_2\) and \(\text{CO}\). The other rate enhancements are not so dramatic as this, but all are at least four orders of magnitude larger in the presence of the alkali ion.

The reaction of \(\text{NO}_2\) with \(\text{CO}\) has a gas phase activation energy\(^2\) of 28 kcal mol\(^{-1}\). The energy gained during collision of \(\text{CO}\) with a \(\text{Li}^+\) (radius=0.6Å) ion due to the ion-induced dipole interaction is 108 kcal mol\(^{-1}\). Thus, the kinetic energy gained during the collision is sufficient to overcome the activation barrier in this case. In the case of \(\text{Na}^+\) (radius=0.95Å), the energy gained from the ion-induced dipole force is only 17 kcal mol\(^{-1}\), which is not sufficient to overcome the barrier. To
this one must add the ion-dipole term. The latter is harder to estimate due to the fact that the dipole is rotating. For a locked dipole the energy gained is 9 kcal mol\(^{-1}\). Therefore, the energy gained during the collision is at most 26 kcal mol\(^{-1}\). This is not quite sufficient to overcome the activation barrier, yet the rate is still enormously enhanced.

We have performed molecular orbital calculations on Li\(^{+}\)(NO\(_2\)). The equilibrium geometry shows that one of the N-O bond lengths has increased compared to its value in NO\(_2\), indicating that the bond strength has decreased. A similar effect can be expected for Na\(^{+}\)(NO\(_2\)). This decrease in bond strength may well translate into a decrease in the activation energy barrier. The latter decrease may be sufficiently large for the kinetic energy gained during the collision to overcome the reduced activation barrier. The fact that the rate is slower in the presence of Na\(^{+}\) than Li\(^{+}\) supports the above suggestion. Decreasing rate constants with increasing size of the alkali ion have also been seen by Rowe et al.\(^1\) The activation barriers (for the neutral reaction) for the reactions studied with O as the reactant neutral are also smaller than the energy gained during a collision of O with Na\(^{+}\). We conclude from this that the major reason for the rate enhancement may be the kinetic energy gained during the collision, although it is not the only effect.

Unfortunately, it has been impossible to study reactions of O with neutrals clustered to K\(^{+}\), which would give further insight into the reaction mechanism. The reaction,

\[ \text{KX} + \text{O} \rightarrow \text{K}^{+} + \text{X(O)}^{-} \]

where the negative ion has a mass of either 246±2 or 79 amu, produces 20 times more K\(^{+}\) than is seen before O is added. The unknown neutral KX is emitted from the K filament. The rate constant for reaction 2 is 1.4 x 10\(^{-10}\) cm\(^3\) s\(^{-1}\).

The products in the reaction of Li\(^{+}\)(NO\(_2\)) with CO deserve further attention. In He and Ar buffers the major product is Li\(^{+}\)(CO), with a small amount of Li\(^{+}\)(CO\(_2\)) formed. In a N\(_2\) buffer, the only product is Li\(^{+}\)(CO\(_2\)). The most likely explanation for this is that the Li\(^{+}\)(CO\(_2\)) product is formed in an excited state (electronic or vibrational), since the reaction is exothermic by 54 kcal mol\(^{-1}\) (neglecting the difference in cluster bond strengths). The excited Li\(^{+}\)(CO\(_2\)) is quenched in a N\(_2\) buffer but not in the atomic buffers\(^3\). In the atomic buffers the CO\(_2\) can then be switched out of the cluster by CO, even though the switching reaction of the ground state ions would be endothermic.

It is also interesting to note that for the reaction of H\(_2\)S with O the product is different depending upon whether one or two H\(_2\)S ligands are attached to the alkali metal ion. When two are attached, an association to form H\(_2\)SO occurs; and when only one is attached, reaction to form HSO and H occurs.

In conclusion, we have studied a number of reactions that proceed faster in the presence of an inert alkali ion. The enhancement is enormous, being on the order of 10\(^{30}\) for the most dramatic case. The main reason for the enhancement appears to be that the kinetic energy gained during collision is sufficient to overcome the neutral activation barrier. This appears to be a necessary but not sufficient condition for the rate enhancement to occur. Secondary causes, such as bond weakening in the presence of the alkali ion also appear to play a role.
<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate Constant</th>
<th>Temp(K)</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li⁺(NO₂) + CO → Li⁺(CO₂) + NO⁴</td>
<td>7(-12)⁵</td>
<td>213-294</td>
<td>10³⁰</td>
</tr>
<tr>
<td>Na⁺(NO₂) + CO → Na⁺(CO₂) + NO</td>
<td>1(-12)</td>
<td>213-289</td>
<td>10²⁹</td>
</tr>
<tr>
<td>Li⁺(NO₂) + H₂ → products</td>
<td>&lt;1(-14)</td>
<td>219</td>
<td>-</td>
</tr>
<tr>
<td>Li⁺(HBr) + O → Li⁺ + HBrO</td>
<td>2(-10)</td>
<td>178-219</td>
<td>10⁵</td>
</tr>
<tr>
<td>→ Li⁺ + Br + OH → Li⁺(HBr₂) + O → Li⁺ + HBrO + HBr</td>
<td>2(-10)</td>
<td>178</td>
<td>10⁵</td>
</tr>
<tr>
<td>Na⁺(HBr) + O → Na⁺ + + HBrO</td>
<td>1(-10)</td>
<td>219</td>
<td>2x10⁴</td>
</tr>
<tr>
<td>→ Na⁺ + Br + OH</td>
<td>Li⁺(H₂S) + O → Li⁺(HSO) + H²⁺</td>
<td>2(-10)</td>
<td>219</td>
</tr>
<tr>
<td>→ Li⁺ + H₂SO</td>
<td>Li⁺(H₂S)₂ + O → Li⁺(H₂SO) + H₂S²⁺</td>
<td>2(-10)</td>
<td>219</td>
</tr>
<tr>
<td>→ Li⁺ + H₂SO + H₂S</td>
<td>Na⁺(H₂S) + O → Na⁺(HSO) + H²⁺</td>
<td>1(-10)</td>
<td>178-219</td>
</tr>
<tr>
<td>→ Na⁺ + H₂SO</td>
<td>Na⁺(H₂S)₂ + O → Na⁺(H₂SO) + H₂S²⁺</td>
<td>2(-10)</td>
<td>178</td>
</tr>
<tr>
<td>→ Na⁺ + H₂SO + H₂S</td>
<td>Li⁺(N₂O) + O → Li⁺ + N₂ + O₂</td>
<td>5(-13)</td>
<td>219</td>
</tr>
</tbody>
</table>

a. For detailed information on the products see text. b. 7(-12) means 7x10⁻¹². c. The rate constant in the presence of the alkali ion divided by the rate constant for the corresponding neutral reaction at the coldest temperature listed.

References
INTEGRATION OF THEORY AND EXPERIMENT IN HIGH-TEMPERATURE CHEMICAL KINETICS

David Gutman

Department of Chemistry, Illinois Institute of Technology
Chicago, Illinois 60616, U.S.A.

The technical difficulties associated with most experimental investigations of free-radical reactions at high temperatures usually impose significant restrictions on the range of conditions which can be covered and the degree of detail which can be obtained. Interpretation of results, particularly extrapolating laboratory findings far outside of the range of experimental conditions covered, requires not only a clear conceptual picture of the reaction dynamics but also quantitative information on the reaction energetics as well as properties of reactants and products along the reaction coordinate.

Today modern theoretical studies of chemical reactions are providing this kind of basic information on larger and larger systems. Through close cooperation between theoretical and experimental programs, knowledge on elementary reactions is being merged to develop more insightful and more comprehensive understandings of many free-radical reactions. In addition this cooperation is providing guidance for planning future theoretical and experimental studies of free-radical reactions in those directions where these efforts will be mutually supportive.

Examples of this kind of cooperation and the results it is producing will be presented. Particular emphasis will be placed on recent investigations of the following reactions: $\text{C}_2\text{H}_5 + \text{O}_2$, $\text{CH}_3 + \text{CH}_3$, $\text{H} + \text{HCO}$, and $\text{HCO} + \text{M}$. 
There is considerable interest in the mechanism of the reaction of $\text{C}_2\text{H}_5$ radicals with $\text{O}_2$, which at low temperatures gives mainly $\text{C}_2\text{H}_5\text{O}_2$ but at higher temperatures (>$300^\circ \text{C}$) gives $\text{C}_2\text{H}_4 + \text{HO}_2$. Gutman et al have suggested that $\text{C}_2\text{H}_4$ is formed in the scheme

$$\text{C}_2\text{H}_5 + \text{O}_2 \rightarrow \text{C}_2\text{H}_5\text{O}_2 \rightarrow \text{C}_2\text{H}_4 + \text{C}_2\text{H}_6 + \text{HO}_2.$$ 

Although their experimental results are supported by one experimental study at Hull, another suggests that their mechanistic interpretation requires modification.

1. The relative yields of $\text{C}_2\text{H}_4$ and $\text{C}_2\text{H}_6$ from the oxidation of $\text{C}_2\text{H}_5\text{CHO}$ have been measured over the temperature range 320-500$^\circ \text{C}$. In the early stages of reaction, these products are formed solely in reactions (1) and (2).

$$\text{C}_2\text{H}_5 + \text{O}_2 \rightarrow \text{C}_2\text{H}_4 + \text{HO}_2 \quad (1)$$

$$\text{C}_2\text{H}_5 + \text{C}_2\text{H}_5\text{CHO} \rightarrow \text{C}_2\text{H}_4 + \text{C}_2\text{H}_6 + \text{C}_2\text{H}_5\text{CO} \quad (2)$$

The initial values of the relative rate of formation are given by equation (1)

$$\frac{d[C_2\text{H}_4]}{d[C_2\text{H}_6]} = k_1[C_2\text{H}_5]/k_2[C_2\text{H}_5\text{CHO}] \quad (1)$$

which gives an excellent interpretation of the results over a wide range of mixture composition. Accurate values of $k_1/k_2$ are obtained, from which Arrhenius plots give $E_1 = 38 \pm 2 \text{ kJ mol}^{-1}$ and $A_1/A_2 = 20.0 \pm 4.5$. Use of literature values for $E_2$ and $A_2$ gives $E_2 = (-8 \pm 5) \text{ kJ mol}^{-1}$ and $A_2 = (1.58 \pm 0.7) \times 10^7 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$, which provide strong evidence that
$C_2H_4$ is not formed by a direct bimolecular process involving simple H atom transfer.

2. The decomposition of tetramethylbutane in the presence of $O_2$ has been used as a source of $HO_2$ radicals to study the competition between reactions (3) and (4).

$$HO_2 + CH_4 \rightarrow CH_4O + OH \quad (3)$$

$$HO_2 + C_3H_6 \rightarrow C_3H_6O + OH \quad (4)$$

Measurement of the relative yields of ethylene oxide and propene oxide, and use of (4) as the reference reaction give $A_3 = 10^{9.45 \pm 0.35}$ dm$^3$ mol$^{-1}$ s$^{-1}$ and $E_3 = 71.6 \pm 5$ kJ mol$^{-1}$ between 400 and 500°C.

The formation of ethylene oxide is likely to take place in two stages

$$\begin{align*}
HO_2 + C_2H_4 & \rightarrow C_2H_4OOH \\
& \xrightleftharpoons[a]{b} \rightarrow C_2H_4O + OH
\end{align*}$$

Taken in conjunction with independent work, there is ample evidence to suggest that the above Arrhenius parameters do refer to the addition step (a), so that $k_b \gg k_{-a}$. Similar conclusions have been reached in related reactions. This is not unexpected because as the energy diagram below shows ethylene oxide is formed exothermically ($\Delta H \approx -40$ kJ mol$^{-1}$) whereas ethylene is formed endothermically ($\Delta H \approx 40$ kJ mol$^{-1}$). As indicated by the diagram, the decomposition ($-a$) to give $C_2H_4 + HO_2$ has a very high energy barrier of about 110 kJ mol$^{-1}$, which raises difficulties for the explanation given by Gutman's group for the negative temperature coefficient for $C_2H_5 + O_2$ at the higher temperatures. In contrast, a value of only 69 kJ mol$^{-1}$ is suggested for the energy barrier of reaction (b), the formation of ethylene oxide. The effect of the much lower value of $E_b$ could be balanced by a very adverse A factor. However, transition state calculations suggest that $A_{-a}/A_b \approx 30$, so that at 500°C
$k_b/k_{-a}$ is at least 16, and negligible amounts of $C_2H_4$ would be formed from the decomposition of $C_2H_4OHH$. As in the range 350-550°C, the product ratio $[C_2H_4]/[C_2H_4O]$ is about 100, then clearly $C_2H_4$ must arise from another source than $C_2H_4OHH$.

It is suggested therefore that $C_2H_4$ is not formed in the direct bimolecular reaction nor from the $C_2H_4OHH$ radical, but is formed directly from the $C_2H_3O^*$ or $C_2H_5O$ radical.

Energy Diagram for $C_2H_5 + O_2$.
HYDROXYL-RADICAL REACTIONS WITH UNSATURATED HYDROCARBONS: EFFECTS OF DEUTERIUM SUBSTITUTION*

Frank P. Tully, August T. Droge†, and J. E. M. Goldsmith
Combustion Research Facility
Sandia National Laboratories
Livermore, California, 94550
U. S. A.

Detailed kinetic studies of the reactions of OH with ethene, propene, and acetylene are reported. Reactions are initiated by 193-nm photolysis of N₂O in N₂O/H₂O/hydrocarbon/helium gas mixtures, and monitored via time-resolved OH fluorescence excited using an intracavity-doubled, single-mode, cw ring dye laser. The dependences of the rate coefficients on pressure and temperature are being investigated over the ranges 8-700 torr of helium and 295-1000 K, respectively. Complex chemical mechanisms, involving OH addition, atom migration, adduct dissociation, and direct hydrogen-atom transfer, are observed. Deuterium substitution in the unsaturated hydrocarbons produces several interesting effects. The pressure-falloff behavior for the reactions OH + C₂H₄ and OH + C₂D₄ are significantly different; efforts to model these using the Troe formalism are underway. Significant OD concentrations are detected in the reactions of OH with C₂D₂ and C₃D₆; the [OD] profiles are compatible with a mechanism involving OH addition, H- and D-atom intramolecular migration, and redissociation of OD. At high temperatures, significant kinetic isotope effects are observed in H (and D)-atom abstraction reactions.

* This research is supported by the Division of Chemical Sciences, the Office of Basic Energy Sciences, the U. S. Department of Energy.
† Sandia National Laboratories Postdoctoral Research Associate.
OH + OLEFIN REACTION RATES AT HIGH TEMPERATURES

Gregory P. Smith
Chemical Physics Laboratory
SRI International, Menlo Park, CA 94025 USA

There are many studies of OH reactions with olefins in the 250–500 K temperature range, where a pressure-dependent addition mechanism dominates, but very few direct determinations of rate constants at temperatures important in combustion, above 1000 K. We recently reported measurements for OH plus acetylene and propylene at 900–1300 K, which indicate a new mechanism replaces addition, perhaps hydrogen abstraction. These measurements have now been extended to ethylene and a series of butenes.

The laser pyrolysis/laser fluorescence technique uses a pulsed infrared CO₂ laser beam, 1 cm in diameter, to irradiate the center of a thin, cylindrical gas cell containing 10 torr SF₆ infrared absorber, up to 30 torr CF₄ bath gas, 2 atm H₂O₂ radical source, and varying amounts of olefin reactant. Within the first 40 μs, the gas is heated by absorption and energy transfer, OH is produced by thermal decomposition, and partial cooling occurs as the result of a shock-driven expansion. There follows a quiescent period of over 150 μs during which bimolecular kinetics can be measured, using a variably delayed, frequency doubled, YAG pumped dye laser to excite laser-induced fluorescence in the OH(A-X) (0,0) band near 308 nm. Temperature is measured by scanning several OH rotational lines, and the pressure is assumed to return to its initial value. Plots of the pseudo first-order decay rates of OH versus olefin concentration give the rate constant.
Table 1
SUMMARY OF HIGH TEMPERATURE OH + Olefin RATE CONSTANTS

<table>
<thead>
<tr>
<th>Reactant</th>
<th>T(K)</th>
<th>Number Expmt.</th>
<th>Number Decays</th>
<th>k(10^{-12}cm^3/s) ± 1 σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethylene</td>
<td>900</td>
<td>7</td>
<td>25</td>
<td>2.54 ± 0.38</td>
</tr>
<tr>
<td></td>
<td>1220</td>
<td>6</td>
<td>24</td>
<td>2.49 ± 0.5</td>
</tr>
<tr>
<td>propylene^2</td>
<td>1150</td>
<td>2</td>
<td>8</td>
<td>8.0 ± 1.2</td>
</tr>
<tr>
<td>1-butene</td>
<td>1225</td>
<td>3</td>
<td>9</td>
<td>19.7 ± 4.2</td>
</tr>
<tr>
<td>2-butene</td>
<td>1275</td>
<td>2</td>
<td>8</td>
<td>27.0 ± 3.6</td>
</tr>
<tr>
<td>iso-butene</td>
<td>1260</td>
<td>1</td>
<td>5</td>
<td>29.6 ± 6.8</td>
</tr>
<tr>
<td>dimethyl-butene</td>
<td>1237</td>
<td>1</td>
<td>5</td>
<td>37.0 ± 5.6</td>
</tr>
</tbody>
</table>

Averaged results are given in the table above. Our previous propylene results^2, those of Tully and Goldsmith^3, and the observation of no abstraction products at 300 K^4, indicate a surprisingly large barrier for abstraction of weakly bound allylic hydrogens. The much larger butene rate constants suggest this unexpected barrier is absent for larger alkenes. Note also that the rate constants increase with the number of allylic hydrogens.

The transition state theory approach applied by Cohen^5 to butane and propane was applied to the alkenes. The predicted rate constants for 1- and 2-butene are 95% and 80% of those measured, with no energy barrier. The propylene barrier so determined by fitting the 1200 K data is 1.5 kcal/mol, surprisingly about the same as that for propane.

Our RRKM calculations and Tully's measurements^6 indicate the addition reaction of OH to ethylene to form an adduct is insignificant above 800 K. The rate constants measured above represent a direct process, either abstraction of vinyllic hydrogens or some rearrangement channel. It is believed the
apparent lack of a temperature dependence is inaccurate, since no significant
direct reaction was observed at low pressure at 300 K. A transition state
theory fit for abstraction to our data at 1200 K gives a barrier of 2 kcal/mol,
which is somewhat below that expected, given the ethylene bond energy and known
correlations for alkanes. There is, however, other conflicting evidence
concerning this reaction, and rearrangement cannot be ruled out without high
temperature product studies. The various mechanisms and available data on OH
plus ethylene will be discussed in more detail, from the perspective of tran-
sition state and RRKM theories.

This work was supported by the Office of Basic Energy Sciences, U.S.
Department of Energy, Contract No. DE-AC03-81ER10906.

References
4. H. W. Blermann, G. W. Harris, J. N. Pitts, J. Phys. Chem. 86, 2958
   (1982).
8. M. Bartels, K. Hoyermann, R. Sievert, 19th Symp. (Int.) on Combustion,
   61 (1982).
The ketenyl yield of the elementary reaction of ethyne
with atomic oxygen at \( T = 280 - 550 \) K

J. Peeters, M. Schaekers and C. Vinckier

Department of Chemistry
Katholieke Universiteit Leuven
Celestijnenlaan 200F, B-3030 Heverlee, Belgium

In a previous study \(^1\) of the \( \text{C}_2\text{H}_2 + \text{O} \) reaction, it was shown that both HCCO and \( \text{CH}_2 \) are important primary products:

\[
\begin{align*}
\text{C}_2\text{H}_2 + \text{O} &\rightarrow \text{CH}_2 + \text{CO} & \text{(1a)} \\
\text{C}_2\text{H}_2 + \text{O} &\rightarrow \text{HCCO} + \text{H}_2 & \text{(1b)}
\end{align*}
\]

the kinetics of subsequent reactions of HCCO with both \( \text{O}^\cdot \) and \( \text{H}^\cdot \) was also investigated.

The purpose of the present work was to determine the absolute HCCO yield of the elementary \( \text{C}_2\text{H}_2 + \text{O} \) reaction, at \( T = 290 - 540 \) K. The determination was carried out using the discharge-flow technique, combined with molecular-beam mass spectrometry (MBMS). The total pressure in the flow reactor was 2 torr, with He as the diluent gas.

The total rate constant \( k_1 \) of the \( \text{C}_2\text{H}_2 + \text{O} \) reaction being known, the HCCO yield \( k_{1\text{b}}/k_1 \) can be obtained from an absolute measurement of the quasi-stationary HCCO concentration in a \( \text{C}_2\text{H}_2/\text{O} \) system:

\[
[S_{\text{HCCO}}]_{\text{st}} = k_{1\text{b}} [\text{C}_2\text{H}_2] [\text{O}] / \sum k_i [X_i]
\]

where \( \sum k_i [X_i] \) is the total removal frequency \( v_r \) of HCCO due to the various destruction reactions with the coreagents \( X_i = \text{O}, \text{H}, \text{O}_2 \) and \( \text{C}_2\text{H}_2 \); the associated rate constants \( k_i \) are known from previous work.

It is clear that the crucial factor in the determination of \( \alpha = k_{1\text{b}}/k_1 \) along these lines is the absolute sensitivity of the MBMS apparatus for the HCCO radical \( S(\text{HCCO}) = i(\text{HCCO})/[\text{HCCO}] \), with \( i(\text{HCCO}) \) the MBMS signal for HCCO.
A large part of the work reported here was invested in the measurement of the calibration factor \( S(\text{HCCO}) \), with the reaction

\[
\text{H} + \text{C}_3\text{O}_2 \rightarrow \text{HCCO} + \text{CO}
\]  

(2)

used as HCCO source. Reaction (2), which has been investigated extensively by Faubel et al. \(^2\), is a "clean" source of HCCO, all other pathways being highly endoergic.

Establishing the absolute HCCO concentration in a \( \text{C}_3\text{O}_2/\text{H} \) system requires knowledge of \( k_2 \) as well as of the total HCCO removal frequency \( \nu_\text{r} \). The rate constant \( k_2 \) at 535 K was derived from the first-order decay of \( \text{C}_3\text{O}_2 \) at excess \( \text{H} \); \( k_2 = (9.1 \pm 0.7) \times 10^{11} \) cm\(^3\) mole\(^{-1}\)s\(^{-1}\), in good agreement with Faubel et al. \(^2\). The sensitivity \( S(\text{HCCO}) \) was obtained in experiments where the time-dependent HCCO removal frequency \( \nu_\text{r} \) was derived from the known time-dependent HCCO formation rate and from the observed time history of the \( i(\text{HCCO}) \) signal; the method can be regarded as an extension of the well-known "approach to the stationary state" technique. Once \( \nu_\text{r} \) is known, the absolute \( \text{HCCO} \) can be calculated at each point in time; combination with the corresponding \( i(\text{HCCO}) \) signals yields the calibration factor sought here.

In the actual procedure, HCCO-removal was attributed to the known reaction

\[
\text{HCCO} + \text{H} \rightarrow \text{prod.}
\]  

(3)

as well as to a (pseudo-)first-order process

\[
\text{HCCO} \rightarrow \text{prod.}
\]  

(4)

that includes termination on the wall; the unknown parameters \( S(\text{HCCO}) \) and \( k_4 \) in the equation

\[
\frac{di(\text{HCCO})}{dt} = S k_2 \text{C}_3\text{O}_2 i(\text{H}) - (k_3 i(\text{H}) + k_4) i(\text{HCCO}) \quad \text{(Eq. 2)}
\]

were evaluated simultaneously by means of the non-linear-least-squares "DUD" algorithm \(^3\). The result for \( S \) was found to be only slightly affected by the inclusion of secondary HCCO formation via

\[
\text{OH} + \text{C}_3\text{O}_2 \rightarrow \text{HCCO} + \text{CO}_2
\]  

(5)

with \( \text{OH} \) generated in reactions of \( \text{O}_2 \)-traces with products of reactions (3) and (4).
The sensitivity factor $S_{(HCCO)}$ having been determined in this way, the ketenyl yield $\beta = \frac{k_6}{k_1}$ of the $C_2H_2 + O$ reaction was determined from measured $i(HCCO)$ signals in $C_2H_2/O$ systems at quasi-stationary $i(HCCO)$, as expressed by (Eq. 1):

$$\beta = \frac{[HCCO]_{st}}{[k_3]_{(H)} + [k_6]_{(O_2)}}/[k_1]_{(C_2H_2)}$$  \hspace{1cm} (Eq. 3)

The value of the rate constants $k_3$, $k_5$, and $k_6$ of the HCCO-reactions with $H$, $O$, and respect $O_2$, were taken from previous work. The results $\beta = 0.59 \pm 0.20$ at 287 K and $\beta = 0.64 \pm 0.19$ at 535 K (with 2σ uncertainties) show that the elementary $C_2H_2 + O$ reaction leads for the larger part to HCCO formation and that the HCCO-yield is nearly independent of temperature. Both these findings agree with the recent theoretical predictions by Harding and Wagner.

References

The reaction of CH radicals with H$_2$ from 372 to 675 K

S. Zabarnick*, J.W. Fleming and M.C. Lin

Chemistry Division
Naval Research Laboratory
Washington, D.C. 20375-5000

Two-laser photolysis/LIF probe experiments have been performed to measure absolute rate coefficients for the reaction of CH radicals with H$_2$. Multiphoton photolysis of CHBr$_3$ produces CH(X$^2\Pi$) radicals. The CH radicals are probed by LIF at 429.8 nm. These experiments have been performed over the temperature range 297 to 675 K at 100 torr argon total pressure in order to better characterize the abstraction reaction

$$\text{CH} + \text{H}_2 \rightarrow \text{CH}_2 + \text{H} \quad (1)$$

At low temperatures the insertion reaction predominates

$$\text{CH} + \text{H}_2 \rightarrow \text{CH}_3 \quad (2)$$

Subtraction of this low temperature insertion channel results in data that covers the temperature range 372 to 675 K for reaction (1). An Arrhenius plot yields the expression $k_1 = (2.34 \pm 0.31) \times 10^{-10} \exp[-(1760 \pm 70)/T]$ cm$^3$/s, as shown in Fig. 1. Also shown in Fig. 1 is a transition-state theory fit which yields a value for $E_0$, the barrier height at 0 K, equal to 3.0 ± 0.3 kcal/mole. With this value and the known heats of formation of CH and H, we obtain an independent value for the heat of formation of CH$_2$, $\Delta H_f^0$ (CH$_2$) = 92.6 ± 0.4 kcal/mole.

*NRC/NRI Postdoctoral Research Associate
The principle of microscopic reversibility allows calculation of $k_1$ if $k_1$ and $K_{eq}$ are known.

$$
\text{CH}_2(3^3\text{H}_3) + \text{H} \rightarrow \text{CH}(3^2\text{H}) + \text{H}_2 
$$

The results are plotted in Fig. 2. The data is well fit by the form, $k_1 = (4.7 \pm 0.6) \times 10^{-10} \text{exp} \left[-(370 \pm 60)/T \right] \text{cm}^3/\text{s}$. Also shown are the other literature measurements of the rate constant for this reaction. The broken line in Fig. 2 presents results of a transition-state theory calculation for reaction (-1). The calculation predicts an upward curvature at temperatures above 1000 K and leveling off of the rate constant at lower temperatures.

REFERENCES

Fig. 1 Arrhenius plot for CH + H₂ → CH₂ + H:  ○ this work, ■ Rerman and Lin (Ref. 1). Solid line is Arrhenius fit, broken line is transition-state theory calculation fit.

Fig. 2 Arrhenius plot for CH₂ + H → CH + H₂:  ○ this work, ■ Grebe and Homann (Ref. 2), ▲ Rohland and Temps (Ref. 3), ♦ Lohr and Roth (Ref. 4). Solid line is Arrhenius fit, broken line is transition-state theory calculation fit.
A Direct Study of the Reaction

\[ \text{CH}_2 \left( {^2 \text{B}_1} \right) + \text{C}_2\text{H}_4 \] in the Temperature Range 296 K ≤ T ≤ 728 K

T. Böhlund, F. Tempe
Max-Planck-Institut für Strömungsforschung, Bunsenstrasse 10,
D - 3400 Göttingen, West-Germany

1. Introduction: The reactions of methylene-radicals \( \text{CH}_2 \) with unsaturated hydrocarbons proceed via electrophilic addition to the \( \pi \)-bond system of the alkenes. The low-lying singlet first excited state \( {^1 \text{CH}_2} \) has been found to add stereospecifically to \( \text{C} = \text{C} \) double bonds, whereas reactions of the triplet electronic ground state \( {^3 \text{CH}_2} \) are non-stereospecific. Direct investigations of reactions between \( ^3 \text{CH}_2 \)-radicals and alkenes have not yet been carried out. In two recent publications we have reported on the kinetics of \( ^3 \text{CH}_2 \)-radicals and selected saturated hydrocarbons. Data for the reaction of \( ^3 \text{CH}_2 \) with acetylene \( ^3 \) will be reported elsewhere. The present results are published in \( ^4 \). The reaction

\[ ^3 \text{CH}_2 + \text{C}_2\text{H}_4 \rightarrow \text{products} \quad (1) \]

was investigated in the gasphase at temperatures between 296 K ≤ T ≤ 728 K using a far-infrared Laser Magnetic Resonance (LMR)-spectrometer \( ^5 \) for direct detection of \( ^3 \text{CH}_2 \). The reaction mechanism was studied by observing the pressure dependence of the rate constant and by studying the isotope labelled reaction of \( ^3 \text{CD}_2 \) with \( ^3 \text{C}_2\text{H}_4 \).

2. Experimental: Reaction (1) was investigated in an electrically thermostated pyrex flow reactor of 1 m length and 4 cm i.d., equipped with a moveable probe. Helium served as the main carrier gas. The temperature was measured directly within the gas stream using a calibrated thermocouple. All gases were of highest commercially available purities, ketene (\( \text{CH}_2\text{CO}, \text{CD}_2\text{CO} \); 99% purity) was prepared by pyrolysis of acetone. Radicals were generated either in the moveable probe using a chemical source or photolytically in a cell attached to the upper end of the flow tube. \( ^3 \text{CH}_2 \left( ^3 \text{CD}_2 \right) \) was de-
ected with the far-infrared LMR-spectrometer at $\lambda = 157.9$ nm (103.5 $\mu$m) and $H_0 = 0.333$ Tesla (0.606 Tesla), both with $\pi$-polarisation.

3. Results: The rate constant $k_1$ was determined under pseudo-first order conditions by following the $[\text{CH}_2]^+$-decay along the reaction distance in the presence of a large excess of $\text{C}_2\text{H}_4$. The first $\text{CH}_2$-source was the reaction $\text{O} + \text{CH}_2\text{CO} \rightarrow \text{CH}_2^+ + \text{CO}_2$. O-atoms in He were admixed to a large excess of $\text{CH}_2\text{CO}$ within the probe, where $\text{CH}_2$-radicals are generated at low concentrations, i.e. $[\text{CH}_2]^+ \approx 2 \cdot 10^{-13}$ mol/cm$^3$. The second source was the photodissociation of $\text{CH}_2\text{CO}$ with an exciplex laser at $\lambda = 183$ nm. At inert gas pressures around 1 mbar $\text{CH}_2$-radicals formed in excited states are rapidly quenched to the ground state. At laser pulse energies of 100 mJ and $[\text{CH}_2\text{CO}]_0 \approx 10^{-10}$ mol/cm$^3$ around $[\text{CH}_2]_0 \approx 10^{-13}$ mol/cm$^3$ was produced.

In the absence of $\text{C}_2\text{H}_4$ the reactions of $\text{CH}_2$ with the wall and, at higher temperatures, also with $\text{CH}_2\text{CO}$ can be described by an "effective wall rate constant" which could be measured directly. A second minor $\text{CH}_2$ depletion channel arises due to partial thermal equilibration between the two spin states of $\text{CH}_2$ followed by the very fast reaction of $^1\text{CH}_2$ with $^2\text{C}_2\text{H}_4$. Using the rate constants for collisional deactivation of $^1\text{CH}_2$ to $^3\text{CH}_2$ and for its reaction with $^2\text{C}_2\text{H}_4$, which was measured separately, small corrections ($< 30\%$) were applied for each experiment.

The rate constant for the direct triplet reaction is described by the Arrhenius expression

$$k_1 = 10^{12.50 \pm 0.10} \exp \left[ \frac{(22.1 \pm 0.1)}{kJ \text{ mol}^{-1}/\text{RT}} \right] \text{ cm}^3/\text{mol s}.$$  

No pressure dependency of the rate constant was found in a series of experiments at $T = 555$ K over a pressure-range of 0.48 mbar $< p < 7.52$ mbar.

A complementary study was performed of the isotopically labelled reaction

$$\text{CD}_2 + \text{C}_2\text{H}_4 \xrightarrow{k \pm \sigma/2} \text{C}_3\text{H}_4\text{D}_2 \xrightarrow{k \pm \sigma/2} \text{CH}_2 + \text{CH}_2\text{CD}_2,$$

other products

The experiment lead to an upper limit for the channel distribution of $k_+ / k_- < 0.04$. 

4.
4. Discussion: In previous studies of reaction (1) only upper limits for the room temperature rate constant had been established. Laufer and Bass, and Frey et al. reported $k_1 \leq 2 \cdot 10^{10}$ and $k_2 \leq 3 \cdot 10^8 \text{ cm}^3/\text{mol s}$, respectively. Calculations of the energy barrier by Dewar et al. have lead to $E_A = 21 \text{ kJ/mol}$ very close to the experimental value (Ref. in 3). Under our conditions the measured rate constant is independent of pressure and corresponds to its high-pressure value. Concerning the products the following channels are possible:

$$
\begin{align*}
\text{CH}_2 + \text{C}_2\text{H}_4 &\longrightarrow \text{CH}_2 + \text{C}_2\text{H}_3 & H^0_{298} &= -28 \text{ kJ/mol} \\
&\longrightarrow \text{H} + \text{C}_2\text{H}_5 & H^0_{298} &= -50 \text{ kJ/mol} \\
&\longrightarrow \text{C}_2\text{H}_6 & H^0_{298} &= -389 \text{ kJ/mol} \\
M &\rightarrow \text{CH}_2 - \text{CH} - \text{CH}_3 & H^0_{298} &= -421 \text{ kJ/mol}
\end{align*}
$$

Stabilisation to cyclopropane and propene (1c, 1d) can play a role only at significantly higher pressures than used here. For the direct abstraction reaction (1a) an activation energy of $E_A = 50 \text{ kJ/mol}$ can be estimated from the Evans-Polanyi correlation in 1, much higher than the experimental value found here. Fragmentation of chemically activated cyclopropane to $\text{H} + \text{C}_2\text{H}_4$ radicals was observed to be the major channel (>90 %) in the reaction of $\text{H}$-atoms with cyclopropyl radicals at $T = 298 \text{ K}$ and $p = 0.3 \text{ mbar}$. Hence, channel (1b) is expected to be of major importance under the experimental conditions used here.

References

3) T. Böhland, F. Temps, and H. Gg. Wagner, 21st Symposium (International) on Combustion, Munich 1986
6) M. Bartels, P. Heinemann, and K. Hoyermann, 20th Symposium (International) on Combustion, pp 81, Ann Arbor 1984
In a previous study\textsuperscript{1} the forward rate constant, \( k_1(T) \), for the reaction,

\[
\text{II} + \text{III}_3 \xrightarrow{k_1} \text{II}_2 + \text{III}_2
\]

was measured over the temperature range 908K - 1777K by the flash photolysis-shock tube technique using atomic resonance absorption to monitor the [II]. The Arrhenius rate expression was,

\[
k_1(T) = (3.02 \pm 0.30) \times 10^{-10} \exp \left( \frac{-8067 \pm 117}{T} \right) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}.
\]

If the equilibrium constant for reaction (1), \( K_1(T) \), were known, then the rate constant for the reverse process \( k_{-1}(T) \) could be calculated.

Unfortunately, present uncertainties\textsuperscript{2} in \( \Delta H_\text{II}\text{III}_2 \) lead to large variations in \( K_1(T) \) and, hence, in \( k_{-1}(T) \). The values of \( K_1 \), that are calculated at 1000K from the tabulated thermodynamic functions\textsuperscript{3} for II, III_3 and \( \text{H}_2 \) and from \( S^0 \) for \( \text{III}_2 \), range from 0.52 to 17.8 depending on the value chosen for \( \Delta H_\text{II}\text{III}_2 \). These values have been discussed recently by Iwatsuka\textsuperscript{2}. (Table IV reference 2).

This paper reports experimental measurements of \( K_1(T) \) obtained over the temperature range 900-1620K with the flash photolysis-shock tube (FP-ST) technique. From these results, values for \( \Delta H_\text{II}\text{HI}_2 \) and \( k_{-1}(T) \) are determined.

Mixtures of \( \text{II}_2 \) and \( \text{III}_3 \) were shock heated to the desired temperature and were immediately flash photolyzed in the reflected regime to produce equal...
concentrations of H-atoms and NH$_3$-radicals. The temperature, density and pressure in the reflected shock regime were calculated from velocity measurements of the incident shock wave, initial conditions and ideal shock theory. Corrections for non-ideal shock wave behavior were made using a method based on experimentally measured pressures and the isentropic equation of state.\textsuperscript{1,4,5} The concentration of H-atoms, which ranged from $1.0 \times 10^{11} - 2.0 \times 10^{12}$ atoms/cc, was monitored by the sensitive atomic resonance absorption technique. At these low atom and radical concentrations, depletion of [H] by atom-atom, or atom-radical reactions can be neglected during the time of the experiment (0.15 - 1.5 msec).

Since the [NH$_3$] and [H$_2$] are always maintained in a large excess the kinetics of reactions (1) and (2) are pseudo-first order; i.e., reaction (1) simplifies kinetically to a first order relaxation process that is described by the following expression,

$$A_t = \frac{2k_{-1}'A_0}{k_1' + k_{-1}'} - \frac{(k_{-1}' - k_1')}{k_1' + k_{-1}'} A_0 \exp\left(-\left(k_1' + k_{-1}'\right)t\right)$$

(2)

where $A_0$ = initial absorbance by H-atoms, $A_t$ = absorbance at time $t$, $k_1'$ = $k_1$ [NH$_3$], $k_{-1}' = k_{-1}$ [H$_2$] and $A_0 = 2k_{-1}'A_0/(k_1' + k_{-1}')$, at equilibrium.

If the initial concentration of H$_2$ and NH$_3$ in the reflected regime are the equilibrium concentrations, there will be no net change in the H-atom concentration with time, $k_1' = k_{-1}'$, and $K_1 = \frac{[H_2]}{[NH_3]}$.

At any other initial ratio of [H$_2$]/[NH$_3$] the absorbance will either increase or decrease to the $A_0$ value according to equation (2). Hence by varying the [H$_2$]/[NH$_3$] ratio at a fixed temperature until no net change in absorbance with time is observed, $K_1$ can be simply determined from the known initial concentrations of H$_2$ and NH$_3$. Too high a ratio results in an
increase in $A_t$, whereas too low a ratio results in a decrease of $A_t$ with time to the equilibrium values.

The experimental values of $K_1(T)$ ranged from 1.0 at 900K to 2.2 at 1620K. The results were analyzed according to the second law of thermodynamics to give $\Delta H^\circ_1 = 3.1$ kcal/mole from 900-1600K. The analysis by the third law gave a value of $\Delta H^\circ_1 = 4.2$ kcal/mole. This value is independent of temperature in the range 900-1620K within experimental error. The results lead to a value of $\Delta H^\circ_{298}(\text{NH}_2)$ of 45.3 kcal/mole and a $D(\text{NH}_2-H)$ value of 107 kcal/mole. The Arrhenius rate expression derived for reaction (-1) in the temperature range 900 - 1620K is

$$k_1(T) = 5.40 \times 10^{-11} \exp(-6496/T).$$

References


Acknowledgement: We thank Dr. A. M. Pirraglia for his help with some of the FP-ST experiments. This work was supported by the Division of Chemical Sciences, U.S. Department of Energy, Washington, DC, under Contract No. DE-AC02-76CH00016.
A IIIDO ANALYSIS OF THE IMPORTANCE OF THE DIFFERENT CHANNELS.

Miguel González, Ramón Sayós, Josep Bofill and Margarita Alberti.

a) Departament de Química Física.
b) Departament de Química Orgànica.
Facultat de Química, Universitat de Barcelona.
Avda. Diagonal 647, 08028 Barcelona, SPAIN.

Abstract

The reactions of atomic hydrogen with monosubstituted halomethanes \((X=\text{F,Cl,Br,I})\) and with some of the isotopically substituted species, have been extensively studied experimentally\(^{1-3}\), many of these works being directed towards the characterization of the reactions in terms of the Arrhenius' kinetic parameters. In these works, it is thought that the reaction which produces methyl radical and the corresponding hydrogen halide is the principal one in the temperature range 300-1000 K. The same consideration has been employed by the present authors in recent theoretical studies on the reactions of atomic hydrogen with chloro- and bromo-methane by means of quasi-classical trajectory method \(^{4-5}\). However, in the system considered here, when only a single chemical bond breaks, a total of four primary reactions can occur. Assuming that these reactions lead to products in their electronic ground states, we have the following reaction channels:

\[
\begin{align*}
\text{H}(^2\Sigma_g^+) + \text{CH}_3X(1\Sigma_g^+) & \rightarrow \text{HX}(^1\Sigma^+) + \text{CH}_2(2\Pi_g) \quad (1) \\
\text{H}_2(^1\Sigma_g^+) + \text{CH}_2X(2\Pi_g) & \rightarrow \text{H}_2X(2\Sigma_g) + \text{CH}_3(1\Pi_g) \quad (2) \\
\text{H}_2(2\Sigma_u^+) + \text{CH}_2X(1\Pi_g) & \rightarrow \text{CH}_3X(1\Sigma_g^+) + \text{H}(^2\Sigma_g) \quad (4)
\end{align*}
\]

The very limited experimental information available on competitive reactions \((2)-(4)\) in the thermal energy range, and the general belief that reaction \((1)\) is the principal one in these energy conditions, led us to study the \(\text{H} + \text{CH}_3X\) system using the semiempirical IIIDO-UNIF method in order to clarify the relative importance of the different reaction channels at thermal energies.

The calculations were performed using an improved version of the IIIDO program\(^{6}\) with standard parameters. It appears that...
I-hMO-DH Method can be used to obtain stable point structures (TSs) and energies for the reactions studied (disregarding of reaction (4) whose TS was not located) but in the case K = P, however, it seems that I-hMO standard parameters are not suitable for the type of reactions considered.

Once the TS's for the different channels were located, the empirical parameters were determined within the TST framework. Due to the scarcity and dispersion of published experimental data on $E_0$ and $\Delta$, the checking of our calculated results has been seriously curtailed. This experimental information is only available on reaction (1) /1-3/, and even for this one, locating data are lacking.

For reaction (1), I-hMO predicts activation energies that are underestimated and frequency factors overestimated, but their relative values are in reasonable agreement with experimental ones. Moreover, this method predicts that at thermal energies only abstraction reactions (1) and (2) are important, with reaction (1) predominating. The substitution reactions (3) and (4) becoming important, probably, at much higher energies, in accord with the general belief of experimentalists.

**References**

/6/ P. Olivella, QCM 406 (Indiana University, 1984).
EXPERIMENTAL DETERMINATION OF THE ENERGY DISTRIBUTION IN PHOTODECOMPOSITION. DIAZIRINES AND DIAZOCOMPOUNDS.

M.J. Avila, Depto Quim. Inorgánica, Facultad de Ciencias, Universidad a Distancia, Ciudad Universitaria, 28040 Madrid.

The initial aim of the present work was to study the partitioning of energy between the fragments produced by photo dissociation of complex molecules. We selected for this study a group of diazirines and diazocompounds whose experimental photolysis has been reported. We planned to use the recently developed "exact" deconvolution method (1,2,3) in order to determine the energy distribution on the hydrocarbon fragment. As the initial energy "pumped" into the system can be known we expected that some conclusions about the energy partition could be obtained.

Preliminary calculations showed an apparent "loss" of activated molecules. Therefore, we decided to investigate theoretically this problem before going on with the initial project. We have studied two cases. The first was the production of deactivated molecules by parallel reaction mechanism. Wall and manipulation induced decomposition may be very severe in highly unstable systems as those investigated here. The second was the extension of the energy distribution below $E_o$, the minimum energy required for an excited molecule to react. The two causes origin slightly different effects. In the first
case only the area under the normalized energy distribution function was changed while in the second case, both the area and the profile of the curve were altered. With this information in mind we proceed to deconvolute the experimental results and obtain the hydrocarbon fragment energy distributions for the following photodecompositions: diazoethane (250 nm and 436 nm) (4), diazopropane (436 nm) (5), methyl diazirine (313 nm) (6) and dimethyl diazirine (313 nm) (7). The recently reported results of 3,3'-chloromethyl diazirine at 416, 565 and 357 nm have also been included (3).

Analyses of the experimentally obtained energy distribution functions have shown that no statistical distribution (8,9) alone can explain the origin of the distributions obtained. Using purely impulsive models we have arrived to similar conclusions.

Finally, we have developed another model based on the individuality of the phase space of each fragment at the time of fragment separation or immediately after. We consider that the molecule enters the volume of phase space corresponding to the transition state; then, fragmentation occurs and two phase spaces corresponding one to the hydrocarbon fragment and the other to the rest molecule (transition modes, and nitrogen) are formed, but they are still able to interact and transfer energy statistically to and fro.

The model seems to be able to give a reasonable interpretation of the photodecomposition results.
REFERENCES

A STUDY OF ENERGY TRANSFER PROCESSES AT THE COLLISION OF A POLYATOMIC MOLECULE WITH AN INERT GAS ATOM BY THE METHOD OF CLASSICAL TRAJECTORIES

Vedeneev V.I., Goldenberg M.Ya., Levitsky A.A.,
Polak L.S., Umansky S.Ya.

A technique based on the method of classical trajectories has been developed for studying the energy transfer processes taking place at the collision of highly excited tetrahedral molecules of tetrahedral type with the atoms of an inert gas.

Detailed characteristics were calculated for the energy transfer processes: the mean squares of the total internal vibrational and rotational energies, as well as the correlator of the variation of rotational and vibrational energies.

These values were calculated for different models of tetrahedr molecules and collision partners. The influence exerted on the energy transfer processes by the symmetry of molecules, the presence of low-frequency internal degrees of freedom and the weight ratio of molecules and the inert gas atom was investigated.

The V-R exchange is shown to be the most effective energy exchange process in the case under consideration, its effectiveness increasing in the presence of low-frequency vibrations, characteristic, e.g., hindered rotations. With an increase in inert gas weight, direct V-T exchange becomes effective, which is associated with the kinematic condition of the conservation of the system's total angular moment

It has been established that in the systems in question intensive exchange energy exchange can be observed at a relatively low variation of the total energy of the molecule, which substantially modifies the consideration of energy relaxation and molecular dissociation processes in diffusive approximation.
TRANSITION-STATE THEORY CALCULATIONS FOR REACTIONS OF OH WITH HALOALKANES. II. HALOETHANES

N. Cohen
Aerophysics Laboratory
The Aerospace Corporation
P. O. Box 92957
Los Angeles CA 90009
U. S. A.

ABSTRACT

A method previously used for extrapolating rate coefficients for reactions of OH radicals with halomethanes is extended to reactions of OH with eighteen halogen-substituted ethanes. The model for the activated complex is the same for all the reactions except for two differences between the α-hydrogen and the β-hydrogen atom abstractions: (1) In the former case, there are two new low-frequency bends in the activated complex, while in the latter there is only one. (2) There is a much larger increase in entropy due to internal rotations in the β-hydrogen abstractions. In both models the internal rotations are assumed to be free. These two models for activated complexes, when combined with experimental data at 298 K, give good temperature extrapolations for the rate coefficients for the 12 different reactions for which data at higher temperatures exist. For all the α-hydrogen
abstraction reactions (including the halomethanes of Part I), $\Delta S^\circ(298)$ could be fitted, with a maximum error of 1.4 cal mol$^{-1}$ K$^{-1}$ (entropy units, or eu) and an average error of 0.3 eu, by $\Delta S^\circ(298) = -2.2 \ln M - 18.0 + R \ln n_H$ where $M$ = molecular weight of the haloalkane and $n_H$ = the number of $\alpha$-hydrogen atoms. The activation energy at 300 K, $E(298)$, can be fitted, with an average error of 0.3 kcal/mol and a maximum error of 1.0 kcal/mol, by

$$E(298)/R = 2100 - 85n_F - 515n_{Cl} - 950n_{CH_3} - 600n_{CH_2X} - 850n_{CHX_2} - 250n_{CX_3},$$

where the $n_i$ indicate the number of H atoms on CH$_4$ replaced with the indicated substituents, and X is either Cl or F. These two relations for $\Delta S^\circ(298)$ and $E(298)$ have been used to generate a "universal" rate coefficient expression that depends only on the molecular weight and the number of abstractable H atoms in the reagent haloalkane:

$$k(T) = 10^{6.53} M^{-1} q^{1.5} \exp[-E(298)/R - 450]/T$$

where $E(298)/R$ is given by the preceding equation. This expression in most cases predicts rate coefficients within a factor of 3 of the experimental data and offers promise as a predictive tool when no reliable data are available.
Theoretical Studies of Hydrogen Atom Addition to Carbon Monoxide and the Thermal Dissociation of the Formyl Radical

A. F. Wagner and L. B. Harding
Argonne National Laboratory
Argonne, IL 60439
USA

A global ab initio potential energy surface has recently been calculated for HCO including both the H+CO asymptote and the high energy isomer COH. This calculated surface is used in an RRKM study of both the addition reaction H+CO and the HCO thermal dissociation as a function of temperature and pressure for buffer rare gases. The calculation incorporates tunneling through an Eckhart formalism and explores the effect of semi-empirical corrections to the ab initio surface. Comparison is made with the few low pressure addition rate constant measurements and with the many indirect measurements of the thermal dissociation rate constant.
Scattering via the $O_2^- (^2\Pi_g)$ shape resonance is well known to dominate the vibrational excitation process of the ground state of $O_2(X^2\Sigma_g^+)$. However, three different electronic states, $X^3\Sigma_g^-$, $a^1\Delta_g$, and $b^1\Pi_g$, are associated to the ground configuration of $O_2(\pi_u^2\pi_g^2)$, and can be considered as parents of the $O_2^- (^2\Pi_g)$ resonance. As a consequence, the resonant $^2\Pi_g$ scattering is contributing directly to the electronic excitation through the ejection of a $\pi_u$ electron, and also to the electronic excitation of the $O_2^- (^3\Sigma_g^+)$ excited states through the ejection of a $\pi_u$ electron.

However the $O_2^- (^2\Pi_g)$ resonance is located at a rather low energy ($\approx 100$ meV) whereas the excitation cross section have their maximum around 7 eV; the resonant contribution thus comes from the far wings of the resonance. The proposed theoretical description is based on the extension of the effective range approximation -ERT-(3) that can handle this multichannel resonant process far from the resonance position, associated with an ab initio calculation of the $O_2^-$ system. In the ERT approximation, the space for the electron is separated in two regions: in the internal region $rr_{C}$, the system is described by the $O_2^- (^2\Pi_g)$ resonance wave function, in the external region $rr_{C}$, the system is described as a superposition of channel wave functions ($e^- O_2$). In this region, the outer electron is assumed to interact with the molecule via the local potential $V_{1s2}(r)$ of $V_{1s1}(r)$ of the first adiabatic angular mode (4) of the $V(^2\Pi_g)$ potential experienced by a $\pi_u (\pi_g)$ electron of the $O_2^- (^2\Pi_g)$ system. The ERT method then reduces to the
matching of the inner and outer region wave functions at the border $r=r_c$.

The $^2\Pi_1$ resonance width is calculated through the Siegert definition of a resonance -pure outgoing wave condition in all channels-, taking into account all the electronic channels coming from the detachment of a $e_u$ and $v_u$ electron. It appears that the width follows, over an extended energy range, a $E^{2.5}$ energy law corresponding to a de Wigner threshold law. The absolute value of the width is in very good agreement with the value (2) that fit the vibrational excitation cross sections of $O_2 \left( \pi^2 \Pi^\pi \right)$ (1). The theoretical resonant electronic excitation cross sections are presented in fig. 2, together with previous experimental (1,5,6.) and theoretical (7) results. The $^2\Pi_1$ resonant contribution dominates the electronic excitation to the $a^1\Delta$ and $b^1\Sigma^+$ states, since our results are typically lying inside the experimental error bars. It is worth noting that this resonance, located below the excitation threshold, dominates the excitation process over a large energy range (3-15 eV). This resonant approach results are also consistent with the R-matrix results of Noble and Burke (7) that include the non-resonant contribution to the processes.

Fig. 1: Resonance width:
- this work: (2), (7).

![Graph](attachment://graph.jpg)
Fig 2 Cross sections: ---this work, ---(7), O(1), O(5), O(6).

(1) F. Linder and Schmidt 1971 Z. Naturf. a 26 1617-25;
VAN DER WAALS, CHARGE TRANSFER AND "MIXED" STATES OF MOLECULAR COMPLEXES FORMED IN SUPERSONIC JETS.

M. CASTELLA, A. TRAMER and F. PIUZZI.

* Commissariat à l'Energie Atomique, IRDI/DESIQP, Département de Physico-Chimie, CENG/Saclay 91191 Gif-sur-Yvette Cedex, France.
++ Laboratoire de Photophysique Moléculaire, Université Paris-Sud, 91405 Orsay Cedex, France.

The spectroscopic and dynamic properties of molecular complexes involving a large aromatic hydrocarbon (perylene, anthracene), acting as an electron acceptor, and different large size molecules, acting as electron donors, with decreasing ionization potentials (dimethylaniline-DMA, monomethylaniline-MA-, aniline, anisole and phenol), have been studied by the supersonic jet technique.

The analysis of the electronic (excitation and fluorescence) spectra and of the lifetimes allows us to explain the different systems behaviours by the relative position of the molecular excited Van der Waals state and of the charge transfer state. Then, we can distinguish schematically three complexes classes:

a) the perylene-phenol and perylene-anisole complexes: they behave as typical Van der Waals complexes. In this case, the molecular excited state, having an energy lower than the charge transfer state, gives rise to a perylenic type emission.

b) the perylene-DMA complex: for this system, the position of both states is inversed: the lower ionic state is responsible for the exciplexic type emission. The anthracene-aniline complex also belongs to this category.

c) the perylene-aniline and perylene-MA complexes: they present an intermediary behaviour between the precedent complexes ones, mainly characterized by an emission which is neither resonant, nor exciplexic but rather "quasi-exciplexic". The molecular excited and charge transfer states are close, and this strong coupling results in a "mixed" state shifted to smaller intermolecular distance values, with a potential energy well shallow and strongly anharmonic.
The lifetimes measurements are in agreement with this interpretation. For the perylene-anisole and phenol systems, the fluorescence lifetimes, characteristic of the excited molecular state, is the same as the bare molecule one (\(\sim 11\) ns). It is much larger for the fluorescence issued from the charge transfer state of the perylene-DMA complex (\(\sim 94\) ns) (large fluorescence lifetimes characterize emission from pure charge transfer states). Perylene-aniline and -MA systems present intermediary values (respectively \(\sim 16\) and \(\sim 50\) ns).

On the other hand, we have observed for some of the complexes (anthracene-DMA and perylene-MA) the existence of isomers with drastically different spectral properties. In fact, the main features can be explained by the simultaneous presence of two isomeric complexes of th a a and b classes, separated by a potential energy barrier.

To verify the precedent hypothesis, we have performed theoretical calculations giving the binding energy between the complex acceptor and donor molecules in different states. Theses calculations are based upon an exchange perturbationtued treatment, allowing to express the interaction energy as the sum of four components: electrostatic, polarization, dispersion and repulsion energies. Every term itself is the sum of interactions between small sub-units of the complex. For the perylene-DMA and -aniline complexes ground states, the results show that these systems are mainly maintained by the dispersion forces. The interaction energies obtained are large (about 2000 cm\(^{-1}\)): they support the experimental observations, especially the lack of predissociation in the perylene-DMA case. The more stable configurations have been determined: the donor prefer positions parallel to the longitudinal and transversal axes, as well as the central ring of the perylenic molecule. The calculations about the molecular excited Van der Waals and charge transfer states are in progress. The major difficulty comes from the refinement of the dispersive term for the molecular state, which has never been performed up to now.
ELECTRONIC STRUCTURE OF MERCURY-ARGON COMPLEXES

O. BENOIST d'AZY, W. H. BRECKENRIIDGE,
M. C. DUVAL, C. JOUVET and B. SOEP.
Laboratoire de Photophysique Moléculaire
bâtiment 213 - Université de Paris-Sud
91405 - Orsay Cedex France

The Hg-Ar complex formed in a supersonic expansion has been studied by laser double resonance and emission spectroscopy. It can be shown as a prototype for the study of electronically excited diatomic van der Waals complexes.

The emission from the upper Hg (7S1) - Ar states to the metastable 7a, 7b, 7c, 7d states of Hg-Ar correlated with Hg (63P0) and Hg (63P2) provides a wealth of information on their spectroscopic constants and potentials, difficult to obtain experimentally by other methods, as those states are not optically accessible from the ground state. A simple model has been developed which allows the description of the relevant potentials by electrostatic interactions between the argon in the ground state and the excited 63P mercury, where the average orientation of the 6p mercury orbitals with respect to the complex internuclear axis, accounts for the binding.

In addition, the observation of other electronic states, such as the Rydberg Hg (7S1) states, offers even more insight into the electrostatic binding nature of the complex. The argon atom can either be nested in the last node of the 7s orbital and closely resembles to the Hg-Ar+ ion or, outside the 7s cloud forms a van der Waals molecule very lightly bound.
Reactions of Metastable Rare Gas Atoms with N₂O; Chemiluminescence of RgO⁺; Rg = Xe, Kr, Ar.

Ágúst Kveran and Aðalbúrn Lóðviksson, Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavík, Iceland.

and

William S. Hartree and John P. Simons, Department of Chemistry, University of Nottingham, Nottingham NG7 2RD, England.

Chemiluminescence spectra of rare gas oxides due to reactions of metastable Xe, Kr, and Ar with N₂O have been recorded in the UV/VUV region using a discharge flow system. Spectra due to electronic transitions from bound excited ionic states to repulsive ground states \( 1 \left( X^3Π \right) \) were identified for XeO peaking at 235 nm (see fig. 1), KrO at 180 nm and ArO at 150 nm. The ArO spectrum is overlapped with nitrogen emission spectrum. An absence of fine structure in the tail of the XeO and KrO spectra suggests that the excited states are formed with low vibrational excitation, but significant rotational excitation. Broad continua, due to transitions to \( Λ^3Σ \) states have also been found for XeO and KrO on the long wavelength side of the peak spectra. Analyses of the XeO (235 nm) and KrO (180 nm) spectra were carried out in order to determine vibrational energy disposals. Spectra were analysed by systematic simulations and by the inversion technique, using calculated vibrational contributions assuming fixed rotational energy. Ground state potential curves calculated by S.R. Langhoff were used, while upper state potential curves were varied as Rittner potentials. Transition moment functions, decreasing with increasing internuclear distance, were used. The analyses led to evaluation of spectroscopic parameters for the excited states:
-as well as vibrational population distributions. Boltzmann distribution functions, valid up to maximum vibrational levels, determined by the energetics of $Rg(3P_2)/N_2O$; $Rg = Xe, Kr$ for $T = 3000 \pm 1000$ K ($XeO$) and $T = 3500 \pm 1500$ K ($KrO$) gave best fits in the simulation calculations (fig. 1). Vibrational distributions determined as histogram representations by inversion showed fair agreement (fig. 2). Analogous to the rare gas halide formation reactions, $RgO*$ formation follows electron transfer from $Rg*$ to $N_2O$. $N_2O$ is an efficient electron scavenger and $N_2O^-$ is believed to be quite stable $^{6}$ ($D(N_2O^-) = 0.43$ eV $^7$). The reactions with $Rg^*$ therefore may proceed via long lived complexes. The vibrational distributions obtained are consistent with such a mechanism. That would contrast with findings for BaO formation reaction from Ba $+$ $N_2O$, which occurs by direct reaction $^8$.

Fig. 1

XeO (Y-X)
Xe(P₂) + N₂O

Exp.
Calc.

Fig. 2

XeO (Y-X)
Xe(P₂) + N₂O

Exp.
Calc.
A LIFETIME STUDY ON THE SECOND MAXIMUM OF PREDISSOCIATION OF THE IODINE B\(^3\)Π(O\(_u^+\)) STATE.

by F. Castaño, E. Martínez and M. T. Martínez


The natural and magnetic predissociation of the iodine B\(^3\)Π(O\(_u^+\)) state have been studied extensively in the last few years (1-5). The nature of the spontaneous predissociation has been attributed to the rotational and hyperfine coupling between the B\(^3\)Π(O\(_u^+\)) state and the \(^1\)Π(1_u) repulsive state. Lehmann et al. (6) showed that the decay rate for a given hyperfine sublevel can be given by:

\[ \Gamma = \Gamma_{\text{rad}} + \Gamma_{\text{col}} + \Gamma_{\text{IJF}}, \]

where \( \Gamma_{\text{rad}} \) and \( \Gamma_{\text{col}} \) stand for the radiative and collisional decay rates, and \( \Gamma_{\text{IJF}} \) takes into account the gyroscopic and hyperfine predissociation rates plus an interaction term,

\[ \Gamma_{\text{IJF}} = C^2_v J^3(J+1) + a^2_v J J f(I;J) - a^2_v J J C^2_v J J g(I;J) \]

where the explicit forms of the functions \( f \) and \( g \) are given in reference 6a.

No precise information of the predissociation parameters \( C^2_v \) and \( a^2_v \) is available for levels near the second maximum of predissociation, i.e. \( v' = 24-25 \). The aim of the present work is to get the values of the coefficients \( C^2_v \) and \( a^2_v \) for gyroscopic and hyperfine interactions, from fluorescence decay rate measurements of these levels.
Fluorescence decay lifetimes for specific rovibrational levels of the I$_2$ B'$(^4\Pi_{1/2})$ state, have been obtained by time-resolved laser induced fluorescence. Laser excitation spectra of the I$_2$ B-X system were obtained between 545 and 555 nm by using a pulsed (~15 ns-FWHM) Quantel dye laser. In this wavelength region, sections of the relatively intense 24-0, 25-0, 26-0, 26-1 and 27-1 bands were observed.

Lifetime measurements were usually made at 30 mTorr of iodine, and collision free lifetimes were obtained by extrapolation to zero iodine pressure, using a collision cross-section of 65 Å$^2$ (7), which is coincident with our value of 65.8±0.4 Å$^2$ obtained for the level (24,40). Table 1 shows the collision free lifetimes obtained for selected (24, J') and (25, J') levels of the iodine B state.

<table>
<thead>
<tr>
<th>EXCITED LEVEL</th>
<th>T$_0$(ns)</th>
<th>EXCITED LEVEL</th>
<th>T$_0$(ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>v' J'</td>
<td></td>
<td>v' J'</td>
<td></td>
</tr>
<tr>
<td>24 38</td>
<td>745 ± 21</td>
<td>24 73</td>
<td>682 ± 17</td>
</tr>
<tr>
<td>24 40</td>
<td>785 ± 22</td>
<td>24 94</td>
<td>638 ± 18</td>
</tr>
<tr>
<td>24 46</td>
<td>796 ± 50</td>
<td>24 102</td>
<td>662 ± 37</td>
</tr>
<tr>
<td>24 50</td>
<td>800 ± 37</td>
<td>25 0-5</td>
<td>745 ± 25</td>
</tr>
<tr>
<td>24 55</td>
<td>844 ± 20</td>
<td>25 30</td>
<td>745 ± 21</td>
</tr>
<tr>
<td>24 56</td>
<td>740 ± 30</td>
<td>25 88</td>
<td>625 ± 15</td>
</tr>
<tr>
<td>24 60</td>
<td>754 ± 32</td>
<td>25 95</td>
<td>653 ± 27</td>
</tr>
<tr>
<td>24 62</td>
<td>756 ± 18</td>
<td>25 106</td>
<td>625 ± 11</td>
</tr>
<tr>
<td>24 67</td>
<td>772 ± 30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The predissociation parameters $C_v^2$ and $a_v^2$ have been obtained from the time evolution of the fluorescence intensity for specific rovibrational levels. See table 2. Assuming the Franck-Condon approximation, $a_v^2$ and $C_v^2$ should be proportional to the same Franck-Condon Densities (FCD) between the $B^1\Pi(O_u^\prime)$ and $^1\Pi(1_u)$ states, times the corresponding electronic matrix elements involved. However such a dependence for $C_v^2$ is not observed for levels near the second maximum of predissociation (8).

Table 2 - Best fitted predissociation parameters $C_v^2$ and $a_v^2$

<table>
<thead>
<tr>
<th>$v'$</th>
<th>$\Gamma_{\text{rad}}$ (10$^4$s$^{-1}$)</th>
<th>$C_v^2$ (s$^{-1}$)</th>
<th>$a_v^2$ (10$^3$s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>0.61</td>
<td>67±7</td>
<td>95±10</td>
</tr>
<tr>
<td>25</td>
<td>0.60</td>
<td>55±10</td>
<td>115±12</td>
</tr>
</tbody>
</table>

REFERENCES
6 J. Vigué, M. Broyer and J. C. Lehmann, J. Physique (a) 42 (1981) 937; (b) 42 (1981) 949; (c) 42 (1981) 961.
8 F. Castaño, E. Martínez and M. T. Martínez, Chem. Phys. Lett. in press
Measurement of Rotational Energy Transfer Rates for HD (v = 1) in Collisions With Thermal HD

David V. Chandler and Roger L. Farrow
Combustion Research Facility
Sandia National Laboratories
Livermore, CA. 94550

* Work supported by the U. S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences.

Abstract

We report state-to-state rotational energy transfer rates for HD excited to the first excited vibrational level of the ground electronic state. Stimulated Raman scattering is used to produce the rotationally selected, vibrationally excited HD. Subsequent collisional energy transfer from the prepared state, upon collision with a thermal distribution of HD, is monitored by multiphoton ionization through the H,F electronic state. The data are analyzed by solving the rate equations coupling the lowest six rotational states of the first excited vibrational level. In this manner, both the absolute rate constants and the optimum shape of the energy transfer probability density function are determined. The best fit of the data to trial probability density functions indicates that the HD-HD collisions preserve the magnetic sublevel, m. The total rotational energy transfer rate out of a particular rotational level is compared to high resolution Raman linewidth measurements in order to determine the degree to which the rotational energy transfer rate contributes to the linewidth.

In this paper, we report the state-to-state measurement of rotational energy transfer from one rotational energy state of the first excited vibrational level of the ground electronic state of HD to another rotational level of the same vibrational level in collisions with a Boltzmann distribution of ground state HD molecules at 298 K. The technique of stimulated Raman pumping is used to prepare a single rotational-vibrational level of HD. The multiphoton ionization technique is then used to monitor the population of states occupied as a result of collisions with the initially prepared state. By temporally delaying the lasers with respect to each other, we determine the details of the dynamics of rotational energy transfer.

Most previous studies of rotational energy transfer have been performed on upper electronic states, due to the utility of the technique of state-selective preparation by a narrowband lamp source or laser followed by resolved emission. By monitoring satellite emission bands as a function of pressure, rotational energy transfer in the upper electronic state can be readily measured. This resonance lamp technique was used by Moore and
coworkers to study the rotational energy transfer in the electronically excited B state of HD. Data from these excited state studies have been instrumental in determining empirical scaling and fitting laws. An excellent discussion of the proposed laws is contained in Reference 6. In this study we use several forms of an exponential energy gap scaling law, to parameterize our results. Procaccia and Levine have shown the exponential gap model to be successful at fitting close coupling calculations of Green for HD collisions with He and calculations of Chu for collisions of HD with H.

There have been very few studies performed on ground electronic state surfaces. This is primarily due to the difficulty of preparing a single rotational level and detecting rotational energy transfer on a time scale short enough to resolve the relaxation process. Previous ground-state studies have utilized an infrared double-resonance technique. This technique has been applied to heteronuclear diatomics: To HF (v=1) and DF (v=1) by Hinchen and Hobbs; to CO (v=1) by Brechignac et al; to HCl (v=1) by Menard-Bourgin et al; and to HF (v=2, 3 and 4) by Cris and coworkers. These studies rely on infrared absorption to monitor rotational states not initially populated. The use of this technique limits the sensitivity and time response of detection. In our work, these problems are minimized by using stimulated Raman pumping and multiphoton ionization detection. Both processes occur on the time scale of the laser pulses (nanoseconds). The preparation scheme is a very efficient process for HD when moderately narrowband lasers are used, and the detection scheme is highly sensitive.

Recently, variations on this scheme have been used to study rotational and vibrational energy transfer in polyatomic molecules. Orr et al have used a Raman excitation/laser-induced fluorescence (LIF) method to study rotational and vibrational energy transfer in ground state formaldehyde and glyoxal. A resonant variation of the Raman-LIF scheme has been used by Knight and coworkers to study energy transfer in even larger polyatomics. We have selected the hydrogenic systems to study, due to their historical and theoretical importance. Previous studies of energy transfer in hydrogen have been hampered due to the inherent difficulty of state-selective detection of a molecule with no dipole (or very small dipole in the case of HD) and whose first excited electronic state is 11 eV above the ground state. Recently, three coherent laser techniques have shown great promise for detection of hydrogen: (1) Coherent anti-Stokes Raman scattering (CARS), (2) two-photon resonantly enhanced, three-photon ionization (2+1 REMPI), and (3) direct laser-induced fluorescence, using non-degenerate four-wave mixing in a rare gas to produce the necessary tunable UV radiation. We have used the 2+1 REMPI technique due to its relative simplicity and high sensitivity.

Other non-laser based techniques have been used to study rotational energy transfer in hydrogen molecules. Of particular relevance to our study are the impressive series of molecular beam experiments of Buck and coworkers, and those of Gentry and Glees. Both groups use time-of-flight measurements of scattering distributions from crossed molecular beams to determine the differential cross-section for rotational energy transfer from J=0 or J=1 hydrogen molecules (depending upon the isotope and whether the ortha or para form was used) to other rotational states upon collision with various partners (rate gases or other isotopes of hydrogen). In this
manner, they are able to obtain extremely detailed information (i.e., angular resolved differential scattering cross sections) at a few relative collision energies. In contrast to our measurements, however, they are unable to determine total cross-sections. Although our measurements are thermally averaged, in contrast to the crossed molecular beam studies, they are capable of providing a wealth of data for elementary systems to which theory can be directly applied.

Additionally, the line-widths of high-pressure Raman spectra are dominated by relaxation phenomena and give an upper limit to the rotational relaxation rate. Our measurements are compared to the recent room temperature, high pressure line widths of Rossaco and May.
Laser Induced Fluorescence of SiH₂ $\tilde{X}^1B_1 - \tilde{X}^1A_1$

in the Supersonic Free Jet.

Kinichi Obi and Shinya Mayama
Department of Chemistry, Tokyo Institute of Technology,
Ohokayama, Meguro, Tokyo, Japan 152

The pulsed supersonic free jet of SiH₂ was generated in the ArF laser photolysis of phenylsilane. The fluorescence and its excitation spectra of the $\tilde{X}^1B_1 - \tilde{X}^1A_1$ transition and the fluorescence lifetimes of single rovibronic levels (SRVL) in the $\tilde{X}^1B_1$ state have been measured.

The fluorescence excitation spectra have been observed in the region 466 - 640 nm. The spectra only consist of the P-type subband from the $K_a"=0$ level, $PP_1(N)$, $PQ_1(N)$ and $PR_1(N)$ of the $(0,n,0) - (0,0,0)$ progression. The $(0,7,0)$ band is first assigned in this work. With increase of the vibrational energy of the bending mode, the line intensities for rotationally excited levels, such as $PQ_1(1)$, $PR_1(1)$, $PP_1(2)$, become weak in comparison with the $PP_1(1)$ line of the rotationally ground state and finally the spectra are reduced to only one rotational line $PP_1(1)$ for $n \geq 4$. These facts indicate the presence of the predissociation which strongly depends on $J$ values in the excited state rotational levels.

The fluorescence spectra have revealed the vibrational energy levels of the bending mode ($v_2$) in the $\tilde{X}^1A_1$ state up to $v_2"=7$. The potential parameters of the bending vibration of the ground state have been determined from the fluorescence spectra:
\[ \omega_2 = 1007.6 \pm 4.1 \text{ cm}^{-1} \]
\[ x_{22} = -3.7 \pm 0.7 \text{ cm}^{-1}. \]

The Franck-Condon factors of the \( \tilde{A} - \tilde{X} \) system have been calculated using the molecular constants obtained. The calculated Franck-Condon factors have well reproduced the observed fluorescence spectra.

The SRVL fluorescence lifetimes of the \( \tilde{A}^1B_1 \) state slowly decreased from 1.2 \( \mu \)s of the (0,1,0) level to 0.54 \( \mu \)s of the (0,6,0) level. The fluorescence lifetime of 0.35 \( \mu \)s for the newly assigned (0,7,0) level obtained is short with respect to other lower vibrational levels. In Fig. 1, the fluorescence decay rates are plotted against cube of transition energy corrected by the Franck-Condon factors. The presence of intercept and the shortening of the fluorescence lifetime for

\[ \left[ f_v' | v' \right] \Delta E_{v'v''} \right)^3 \text{ (cm}^{-1} \right) \]

Fig. 1. Plots of the fluorescence decay rate vs. the cubic transition energy.
(0,7,0) indicate that (1) non-radiative process occurs in all vibronic levels studied and (2) another non-radiative channel opens at (0,7,0). The first non-radiative channel is explained as predissociation to \( \text{Si}(^3P_g) + \text{H}_2(^1I_g) \) and the second is predissociation to \( \text{Si}(^1D_g) + \text{H}_2(^1I_g) \). This mechanism leads the upper limit of the dissociation energy \( D_0(\text{SiH-N}) \) of 26600 cm\(^{-1}\) (318 kJ/mol).
HIGH TEMPERATURE COLLISIONAL ENERGY
TRANSFER IN HIGHLY VIBRATIONALLY EXCITED
MOLECULES. II: ISOTOPE EFFECTS IN iso-PROPYL
BROMIDE SYSTEMS

Trevor C. Brown and Keith D. King

Department of Chemical Engineering,
University of Adelaide, Adelaide, S.A. 5001, Australia

and

Robert G. Gilbert

Department of Theoretical Chemistry,
University of Sydney, Sydney, N.S.W. 2006, Australia

Of fundamental importance in interpreting rate data for unimolecular and termolecular reactions in
the fall-off regime is the determination of the form of the probability distribution function for collisional
energy exchange between a highly vibrationally excited reactant and a bath gas [1]. The development of
models for this process requires experimental energy transfer data under conditions where the dependent
parameters (e.g., temperature and bath gas mass) can be varied and effectively interpreted. This paper
is a continuation of our studies into the effects of deuteration of both the reactant and bath gas on
collisional energy transfer quantities [2]. Deuteration changes the masses of the species, but leaves
unchanged the potential function governing the interaction dynamics.

The technique of pressure-dependent very low-pressure pyrolysis [3,4] combined with conventional
very low pressure pyrolysis (VLPP) [5] has been used here to initially create thermal systems of highly
vibrationally excited undeuterated and per-deuterated iso-propyl bromide molecules, and then collide
these reacting systems with the inert bath gases - Ne, Xe, C2H6, and C2D6. Measurements of the
increase in reaction rates of the iso-propyl bromide decompositions with these bath gas collisions, and
a comparison of these rates with the deuterated analogues give valuable insights into the collisional
probability distribution function.
The overall experimental technique is well established [3,4,5]. Briefly, the temperature dependence of the reaction rate under conditions where only gas/wall collisions occur (i.e., in the absence of any reactant/reactant or reactant/bath gas collisions) is firstly obtained. These data is then fitted with RRKM theory, taking into account the temperature-dependent non-unit gas/wall collision efficiency, $\beta_w(T)$ [5,6]. The energy dependences of the microscopic reaction rate, $k(E)$ are consequently calculated. By maintaining the temperature constant, and increasing the pressure of bath gas in the system so that reactant/bath gas collisions compete with reactant/wall collisions the pressure-dependent rate coefficients are obtained. These values are fitted by solution of the reaction-diffusion master equation [4], using the parameters from the RRKM calculations and varying $\langle \Delta E_{\text{down}} \rangle$ - the average downward collisional energy transfer.

The iso-propyl bromide systems decompose thermally via HBr elimination, e.g. for the undeuterated system:

$$(\text{CH}_3)_2\text{CHBr} \to \text{CH}_3\text{CHCH}_3 + \text{HBr}$$

The extrapolated high pressure rate coefficient ($k_\infty$) for $\text{C}_4\text{H}_7\text{Br}$ decomposition is given by $k_\infty = 10^{13.443} \exp(-200\pm8 \text{ kJ mol}^{-1}/RT)$. This is in excellent agreement with the high-pressure parameters reported by other authors [7]: $A_\infty = 10^{13.765}, E_\infty = 197.5 \text{ kJ mol}^{-1}$. For $\text{C}_4\text{D}_7\text{Br}$ the high-pressure parameters are $A_\infty = 10^{13.868} s^{-1}, E_\infty = 207 \pm 8 \text{ kJ mol}^{-1}$. There is no previously reported study of $\text{C}_4\text{D}_7\text{Br}$ decomposition, however our results are in accord with the expected isotope effect.

The average downward collisional energy transfer ($\langle \Delta E_{\text{down}} \rangle$) values (cm$^{-1}$) for $\text{C}_4\text{H}_7\text{Br}$ at ca. 870 K are 466 (Ne), 539 (Xe), 825 (C$_2$H$_4$), and 743 (C$_2$D$_4$), and for $\text{C}_4\text{D}_7\text{Br}$, 442 (Ne), 570 (Xe), 729 (C$_2$H$_4$), and 812 (C$_2$D$_4$). Reactant internal energies to which the data are sensitive are in the range 170 - 250 kJ mol$^{-1}$. The $\langle \Delta E_{\text{down}} \rangle$ values for the inert bath gases Ne and Xe show good agreement with the theoretical predictions of Gilbert's biased random walk model for monatomic/substrate collisional energy exchange [8]. The relative effects of deuteration of the reactant molecule on $\langle \Delta E_{\text{down}} \rangle$ also compare favourably with the predictions of this theoretical model. The energy transfer parameters resulting from the undeuterated and per-deuterated ethene bath gases suggest the vibrational frequencies of the polyatomic colliders will play an important role in any future model.
References

UNIMOLECULAR REACTIONS FOLLOWING SINGLE UV-PHOTON AND MULTI
IR-PHOTON EXCITATION

B. Abel, B. Herzog, H. Hippler and J. Troe

Institut für Physikalische Chemie der Universität Göttingen,
Tammannstraße 6, D-3400 Göttingen, West-Germany

Unimolecular reactions are governed by two dynamically different processes. The activation of molecules above the reaction threshold and the real reaction. In thermal systems the activation occurs via intermolecular energy transfer between highly excited molecules in collisions with the heat bath. The reaction itself is determined by the intramolecular time evolution of molecules excited above the reaction threshold. The intermolecular energy transfer can be characterized by the averaged amount of energy transferred per collision (\(\langle \Delta E \rangle\)). The intramolecular dynamics are described by the specific rate constant \(k(E)\). Both quantities present key quantities in unimolecular rate theory. We present a method to directly measure under collision free conditions the specific rate constants and in the presence of collisions the \(\langle \Delta E \rangle\) values.

In our experiments vibrationally highly excited polyatomic molecules are produced in the electronic ground state by two different ways. First, absorption from a pulsed UV-laser followed by fast internal conversion is a very elegant way to create an almost microcanonical ensemble of vibrationally highly excited molecules. In the past, we have intensively used this technique for studies of the dynamic prop-
erties of these molecules. Second, IR multiphoton absorption from a pulsed CO\textsubscript{2} laser may produce an ensemble of vibrationally highly excited molecules with different properties. Populations of exited states are monitored directly by time resolved hot band UV absorption spectroscopy. A calibration of the UV spectra by shock wave experiments allows for an analysis of the absorption changes during the laser pulses in terms of exited state populations and dissociation. Under collision free conditions the rate of unimolecular reaction of isolated molecules are measured. A comparison of the results of the two methods will be presented. For bond fission reactions the influence of total angular momentum \( J \) on the specific rate constant \( k(E, J) \) is discussed. In the presence of collisions with an inert bath gas, collisional deactivation is observed and analyzed via the dependence of the hot UV absorption spectra on the excitation energy. We conclude that time resolved hot band UV absorption spectroscopy after pulse excitation provide a particularly attractive access to the specific rate constant and to collisional energy transfer. It also allows to obtain in situ information of the energy distribution of the ensemble of vibrationally highly excited molecules produced in IR multiphoton excitation experiments.
LASER PYROLYSIS OF DIMETHYLNITRAMINE AND DIMETHYLNITROSAMINE

S. Esther Nigenda, Alcina C. Gonzalez, Donald F. McMillen, and David M. Golden
Department of Chemical Kinetics, Chemical Physics Laboratory
SRI International, Menlo Park, CA 94025 U.S.A.

Laser-powered homogeneous pyrolysis (LPHP) has been used to study the gas-phase thermal decomposition of dimethylnitramine (DMNA) and dimethylnitrosamine (DMNO) as models for the decomposition of the cyclic nitramines. In the LPHP technique a pulsed CO₂ laser is used to indirectly heat the substrate via an absorbing but unreactive gas (e.g., SF₆), in a bath of an inert polyatomic such as CO₂. Under these conditions there is no surface component to the reactions, since only a small portion of the cell volume is heated by the laser and the reaction time before cooling by the expansion wave is about 10 μs, far shorter than the millisecond time scale for diffusion to the walls. The rapid cooling tends to minimize secondary reactions; however, as in shock-tube studies, hydrogen atoms and other very reactive species need to be chemically scavenged or trapped.

The cell is incorporated in a flow system that can be heated to temperatures well below substrate decomposition temperatures, but high enough to maintain low vapor pressure materials in the vapor phase. Operation of the system involves flowing the reaction mixture through the cell while the laser is pulsed at a constant repetition rate, typically about 0.2 Hz. The flow rate and irradiated volume are such that that during the residence time of the substrate in the cell, the laser will have been pulsed 20 to 40 times (with complete diffusional mixing in the cell between laser pulses), and the average molecule will have been heated two to four times. The product mixture flows continuously from the cell through a heated gas sampling valve from which samples are periodically sent to a capillary GC/MS system.

The need to explicitly measure the temperature corresponding to any particular measurement of k is eliminated by concurrent determination of the
fractional decomposition of a temperature standard. Modeling of anticipated
time-temperature-location variations as well as tests on substrates whose
parameters are already known have shown that this "comparative rate" method
accomodates wide temperature fluctuations in accurately reproducing the liter-
ature values. In the present case, Arrhenius parameters have been determined
relative to isobutylbutylbromide and tert-butylbromide decomposition, respec-
tively.

The DMNO decomposition proceeds, between 950 and 1050K, via the simple
N-N bond cleavage. The dimethylamino radical thus formed rapidly eliminates an
H-atom and is detected as N-methylmethyleneimine. The H-atoms are scavenged by
reaction with ortho-fluorotoluene. Preliminary results yield Arrhenius para-
eters of log k/s\(^{-1}\) = 15.0-46.0/0. These yield, when corrected for pressure
dependence, log k'/s\(^{-1}\) = 15.4 - 48.3/0. These values are completely
consistent with the expectation of reaction via unimolecular bond scission and
a N-N bond strength in the vicinity of 48 kcal/mol.

The DHNA decomposition is more complex in that both unimolecular bond
scission and HONO elimination are expected to be accessible pathways. Since
both of these pathways lead to the imine, they are difficult to distinguish.
Furthermore, the major product is DMNO, leading to the conclusion that the
imine adds NO in the cooling period after the laser pulse. DHNA was pyrolyzed
between 845 K and 970 K, leading to log k/s\(^{-1}\) = 10.4 - 28.2/0. These para-
meters are difficult to reconcile with the expected values for the two above
pathways, and the kinetic measurements are being repeated with a different
internal standard.
IR laser-induced decomposition of oxetanes and alkanols

by K.A. Holbrook, G.A. Oldershaw and C.J. Shaw
Department of Chemistry, University of Hull

and P.E. Dyer
Department of Applied Physics, University of Hull

Following earlier work on the infrared laser-induced decomposition of 2,2-dimethyloxetane we have examined the infrared laser-induced decomposition of 2-methyloxetane and of tertiary butanol, two molecules of similar molecular complexity.

The products of the decomposition of 2-methyloxetane caused by absorption of pulses from a TEA CO₂ laser (R34, 10 μm line) are the same as those observed in the thermal decomposition, namely propene plus formaldehyde and ethene plus acetaldehyde.

\[ \text{OCH}_3 \rightarrow \text{C}_3\text{H}_6 + \text{H}_2\text{O} \]  \hspace{1cm} (1)

\[ \text{OCH}_3 \rightarrow \text{C}_2\text{H}_4 + \text{CH}_3\text{CHO} \]  \hspace{1cm} (2)

Measurements have been made of the energy absorbed by 2-methyloxetane and of the extent of decomposition as a function of the gas pressure and laser fluence. The effect of added inert gases helium, xenon and cyclohexane has also been examined.

Similar experiments have been carried out with tert-butanol (P30, 10 μm line) for which the major decomposition product is isobutene

\[ (\text{CH}_3)_3\text{COH} \rightarrow (\text{CH}_3)_2\text{C} = \text{CH}_2 + \text{H}_2\text{O} \]  \hspace{1cm} (3)

In both cases it is found that, for irradiation under 'collision-free' conditions (5 \times 10^{-2} Torr), the decomposition is much less in dilute mixtures of the absorber with an inert gas than in the pure reactant.

We have modelled the decomposition as a function of absorbed energy by using specific rate coefficients calculated from RRKM theory. In both cases it is concluded that a large fraction of the irradiated molecules interact with the laser radiation. Results obtained for other alkanols and oxetanes may also be discussed.

References
Use of Doppler Broadening by the 254nm Hg Absorption Line to Monitor v-\(r, t\) Energy Transfer in Vibrationally Excited Gases

Walter Braun*, Milton D. Scheer**, R. J. Cvetanovic**
and Victor Kaufman***

*Center for Chemical Physics
**Guest Scientists in the Center for Chemical Physics
***Center for Radiation Research
National Bureau of Standards

A new method for measuring v-\(r, t\) energy transfer rates has been developed. It involves the use of Hg atoms as a tracer for translational energy in a vibrationally excited gas. Absorption by Hg of its 254nm resonance radiation, derived from an extensively self-reversed Hg resonance lamp, is dependent upon the line width and hence the translational temperature. By matching the hyperfine spectrum of a Hg resonance lamp in the neighborhood of 254nm with a computer model that takes into account Doppler and Lorentz line broadening (Fig. 1), a temperature calibration is readily attained (Fig. 2). The method was tested by vibrationally exciting a 500:1 mixture of SF\(_6\) and Hg with varying fluences from a CO\(_2\), TEA laser employing the apparatus shown schematically in Fig. 3. By measuring the initial slopes of the temporal changes in the 254nm absorption by the Hg tracer, which is related to changes in temperature and thus energy, energy transfer rates could be measured as a function of initial vibrational excitation energy. For vibrational excitations between 400 and 10,500 cm\(^{-1}\), the energies transferred (v-\(r, t\)) per SF\(_6\)-SF\(_6\) collision was found to increase...
approximately as the square of the excitation energy. These results are shown in Fig. 4, and are compared with recent results by Dove, Hippler and Troe\textsuperscript{11}. The present method complements techniques recently reported by other workers\textsuperscript{11,12,13,14}.

References:


Figure Captions:

Figure 1: An experimental tracing of the high resolution spectrum emitted by an extensively self-reversed capillary Hg lamp operated at 450v. and 9ma (dashed curve) compared with the calculated lamp profile (solid curve). $\lambda_1$=Doppler width.

Figure 2: Computed fractional absorption vs. temperature curves for various resonance lamp (current) conditions: 1, 8ma; 2, 10ma; 3, 15ma; and 4, 20ma.

Figure 3: Schematic diagram of apparatus used to excite vibrationally $\text{SF}_n$ and measure its translational temperature. LS=CO\textsubscript{2} laser; L=Hg light source; M=monochromator; D=fast digitizer; MP=microprocessor; C=gas cell; PM=photomultiplier; CB=carbon block used to trigger sweep; L=lens; MI&M=mirrors.

Figure 4: The dependence of the average energy transferred per collision vs. the average excitation energy for $\text{SF}_n$+$\text{SF}_n^-$ collisions compared with literature $\text{CS}_n^+$+$\text{CS}_n$ and $\text{CS}_n^+$+$\text{Ar}$ results.
Analysis of Multiple Decompositions in Chemically Activated Reactions

Phillip R. Westmoreland, Jack B. Howard, and John P. Longwell
Department of Chemical Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139 USA

Secondary decomposition can occur in a chemically activated reaction if all the excess energy in the chemically activated adduct is not dissipated by the initial decomposition. Thus, a bimolecular reaction could lead to three products by the processes A+B -> C* + D*, E', D* + B, and E' + F*G. Such three-product channels have been inferred from data in the past, but either the observation has not been rationalized or it has been attributed to a sequence of thermal reactions A+B -> D*E and E -> F*G. Unlike a thermal sequence, chemically activated secondary decomposition is not microscopically reversible because the reverse reaction would require excited E* (from F*G) and D* to react.

Apportioning the excess energy between D* and E* is the difficulty in calculating the apparent rate constant. If D is an atom and E contains vibrational degrees of freedom, all the excess energy may be reasonably assigned to the species E*. The rate constant for "CH_3+CH_2<CH_2+2H is estimated by bimolecular QM/MM to illustrate the quantitative analysis, but more sophisticated unimolecular reaction theories may be applied similarly.
WAVELENGTH DEPENDENT ISOMERIZATION OF ALLYL ISOCYANIDE

J. Segall and R.N. Zare, Department of Chemistry,
Stanford University, Stanford, CA 94305 USA

The isomerization of allyl isocyanide (AlC) to allyl cyanide by excitation of C\(_2\)H\(_2\) vibrational overtone inside the cavity of a cw dye laser is studied at several excitation wavelengths (598-640 nm). The unimolecular reaction rate is seen to vary nonmonotonically as a function of phytolysis photon energy, both with a given overtone band as well as from overtone band to overtone band. Previous workers on AlC\(^1\) noted the latter effect and attributed it to a nonstatistical distribution of vibrational energy in the reacting molecules. The current results strongly indicate inhomogeneous broadening is important in the overtone spectrum of AlC and that overtone excitation may lead to a more complex distribution of excited reactants than previously thought.

**Supported by AMOCO, Standard Oil (Indiana)**
A STUDY OF THE EFFECT OF EXCESS ENERGY ON THE COLLISIONAL DEACTIVATION OF HIGHLY VIBRATORIALLY EXCITED 7-ETHYLCYCLOHEPTATRiene

Gui-Yung Chung and Robert W. Carr, Jr.

Department of Chemical Engineering and Materials Science
University of Minnesota
Minneapolis, Mn. 55455

Collisional self deactivation of 7-ethylcycloheptatriene photoactivated to total internal energies of 123 kcal/mol (240nm), 111 kcal/mol (265nm), 106 kcal/mol (280nm), and 100 kcal/mol (295nm) has been investigated. The reaction products consisted of the positional isomers 1-, 2-, and 3-ethylcycloheptatriene, and methyl-ethyl substituted benzenes formed by aromatization. The pressure dependence of reaction products resulting from positional isomerization and aromatization were determined at each wavelength in series of experiments without added bath gases. The total product yield decreased with increasing pressure, indicative of collisional stabilization of photoactivated 7-ethylcycloheptatriene. The ratio of positional isomerization products to aromatic products increased with increasing pressure at fixed wavelength, and increased with increasing wavelength at fixed pressure, consistent with a shorter lifetime for positional isomerization than for aromatization. Master equation calculations were done using RRKM theory and a stepladder model for deactivation. The model calculations predict that the average energy removed per deactivating collision, $\langle \Delta E \rangle$, increases with increasing excess energy of photoactivated 7-ethylcycloheptatriene. When the RRKM computed values of $k(E)$ were normalized to an experimental value determined by direct detection (Hippler, Luther, Troe and Wodtke, J. Chem. Phys., 79, 246 (1983)), the values of $\langle \Delta E \rangle$ obtained were 1.5 kcal/mol at 295nm, 1.8 kcal/mol at 280nm, 2.2 kcal/mol at 265 nm and 5 kcal/mol at 240 nm.
A simple FTIR instrument for emission studies

by

P. Biggs, F.J. Holdsworth, G. Marston and R.P. Wayne
Physical Chemistry Laboratory, South Parks Rd., Oxford, U.K.

Abstract

Fourier Transform spectrometry was originally introduced to deal with the energy shortage problems endemic in working in the far-infrared. However, FT spectrometry has been successfully applied in the mid- and near-IR and is even finding uses in the visible and UV region of the electromagnetic spectrum. Employment of this technique in the IR can result in dramatic increases in the signal-to-noise ratio or resolution of spectral measurements, or both.

Two important advantages of interferometry over conventional spectrometry were pointed out by Fellget in England and Jaquinot in France:

i) In 1951, Fellget recognised the so called Multiplex advantage, in that data from all the spectral frequencies present are measured simultaneously; thus, the whole of the spectral band is observed for the entire duration of the experiment. The result of this 'Multiplex' advantage is a reduction in measurement time of the spectral information.

ii) The second advantage, pointed out in 1954 by Jaquinot, is that the optical energy throughput of an interferometer is greater than that of a monochromator for a given resolution. Radiation is transferred more efficiently in an interferometer, where the beam of radiation has cylindrical symmetry, than in a conventional spectrometer which employs slits and produces a beam of planar symmetry. The increased throughput thus results in an increased S:N ratio due to the increased signal at the detector.

The interferometer used in these studies is a low cost
Michelson type designed to be used as a teaching instrument. The interferometer was modified to allow the mirror position to be altered using a stepper motor. A He-Ne laser and associated optics were also added to allow us to guide a laser beam down the center of the main optics.

The data acquisition and control of the interferometer were performed using a small 'home' computer (Acorn BBC 'B' microcomputer). The only additional circuitry required was the power control circuit for the stepper motor and the amplifiers for the various detectors employed. The laser beam was used to provide a reference, the data acquisition being triggered using the laser fringes.

The same computer, along with a co-processor to speed up the processing, was used to perform the Fourier transform calculations. Two different FT calculation methods were employed: a 'slow' transform based on the Fourier integral, and the Fast Fourier Transform (FFT) algorithm developed by Cooley and Tukey in 1965.

Various computational techniques were used to increase both the speed of calculation and the resolution of the instrument. The use of a small computer limits the number of interferogram points to approximately 8000, which corresponds to a resolution of approximately 3.9 cm⁻¹ (at a sampling interval of Ax=0.3165 μm). The use of single sided interferograms increases the effective resolution to 1.9 cm⁻¹, but can introduce some phase errors into the spectrum, resulting in distorted peak shapes.

The method finally developed to increase the resolution was to use aliased spectra. Aliasing comes about from using discrete sampling intervals, and is manifested by the spectral function exhibiting mirror symmetry about the sampling frequency (νₘ). It is usually classed as a disadvantage of FT since both spectral information and noise above the folding frequency are reflected back into the fundamental range, and care must be employed to ensure that features in the spectrum are real and not aliased. If we take longer sampling intervals, we can make the mirror move a longer distance for the same number of interferogram points, thus increasing resolution, however νₘ also decreases. If we ensure that there are no spectral peaks in the fundamental range (0<ν<νₘ), then we can use the aliased
version of the peak of interest for our studies. Thus by sampling at 3
times the normal distance (Ax=0.949µm) we were able to increase the
resolution to 1.3 cm⁻¹ and at 5 times (Ax=1.58µm), the resolution had
increased to 0.8 cm⁻¹ (2 and 4 times were not used because these
values put v_n in the middle of the peak of interest).

The spectrometer was used in conjunction with a germanium
detector and discharge flow system to study reactions leading to
chemiluminescence in the 1-2µm region. Of particular interest was the
N+O reaction,

\[ N + O \rightarrow NO + O \]

from which emission had already been observed under low resolution.
Under the greater resolution afforded us by the FT spectrometer, we
were able to identify the emissions as being due to O_n a'A_g→X'E_u
(1.27µm), NO C'R→A'E (1.22µm) and the (2,0), (3,1) and (4,2)
vibrational overtone transitions of OH (1.40-1.55µm).

The presence of OH emission downstream of the mixing region
showed us not only that H was present as an impurity, but that it was
being regenerated in the flow tube. A mechanism is presented to
explain this regeneration. The presence of O_n (a'Ag) was also found to
be due to H atom impurities and is explained in terms of formation of
excited NO, followed by energy transfer to O_n. The formation of NO(C)
was attributed to reaction between N and O atoms and computer
simulations were able to match observed concentration - time profiles
quite well.

Kinetic measurements were made using conventional
spectrometry. N atoms were monitored by following the (0,0) band of
the N₂(B−A) transition at 1.05µm. Again the presence of H atoms was
felt, resulting in non-linear pseudo-first order decay plots. However,
after taking precautions to remove traces of water from our system the
rate constant for the above reaction was measured as k=(8.8 ± 1.0) x
10⁻¹⁷ cm³molecule⁻¹s⁻¹. This value is in excellent agreement with the
latest NASA recommendations.
MULTIPHOTON IONIZATION AS A KINETIC PROBE

H. H. Nelson and Brad R. Weiner, Chemistry Division, Naval Research Laboratory, Washington, DC 20375-5000, USA

The methyl radical (CH₃) plays an important role in hydrocarbon combustion systems. Kinetic studies of the methyl radical, especially as a reaction product, have been hampered by the lack of a sensitive, convenient detection scheme. It has been monitored in kinetic systems previously using infrared and ultraviolet absorption spectroscopy. These techniques require the use of long path lengths, which introduces difficulties in reactant preparation, or relatively high CH₃ concentrations, which leads to interference from radical-radical reactions. We are developing resonance-enhanced multiphoton ionization (REMPI) as a concentration probe for CH₃ under typical laboratory kinetic conditions. The methyl radical is ionized via the 3p 2A²* state resonance at 333.4 nm, as discussed by Hudgens et al., using the fundamental output of an excimer-pumped dye laser focussed by a 30-cm f.l. lens. The electron current produced is collected by a pair of parallel plates biased at ~300 V, amplified and detected using a gated integrator. Using CH₄ photolysis at 266 nm as a source of methyl radicals to characterize the system, we are able to detect kinetically useful concentrations of CH₃ at pressures up to 50 Torr of He. At 5 Torr total pressure, our limit of detection of CH₃ in this system is ~2 x 10¹¹ cm⁻³. We will report kinetic measurements of CH₃ as a product of the reaction of F atoms with CH₄. Studies of the reaction, O + C₂H₄, are underway and we will present the results available from this system.

References:
Intracavity Detection Applied to Reaction Rate Measurements

J. E. Allen, Jr. and W. D. Brobst

Astrochemistry Branch, NASA, Goddard Space Flight Center
Greenbelt, MD, USA 20771

Intracavity laser detection of atoms and molecules was first observed over fifteen years ago and has steadily matured as a spectroscopic tool. However, it has seen only limited use in chemical kinetics, despite its demonstrated sensitivity and obvious applicability for the detection of weakly absorbing or predissociated species. Previous kinetic studies were performed with pulsed lasers which are inherently less sensitive than cw lasers for intracavity detection. In addition these experiments were performed for radial species in a static cell which complicated the kinetics and therefore the rate measurement. As a consequence while these measurements are in good agreement with each other, they are all lower than the recommended value. To demonstrate the applicability and accuracy of cw intracavity absorption, we measured the rate for the termolecular reaction \( \text{NO} + \text{NO} + \text{O}_2 \rightarrow 2\text{NO}_2 \). This reaction is ideal since it has a well known rate and can appropriately be performed in a static cell. Because the reactants are stable molecules, concentration can easily and accurately be measured with a capacitance manometer. The product is stable, thereby making calibration of the detection system straightforward, and
secondary reactions are slow enough not to unduly complicate the measurement.

The intracavity spectrometer was built around a commercially available folded cavity dye laser which was optically pumped by the 514.5 nm line of an argon ion laser. The dye laser cavity was extended to 1.8 m by removing the standard output coupler and placing a new output coupler at an appropriate distance from the dye laser housing. Cavity tuning was accomplished by laterally translating a coated wedge. A cell 0.5 m long, which had wedged windows mounted on arms cut a Brewster's angle, was placed inside the cavity and connected to a vacuum system. Pressure measurements were made with capacitance manometers. The output from the extended cavity laser was directed to a 0.75 m focal length monochromator and detected with a photomultiplier tube. The PMT signal was processed by an electrometer and subsequently displayed on a strip chart recorder.

Since the reaction was to be followed by monitoring the appearance of the NO₂ product, the system was calibrated by accurately metering varying quantities of NO₂ into the cell and measuring the depth of the resultant hole produced in the dye laser output profile. Plots of this apparent absorbance vs. absorber concentration were linear over a substantial range, indicating a Beer-Lambert law type of relationship.
Kinetic experiments were performed with NO in excess of O₂ which can be shown to be a pseudo first order condition. Analysis indicated that NO₂ absorbance is a linear function of time; a plot of NO₂ absorbance vs. time in fact yielded a straight line whose slope is related to the desired rate. A number of experiments were performed for various laser powers, reactant concentrations and absorption transitions. From these experiments the rate was determined to be \((2.4 \pm 0.4) \times 10^{-38} \text{ cm}^6 \text{ molec}^{-2} \text{ sec}^{-1}\) which is an excellent agreement with the recommended rate of \((2 \pm 1) \times 10^{-38} \text{ cm}^6 \text{ molec}^{-2} \text{ sec}^{-1}\). This clearly demonstrates the utility of intracavity absorption for chemical kinetic studies.

* Work supported by the NASA Upper Atmosphere Program.

+ NASA Graduate Student Researcher from Johns Hopkins University

References


ON THE ERRORS OF ARRHENIUS PARAMETERS AND ESTIMATED RATE CONSTANT VALUES

Károly Héberger, Sándor Kemény and Tamás Vidóczy
Central Research Institute for Chemistry of the Hungarian Academy of Sciences, H-1525 Budapest, Pf. 17. Hungary
Department of Chemical Engineering, Technical University of Budapest, Budapest, Hungary

Papers on chemical kinetics usually present numerical values of rate coefficients (determined over a range of temperature) described by some form of Arrhenius-type equation. Though several papers suggest correct and useful methods for the fitting procedure and for calculating the uncertainties, these methods are not universally utilized. Our aim was to show the effect of possible errors, and to emphasize the statistically correct way of data presentation.

1. Two-parameter problem using the equation \( k = A \cdot \exp(B/T) \)

The problem to be solved is the minimization of

\[
F = \sum_{i=1}^{N} w_i \left( k_i - A \cdot \exp(B/T_i) \right)^2
\]

(1)

where \( k_i \) is the measured rate coefficient at temperature \( T_i \), \( w_i \) is the statistical weight of the \( i \)-th measurement, \( N \) is the number of measurements and \( A \) and \( B \) are the two parameters to be determined. The possibilities for the determination of the two parameters are well known (e.g. by solving the normal equations \( \partial F/\partial A = 0, \partial F/\partial B = 0 \)). All the necessary information about the uncertainties of the fit can be found in the covariance matrix

\[
\text{COV}(A,B) = S^{-1} \cdot G^{-1}
\]

(2)

where \( S^2 = F/(N-2) \) and the elements of matrix \( G \) are defined in the following way:
where \( \hat{k}_1 \) means the estimated rate coefficient at \( T_1 \). The best estimate of the variance of \( \hat{k}_1 \) is given by

\[
\text{Var}(\hat{k}_1) = (\frac{\hat{k}_1}{3A})^2 \text{cov}(A, A) + \frac{\hat{k}_1}{3A} \frac{\hat{k}_1}{3B} \text{cov}(A, B) + \frac{\hat{k}_1}{3B} \text{cov}(B, B) \]  

As the off-diagonal element of \( \text{cov}(A, B) \) is always negative, the uncertainty of the rate coefficient will be always overestimated if the full covariance matrix is not taken into account.

To illustrate the difference between giving only the diagonal elements of \( \text{cov}(A, B) \) (thus defining a rectangular box in the parameter space), or giving the full covariance matrix (which defines an ellipse) we plotted the contour map of \( F \) for a simulated set of data in Fig. 1. It can be seen that the ellipse is a good approximation to a section of the true error surface.

The importance of correct weighting should be emphasized. Theoretically \( \omega_1 = 1/\sigma_1^2 \) where \( \sigma_1 \) is the standard deviation of \( k_1 \). If the linearized problem is solved using

\[
F' = \sum \omega'_1 (\ln k_1 - \ln A - B/T_1)^2 \]

then \( \omega'_1 = \omega_1 k_1^2 \) should be applied. Inappropriate weighting can result in not only the overestimation of uncertainties, but also biased estimated mean values, as can be seen from Table 1, where the results of 20 simulated
fittings are summarized: Table 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>True value</th>
<th>Average value obtained in fitting with correct weighting</th>
<th>Incorrect weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2·10⁻¹⁰</td>
<td>2.0062·10⁻¹⁰</td>
<td>2.3328·10⁻¹⁰</td>
</tr>
<tr>
<td>B</td>
<td>-620</td>
<td>-620.05</td>
<td>-671.52</td>
</tr>
</tbody>
</table>

2. Three-parameter problem using the equation \( k = A \cdot T^n \cdot \exp(B/T) \)

Due to the presence of a third parameter \( n \), the correlation between the parameters is even more pronounced. Therefore, a physically meaningful estimation of all three parameters is impossible.\(^2\) Our work was aimed to show how the errors of measurement can influence the calculated parameters. Using simulated measurements with known errors, we will present data sets in which the calculated parameters hardly resemble the input values. In one set where the rate coefficients were calculated exactly (i.e. contained no error), but one \( k_i \) had an error of 1%, the calculated A factor deviated 50% from its true value. All these simulations indicated that the error of measurement has a detrimental effect on the determination of the parameter value. Nevertheless, if the aim of the fitting is to interpolate or extrapolate the rate coefficient value, the three-parameter fitting is the best possible solution, provided that the uncertainty of the estimated rate coefficient is given in accordance with Eq. (2-4) applied for the three-parameter case.

For the estimation of activation parameters \( A \) and \( B \) the value of "\( n \)" should be constrained on the basis of theoretical considerations, and this is followed by a two-parameter fitting.

1. R.J. CULMINovic; D.L. SINK; J.TON; G. PARASKOV;FOULCO; J. Phys. Chem. 83, 50 (1979)
4. D.N. HMYDIAU; Process Analysis by Statistical Methods, Chapter 6.
The National Bureau of Standards Chemical Kinetics Data Base

John T. Herron and Robert J. Cvetanovic
Chemical Kinetics Division
National Bureau of Standards, Gaithersburg, Maryland, 20874 USA

The need for large scale chemical kinetic data bases for use in computer simulation studies of complex chemical phenomena such as combustion, atmospheric chemistry and plasma chemistry has focussed attention on the mechanics of developing such data bases as well as the more general problem of data evaluation. At NBS we have been working on the development of a data base for gas phase chemical reactions. The initial area of application is combustion chemistry, but the goal is to provide coverage for the whole range of gas phase reactions.

A data base starts with the identification and acquisition of relevant articles from the archival literature followed by the abstracting and entry of numerical data into the data base. The design of the data base management system is a crucial element in the effectiveness of the system. The NBS data base management system uses five functionally and logically interrelated data bases to handle chemical kinetic data:

DB CHEM (dictionary of chemical species) identifies reactant or product chemical species through the use of unique identifiers. Each species is assigned a CHEM Access Number, and is described by the Chemical Abstracts Service chemical name and registration number, common synonyms, molecular formula in a standard order of
arrangement, and an assigned isomer index number.

DB RDIC (dictionary of chemical reactions) identifies chemical reactions through the use of search codes automatically generated from CHEM Access Numbers. Each reaction is assigned an RDIC Access Number.

DB KDAT (kinetic data) contains the values of kinetic parameters for individual reactions identified by their RDIC Access Numbers.

DB BIBB (bibliography) contains the bibliographic citations to the data and can be searched by author, year, journal, etc.

DB JRNS (chemical journals) contains information on the standard abbreviations used for journals.

These five databases are supported by various application programs to allow easy searching and updating of the numerical data base. Searching strategies can be based on chemical species, classes of reactant or product species, or kind of data (experimental, theoretical, etc.).

A primary objective of the data base design is to allow flexibility in output format based on a simple input format procedure. Table 1 is an example of an output formatted data sheet which accurately reflects the input format.

The data evaluation activities of the Chemical Kinetics Data Center are concerned primarily with the general area of combustion chemistry. Because of the wide range of temperature and pressure encountered in combustion systems, evaluation requires not only an examination of the validity of reported data, but also the use of a theoretical framework for fitting and extrapolating the data. Examples of data evaluation in the form
of data sheets for individual reactions in the methane oxidation system will be shown (Tsang and Hampson, 1986).

Table 1. Example of Input Data Format

<table>
<thead>
<tr>
<th>Reaction, Reference Code and Notes</th>
<th>Ph- Data Temp.</th>
<th>k[A/k(ref.)]</th>
<th>n</th>
<th>R</th>
<th>k[A k(ref.) units factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH + O → H + O₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydroxyl + Oxygen atom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03 BRU/SC1</td>
<td>G EX 208</td>
<td>(1.67x10⁻30(13)</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Reaction of OH radicals with O atom in a fast-flow reactor. Laser-magnetic resonance. Resonance-fluorescence. Resonance-absorption. P = 1.5 Torr. (He, or Ar)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03 TIM</td>
<td>G EX 208</td>
<td>(4.0x10⁻2(13)</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Reaction of Hydroxyl radicals with O atom by Far-Infrared Laser-Magnetic-Resonance Spectroscopy.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH + HO₂ → H₂O + O₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydroxyl + Hydroperoxo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03 SCH</td>
<td>G EX 208</td>
<td>(4.46x10⁻13(13)</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Reaction of OH with HO₂ in a fast-flow reactor. Laser-magnetic resonance. Resonance-fluorescence. Resonance-absorption. P = 1.5 Torr. (He, or Ar)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03 TIM</td>
<td>G EX 208</td>
<td>(4.0x10⁻2(13)</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>OH + H₂O₂ → HO₂ + H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydroxyl + Hydrogen peroxide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03 LAM/NO (1)</td>
<td>G EX 261-215</td>
<td>(4.32x10⁻13(16)</td>
<td>2.5</td>
<td>-</td>
<td>638186</td>
</tr>
<tr>
<td>1) Reaction of OH with H₂O₂ in a Pyrex reaction cell. Flash-photolysis. Resonance-fluorescence. OH radicals generated by Flash-photolysis of H₂O₂ or NO₃ in Curved Archeimic plots. P(H₂O₂) = 0.7-1.2 Torr. P(NO₃) = 5-10 Torr. P(He) = 750 Torr.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03 TIM</td>
<td>G EX 208</td>
<td>(1.0x10⁻20(13)</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>
SPECTROSCOPY OF HO₂ AND CH₃O₂ RADICALS AND THE KINETICS OF THEIR MUTUAL REACTION

K. McADAM, H. FORGES, and B. VEYRET
LABORATOIRE DE CHIMIE PHYSIQUE A
UNIVERSITE DE BORDEAUX 1
33405 TALENCE CEDEX FRANCE

INTRODUCTION:
The reactions of peroxy radicals play an important role in atmospheric and combustion chemistry. For example, the competition between NO and HO₂ for methyl peroxy radicals is known to be one of the most important factors determining the rate of production of ozone in the troposphere. While there have been many kinetic studies of the reactions of these radicals, in particular the self-reactions of CH₃O₂ and HO₂ radicals¹, there is a need for another direct determination of the rate constant for the cross reaction:

$$\text{CH}_3\text{O}_2 + \text{HO}_2 \rightarrow \text{CH}_3\text{OOH} + \text{O}_2$$

The only direct study, by Cox and Tyndall², revealed a reaction with a large negative temperature coefficient, similar to that of the HO₂ + HO₂ reaction, and a room temperature rate constant of $6.0 \times 10^{-12}$ cm³ molecules⁻¹ s⁻¹ at 760 Torr pressure. However, recent work by Moortgat et al.³, and the product analysis results of Kan et al.⁴, produced values of $3.7 \times 10^{-12}$ and $1.3 \times 10^{-12}$ cm³ molecules⁻¹ s⁻¹ respectively. In view of the importance of this reaction and of this disagreement, we have started a detailed study of this reaction.

EXPERIMENTAL:
All experiments have been carried out using our flash photolysis-U.V. absorption apparatus. Reactant gas mixtures flow through a thermostated Pyrex reaction cell. HO₂ and CH₃O₂ radicals are produced by competition between CH₃OH and CH₄, respectively, for the Cl atoms generated by flashing Cl₂ : CH₃OH / CH₄ / O₂ / N₂ mixtures. The analysing beam (from a D₂ lamp) passes through the cell, via quartz windows, and impinges onto a monochromator. The signal from the photomultiplier is fed through a transient recorder to a microcomputer for accumulation and subsequent analysis by computer simulations.
RESULTS:

There have been a number of studies of the U.V. spectra of the two radicals. While there is good agreement on the shape and magnitude of the HO₂ spectrum, there is some uncertainty over the magnitude of the CH₃O₂ spectrum. For example, at 250 nm, the values available for O' range from 2.5 to 5.0 x 10⁻¹⁸ cm² molecule⁻¹. We therefore started our study by determining the spectra of HO₂ and CH₃O₂ over the wavelength range 200 - 270 nm.

By using the same conditions of flash intensity and Cl₂ concentration, for each of the radical sources, we were able to obtain spectra for the two radicals (fig.1) with an absolute measurement of their relative cross-sections. The O'-axis scale was obtained by normalising our value at 210 nm for HO₂ to the value given in the latest NASA report.

Separate studies of the CH₃O₂ + CH₃O₂ and HO₂ + HO₂ reactions gave rate constants consistent with the results of previous workers. Analysis of results from the CH₃O₂ + HO₂ reaction reveal that the reaction has a
pressure dependant component (fig.2). Our present values, between 100 and 600 torr, lead to a preliminary expression for the rate constant, at 298K, of

\[ k = 4.3 \times 10^{-12} + 6.7 \times 10^{-32} \times [M_3] \text{ cm}^3\text{molecule}^{-1}\text{s}^{-1}, \]

although the value from 400 Torr up to atmospheric pressure appears to be constant at \( (5.5 \pm 0.3) \times 10^{-12} \text{ cm}^3\text{molecule}^{-1}\text{s}^{-1} \), in agreement with the value of Cox and Tyndall. Further experiments are currently underway to provide more information about the temperature and water vapour dependencies of this reaction.

References
3. Moortgat et al. This meeting.
RATE CONSTANT AND MECHANISM OF THE REACTION OH+HCOOH


Formic acid consisting of mixtures of monomer and dimer was photolysed at 222 nm using a pulsed KrCl excimer laser. The monomer yields OH with a quantum yield $\Phi(\text{OH})=1.00\pm0.08$, whereas the dimer does not yield OH. This indicates that the dominant, if not the only, path of photolysis of the monomer is,

$$\text{HCOOH} + h\nu \rightarrow \text{OH} + \text{HCO}.$$  

The kinetics of the subsequent reaction of OH with the monomer and dimer of formic acid was studied at 296K by following the pseudo-first-order decay of OH, $[\text{HCOOH}] >> [\text{OH}]$, by time resolved resonance absorption at 308.2 nm. Pseudo-first-order rate constants, $k_1$, were obtained for a range of formic acid pressures from the slopes of linear plots of $\ln([\text{OH}]/[\text{OH}]_0)$ against time. The apparatus and technique have been described before.1

A plot of $k_1$ against the concentration of formic acid, $[\text{monomer+dimer}]$, is shown in figure 1, and is clearly non linear, indicative of different rates of reaction of the monomer and dimer of formic acid with OH. The values of the second-order rate constants, for the reactions of OH with the monomer, $k_2$, and the dimer, $k_3$, were obtained by non-linear least squares fitting of equation I to the data in fig. 1.

$$k_1 = k_2[\text{monomer}] + k_3[\text{dimer}].$$  

(I)
THE KINETICS OF HYDROXYL RADICAL REACTIONS WITH ALKANES
STUDIED UNDER ATMOSPHERIC CONDITIONS

S J HARRIS and J A KERR

Department of Chemistry
University of Birmingham
Birmingham B15 2TT
ENGLAND

ABSTRACT

A photolytic flow system has been constructed to study the reactions of hydroxyl radicals under tropospheric conditions (synthetic air mixture at atmospheric pressure) and over a range of atmospherically relevant temperatures (-30 to +50°C). The hydroxyl radicals were generated from the photolysis of methyl nitrite in the presence of added nitric oxide and they have been reacted with pairs of alkanes. The relative rates of the two hydroxyl-alkane reactions were monitored by following the rates of decay of the alkanes.

These reactions have been studied to provide additional data on the temperature coefficients of OH + alkane reactions, which will enable the development of more sophisticated bond additivity schemes for the rate constants of these reactions, which are needed in computer modelling of tropospheric systems.
where the concentrations of the monomer and dimer were calculated at each pressure of formic acid from the literature value of the equilibrium constant, \( K = \frac{(\text{HCOOH})^2}{(\text{HCOOH})_2} \), taken at 296K as \( K = 1.09 \times 10^{-7} \text{ mol/cm}^3 \). The resulting values in cm\(^3\)/mol s at the 95% confidence intervals are: \( k_2 = (2.95 \pm 0.07) \times 10^{11} \) and \( k_3 = 0.15 \times 10^{11} \). Our value is in excellent agreement with the recent value of Wine et al., \( (2.78 \pm 0.47) \times 10^{11} \), but is -50% greater than the value of Zetzsch and Stuhl.\(^3\) There was no significant concentration of dimer in both previous studies because of the very low pressures of formic acid.

Computer simulations of experiments with 0.5 torr of \( \text{O}_2 \) indicate that \( \text{H} \)-atoms are formed during the reaction in agreement with ref. 2. Our results and those of ref. 2, i.e., a) dimer much less reactive than monomer, b) rate constant essentially constant from 298 to 430K,\(^2\) and c) little isotope effect for \( \text{DCOOH} \),\(^2\) are consistent with a complex mechanism in which \( \text{H} \) is preferentially abstracted from the \( \text{OH} \) rather than the \( \text{CH} \) bond of the acid, despite its being -14 kcal/mol stronger. The resulting \( \text{HCOO} \) radical dissociates to \( \text{H}^{+} + \text{CO}_2 \). A BEOB calculation indicates an activation energy of 1-2 kcal/mol less for abstraction from the \( \text{OH} \) bond compared to the \( \text{CH} \) bond. The lower activation energy may be attributed to reversible formation of a hydrogen bonded adduct between \( \text{OH} \) and formic acid, followed by transfer of the hydroxylic hydrogen in the adduct.

References


Fig. 1
THE REACTIONS OF HYDROXYL RADICALS WITH AROMATIC COMPOUNDS

D.L. Baulch, I.M. Campbell and S.M. Saunders

Department of Physical Chemistry, University of Leeds, U.K.

Rate constants for the gas phase reactions of the hydroxyl radical with aromatic hydrocarbons are of fundamental importance for modelling the chemistry of polluted urban atmospheres, combustion processes, and soot formation.

In the present study rate constants for the reaction of OH with benzene (I), indane (II) and indene (III) were measured at 295K and over the pressure range 0.30 - 4.76 Torr.

Experimental

A conventional fast-flow discharge system was used. OH was generated by the fast reaction of H atoms with NO, and changes in OH concentration were monitored by resonance fluorescence using microwave-powered discharge lamps. Helium was used as the carrier gas.

All of the reactions were studied under pseudo-first order conditions. Concentrations of OH were in the range \(1.1 \times 10^{-10} - 2.5 \times 10^{-9}\) mol dm\(^{-3}\) and of the aromatic compounds in the range \(1 \times 10^{-9} - 6 \times 10^{-7}\) mol dm\(^{-3}\).

The possible effects of potential competing reactions of radicals produced in the reaction were checked by computer simulation. Values of the pseudo-first order rate constant, \(k'\), were obtained from the temporal decays of [OH]. Plots of \(k'\) versus [Aromatic] were linear, the slope yielding the second order rate constant, and all gave intercepts, \(k_w\), which agreed with the independently measured values of the wall decay constant.
Results and Discussion

The measured values of the second order rate constant are shown in Table 1.

<table>
<thead>
<tr>
<th>Compound</th>
<th>$10^{-8} \text{k/dm}^3 \text{mol}^{-1} \text{s}^{-1}$</th>
<th>Pressure/Torr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>$0.321 \pm 0.027$</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>$0.879 \pm 0.045$</td>
<td>1.17</td>
</tr>
<tr>
<td></td>
<td>$2.18 \pm 0.27$</td>
<td>2.91</td>
</tr>
<tr>
<td></td>
<td>$3.13 \pm 0.18$</td>
<td>4.76</td>
</tr>
<tr>
<td>Indane</td>
<td>$54.4 \pm 8.0$</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>$56.9 \pm 8.4$</td>
<td>1.2</td>
</tr>
<tr>
<td>Indene</td>
<td>$68.4 \pm 10.0$</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>$99.4 \pm 11.5$</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>$207.0 \pm 30.0$</td>
<td>1.14</td>
</tr>
<tr>
<td></td>
<td>$307.0 \pm 46.0$</td>
<td>1.81</td>
</tr>
</tbody>
</table>

**Benzene**

The rate constant for reaction with benzene is pressure dependent as would be expected if the reaction involves primarily addition to the ring followed by decomposition or collisional stabilization of the adduct. The dependence on pressure is linear within experimental error over the range studied and linear extrapolation to zero benzene concentration yields only a very small intercept on the c-ordinate suggesting little, if any, contribution from abstraction pathways.

The values of $k$ obtained are significantly lower (factor of 1.5-2.0) than obtained in the only other comparable work by others overlapping the pressure range studied here. In that work, by flash photolysis, the bath gas used was argon and the work did not extend to as low a pressure as the present study.
When unimolecular reaction rate theory is applied to the present results together with those obtained by others at high pressures, the outcome suggests that the high pressure limiting value for $k$ is larger than hitherto suggested and at the highest pressures used (600 Torr) the reaction is still far from its high pressure limit.

**Indane**

The reaction with indane was studied at only two pressures but the constancy of $k$ over this range suggests that the reaction mechanism involves hydrogen abstraction from the five-membered ring rather than addition. The high value of $k$ is comparable with values for abstraction from other polycyclic compounds.

**Indene**

The results for indene also show a pressure dependent $k$. If plots of $k$ versus [Indene] are extrapolated linearly to zero indene concentration, a substantial intercept is obtained suggesting that both pressure dependent and pressure independent pathways are operative corresponding to addition and abstraction. However, such an interpretation can only be tentative since the existing data are too sparse to be sure that a linear interpretation is valid.

The high values of $k$ obtained for the pressure dependent pathway suggest that addition is occurring at the double bond in the five-membered ring which is behaving as an olefin rather than part of the aromatic system.
MEASUREMENT OF THE RATE CONSTANT OF THE REACTION \( \text{OH} + \text{H}_2\text{S} \rightarrow \text{HS} + \text{H}_2\text{O} \)

IN THE RANGE 243-473 K BY DISCHARGE FLOW LASER INDUCED FLUORESCENCE

P. DEVOLDER - C. LAPAGE - L. R. SOCHET

Laboratoire de Cinétique et Chimie de la Combustion.

UA CNRS 876. Université des Sciences et Techniques de Lille.

59655 Villeneuve d'Ascq Cedex, France.

The reaction 1, \( \text{OH} + \text{H}_2\text{S} \rightarrow \text{HS} + \text{H}_2\text{O} \) is an important step in the combustion process of fossil fuels and is believed to represent a major sink for \( \text{H}_2\text{S} \) in earth's atmosphere. In contradiction to older measurements, recent measurements of \( k \) suggested the existence of an unexpected minimum of the rate constant near room temperature, which is difficult to interpret on the basis of a simple abstraction mechanism. We have performed a new investigation of the reaction 1 in the range 243-473 K with the discharge flow technique associated with the sensitive detection of \( \text{OH} \) by laser induced fluorescence. Our results confirm the existence of a flat minimum of \( k \) in the range 263 - 296 K: \( k_1 = (38 \pm 8) \times 10^{-12} \text{ cm}^3\text{s}^{-1} \) with a slight increase towards larger temperatures.
Reactions of OH Radicals with Reduced Sulphur Compounds

I. Barnes, V. Bastian and K.H. Becker

Physikalische Chemie/FB 9
Bergische Universität-Gesamthochschule Wuppertal
D 5600 Wuppertal 1

Presented here are results on the kinetics and products of the reactions of OH with a number of aliphatic thiols, aliphatic sulphides, dimethyl disulphide, \( \text{CH}_3\text{SSCH}_3 \) (DMS), dimethyl sulfoxide, \( \text{CH}_3\text{SO} \), (DMSO), thiophenol and tetrahydrothiophene. The experiments were carried out in glass reaction chambers of different volumes at 1 atm total pressure and room temperature using either the photolysis of methyl nitrate (CH\(_3\)ONO) in the presence of NO or H\(_2\)O\(_2\) as a NO\(_x\) free OH radical source. The competitive kinetics method was used to determine the OH rate constants and in situ long-path Fourier transform absorption spectroscopy (FTIR) was employed for the product analyses. Experimental details can be found elsewhere /1,2,3/.

Experiments performed in 1 atm air using the photolysis of CH\(_3\)ONO as the OH source led to erroneously high rate constants for all of the thiols and sulphides investigated with the exception of H\(_2\)S and DMS /4/. Recent work has shown that radical chains, possibly involving oxygenated CH\(_3\)S radicals, are responsible for the high rate constants and it has been concluded that kinetic studies by the relative method in the presence of nitric oxides will not yield reliable rate constants for the reaction of OH with thiols and sulphides /2/.

Because of the above difficulties the rate constants for the above mentioned reactions were determined in 1 atm N\(_2\) using the photolysis of H\(_2\)O\(_2\) as the OH source. The rate constants obtained using this method were in good agreement with the available literature values /5/. Table 1 lists the OH rate constants obtained for various sulphur compounds.

When the reactions of OH with the thiols were investigated in 1 atm air using H\(_2\)O\(_2\) as the OH source the rate constants were between 20-30% higher than the corresponding rate constants determined in N\(_2\). Wine et al. /8/ failed to detect an O\(_2\) effect for these reactions and secondary chemistry involving CH\(_3\)SO\(_x\) is probably responsible for the effect observed here. For DMS the rate constant rose from \((4.4\pm0.4)\times10^{-12}\) cm\(^3\)/s in N\(_2\) to \((8.6\pm0.5)\times10^{-12}\) cm\(^3\)/s in air. A small oxygen effect has been reported for the reaction of OH with DMS using an absolute method /6/.
However, in the present work it is not clear whether the observed increase is due to an oxygen effect as has been found for OH + CS\textsubscript{2} /7/ or is caused by secondary chemistry.

Existing product analyses to date of the reaction of OH with thiols and sulphides have been carried out in the presence of relatively large concentrations of nitric oxides which are unrealistic and which could influence the product distributions of these reactions. Under these conditions SO\textsubscript{2} (>90\%) and methane sulphonic acid (>50\%) were observed to be the major products for the reactions of OH with DMS, DMDS and CH\textsubscript{3}SH /5,9/.

Preliminary product analyses have been carried out in this laboratory on the reaction of OH with DMS, DMDS and CH\textsubscript{3}SH in NO\textsubscript{x} free systems in air using the photolysis of H\textsubscript{2}O\textsubscript{2} as the OH source. For DMS the yield of SO\textsubscript{2} was found to be as high as 70\%10\%. Dimethyl sulphone (DMSO\textsubscript{2}) was also formed, however its origin is not fully certain at present. It is formed partly in a dark reaction between DMS and H\textsubscript{2}O\textsubscript{2} but the observed concentration cannot be explained solely by this source. DMSO was not observed but other products which were qualitatively identified included HCOOH, HCHO and CO. After spectral stripping and an unidentified peak remained at 1050 cm\textsuperscript{-1}. The reaction of OH with DMS yielded DMSO\textsubscript{2} as the major product. For CH\textsubscript{3}SH the yield of SO\textsubscript{2} was 80\% and other products included HCOOH, HCHO and CO. As for OH + DMS an unidentified peak was observed at 1050 cm\textsuperscript{-1}. From these results and the product formation observed during experiments on the photolysis of DMDS it can be concluded that CH\textsubscript{3}S and its O\textsubscript{2} adducts determine the product spectrum. In the presence of NO, CH\textsubscript{3}SO is probably being formed leading subsequently to the formation of CH\textsubscript{3}SO\textsubscript{3}H.

References

/1/ I. Barnes, V. Bastian, K.H. Becker, E.H. Fink and F. Zabel

/2/ I. Barnes, V. Bastian, K.H. Becker, E.H. Fink and W. Nelsen

Untersuchung der Reaktionsysteme NO\textsubscript{x}/ClO\textsubscript{x}/HO\textsubscript{x} unter troposphärischen and stratosphärischen Bedingungen, Gesellschaft für Strahlen- und Umweltforschung mbH, ISSN 0176/0777 BPT-Bericht 11/84.

Table 1. Collected rate constants for the reactions of OH radicals with H$_2$S, aliphatic thiols and sulphides, DMDS, DMSO, thiophenol and tetrahydrothiophene.

<table>
<thead>
<tr>
<th>Reactant</th>
<th>Chamber</th>
<th>Volume(l)</th>
<th>Ref</th>
<th>300 K (k(10^{-11}, \text{cm}^3/\text{s}))</th>
<th>313 K (k(10^{-11}, \text{cm}^3/\text{s}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$S*</td>
<td>ethene</td>
<td>40</td>
<td></td>
<td>0.52±0.08</td>
<td></td>
</tr>
<tr>
<td>CH$_3$SH</td>
<td>propene</td>
<td>20</td>
<td></td>
<td>3.6±0.4</td>
<td>3.3±0.4</td>
</tr>
<tr>
<td>C$_2$H$_5$SH</td>
<td></td>
<td></td>
<td></td>
<td>4.5±0.5</td>
<td>4.4±0.4</td>
</tr>
<tr>
<td>n-C$_3$H$_7$SH</td>
<td></td>
<td></td>
<td></td>
<td>5.3±0.6</td>
<td>5.0±0.7</td>
</tr>
<tr>
<td>i-C$_3$H$_7$SH</td>
<td></td>
<td></td>
<td></td>
<td>3.9±0.4</td>
<td>3.6±0.3</td>
</tr>
<tr>
<td>n-C$_4$H$_9$SH</td>
<td></td>
<td></td>
<td></td>
<td>5.6±0.4</td>
<td>5.4±0.5</td>
</tr>
<tr>
<td>i-C$_4$H$_9$SH</td>
<td></td>
<td></td>
<td></td>
<td>4.6±0.5</td>
<td>3.7±0.5</td>
</tr>
<tr>
<td>sec-C$_4$H$_9$SH</td>
<td></td>
<td></td>
<td></td>
<td>3.8±0.6</td>
<td>3.1±0.3</td>
</tr>
<tr>
<td>tert-C$_4$H$_9$SH</td>
<td></td>
<td></td>
<td></td>
<td>2.9±0.4</td>
<td>2.3±0.4</td>
</tr>
<tr>
<td>C$<em>6$H$</em>{11}$SH</td>
<td>n-hexane</td>
<td>1.1±0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(2-methyl-butaneithiol)

| CH$_3$SH     |         |           |     |                                 |                                 |
| (CH$_3$)$_2$S | ethene  | 420       |     | 0.44±0.04                       |                                 |
| (C$_2$H$_5$)$_2$S |   |           |     | 1.1±0.2                         |                                 |
| (C$_3$H$_7$)$_2$S |   |           |     | 1.5±0.2                         |                                 |
| (CH$_3$)$_2$SO | cis-butene |           |     | 5.8±2.1                        |                                 |
| CH$_3$SSCH$_3$ | trans-butene |           |     | 21 ±2                          |                                 |

*) H$_2$S, thiophenol and DMSO were measured in 1 atm air using the photolysis of CH$_3$ONO as the OH source and the remainder were measured in 1 atm N$_2$ using the photolysis of H$_2$O$_2$ as the OH source.
Biogenic and anthropogenic emissions of sulphur compounds are thought to be about equal. In order that the contribution of anthropogenic emissions to acid deposition can be precisely defined it is clear that an understanding of the natural sulphur cycle is desirable. Reduced sulphur compounds such as H₂S, CS₂, CH₃SCH₃ and CH₃SSCH₃ are considered to be the most important biogenic sources of sulphur in the troposphere. These compounds are thought to be oxidized by homogeneous reactions involving hydroxyl radical initiated processes, however detailed reaction mechanisms remain obscure. Numerous experimental studies have been reported concerning the kinetics of these reactions, however, there is often conflict between rate constant data determined using absolute methods at low pressure and relative techniques under simulated atmospheric conditions.

The reaction of hydroxyl radicals with a number of reduced sulphur containing compounds have been studied using both a relative rate method and by a pulsed radiolysis-kinetic spectroscopy technique. In the relative rate measurements hydroxyl radicals were generated either by the photolysis of nitrous acid or methyl nitrite in synthetic air.
The decay of the sulphur compounds was measured relative to a reference hydrocarbon and the rate constant derived from the integrated rate equation.

\[ \ln \left( \frac{[S]_0}{[S]_t} \right) = \frac{k_S}{k_R} \ln \left[ \frac{[R]_0}{[RH]_t} \right] \]

It was evident from the results that in all the runs the concentration time data plotted in the form of the above equation showed significant curvature. Also the measured rate of reaction of HO with alkyl sulphides was found to increase with increases in the concentration of added NO. Product analysis studies showed that, apart from HO radicals, a reaction product is involved in the removal of sulphides in static photolysis systems involving NO _x_ species. It would appear, therefore, that rate data obtained from the relative rate method using either nitrous acid or methyl nitrite as the hydroxyl radical source are unreliable.

Absolute rate constant data for the reaction of HO radicals with a range of reduced sulphur compounds have been determined at atmospheric pressure. Hydroxyl radicals were produced by pulse radiolysis of water vapour-argon mixtures and the decay rate monitored by transient light absorption at 309 nm. Under the experimental conditions used, \([S]_0 \gg [HO]_0\), the hydroxyl concentration followed a simple exponential decay over at least three half-lives. Rate constant data obtained for a series of alkyl sulphides can be rationalized in terms of a mechanism involving hydrogen abstraction.
RATE CONSTANTS FOR THE REACTIONS OF OD WITH DNO₃ AND NO₂


Absolute rate constants for the reactions of OD radicals with DNO₃ and NO₂ have been measured at 297K and over a range of pressures of SF₆. OD radicals were generated by pulsed laser photolysis of DNO₃ at 222 nm (KrCl excimer laser) and their decay was followed by time resolved resonance absorption at 307.6 nm. Pseudo-first-order rate constants, $k_1$, for [DNO₃] or [NO₂]>>[OD], were calculated from the slopes of linear plots of $\ln([\text{OH}]/[\text{OH}]_0)$ against time. Second-order rate constants, $k_2$, were calculated from the values of $k_1$, obtained over a range of reactant concentrations. The concentration of DNO₃ was measured in the cell either manometrically (when alone), or spectrophotometrically at 210 nm (in mixtures with SF₆). NO₂, which was always present (0.05 to 0.15%), or was added in the measurements of OD+NO₂ (2 to 3%), was also measured in the cell spectrophotometrically at 405 nm. The apparatus, technique and treatment of the data have been described before.¹

OD+DNO₃. Rate constants were measured over a range of pressures (1.2 to 30 torr) of DNO₃ alone, and in the presence of 107 torr SF₆. The values were corrected for the contribution to the rate constant of the reaction OD+NO₂+M. The corrections ranged from 5 to 25% of the measured rates at low pressures and from 28 to
43% at 107 torr of SF₆. The corrected values in cm³/mol s were: 
k(1.2-30 torr)=(5.67±0.75)x10⁹, and k(107 torr)=(8.58±0.75)x10⁹ 
where the indicated uncertainties are the 95% confidence 
intervals. However, because the reaction is slow, small values 
of k₁ requiring large corrections were measured for the available 
pressure range of DNO₃. Therefore, confirmation of our 
values by different techniques should be useful.

The present results show a marked pressure effect (51% 
increase for 107 torr SF₆), in contrast to the reaction with 
HNO₃ for which 600 torr of SF₆ increased the rate constant by 
<10% at room temperature.¹ This indicates that the reaction 
proceeds through an excited intermediate and is in line with the 
prediction, by Lamb et al.,² of a weak pressure dependence for 
OH+HNO₃ and a larger one for OD+DNO₃. Combined with our value 
of the rate constant of the reaction OH+HNO₃ (7.57±0.64)x10¹⁸),¹ 
our results indicate a very large isotope effect for the 
reaction of hydroxyl radicals with nitric acid, k_H/k_D=13.

OD+NO₂+SF₆. The rate constant of this reaction was needed in 
order to correct for its contribution to the reaction OD+DNO₃ 
above. It was measured, for the first time, in the presence of 
5 to 500 torr SF₆, by adding NO₂ to DNO₃ so that the reaction 
with NO₂ dominates. The values obtained are in good agreement 
with those reported for the reaction OH+HNO₃, in the same 
pressure range of SF₆.¹ As expected there is no isotope effect 
for the addition reaction.
References
3. a) C. Anastasi and I.W.M. Smith, J. Chem. Soc. Faraday II, 72, 1459 (1976);
THE KINETICS OF THE REACTIONS
OF THE HYDROXYL RADICAL WITH
MOLECULAR CHLORINE AND BROMINE.

Razmik R. Boodaghians, Ian W. Hall
and Richard P. Wayne.

Physical Chemistry Laboratory, South Parks Road,

The rate constants for the reactions

\[ \text{OH} + \text{Cl}_2 \rightarrow \text{HOCl} + \text{Cl} \quad \Delta H_{298}^0 = -4.38 \text{kJ mol}^{-1} \quad (1) \]

\[ \text{OH} + \text{Br}_2 \rightarrow \text{HOBr} + \text{Br} \quad \Delta H_{298}^0 = -38.05 \text{kJ mol}^{-1} \quad (2) \]

have been measured over a range of temperatures between 253K and 333K by using a discharge flow resonance fluorescence technique.

The rate constant for the reaction of OH with Cl\(_2\) increases with temperature, and the results fit a simple Arrhenius expression. In contrast, no significant temperature dependence could be detected for the reaction of OH with Br\(_2\).

Experimental.

In these investigations, the discharge flow method was used to generate H atoms which were reacted with excess NO\(_2\) to produce OH. The concentration of OH was kept below 5 \times 10^{13} \text{ molecule cm}^{-3} to minimise the effect of secondary reactions. Time resolution was achieved by adding the molecular halogens at different points in the flow tube via a sliding injector. The rate of reaction was determined by monitoring the pseudo first order decay of OH, using an EM1 9757B photomultiplier to observe the resonance fluorescence at 308 nm.

The walls of the Pyrex flow tube and the stainless steel fluorescence cell were coated with halocarbon wax to minimise wall losses of reactive species. With this coating, wall loss rates of OH were typically 5 to 10 s\(^{-1}\). Temperature regulation was achieved by circulating liquid from a thermostatically-controlled reservoir through the outer jacket of the flow tube.
Results.

At 293K, the rate constants for the reaction of OH with Cl₂ and Br₂ are

\[ k_1 = (6.84 \pm 1.01) \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1} \]
\[ k_2 = (3.36 \pm 1.23) \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1} \]

These results compare favourably with previously reported values in the literature [1]. The Arrhenius expression for the OH + Cl₂ reaction between 253K and 333K is

\[ k_1 = (1.68 \pm 4.44) \times 10^{-12} \exp\left[-(911\pm373)/T\right] \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1}. \]

For the reaction of OH with Br₂, the measured rate constants at various temperatures are

<table>
<thead>
<tr>
<th>T/K</th>
<th>( k_2 / \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>262</td>
<td>(2.05 \pm 1.18) \times 10^{-11}</td>
</tr>
<tr>
<td>273</td>
<td>(2.45 \pm 1.01) \times 10^{-11}</td>
</tr>
<tr>
<td>293</td>
<td>(3.36 \pm 1.23) \times 10^{-11}</td>
</tr>
<tr>
<td>303</td>
<td>(3.03 \pm 1.40) \times 10^{-11}</td>
</tr>
</tbody>
</table>

As the table shows, the rate constants are much less dependent on temperature than are those for reaction (1), and the errors produced by least squares fitting are correspondingly large. One may regard reaction (2) as being temperature independent over the range 262K to 303K.

Discussion.

We believe these are the first reported studies of the temperature dependences of the title reactions. The Arrhenius parameters presented in this report permit us to investigate possible trends in reactivity between radicals and molecules that may shed light on the detailed mechanism of reaction, as well as offering predictive possibilities. Krech and McFadden [2] have found that the activation energy is inversely related to the polarisability of the co-reactant for several different series of radical reactions. We find evidence for such a relationship in the reactions of OH with the halogens [1]. We also find evidence for a correlation between radical-molecule reactivity and the
electron affinity of the radical partner [1], as previously suggested by Loewenstein and Anderson [3].

References

REACTIONS OF OH RADICALS WITH ACETATES AND GLYCOLS

D. Hartmann, D. Rhäsa, A. Gédra, and R. Zellner

Institut für Physikalische Chemie, Universität Göttingen,

Rate constants for the reactions of hydroxyl radicals with
(1) n-butyl-acetate, (2) 2-ethoxyethanol, (3) 2-butoxyethanol,
and (4) 1-acetoxy-2-ethoxyethane over the temperature range
T = 298 - 516 K have been measured by a combined laser photo-
lysis/resonance fluorescence (LPRF) technique. An excimer
laser (EMG 100, Lambda Physik) was used as a monochromatic
light source for the photolytic generation of OH from HNO₃ at
193 nm (ArF). The detection of OH was by time resolved A - X
resonance fluorescence excited by a microwave discharge of
H₂O in Ar. All experiments were carried out under pseudo-
first order kinetic conditions with the hydrocarbon concen-
tration in excess over OH (> 10). Second order rate coeffi-
cients were obtained from plots of k₁ vs. the reagent
concentration. The results can be represented by the Arrhenius
expressions:

\[ k_1(T) = (3.1 \pm 0.7) \times 10^{-11} \exp(-594 \pm 126/T) \text{ cm}^3 \text{ s}^{-1} \]
\[ k_2(T) = (1.8 \pm 0.4) \times 10^{-11} \exp(-120 \pm 30/T) \text{ cm}^3 \text{ s}^{-1} \]
\[ k_3(T) = (1.4 \pm 0.3) \times 10^{-11} \text{ cm}^3 \text{ s}^{-1} \]
\[ k_4(T) = (3.6 \pm 0.8) \times 10^{-12} \exp(383 \pm 80/T) \text{ cm}^3 \text{ s}^{-1} \]

The rate constants at 298 K have been compared with semi-
empirical predictions based on individual C-H bond reactivi-
ties (Heicklen, a)) or characteristic group reactivities
(Atkinson, b)). One of these predictive techniques is based
on measured or estimated C-H bond dissociation energies and
considers only the effects of substituent groups or atoms on

\* on leave from Central Research Institute for Chemistry,
Budapest, Hungary
the α-carbon (a), whereas the other technique is based on the estimation of \( \text{CH}_3^- \), \( \text{CH}_2^- \), and \( \text{CH}^- \) group rate constants and takes into account the effects of 8-substituents (b). The difference between the predicted and observed rate coefficients is within about a factor of 2.5 and 1.5 for methods (a) and (b), respectively. It is found that the primary reaction is dominated in all cases by the \( \text{H} \) atom abstraction from the \(-\text{O}-\text{CH}_2^\text{2-}\) moiety (C-H bond dissociation energy = 377 kJmol\(^{-1}\), except compound (1)). The subsequent route of atmospheric degradation is similar to the known atmospheric \( \text{CH}_4 \) oxidation scheme. The atmospheric lifetime with respect to the reaction with \( \text{OH} \) radicals has been estimated to be about two days (2, 3, 4) and one week (1) for an average tropospheric \( \text{OH} \) concentration of \( 10^6 \) cm\(^{-3}\).
KINETICS OF THE REACTIONS OF SH WITH NO\textsubscript{2} AND O\textsubscript{2}

A. A. Stachnik and M. J. Molina
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA

Substantial effort has been directed in recent years toward understanding the chemistry of atmospheric sulphur compounds. H\textsubscript{2}S, a significant form of biogenic sulphur emission, is believed to be removed from the troposphere primarily by reaction with hydroxyl radicals:

1) \[ \text{H}_2\text{S} + \text{OH} \rightarrow \text{SH} + \text{H}_2\text{O} \]
\[ k_1 = 4.7 \times 10^{-12} \text{ cm}^3\text{s}^{-1} \]

The atmospheric chemistry of the mercapto radical, SH, has been the subject of several recent kinetic and modelling studies; however, the details of the subsequent oxidation of this radical remain to be elucidated. This work examines the reactions of SH with NO\textsubscript{2} and O\textsubscript{2}.

Rate constant values for the reaction

2) \[ \text{SH} + \text{NO}_2 \rightarrow \text{HSO} + \text{NO} \]
reported by Black\textsuperscript{(1)} \[ k_2 = (3.5 \pm 0.5) \times 10^{-11} \text{ cm}^3\text{s}^{-1} \] and by Friedl et al.\textsuperscript{(2)} \[ k_2 = (3.0 \pm 0.8) \times 10^{-11} \text{ cm}^3\text{s}^{-1} \] differ substantially from the determination by Howard\textsuperscript{(3)} \[ k_2 = 6.7 \times 10^{-11} \text{ cm}^3\text{s}^{-1} \]. The reaction

3) \[ \text{SH} + \text{O}_2 \rightarrow \text{OH} + \text{SO} \]
has not been observed. Upper limits for the rate constant imposed by Tiese et al.\textsuperscript{(4)} \[ k_3 < 3.2 \times 10^{-15} \text{ cm}^3\text{s}^{-1} \], Black\textsuperscript{(1)} \[ k_3 < 4 \times 10^{-17} \text{ cm}^3\text{s}^{-1} \], and Friedl et al.\textsuperscript{(2)} \[ k_3 < 1 \times 10^{-17} \text{ cm}^3\text{s}^{-1} \] do not eliminate reaction 3 as a significant removal process for tropospheric SH.

SH radicals were generated in this study by photodissociation of H\textsubscript{2}S with pulsed ArF excimer laser emission at 193 nm. This process

---

Addendums:

- Additional kinetic data and modeling results were presented at the American Chemical Society meeting in 2023, showing further insights into the atmospheric transformations of SH.
- Recent studies have explored the role of SH in photochemical smog formation, highlighting its significance in urban air quality.
produces SH radicals with negligible vibrational excitation. The subsequent decay of the initial SH concentration was measured by monitoring the transient absorption due to the \( \tilde{X}^2 \Pi(y'=0) \to \tilde{X}^2 \Pi(y'=0) \) band near 324 nm.

The rate constant for the reaction of SH with NO\(_2\) was determined by measuring the pseudo-first order decay rate, \( k_1 \), of SH (\([\text{SH}]_0 = 4 \times 10^{12} \text{ cm}^{-3}\)) with NO\(_2\) present (\([\text{NO}_2] = 0.3 - 4.0 \times 10^{14} \text{ cm}^{-3}\)). O\(_2\) was added to sequester the H atom photofragment and, thereby, eliminate secondary generation of SH by the reactions:

4) \( \text{H} + \text{NO}_2 \rightarrow \text{OH} + \text{NO} \)
5) \( \text{H} + \text{H}_2\text{S} \rightarrow \text{SH} + \text{H}_2 \)

Values of \( k_2 \) were determined at 100 torr and 730 torr total pressure with N\(_2\) as the diluent gas at 298 K from plots of \( k_1 \) versus \([\text{NO}_2]\). The result is \( k_2 = (4.8 \pm 1.0) \times 10^{-11} \text{ cm}^3 \text{s}^{-1} \), independent of total pressure.

A slow reaction between SH and O\(_2\), reaction 3, followed by reaction 1 would be a zero net loss for SH since \( k_3[\text{O}_2] \ll k_1[\text{H}_2\text{S}] \). Evidence for SH removal by reaction with O\(_2\) was distinguished from radical-radical and other second order chemistry by measuring the increase in decay rate upon addition of O\(_2\), which removes OH over a range of initial SH concentration. An upper limit for \( k_3 \) of \( 1 \times 10^{-19} \) cm\(^3\) s\(^{-1}\) was obtained upon extrapolation to zero initial SH concentration. This value is smaller by a factor of 25 than the previously reported bound.

The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
References


ABSTRACT

LASER-INDUCED FLUORESCENCE STUDIES OF THE CH₃S RADICAL

Graham Black and Leonard E. Jusinski
Chemical Physics Laboratory
SRI International
Menlo Park, CA 94025 USA

Alkyl thiol radicals (RS) are intermediates in combustion and atmospheric chemistry of organosulfur compounds of both natural and anthropogenic origins. These compounds, although minor constituents, may play a role in the atmospheric sulfur cycle and contribute to the acid precipitation problem. It is, therefore, important to determine the atmospheric chemistry of these radicals.

Until recently, the only reported absolute rate coefficient studies involved the HS radical.¹⁻³ Recently, the emission and laser-induced fluorescence (LIF) spectra of CH₃S were reported.⁴,⁵ This has lead to the first measurements⁶ of the rate coefficients for the reactions of CH₃S with NO, NO₂ and O₂. This paper reports further LIF studies of CH₃S and a study of its reaction with O₂. CH₃S radicals were generated by the 248 nm photodissociation of dimethyl disulfide ((CH₃)₂S₂) and 193 nm photodissociation of methyl mercaptan (CH₃SH). Fluorescence was excited on the ³²A₁ → ³₂E transition using a Nd:Yag-pumped dye laser. The transitions excited were ³²O₀ at 366.0 nm, ³¹O at 371.3 nm and ³⁰O at 377.0 nm. Vibrational relaxation and electronic quenching of the upper state have been studied and the results are summarized in Table 1 (estimated errors are ± 10% for v₁ = 2 and 0 and ± 20% for v₁ = 1).
Table 1

RATE COEFFICIENTS FOR REMOVING CH$_3$S($^2A_1$) IN $v'_{3}=2,1$ and 0

<table>
<thead>
<tr>
<th>Gas</th>
<th>Rate Coefficients (cm$^3$/molec$^{-1}$ s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$v'_{3}=2$</td>
</tr>
<tr>
<td>He</td>
<td>$7.6 \times 10^{-12}$</td>
</tr>
<tr>
<td>Ar</td>
<td>$4.9 \times 10^{-12}$</td>
</tr>
<tr>
<td>H$_2$</td>
<td>$8.4 \times 10^{-11}$</td>
</tr>
<tr>
<td>N$_2$</td>
<td>$2.3 \times 10^{-11}$</td>
</tr>
<tr>
<td>O$_2$</td>
<td>$2.1 \times 10^{-11}$</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>$4.7 \times 10^{-11}$</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>$8.2 \times 10^{-11}$</td>
</tr>
<tr>
<td>SF$_6$</td>
<td>$2.3 \times 10^{-11}$</td>
</tr>
</tbody>
</table>

For He, Ar, CO$_2$ and SF$_6$, removal of $v'_{3}=2$ with these gases results in $v'_{3}=0$ emission confirming that only vibrational relaxation can occur with these gases. For H$_2$, N$_2$, O$_2$ and CH$_4$ vibrational relaxation and electronic quenching are both occurring.

By varying the delay between the excimer and dye laser pulses, it was also possible to measure a rate coefficient for vibrational relaxation into the ground state ($v'_{3}=0$) of CH$_3$S. These results are summarized in Table 2 (estimated errors are ± 10%).
Table 2

VIBRATIONAL RELAXATION INTO GROUND STATE (\(v_j^0 = 0\)) OF CH\(_3\)S

<table>
<thead>
<tr>
<th>Gas</th>
<th>Rate Coefficient (cm(^3) molec(^{-1}) s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>2.3 x 10(^{-12})</td>
</tr>
<tr>
<td>Ar</td>
<td>2.9 x 10(^{-12})</td>
</tr>
<tr>
<td>N(_2)</td>
<td>5.3 x 10(^{-12})</td>
</tr>
<tr>
<td>O(_2)</td>
<td>9.7 x 10(^{-12})</td>
</tr>
<tr>
<td>H(_2)</td>
<td>2.2 x 10(^{-11})</td>
</tr>
<tr>
<td>CO(_2)</td>
<td>1.4 x 10(^{-11})</td>
</tr>
<tr>
<td>CH(_4)</td>
<td>1.8 x 10(^{-11})</td>
</tr>
<tr>
<td>SF(_6)</td>
<td>3.0 x 10(^{-11})</td>
</tr>
</tbody>
</table>

Experiments were then performed to measure the rate coefficient for CH\(_3\)S reacting with several gases. Most of the experiments involved photodissociation of CH\(_3\)SH at 193 nm in a high pressure of SF\(_6\). This avoided problems with O\(_3\) absorption at 248 nm. The \(3^2_0\) transition was pumped at 366.0 nm and \(0^0_0\) reemission was monitored at 449 nm (\(3^0_6\) transition). The time delay between the excimer and dye lasers was varied to determine the decay of the CH\(_3\)S radical. No reaction with either O\(_2\) or O\(_3\) could be found (\(k_{O_2} < 8 \times 10^{-14}\) cm\(^3\) molec\(^{-1}\) s\(^{-1}\)) and the fast reaction with NO\(_2\) was confirmed.

References
OXIDATION OF THE H₂S BY THE ATMOSPHERE COMPONENTS.

V.P. BULATOV, N.Z. KOZLINER, O.M. SARKISOV.

Institute of Chemical Physics, Academy of Sciences, Moskow, USSR.

Absorption spectra of HSO radicals were detected after flash photolysis of the mixtures of H₂S+NO₂ and H₂S+O₂. Intracavity laser spectroscopy technique was used for HSO spectra observation.

It was deduced from kinetics of HSO in a system H₂S/NO₂ that the formation and decay of HSO is due to the reactions (1) and (2) respectively:

\[ (1) \text{SH} + \text{NO} \rightarrow \text{HSO} + \text{NO} \quad k = (2.4 \pm 0.4) \times 10^{-11} \text{ cm}^2 \text{s}^{-1} \]

\[ (2) \text{HSO} + \text{NO} \rightarrow \text{SO} + \text{HNO} \quad k = (4 \pm 0.4) \times 10^{-13} \text{ cm}^2 \text{s}^{-1} \]

The SH radicals were formed under flash photolysis of hydrogen sulphide. The reaction (3) \( \text{SH} + \text{HO} \rightarrow \text{HSO} + \text{OH} \) is assumed to be the most probable source of HSO for the H₂S/O₂ system, with \( k = 4 \times 10^{-13} \text{ cm}^2 \text{s}^{-1} \).

The HSO radicals kinetics dependence on NO, O₂, and CO concentration for the H₂S/NO₂ system was studied. The rate constants of the following reactions were measured:

\[ \text{HSO} + \text{HSO} \rightarrow \text{products}, 3 \times 10^{-13} \text{ cm}^2 \text{s}^{-1} \]

\[ \text{SH} + \text{NO} + \text{M} \rightarrow \text{HSNO} + \text{M}, 5.5 \times 10^{-13} \text{ cm}^2 \text{s}^{-1} \text{ (at 13 torr)} \]

\[ \text{HSO} + \text{O} \rightarrow \text{SO} + \text{OH}, 1.7 \times 10^{-14} \text{ cm}^2 \text{s}^{-1} \]

The rate constant of the reaction \( \text{SH} + \text{O} \rightarrow \text{HSO} \) is estimated to be \( 1.3 \times 10^{-14} \text{ cm}^2 \text{s}^{-1} \).

Basing on our results we suggest the following mechanism of H₂S transformation in the troposphere: H₂S \( \rightarrow \text{SH} \rightarrow \text{HSO} \rightarrow \text{SO} \).
Relaxation and Reactions of NCO (X 2π).

C.J. Astbury, G. Hancock and K.G. McKendrick
Physical Chemistry Laboratory, Oxford University, Oxford, U.K.

The pulsed infrared multiple photon dissociation of phenyl isocyanate PhNCO, results in two dissociation channels:

\[
\text{PhNCO} \rightarrow \text{PhN} + \text{CO} \\
\text{PhNCO} \rightarrow \text{Ph} + \text{NCO}
\]

Both PhN and NCO radicals have been detected in their ground electronic states by laser induced fluorescence. For the NCO (X 2π) radical, this production and detection method can be used to study its removal rate constants, but before this can be done, the behaviour of any vibrationally excited states of the radical produced by IRMPD needs to be studied, as relaxation of these levels into the probed ground vibrational state will affect the overall removal rate measured.

The time dependent behaviour of the first three bending vibrational levels, \( ^2\Pi(00^10) \), \( ^2\Sigma(01^20) \) and \( ^2\Sigma(02^30) \) has been studied at a fixed total pressure of 5 Torr of He, Ne, Ar and Kr, with 5m Torr PhNCO precursor. Figure 1 shows the behaviour in Ar and Kr. The population of the lowest vibrational level, \( (00^10) \), rises substantially after the termination of the infrared laser pulse (~ 5μs) and the higher levels show an initial increase and a significant decline, with the timescale becoming compressed and the extent of decline greater for successively higher levels. This behaviour suggests collisional relaxation of the nascent vibrational distribution in a cascade fashion proceeding towards a room temperature distribution. What however is clear is that the collisional processes are faster in Kr than in Ar (seen, for example, in the rates of decline of the signals for the vibrationally excited levels of Fig. 1): from measurements in Ne and He the efficiencies of the relaxation processes were found to be in the order Ne < He < Ar < Kr. Numerical values were found from a simple model of the
relaxation processes, and fig. 1 shows the fits of this model to the data.

The relative rates of the processes with rare gases are not the same as those observed for vibrational relaxation of similar closed shell molecules, OCS and CO$_2$ [1], in which a monotonic decrease in quenching rate constant with mass of rare gas is seen, as predicted by theories of energy transfer controlled by short range repulsive forces. An electronically non-adiabatic mechanism, similar to that proposed for quenching of OH (X$^2$H) by Ar [2], may occur with the heavier rare gases, with the approaching atom splitting the degenerate vibronic state so that a curve crossing mechanism ensues, possibly induced by spin-orbit coupling and thus increasing in efficiency with mass of rare gas.

Vibrational relaxation of the nascent NCO species was found to be extremely rapid in the presence of N$_2$O, the $v_2$ frequency of which is almost resonant with that of NCO. Kinetic measurements of the removal rate of NCO with NO were carried out in the presence of 5 Torr N$_2$O, and yielded straightforward kinetic behaviour. The rate constant at 298K for the process

$$\text{NCO (X}^2\text{H}) + \text{NO} \rightarrow \text{products}$$

was measured to be $(3.4 \pm 0.3) \times 10^{-11}$ cm$^3$ molecule$^{-1}$s$^{-1}$, agreeing well with a recent direct determination by Perry [3].

References

   115 (1985) 60.
Fig. 1. Time dependences of the populations of the (00\textsuperscript{1}0), (01\textsuperscript{2}0) and (02\textsuperscript{3}0) of NCO (X) in the presence of 5 Torr Ar and Kr. Open circles are experimental observations, full lines are predictions of a simple cascade relaxation model. The relaxation processes can be seen to be faster in Kr than in Ar.
KINETIC MEASUREMENTS OF THE NCO RADICAL REACTION WITH ETHENE OVER AN EXTENDED TEMPERATURE RANGE

Robert A. Perry
Combustion Research Facility
Sandia National Laboratories
Livermore, California 94550, USA

This paper describes current research that employs a laser photolysis/laser-induced fluorescence technique to measure absolute rate constants for reactions of NCO radicals with ethene. Few studies are presently available for the reaction of NCO with combustion species. Ethene is an interesting species to study because of both the major role it plays in combustion chemistry and its role as a model unsaturated hydrocarbon.

NCO radicals are produced using a fluorine, or ArF, excimer laser to photodissociate HNCO in a flowing gas mixture of HNCO:Ar:Reactant at total pressure (primarily argon) of 10-400 torr. An argon-ion-pumped ring dye laser operating with stilbene-3 dye at 416.8 nm (100 mW) is used to pump the \( \lambda \nu (1,0,0) + X \rho (0,0,0) \) transition. The resulting fluorescence, measured at right angles to the crossed laser beams, is monitored at 438.5 nm (FWHM=8.0 nm).

Absolute rate constants for the reaction of NCO radicals with ethene were measured as a function of temperature and pressure. The rate in the high-pressure limit for the reaction of NCO with ethene was observed to decrease with increasing temperature with the best fit to the data (T=295-447 K) given by the following expression:

\[ k = 3.0 \times 10^{-12} e^{-[230+300]/RT} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \]

At temperatures greater than 447 K a rapid reduction in the rate was observed, and was interpreted as a rapid decomposition of the adduct formed. Continuing experiments will address the reaction mechanism at temperatures greater than 650 K. I will discuss these measurements and their implications.

Direct Rate Studies of HCO Radical Reactions

J.E. Baggott, H.M. Frey, P.D. Lightfoot and R. Walsh
Department of Chemistry, The University, Whiteknights, P.O. Box 224,
Reading RG6 2AD, U.K.

1. Introduction

The formyl radical is an important intermediate in the atmospheric chemistry of pollutants and in combustion systems. Numerous direct rate studies have been reported\(^1\)\(^2\) and reliable rate constants are available for many of the more important HCO radical reactions. However, apart from HCO radical recombination, few radical-radical reactions involving HCO have been studied. We present here an investigation of the reaction

\[
\text{HCO} + \text{CH}_3 \rightarrow \text{products}
\]  

(1)

using a combination of 308 nm excimer laser flash photolysis of acetaldehyde and CW dye laser resonance absorption. Two conflicting values for the room-temperature rate constant of reaction (1) have been reported. Nadtochenko et al.\(^3\) obtained the value \((2.3 \pm 1.0) \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\) for \(k_1\) which should be contrasted with the value \((4.4 \pm 1.6) \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\) reported more recently by Melenко.\(^4\) Our preliminary results indicate a value for \(k_1\) between these extremes.

2. Experimental

The experimental arrangement follows closely that used in recent direct rate studies by Langford and Moore,\(^2\) with the exception that we used a different photolysis geometry. 308 nm radiation from a XeCl excimer laser passed through the sample cell at right angles to the dye laser beam which was multipassed (typically 48 passes giving a total path length of ca. 6 m). The dye laser radiation was tuned to the rotational band head of the \((0,0,0) \rightarrow (0,0,0)\) band in the \(X - \tilde{X}\) system of HCO at 5614.5 nm,\(^5\) and its intensity was monitored by a fast photodiode. The production and subsequent decay of HCO from the flash photolysis of acetaldehyde was captured on a transient recorder and passed to a microcomputer for signal averaging. Fig. 1 gives an example of a decay trace obtained by averaging signals resulting from 100 excimer laser shots.
Results and Discussion

The decay of HCO radicals produced in the photolysis of acetaldehyde is determined by reaction (1) and the radical recombination reactions of HCO and of CH₃. The resulting decays cannot be integrated analytically. In order to extract values for $k_1$ we have therefore combined numerical integration routines with non-linear least-squares fitting, requiring input values for the rate constants of both HCO and CH₃ radical recombination appropriate to the conditions of temperature and pressure in our experiments. HCO radical recombination rate constants have been determined by Veyret et al. and appear to be independent of both temperature and pressure. We have performed separate experiments using 308 nm photolysis of glyoxal to determine HCO radical recombination rates on our own apparatus. Our preliminary results are in good agreement with those of Veyret et al. For methyl radical recombination, we have used the extensive data of Pilling and co-workers.

Our analyses yield a value for $k_1$ of $1.0 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$, which lies between the results of Nadtochenko et al. and Mullenko. We will present full details of our experimental techniques and the results for both HCO radical recombination and HCO + CH₃ as a function of pressure.

References

Fig. 1. Time dependence of the concentration of HCO radicals produced in the 308 nm photolysis of 50 Torr of acetaldehyde. Average of 100 excimer laser shots.
Reactions of CH(\textsuperscript{2}H) radicals with selected species at low pressure

K.H. Becker and P. Wiesen
Physikalische Chemie / FB 9
Bergische Universität - Gesamthochschule Wuppertal
D-5600 Wuppertal 1, FRG

and

K.D. Bayes
Department of Chemistry and Biochemistry
University of California
Los Angeles, CA 90024, USA

The methyne radical plays an important role as a very reactive intermediate in hydrocarbon combustion processes \cite{1} as well as in planetary atmospheres \cite{2}. It is thought responsible for soot-formation \cite{4,5}, chemilumination \cite{7,8} and the prompt NO-formation \cite{9} occurring in hydrocarbon oxidations.

The present work is concerned with direct measurements of bimolecular rate constants of CH(\textsuperscript{2}H) reactions at a total pressure of 2 Torr.

CH radicals in their ground state \textsuperscript{2}H were generated by 248 nm laser photolysis of CH\textsubscript{2}Br\textsubscript{2}/Ar mixtures under flow conditions and detected by LIF as described previously \cite{10}. H atoms were generated in a microwave discharge of H\textsubscript{2}/Ar mixtures. Their concentrations were calibrated by titration with NO\textsubscript{2}. The CH decay was followed under pseudo first order conditions by varying the delay time between the photolysis and the probe laser.

Table I presents the obtained bimolecular rate constants at 295 \pm 3 K and a total pressure of 2 Torr in comparison with literature data.
In the case of \( \text{H}_2 \) as reactant, the semi-log plots of the \( \text{CH} \) decay show a non-linearity that can be explained by a double exponential decay due to an additional population of the \( \text{CH} \) ground state from a precursor, which could be the metastable \( \text{CH}(a^4\Sigma^-) \) state, according to the following reaction scheme:

\[
\begin{align*}
\text{CH}_2\text{Br}_2 & \rightarrow \text{n} \cdot \text{h} \nu \rightarrow \text{CH}(a^4\Sigma^-) \rightarrow \text{CH}(X^2\Pi) \\
\text{CH}(a^4\Sigma^-) & + \text{H}_2 \rightarrow \text{CH}(X^2\Pi) + \text{H}_2 \\
\text{CH}(X^2\Pi) & + \text{H}_2 \rightarrow \text{products}
\end{align*}
\]

The obtained rate constants show that at lower \( \text{H}_2 \) concentrations the depletion of \( \text{CH} \) is controlled by the reaction of \( \text{CH}(a^4\Sigma^-) + \text{H}_2 \) after a certain time period.

The reaction of hydrogen atoms with \( \text{CH}(X^2\Pi) \) radicals was predicted to form carbon atoms via reaction (1) /8,25/.

\[
(1) \quad \text{CH}(X^2\Pi) + \text{H}(^2\text{S}) \rightarrow \text{C}(^3\text{P}) + \text{H}_2(X^1\Sigma^+)
\]

In this work, for the first time, the over all rate constant for the reaction of \( \text{CH} + \text{H} \) was determined. The obtained value of \( 5 \cdot 10^{-12} \text{ cm}^3\text{s}^{-1} \) supports reaction (1) because the approximately calculated 3rd order rate constant of \( 10^{-28} \text{ cm}^6\text{molecule}^{-2}\text{s}^{-1} \) would probably be too large for the recombination step at a total pressure of 2 Torr.
Table 1:
Rate constants for the reactions of CH\(\text{I}^2\) radicals with selected species \(R\) at a total pressure of 2 Torr

<table>
<thead>
<tr>
<th>(R)</th>
<th>(k , \text{(10}^{-12} \text{ cm}^3\text{ mole}^{-1}\text{s}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\text{this work})</td>
</tr>
<tr>
<td></td>
<td>(k_{\text{exp}})</td>
</tr>
<tr>
<td>(\text{D}_2)</td>
<td>5.9 ± 0.05 (^{(a)})</td>
</tr>
<tr>
<td></td>
<td>5.3 ± 0.05 (^{(a)})</td>
</tr>
<tr>
<td></td>
<td>0.01 (\pm 0.02) (^{(a)})</td>
</tr>
<tr>
<td></td>
<td>8.0 ± 1.0 (^{(a)})</td>
</tr>
<tr>
<td></td>
<td>3.3 ± 0.4 (^{(a)})</td>
</tr>
<tr>
<td>(\text{N}_2)</td>
<td>0.008 (\pm 0.003) (^{(a)})</td>
</tr>
<tr>
<td></td>
<td>0.1 (^{(a)})</td>
</tr>
<tr>
<td></td>
<td>0.003 (\pm 0.00) (^{(a)})</td>
</tr>
<tr>
<td></td>
<td>0.0008 (^{(a)})</td>
</tr>
<tr>
<td></td>
<td>0.0001 (\pm 0.0006) (^{(a)})</td>
</tr>
<tr>
<td></td>
<td>0.02 (\pm 0.0015) (^{(a)})</td>
</tr>
<tr>
<td>(\text{N}_2\text{O})</td>
<td>0.6 (\pm 0.1) (^{(a)})</td>
</tr>
<tr>
<td></td>
<td>0.5 (^{(a)})</td>
</tr>
<tr>
<td>(\text{C}_2\text{H}_2)</td>
<td>3.4 (\pm 2) (^{(a)})</td>
</tr>
<tr>
<td></td>
<td>2.2 (\pm 0) (^{(a)})</td>
</tr>
<tr>
<td></td>
<td>4.4 (\pm 2) (^{(a)})</td>
</tr>
<tr>
<td>(\text{H}_2)</td>
<td>0.1 (\pm 1) (^{(a)})</td>
</tr>
<tr>
<td></td>
<td>2.2 (\pm 0.3) (^{(a)})</td>
</tr>
<tr>
<td></td>
<td>2.4 (\pm 0.5) (^{(a)})</td>
</tr>
<tr>
<td></td>
<td>0.79 (\pm 0.2) (^{(a)})</td>
</tr>
<tr>
<td></td>
<td>1.49 (\pm 0.1) (^{(a)})</td>
</tr>
<tr>
<td>(\text{H})</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>1.21 (^{(1)})</td>
</tr>
<tr>
<td></td>
<td>0.00003 (^{(2)})</td>
</tr>
<tr>
<td></td>
<td>1.25 (^{(1)})</td>
</tr>
</tbody>
</table>

Footnotes to Table 1:

a) Estimated total pressure 10 Torr
b) Total pressure 100 Torr
c) Total pressure 1 Torr
d) Total pressure 2 Torr
e) Total pressure 25 Torr
f) Estimated at 4500 K
g) Estimated at 4000 K for the reaction CH + H \(\rightarrow\) C + H\(_2\)
h) Estimated at 4000 K for the reaction CH + H \(\rightarrow\) CH\(_2\)
i) Estimated from self-absorption experiments of CH generated in pulsed discharge of methane
References:

/ 1/ C.P. Fontana, 11th Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1971) p. 111
/ 3/ Interstellar Molecules (Symposium - International Astronomical Union; no. 87), 1979
/ 6/ A.F. Calcito, 8th Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1962) p. 104
/ 9/ E. Israeh, 10th Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1973) p. 767
/ 18/ F.T. Smith, Ph.D. thesis, West Virginia University, Morgantown, 1982
/ 20/ H.R. Raman and M.C. Lin, J. Phys. Chem. 87(40), 3913 (1983)
/ 25/ J. Puciatro and C. Vinckler, 15th Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1974) p. 969
The temperature and pressure dependence of the reaction

\[ \text{CH}_3 + \text{O}_2 + \text{H} \rightarrow \text{CH}_3\text{O}_2 + \text{H} \]

M. Keiffer, M.J. Pilling and M.J.C. Smith

Physical Chemistry Laboratory, South Parks Road,
Oxford, OX1 3OZ.

The reaction between the methyl radical and oxygen is an important process in combustion and is implicated in the transition from low temperature to high temperature mechanisms. The aim of the present work is to determine the pressure and temperature dependence of the low temperature peroxy radical formation process:

\[ \text{C}_3 + \text{O}_2 + \text{H} \rightarrow \text{CH}_3\text{O}_2 + \text{H} \]  \hspace{1cm} (1)

and hence allow good estimates to be made of \( k_1 \) under combustion conditions.

In a recent investigation\(^1\), we demonstrated that previous flash photolysis studies had overestimated \( k_1 \) because of interference from the reaction:

\[ \text{CH}_3 + \text{CH}_3\text{O}_2 \rightarrow 2\text{CH}_3\text{O} \]  \hspace{1cm} (2)

We devised a technique to enable data to be obtained by laser flash photolysis/absorption spectroscopy, at low \( \text{[CH}_3\text{]}_t = \text{O}_2 \) concentrations, where reaction (2) makes only a small contribution, and extrapolated to \( \text{[CH}_3\text{]}_t = \text{O}_2 \) where this contribution is zero. When the resulting values of \( k_1 \), obtained in an argon diluent over the pressure range
32 \leq P/\text{Torr} \leq 488, were combined with the low pressure data of Selzer and Bayes, and analysed using the Troe factorization technique, they gave a limiting high pressure rate constant, $k_{1}^{*}$, of $1.05 \times 10^{-12}$ cm$^3$ molecule$^{-1}$ s$^{-1}$, significantly below the value obtained by Cobos et al. at very high pressures.

This technique has been applied to the determination of $k_{1}$ over the temperature and pressure ranges 298 \leq T/\text{K} \leq 582, 20 \leq P/\text{Torr} \leq 600$. A preliminary analysis of the data at temperatures up to 474 K gives a temperature independent high pressure limit, $k_{1}^{*}$, of $1.12 \times 10^{-12}$ cm$^3$ molecule$^{-1}$ s$^{-1}$, whilst $k_{1}^{0}$, the low pressure limit may be represented by $k_{1}^{0} = 1.29 \times 10^{-25} T^{-2.23}$ cm$^6$ molecule$^{-2}$ s$^{-1}$. At higher temperatures, $k_{1}^{*}$ appears to fall, although it is obtained with reduced precision, because the data are further into the fall-off region. Techniques for analysing the T,P dependence of a combination reaction of this type will be discussed.

Data obtained at higher $[\text{CH}_3]_c/[O_2]$ ratios enable $k_{2}$ to be determined. Two techniques have been employed, one relying on an approximate analytic solution at low ratios and one employing numerical integration at higher ratios, where the analytic solution becomes invalid.

References

KINETICS OF THE REACTIONS OF POLYATOMIC FREE RADICALS WITH MOLECULAR CHLORINE

Raimo S. Timonen,* John J. Russell, and David Gutman
Department of Chemistry, Illinois Institute of Technology
Chicago, Illinois 60616, U.S.A.

The kinetics of twelve reactions between carbon-centered polyatomic free radicals with molecular chlorine have been studied as a function of temperature. The free radicals were generated by the pulsed 193 nm photolysis of suitable precursors in a tubular reactor coupled to a photoionization mass spectrometer. Free-radical decay profiles were monitored as a function of chlorine concentration in real-time experiments to obtain the rate constant for the reaction under study. Rate constants were also measured as a function of temperature (up to 712 K) to obtain Arrhenius parameters. With one exception (the CH$_3$ + Cl$_2$ reaction), this study is the first to isolate these R + Cl$_2$ reaction for direct investigation.

The reactions of different groups of free radicals were studied: those involving alkyl radicals (CH$_3$, C$_2$H$_5$, i-C$_3$H$_7$, and t-C$_4$H$_9$), halogenated methyl radicals (CF$_3$, CF$_2$Cl, CFCl$_2$, and CCl$_3$), unsaturated hydrocarbon free radicals including ones which are resonance stabilized (C$_2$H$_3$, C$_3$H$_7$, and C$_3$H$_5$), and one reaction involving an acyl radical (HCO). The results obtained are presented in the table below and are plotted in Figure 1.

The Arrhenius parameters are consistent with the formation of a polar transition state whose energy is raised or lowered by the presence of electron withdrawing or donating groups.
attached to the radical center. The activation energies are determined in part by the exothermicity of the reaction. Details of the experiments, the results obtained, and their interpretation will be presented.

* Permanent address, Department of Physical Chemistry, University of Helsinki, Finland.
+ Research supported by the Chemistry Division, National Science Foundation

SUMMARY OF ARRHENIUS RATE CONSTANT PARAMETERS FOR THE REACTIONS OF POLYATOMIC FREE RADICALS WITH MOLECULAR CHLORINE

<table>
<thead>
<tr>
<th>R</th>
<th>$^0\Delta H$ (kJ/mole)</th>
<th>$T$ Range</th>
<th>$\log(A/\text{cm}^3\text{molec}^{-1}\text{s}^{-1})$</th>
<th>$E_a$ (kJ/mole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t$-$C_4H_9$</td>
<td>$-108$</td>
<td>298-498</td>
<td>$-10.40 \pm 0.26$</td>
<td>$0 \pm 2$</td>
</tr>
<tr>
<td>$i$-$C_3H_7$</td>
<td>$-112$</td>
<td>298-498</td>
<td>$-10.60 \pm 0.26$</td>
<td>$-2 +3$</td>
</tr>
<tr>
<td>$C_3H_3$</td>
<td>$-62$</td>
<td>487-693</td>
<td>$-11.14 \pm 0.31$</td>
<td>$21 \pm 4$</td>
</tr>
<tr>
<td>$C_3H_5$</td>
<td>$-49$</td>
<td>487-693</td>
<td>$-10.81 \pm 0.26$</td>
<td>$18 \pm 3$</td>
</tr>
<tr>
<td>$C_2H_5$</td>
<td>$-110$</td>
<td>295-498</td>
<td>$-10.90 \pm 0.33$</td>
<td>$-1 \pm 3$</td>
</tr>
<tr>
<td>$C_2H_3$</td>
<td>$-147$</td>
<td>298-435</td>
<td>$-11.06 \pm 0.21$</td>
<td>$-2 \pm 2$</td>
</tr>
<tr>
<td>CHO</td>
<td>$-110$</td>
<td>296-582</td>
<td>$-11.16 \pm 0.24$</td>
<td>$0 \pm 2$</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>$-108$</td>
<td>296-712</td>
<td>$-11.32 \pm 0.24$</td>
<td>$2 \pm 2$</td>
</tr>
<tr>
<td>CF$_3$</td>
<td>$-117$</td>
<td>487-693</td>
<td>$-11.35 \pm 0.35$</td>
<td>$15 \pm 5$</td>
</tr>
<tr>
<td>CF$_2$Cl</td>
<td>$-103$</td>
<td>376-626</td>
<td>$-11.89 \pm 0.24$</td>
<td>$8 \pm 3$</td>
</tr>
<tr>
<td>CFCl$_2$</td>
<td>$-68$</td>
<td>435-693</td>
<td>$-11.86 \pm 0.31$</td>
<td>$14 \pm 4$</td>
</tr>
<tr>
<td>CCl$_3$</td>
<td>$-54$</td>
<td>693 only</td>
<td>$-12.17$</td>
<td>$21$</td>
</tr>
</tbody>
</table>

$k=Ae^{(-E_a/RT)}$. Error limits on Arrhenius parameters indicate maximum uncertainties. Most probable uncertainty in each measured rate constant is $\pm 20\%$. 
Figure 1 Arrhenius plot of Rate Constants of Twelve \( R + \text{Cl}_2 \) Reactions

\[
k(R + \text{Cl}_2) \text{(cm}^3 \text{molec}^{-1} \text{s}^{-1}) \times 10^{12}
\]

\[
\frac{1000}{T} (\text{K}^{-1})
\]
ON THE METHYL RADICAL-INITIATED THERMAL REACTION OF 2,3-DIMETHYLBUTENE-2

L. Kortvész and L. Seres

Institute of General and Physical Chemistry, Józef Attila University, Szeged, Hungary.

Investigation of the radical-initiated gas-phase thermal reactions of highly-branched olefins is relatively simple since the higher oligomer radicals are formed in kinetically insignificant concentrations due to the intramolecular non-bonding interactions present in these radicals.

The methyl radical-initiated thermal reaction of 2,3-dimethylbutene-2 (DMB) was investigated in the temperature range 389-459 K. Preliminary results are described here.

The experiments were carried out in a conventional high-vacuum static system. Bi-tert-butyl peroxide (BTPP) was used as the methyl radical source. The initial concentration ranges were $1.13 \times 10^{-5} \leq [ \text{BTPP} ] / \text{mol dm}^{-3} \leq 1.50 \times 10^{-3}$ and $1.27 \times 10^{-5} \leq [ \text{DMB} ] / \text{mol dm}^{-3} \leq 2.54 \times 10^{-4}$. The reaction products were analysed with an HP 5790A GC equipped with FID. Methane, ethane, acetone, 2,3-dimethylpentene-2 (DMP), 2,2,3,3-tetramethylbutane (TMB), 2,3,3,4,4,5-hexamethyl-1,5-hexadiene (HMH), 2,3,3,5,6-pentamethyl-1,5-heptadiene (PMD) and 2,3,6,7-tetramethyl-2,6-octadiene (TMO) were identified as the main products. tert-Butanol, 2,3-dimethylbutene-1, 2,2,3-trimethylbutene-3 (TB) and some C$_{12}$ and C$_{13}$-monoenes were shown to be formed in minor amounts. The initial rates of formation of the products were determined by the linear least squares method from the product accumulations.

The mechanism of the reaction was proposed on the basis of the product composition. The suggested mechanism was supported by computer simulation.

Most of the products formed in the radical recombination reactions were identified.
The radical concentrations used in the kinetic equations were calculated from the initial rates of formation of these products:

\[
[M] = \frac{r_0(C_2H_6)^{1/2}}{k_c(M,M)^{1/2}} \quad [A] = \frac{r_0(MO)^{1/2}}{k_c(A,A)^{1/2}}
\]

\[
[MOMB] = \frac{r_0(MO)^k_c(M,M)^{1/2}}{r_0(C_2H_6)^{1/2} k_c(M,M,MB)} \quad (1)
\]

where \( M \rightarrow CH_3, \ A \rightarrow \), \( MOMB \rightarrow \), and \( k_c \) is the radical recombination rate coefficient.

The radical is formed in a H-abstraction reaction (H-abstraction by MOMB comprises less than 10%):

\[
OCH + H \rightarrow A + CH_4 \quad (1)
\]

The rate of reaction (1) was calculated from the initial rates of formation of all the products incorporating the a radical, i.e.:

\[
\begin{align*}
    r_1 &= k_1[MOMB][M] = 2(r_0(MO)^{1/2} + r_0(MO)^{1/2}) + r_0(11) + r_0(10)
\end{align*}
\]

for the reaction coefficient ratio, \( k_1/k_c(M,M)^{1/2} \), we obtained:

\[
\log(k_1/k_c(M,M)^{1/2}) = (3.1*0.2) - (30.9*2.7) \text{ kJ mol}^{-1}/\theta,
\]

where \( \theta = RT \ln 10 \).

The MOMB radical is formed by H radical addition to DMB:

\[
DCH + H \rightarrow MOMB \quad (2)
\]

The activation energy of reaction (2) can be calculated from the rate of formation of ethane, TMB and the initial concentration of DMB.

The MOMB radical formed in reaction (2) disappears predominantly in the following two reactions:

\[
H + MOMB \rightarrow TMB \quad (3)
\]

\[
H + MOMB \rightarrow CH_4 \quad (4)
\]
From the rate expressions for reactions (3) and (4) and the expression for $[M]$ (equation 1) we obtain:

$$\frac{r_0(\text{MB})}{r_0(\text{C}_2\text{H}_6)^{1/2}} = \frac{k_2 k_3}{(k_3 + k_4) k_c(M,N)^{1/2}}$$

(11)

From the temperature-dependence of the expression on the left-hand side we get the Arrhenius activation energy of methyl radical addition to DMB: $E_2 = (33.2 \pm 0.8) \text{ kJ mol}^{-1}$. 
The di-tert-butyl peroxide (DTBP)-initiated reaction of 2-methylpropene (B) was studied in the temperature range 392.5-442.6 K and the concentration ranges $3.26 \cdot 10^{-3}$ (B)/mol dm$^{-3}$ $\leq 4.35 \cdot 10^{-3}$ and $3.62 \cdot 10^{-4}$ (DTBP)/mol dm$^{-3}$ $\leq 6.09 \cdot 10^{-4}$.

The products of the reaction up to C$_{10}$ were identified as methane, ethane (ETH), ethene, propene, 2,2-dimethylpropane, 2-methylbutane, 2-methylbutene-2, 2,2-dimethylbutane (DMBA), 2,5-dimethylhexadiene-1,5, 2,4,4-trimethylhexene-1, 2,2,4,4-tetramethylhexane, 3,3,4,4-tetramethylhexane (TMHA), acetone and tert-butanol.

The initial rates of formation of all of the above products were determined from measurements in the early stages of the reaction, where the product concentration vs. time plots are linear. Most products are formed in different reactions of methyl (M), 1,1-dimethylpropyl (MB), 1,1,3,3-tetramethylpentyl (TMHP) and 2-methylallyl (MA) radicals.

The radicals MA and MBB are formed in the first two steps of the oligomerization:

\[
\text{M} + \text{B} \rightarrow \text{MB} \\
\text{MB} + \text{B} \rightarrow \text{MBB}
\]

while MA is a product of \text{H} abstraction by radicals:

\[
\text{R} + \text{B} \rightarrow \text{RH} + \text{MA}
\]

Rate expressions were derived for product formation, based upon a mechanism involving all the possible combination, disproportionation and \text{H} abstraction reactions of the above radicals. (See e.g. the simplest model we were studying,
Scheme 1, where $k_c$ is the rate coefficient of recombination.

The systems of algebraic equations relating to the various models were solved, using nonlinear least squares (by the Simplex method), to yield the kinetic quantities of the rate expressions.

Scheme 1

\[ \begin{align*}
2H & \rightarrow ETH \\
v(ETH) & = k_c(M,H) [H]^2 \quad (1) \\
M + MB & \rightarrow DHBA \\
v(DHBA) & = 2 \left( k_c(M,M) k_c(MB,MB) \right)^{1/2} [H][MB] \quad (2) \\
MB + MB & \rightarrow IMBA \\
v(IMBA) & = k_c(MB,MB) [MB]^2 \quad (3) \\
\end{align*} \]

Let us focus our attention on the simple model shown in Scheme 1. The rate coefficients of cross-combination reactions of small radicals are known to obey the "geometric mean rule". However, no information is available on the validity of this rule for sterically hindered radicals such as MB or MBB. Furthermore, reaction (1) is in its pressure-dependent region under the present conditions (∼1 kPa overall pressure), while reactions (2) and (3) are believed to be in the high-pressure region.

Consequently, $k_c(M,MB)$ would have different values in equation (1') and equation (2'). In order to overcome these difficulties, we chose to retain the square-root dependence of $k_c(M,MB)$ on $k_c(M,M)$ and $k_c(MB,MB)$, but in order to allow for the above effects a new parameter ($G$) is used instead of $z$ in equation (2'), i.e.

\[ k_c(M,MB) = G \left( k_c(M,M) k_c(MB,MB) \right)^{1/2} \quad (4') \]

All the radical concentrations and kinetic quantities were treated as parameters in the systems of algebraic equations, and the optimization was made by using Box's method.

If we assume that the "geometric mean rule" holds for the
radicals present in this system at high pressures (i.e., steric hindrance does not influence its validity), we have an easy way to calculate the high-pressure recombination rate constants from the data obtained at any pressure:

\[ G \left\{ k_c(H,M)_p k_c(HB,MB)_p \right\}^{1/2} = 2 \left\{ k_c(H,M)_\infty k_c(HB,MB)_\infty \right\}^{1/2} \]

where the indices \( p \) and \( \infty \) refer to the low-pressure and the high-pressure rate coefficients, respectively.

On rearrangement we obtain

\[ k_c(H,M)_\infty = \left( \frac{G}{Z} \right)^2 k_c(H,M)_p \]

In order to acquire information on the correlated errors involved in the evaluation of a large number of parameters simultaneously, different models were used. (The model shown in Scheme I has 21 parameters calculated from 27 equations, while the largest one has 71 parameters calculated from 99 equations.) Also, some input parameters (the initial values, the higher and lower limits of the parameters, and the number of iterations) were used with different values in different runs for each model.

Most of the rate coefficients obtained are close to the average (i.e., within 20 p.c. for the model shown in Scheme I), except for those obtained in the 71-parameter model (50 p.c.), where all the combination and disproportionation reactions were considered to be temperature-dependent.

The high-pressure recombination reaction rate coefficients obtained are:

- Radical
  - methyl: \( \log k_c/\text{dm}^3\text{ mol}^{-1}\text{ s}^{-1} \) \( = 10.45 \pm 0.20 \)
  - 1,1-dimethylpropyl: \( 9.2 \pm 0.3 \)
  - 1,1,3,3-tetramethylpentyl \( ^* \): \( 8.9 \pm 0.6 \)
  - 2-methylallyl: \( 9.0 \pm 0.4 \)

Since these rate coefficients are in good agreement with those obtained for similar radicals, the assumption made, i.e., that the "geometric mean rule" is valid for bulky and unsaturated radicals, seems justified.

\( ^* \) assuming \( G(H,H) = G(H,HB) \)
Kinetics of the Chlorination of C₂H₅Br and the Competitive Bromination of C₂H₅Cl, CH₂CHCl₂, C₂H₅Br, and CH₃CHBr₂.

E. Tschukow-Roux, D.R. Salomon, F. Faraji, and K. Miyokawa

Department of Chemistry, University of Calgary,
Calgary, Alberta, Canada T2N IN4

The competitive photobromination of C₂H₅Cl, CH₂CHCl₂, C₂H₅Br, and CH₃CHBr₂ against C₂H₆ as primary standard has been investigated between 32 and 95°C. Over this range of temperature bromine atom attack in all cases occurs almost exclusively at the halogen substituted site, leading to very simple kinetics:

\[ RH + Br \rightarrow R + HBr \]
\[ R + Br₂ \rightarrow RBr + Br \]

where \( R \) represents CH₂CHX or CH₂CX₂ (X = Cl, Br) radicals. Using the revised rate parameters for the bromination of ethane reported by Amphlett and Whittle, absolute Arrhenius parameters for \( \alpha \)-hydrogen abstraction have been obtained and are listed in Table I.
TABLE I. Hydrogen Abstraction by Bromine Atoms

<table>
<thead>
<tr>
<th>Reactant</th>
<th>$\log_{10}(A/cm^3 \text{ mol}^{-1} \text{ s}^{-1})$</th>
<th>$E/k\text{cal mol}^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_2H_6$</td>
<td>14.135</td>
<td>13.66</td>
</tr>
<tr>
<td>$CH_3CH_2Cl$</td>
<td>12.182</td>
<td>9.14</td>
</tr>
<tr>
<td></td>
<td>12.545</td>
<td>9.65</td>
</tr>
<tr>
<td>$CD_3CH_2Cl$</td>
<td>12.535</td>
<td>9.65</td>
</tr>
<tr>
<td>$CH_2CHCl_2$</td>
<td>11.806</td>
<td>8.00</td>
</tr>
<tr>
<td>$CH_3CH_2Br$</td>
<td>12.645</td>
<td>10.58</td>
</tr>
<tr>
<td>$CH_2CHBr_2$</td>
<td>11.475</td>
<td>8.11</td>
</tr>
</tbody>
</table>

$^a$ Primary standard, Ref. 1.

In a companion study the photochlorination of $C_2H_5Br$ has also been investigated in the temperature range 0 to 90°C, and shows a different mechanism than that observed in the chlorination of chloro- and fluoroethanes$^{2,3}$.

The bromoethyl radical produced from Cl atom attack on the primary hydrogen in $CH_3CH_2Br$ is found to be unstable even at 0°C and decomposes to $C_2H_4$ plus Br. This causes a chain transfer which propagates parallel to the 'normal' chlorination mechanism. The principal products observed are $CH_3CHBrCl$, $C_2H_4$, $CH_3CHBr_2$, and $CH_3CHCl_2Br$, the yields of the latter three being pressure dependent. Trace amounts of $CH_3ClCH_2Cl$ and $CH_2BrCH_2Br$ were also observed. These results may be interpreted in terms of the reaction scheme:
Application of the usual stationary state approximation yields the relationships

\[
\frac{[\text{CH}_3\text{CHBrCl}]}{[\text{C}_2\text{H}_4]} = \left(\frac{k_1}{k_2} - 1\right) + \left(k_1 k_5/k_2 k_6\right)[M]
\]

\[
\frac{[\text{C}_2\text{H}_6]}{[\text{CH}_3\text{CHBrCl}]} = \frac{k_5}{k_6} \frac{1}{[M]}
\]

Plots of these product ratios against [M] or 1/[M], respectively, where [M] is an inert additive (C}_2F_6) present in excess, yielded straight lines. From the slopes and intercept we obtained at 50°C, \(k_5/k_6 = 2665\) Torr, and \(k_1/k_2 = 3.41\), a reasonable value for \(\alpha\) vs. \(\beta\) hydrogen abstraction.

References
The Chemistry of Triplet Vinylidene Radical: Reaction with Molecular Oxygen


Chemical reactions of small electronically excited hydrocarbon radicals, aside from those of the low-lying singlet methylene species, have not been extensively studied probably because these species are difficult to prepare and characterize. Methylene, of course, is the smallest of the series of unsaturated hydrocarbon radicals. However, the existence and identification of a long-lived carbene, i.e., the electronically excited vinylidene radical (H₂C=C), has been documented in recent work from this laboratory. The chemistry of vinylidene remains virtually unknown. The ground state singlet (¹A₁) has a lifetime to isomerization to acetylene of less than 1 ps and is unlikely to be involved in chemical reactions. The first excited triplet state has a large potential barrier to isomerization that has been calculated to be about 45 kcal/mol and may be expected to be long-lived. In earlier experiments the quenching of triplet vinylidene to the ground singlet state has been examined for a series of non-reactive collision partners. In addition, efforts were made to search for a chemical reaction with several possible reactive quenching partners such as H₂ and CH₄. There was no evidence for an abstraction reaction.

It is well known that ground state molecular oxygen reacts rapidly with hydrocarbon free radicals, particularly the spin-allowed reaction with triplet species. If the excited triplet
vinylidene species has properties similar to that of its
methylene homolog, then we might expect a relatively rapid
reaction with oxygen. In the work to be reported here we have
concluded a rate constant and mechanistic investigation of the
title reaction using the vacuum ultraviolet flash photolysis of
vinyl chloride in to produce the triplet vinylidene species.
Vacuum ultraviolet kinetic absorption spectroscopy of CO in its
strong Fourth Positive system was used to monitor product
formation from which it was possible to derive the rate constant
of the reaction. The \( (\text{B}_2 \text{H}_2 \text{C} = \text{C} \) \) was monitored in absorption at
137 nm, acetylene at 152 nm and CO, as noted above, in its (0,0)
transition of the \( \text{B}_2 \text{H}_2 \text{C} = \text{C} \) system at 154 nm.

There are several possible reaction paths, in this
photolytic system, that may lead to CO formation. They include
the reaction of product \( \text{C}_2 \text{H}_2 \) with \( \text{O}(\text{P}) \) that may be formed in the
initial photolytic process as well as the reaction of \( (\text{B}_2 \text{H}_2 \text{C} = \text{C} \) with molecular \( \text{O}_2 \) or with \( \text{O}(\text{P}) \) atoms. The various processes
could be discerned through a combination of temporal profiles,
intensity dependencies, and reaction energetics.

We will discuss the rate constant for the title reaction,
possible production of vibrationally excited CO product and some
comments about the nature of the transition state.

I. A. Fahr and A. H. Laufer, "Photodissociation of Vinyl
Chloride: Formation and Kinetics of VinylideneH_2C=C(\text{B}_2)\), J.

Acknowledgement: This work was supported, in part, by the
Planetary Atmospheres Program of the NASA, and carried out at the
National Bureau of Standards.
ON THE KINETICS AND THERMOCHEMISTRY OF CYANOACETYLENE AND THE ETHYNYL RADICAL

Joshua B. Halpern, and George E. Miller, Department of Chemistry, Howard University, Washington, DC, USA and Winston Nottingham, Department of Chemistry, University of the District of Columbia, Washington, DC, USA

The cyanoacetylenes are important odd nitrogen species found in interstellar space (1). Recently, ethynyl has also been observed (2). Moreover, the Voyager mission showed that HCC-CN is the second most important odd nitrogen species in the atmosphere of Titan (3). We report here on a measurement of the bond strength of dicyanoacetylene, which can be used to find the heat of formation of the ethynyl radical. The lowest energy channel for dissociation of cyanoacetylene is then found to be

(1) HCC-CN + h → H + CC-CN ΔH = 506 ± 21 kJ/mole rather than

(2) HCC-CN + h → CN + CC-H ΔH = 598 ± 12 kJ/mole

We also report on a measurement of the reaction rate constant for

(3) CN + HCC-CN → NC-CN + CC-H ΔH = 58 ± 16 kJ/mole

of the order of 1 x 10^-11 cm^3/molecule-sec. This was proposed as the source of C_2N_2 in Titan’s atmosphere to replace (4,5)

(4) CN + HCN → NC-CN + H ΔH = -37 ± 8 kJ/mole

The rate of reaction 4 was originally estimated to be of the order of 10^-11 cm^3/molecule-sec, but measured to be of the order of 10^-14 cm^3/molecule-sec (6). Work is continuing on measurement of the branching ratios of reactions 1 and 2, and measurement of
the absorption coefficient of cyanoacetylene between 250 and 190 nm.

We used the photodissociative excitation method to measure the bond strength of C$_2$N$_2$. The apparatus was described in Reference 7. The VUV light source was formed by a short, high voltage discharge in argon, which was dispersed through a small VUV monochromator. The threshold for photodissociative excitation of CN (B$^2\Pi_e$) is found to be 141 ± 2 nm. The cutoff is not due to the absorption of C$_2$N$_2$ rising suddenly at this point, or the lamp output suddenly increasing. Using the measured value of 535 kJ/mole for the heat of formation of C$_2$N$_2$ (8) and 101 kJ/mole for the heat of formation of CN (9), we obtain 648 ± 21 kJ/mol for the heat of formation of C$_3$N. This compares with a heat of formation of 533 ± 4 kJ/mol for C$_2$N.

With the heat of formation of HC$_3$N of 355 kJ/mole (10) we obtain the heat of reaction 1. Thus, ethynyl will be produced by photodissociation considerably below the energetic threshold for reaction 2. We are currently measuring the branching ratio between reactions 1 and 2 at 193 nm.

The reaction rate constant of reaction 3 was measured in generally the same manner as in Reference 7. A mixture of 1% C$_2$N$_2$, 1% HC$_3$N and 98% argon was passed through the photolysis cell. C$_2$N$_2$ was used as the CN source because the yield of CN radicals at 193 nm was many orders of magnitude higher than for HC$_3$N. Decay rates were measured under pseudo-first order conditions at several pressures. The rates were plotted as a
function of the cyanoactylene pressure to extract the rate constant for reaction 3.

This work was sponsored by NASA. GEM acknowledges the support of the United States National Science Foundation.

References
THE RADICAL-RADICAL NF₂ REACTIONS

Bedjanian Yu.R., Gershenson Yu.M., Kishkovitch O.P., Rozenshtein V.B.

Institute of Chemical Physics, Moscow 117977, USSR

The experiments were carried out in a flow-tube apparatus combined with EPR/LMR - spectrometer [1]. The NF₂-radicals were obtained in the furnace (500 K).

**NF₂ + OH.** The experimental conditions were: 
\[ p = (4-6) \text{ Torr}, \]
\[ T = 300 \text{ K}, \quad [\text{OH}] \sim 10^{12} \text{ cm}^{-3}, \quad [\text{NF₂}] = (0.6 - 3.7) \times 10^{13} \text{ cm}^{-3}. \]

The OH-radicals were produced in the H + NO₂ reaction. One can put down the obtained rate constant \( k_1 = (1.55 \pm 0.35) \times 10^{-11} \text{ cm}^{3} \text{s}^{-1} \) to the only exotermic channel OH + NF₂ → HF + FNO.

**NF₂ + HO₂-.** The experiments were carried out at T = 300 K, \( p = (0.8 - 16) \text{ Torr} \) \( \left( [\text{He}]/[\text{O}_2] = 1 \right) \), \( \text{HO}_2 = (2-20) \times 10^{11} \text{ cm}^{-3}, \quad [\text{NF}_2] = (0.5 - 10) \times 10^{13} \text{ cm}^{-3}. \)

The HO₂ - radicals were produced in the H + O₂ + M reaction. The rate constant \( k_2 = (2.4 \pm 0.6) \times 10^{-12} \text{ cm}^{3} \text{s}^{-1} \) was measured and the main channel NF₂ + HO₂ → F + OH + FNO was determined.

**NF₂ + NO₂-.** The reaction was studied at T = (300 - 530 \text{ K}), \( p = (0.8 - 60) \text{ Torr} \), \( \text{NO}_2 = (0.3 - 8.6) \times 10^{16} \text{ cm}^{-3}. \)

The rate constant obtained for a channel NF₂ + NO₂ → 2FNO is \( k_3 = 8.6 \times 10^{-14} \text{ s}^{-1}. \)

Formation of molecular hydrogen by the thermal decomposition of n-dialkylperoxides in oxygen.

K.A. SAHETCHIAN, A. HEISS, R. RIGNY, J. TARDIEU de MALEISSYE

Laboratoire de Chimie Générale, C.N.R.S. UA 40870, Tour 55, E 4, Université P. et M. Curie, 4 Place Jussieu, 75252 PARIS CEDEX 05 - FRANCE.

The self-reaction of HO_2 radicals in the gas phase plays a crucial role in atmospheric chemistry, in low temperature combustion and generally in all systems were these radicals are present.

It is established that the recombination rate, at 298 K, depends on the overall pressure and may be modified by some additives such as H_2O vapor or NH_3. Moreover the recombination rate presents a significant negative temperature coefficient, -1.2 kcal.mol^{-1}. The effective rate constant [1] appears as the sum of a bimolecular component and a pressure dependent termolecular one. The yield of H_2O_2 measured in flash-photolysis experiments [2,3] could vary from 29% of the self-reaction expected value (at 760 torr and 278 K in presence of H_2O) to 93% at low pressures (10-25 torr). In order to explain the difference between the expected and the observed values of H_2O_2, several authors have suggested that the formation of H_2 was thermodynamically possible.

Previous investigations [4], carried out in quartz vessels coated by B_2O_3 and treated with the slow reaction H_2/O_2, pointed out that the thermal decomposition in O_2 of some di-n-alkylperoxides produced HO_2 radicals; the self-reaction of these radicals produced simultaneously H_2O_2 and H_2. Alkylperoxides as n(C_7H_15O)_2, n(C_5H_11O)_2 or n(C_4H_9O)_2 were investigated by this way at concentrations ranging from 10 to 100 p.p.m.

The present work was undertaken to support the homogeneous formation of H_2 by a reactive pathway parallel to the H_2O_2 formation. Therefore we have studied the ratio [H_2]/([H_2] + [H_2O_2]) at atmospheric pressure, as a function of 1) the temperature, 2) the ratio P_{O_2}/(P_{O_2} + P_{N_2})
$P_{O_2}$ and $P_{N_2}$ being partial pressures of $O_2$ and $N_2$, 3) the concentration of peroxide ROOR (mainly $n(C_4H_9O)_2$).

An overall 6 l.h$^{-1}$ flow rate of $N_2 + O_2$ was maintained inside the vessel at $AT = 0.50^\circ C$ with a residence time of 130 s. The concentration of ROOR being constant, we have studied the influence of $O_2$ upon the formation of $H_2O_2$ and $H_2$, when $O_2$ was substituted progressively to $N_2$. At vessel outlet, a flow of 4.2 l.h$^{-1}$ was pumped through a microprobe and the condensable species were trapped at 77 K on the finger of a dismountable Dewar. Concentration measurements were performed by using HPLC for ROOR, spectrophotometry at 380 nm for $H_2O_2$ and GC (coupled with a zirconia cell) for $H_2$. The detection threshold of $H_2$ in $O_2$ was lower than 0.1 p.p.m.

The data for six temperatures ranging from 150 to 200$^\circ C$, obtained with different compositions, exhibit no clear dependence of the ratio $[H_2]/([H_2] + [H_2O_2])$ with the vessel temperature. However, a slight decrease can be noticed in the range 150 - 180$^\circ C$, followed by an apparent increase of this ratio between 180 and 200$^\circ C$.

The intermediate temperature range from 170 - 180$^\circ C$ appears the most convenient to study the influence of $O_2$ and ROOR on the formation of $H_2$. With ratios $P_{O_2}/(P_{O_2} + P_{N_2})$ ranging from 1/6 to 5/6 as well with concentrations of ROOR from 30 to 120 p.p.m., no dependence of partial pressures of $O_2$ or peroxide concentration was observed on the relative amount of $H_2$ formed. An average value of $(7.9 \pm 0.8 \%)$, with an error of 1 standard - deviation, was obtained for the ratio $[H_2]/([H_2] + [H_2O_2])$.

Some experiments were made with mixtures of $O_2$ and di-tertiary-butylperoxide at concentrations ranging from 100 to 200 p.p.m. and temperatures from 170 to 190$^\circ C$. Molecular hydrogen was also generated jointly with $H_2O_2$ but the ratio $[H_2]/([H_2] + [H_2O_2])$ was lower, about 1 $\%$.

Recently, static mixtures of $H_2O_2$ 80 $\%$ with $N_2$ or $O_2$ were irradiated by using an ArF exciplexe laser at 193.3 nm. Fluences between 1 and 16 mJ.cm$^{-2}$ with pulses of 30 ns were used during exposure times from 5 to 35 min. In linear photochemistry, heavy absorption of $H_2O$ vapor occurs at 185 nm and extends through shorter wavelengths. The $H_2O_2$ vapor absorption occurs to longer wavelengths, with an absorption coefficient $\beta = 60.10^{-20}$ cm$^{-2}\cdot$ molec.$^{-1}$ at 193 nm. In these conditions, a specific photochemical
Decomposition of \( \text{H}_2\text{O}_2 \) should be possible without \( \text{H}_2\text{O} \) modification; the expected subsequent hydrogen formation proceeding from \( \text{H}_2\text{O}_2 \) exclusively. Unfortunately, under non-linear irradiations which correspond to the laser pulses, important quantities of molecular hydrogen are detected indifferently in the presence of pure \( \text{H}_2\text{O} \) vapor or in \( \text{H}_2\text{O}/\text{H}_2\text{O}_2 \) vapor mixtures. This formation of \( \text{H}_2 \) is likely due to a complicated radical mechanism resulting from a not well clarified multiphotonic UV absorption by \( \text{H}_2\text{O} \) and \( \text{H}_2\text{O}_2 \).

Discussion

The reactions likely to occur in this system are presented in the following mechanism:

\[
\begin{align*}
\text{RO} - \text{OR} & \rightarrow 2 \text{RO} \quad (1) \\
\text{RO} + \text{O}_2 & \rightarrow \text{HO}_2 + \text{product} \quad (2) \\
\text{HO}_2 + \text{HO}_2 & \rightarrow \text{H}_2\text{O}_2 + \text{O}_2 \quad (3\ a) \\
\text{HO}_2 + \text{HO}_2 & \rightarrow \text{H}_2 + 2 \text{O}_2 \quad (3\ b) \\
\text{RO} & \rightarrow \text{H} + \text{product} \quad (4) \\
\text{H} + \text{peroxide} & \rightarrow \text{H}_2 + \text{product} \quad (5) \\
\text{H} + \text{O}_2 + \text{M} & \rightarrow \text{HO}_2 + \text{M} \quad (6) \\
\text{RO} & \rightarrow \text{H}_2 + \text{product} \quad (7)
\end{align*}
\]

The ratio \( [\text{H}_2]/([\text{H}_2] + [\text{H}_2\text{O}_2]) \) is both independent of oxygen and ROOR concentrations; So:

1) Even if \( \text{H} \) is formed during decomposition of ROOR, it would be transformed into \( \text{HO}_2 \) by reaction (6) and not into \( \text{H}_2 \) by reaction (5), which presents a negligible rate as compared to that of reaction (6) [4];

2) The later observation rules out the possibility that \( \text{H} \) or \( \text{H}_2 \) could arise from RO radicals, according to reactions (2), (4) and (7).

3) Finally, the temperature having no influence on the above ratio, the formation of \( \text{H} \) or \( \text{H}_2 \) from RO radicals is also excluded; the decomposition steps (4) and (7) should have high activation energies, whereas the competitive reaction (2) has a much lower one.

In conclusion, our results are in favor of the fact that the self-reaction of \( \text{HO}_2 \) radicals occurs through 2 parallel pathways (3\ a) and (3\ b), which may be complex and indirect.
References.


Reaction Mechanisms for Decomposition of Energetic Materials*

Carl F. Melius and J. Stephen Binkley
Sandia National Laboratories
Livermore, California 94550

Introduction

The mechanism for decomposition of energetic materials at the molecular level has been investigated theoretically using the BAC-MP4 quantum chemistry method. The BAC-MP4 method provides accurate thermochemical properties of molecular species, including radicals as well as stable species and can also determine the thermochemistry of transition state structures. We have applied this method to the decomposition of C- and N-nitro compounds.

HONO Elimination

The initial step in the decomposition process is the unimolecular bond breaking of the molecule. The heats of formation $\Delta H_f$ and free energies $\Delta G_f$ of nitroethane ($\text{CH}_3\text{CH}_2\text{NO}_2$) and methyl-nitramine ($\text{CH}_3\text{NHNO}_2$) and their possible decomposition products as well as transition state structure complexes have been calculated. The important $\Delta H_f$'s and $\Delta G_f$'s are given in Table I. The results indicate that the weakest bond is that of the NO$_2$ group, being 48 kcal-mol$^{-1}$ for methyl-nitramine and 58 kcal-mol$^{-1}$ for nitro-ethane. For both molecules, the five-centered elimination of HONO can occur, with an activation barrier of ~41 kcal-mol$^{-1}$ in both cases. For nitroethane, the resulting rate constant as a function of temperature for the five-centered HONO elimination

$$\text{C}_2\text{H}_5\text{NO}_2 \rightarrow \text{C}_2\text{H}_4 + \text{HONO} \quad \Delta E = 41 \text{ kcal-mol}^{-1}$$

is given in the figure and is compared with various experimental data. As one can see from the figure, the agreement is excellent. At higher temperatures, direct C-N bond scission occurs

$$\text{C}_2\text{H}_5\text{NO}_2 \rightarrow \text{C}_2\text{H}_5 + \text{NO}_2 \quad \Delta E = 58 \text{ kcal-mol}^{-1}$$

cauing an increase in the decomposition rate constant.

II Atom Catalyzed Decomposition

The resulting unimolecular rate constants for HONO elimination at 600K obtained from Table I are 0.0025 and 0.003 sec$^{-1}$ respectively for methyl-nitramine and nitroethane. While the nitroethane results are in excellent agreement with experiment, for methyl-nitramine, the rate constant is significantly smaller than the overall thermal decomposition rate constants measured for nitramines. This indicates that HONO elimination is not the rate determining step in the decomposition of nitramines, and that a more complicated, non-unimolecular

*This work supported by the U.S. Department of Energy and the U.S. Department of Defense
process is controlling the thermal decomposition of nitramines. Initial bond scissioning of the nitro group, with an activation energy of ~48 kcal-mol\(^{-1}\), leading to radical formation is therefore an important unimolecular mechanism and plays a more important role. (The larger bond strength in nitroethane of ~58 kcal-mol\(^{-1}\) causes the HONO elimination to be more important in nitroethane.) We therefore propose a new H atom assisted decomposition pathway to explain the experimental data. The reaction pathways for H atom attack on methyl nitramine are shown in Figure 2. The BAC-MP4 results indicate that H atom can readily add to the nitro group to form an intermediate complex, CH\(_3\)NHN(O)OH, which can decompose either by OH elimination, HONO elimination, or by C-N bond scission.

Internal Hindered Rotors

The proper treatment of hindered rotors is important in these decomposition processes since both the methyl group as well as the nearly free-rotor nitro group are constrained at the five-center elimination transition state. In order to extend the BAC-MP4 thermochemistry at 0 K to finite temperatures, it is necessary to include the effects of the temperature dependence of internal hindered rotors. We therefore have derived approximate analytical functions for the energy \(E_{\text{hr}}\), the heat capacity \(C_{\text{hr}}\), and entropy change \(\Delta S_{\text{hr}}\) for the internal hindered rotor. These expressions extend the analytic expressions derived by Pitzer and Gwinn for infinite moment of inertia with parameters chosen to approximately fit their tabulated data for finite moments of inertia. The resulting analytical expressions are given by

\[
E_{\text{hr}} = RT \left( 0.5 + Y \cdot g(Y) \right) (x (\sigma^2 - 1)^{-1})
\]

\[
C_{\text{hr}} = R \left( 0.5 + Y^2 - g(Y) - g(Y)^2 \right) (x^2 \sigma^2 (\sigma^2 - 1)^{-2})
\]

\[
\Delta S_{\text{hr}} = R \left( \ln(S_{I_{1}}) + Y \cdot g(Y) \right) (z^2 \sigma^2 (\sigma^2 - 1)^{-2})
\]

where

\[
g(Y) = Y \left( S_{I_{1}} / S_{I_{0}} \right), \quad S_{I_{n}} = \text{Modified Bessel Function}
\]

\[
Y = V / RT, \quad x = (1.67 / I_{1}) \sqrt{(V / RT)^{1/2}}, \quad z = 3.8 / I_{1}
\]

\[
V = \text{barrier height}, \quad I_{1} = \text{reduced moment of inertia}
\]

The barrier heights are estimated from the Hartree-Fock scaled frequencies \(v\) by

\[
V = (\omega / 134n)^2 I_{1}
\]

where \(n\) is the foldedness of the barrier. The constant was adjusted to give reasonable barrier heights for the methyl radical. This treatment of hindered rotors appears to work satisfactorily for the lowest frequency hinder rotor of a molecule but breaks down for multiple hindered rotors which are coupled, thereby mixing the frequencies as well as the axis of the reduced moments of inertia.
Table I. Calculated heats of formation $\Delta H_f^\circ$ and free energies of formation $\Delta G_f^\circ$ at various temperatures using the BAC-MP4 method for various molecular species and transition state activated complexes involved in the decomposition of methyl-nitramine and nitro-ethane. (Energy in kcal-mole$^{-1}$, temperature in K.)

<table>
<thead>
<tr>
<th>Molecular species</th>
<th>$\Delta H_f^\circ$</th>
<th>$\Delta G_f^\circ$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>300</td>
</tr>
<tr>
<td>CH$_3$NHNO$_2$</td>
<td>6.2</td>
<td>1.5</td>
</tr>
<tr>
<td>CH$_3$CH$_2$NO$_2$</td>
<td>-19.2</td>
<td>-24.2</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>7.2</td>
<td>6.5</td>
</tr>
<tr>
<td>CH$_3$NH</td>
<td>47.7</td>
<td>45.0</td>
</tr>
<tr>
<td>CH$_3$CH$_2$</td>
<td>31.7</td>
<td>29.0</td>
</tr>
<tr>
<td>HONO</td>
<td>-17.9</td>
<td>-19.5</td>
</tr>
<tr>
<td>CH$_2$NH</td>
<td>23.9</td>
<td>21.9</td>
</tr>
<tr>
<td>CH$_2$CH$_2$</td>
<td>15.0</td>
<td>12.8</td>
</tr>
<tr>
<td>CH$_3$NHNO$_2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ CH$_3$NH + HONO</td>
<td>46.8</td>
<td>41.9</td>
</tr>
<tr>
<td>CH$_3$CH$_2$NO$_2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ C$_2$H$_4$ + HONO</td>
<td>21.9</td>
<td>17.0</td>
</tr>
<tr>
<td>H$_2$NN(O)OH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Rate constant for five-centered elimination of HONO from nitroethane. Shaded curve is calculated using BAC-MP4 thermochemistry. Solid curves are various experimental results.

Reaction of CH$_3$NHNO$_2$ + H

Figure 2. Calculated reaction pathways for the reaction of CH$_3$NHNO$_2$ + H → products, based on BAC-MP4 heats of formation at 0K for stable and transition state activated complexes. Vertical energy scale in kcal-mole$^{-1}$.
The Pressure Dependent Decomposition of the Trifluoromethoxy Radical

by

L. Batt, M. MacKay, I.A.B. Reid* and P. Stewart,
University of Aberdeen, Meston Walk, Aberdeen AB9 2UE, Scotland.

A re-examination of the decomposition of his trifluoromethyl peroxide\(^1\) allowed a value to be determined for the rate constant of the decomposition of the trifluoromethoxy radical over the temperature range 509 - 545K:

\[
\text{CF}_3\text{O} + \text{M} \rightarrow \text{CF}_2\text{O} + \text{F} + \text{M}
\]  

(1)

Excellent agreement was obtained from RRK14 theory and experiment for the computer modelling of the pressure dependence of reaction (1) at 532.8K. The Arrhenius parameters under high pressure limiting conditions are given by:

\[
\log[k_1(\text{s}^{-1})] = 13.7 - (14300/2.303 \ T)
\]

Some of the parameters for reaction (1) were then applied to the decomposition of the methoxy radical (2)

\[
\text{CH}_3\text{O} + \text{M} \rightarrow \text{CH}_2\text{O} + \text{H} + \text{M}
\]  

(2)

This led to a value for \(k_2(\text{M})\) given by

\[
\log[k_2(\text{M})/\text{s}^{-1}] = 13.38 - (14450/2.303 \ T).
\]

Reference


Synthesis and Pyrolysis of Perfluoroazo-2-propane

by

K.V. Scherer Jr., University of Southern California,
Los Angeles, CA. 90089 -1062, U.S.A.

and

L. Batt and P. Stewart, University of Aberdeen,
Aberdeen AB9 2UE, Scotland.

An improved method has been used to synthesise perfluoroazo-2-propane. Pyrolysis over the temperature range 450 - 514K in a static system has been shown to be a homogeneous, first order process. No pressure dependence was observed in the presence of excess inert gas (SF₆). The only products were nitrogen and perfluoro-2,3-dimethylbutane. The rate constant (k) for the decomposition process is given by:

$$\log(k/s^{-1}) = 16.74 \pm 0.20 - \left( \frac{22700 \pm 1252}{2.303} T \right)$$

These results lead to a straightforward mechanism for the decomposition process.

$$i-C_{3}F_{7}N_{2} i-C_{3}F_{7} \rightarrow i-C_{3}F_{7}N_{2} + i-C_{3}F_{7} \quad (1)$$

$$i-C_{3}F_{7}N_{2} \rightarrow i-C_{3}F_{7} + N_{2} \quad (2)$$

$$2i-C_{3}F_{7} \rightarrow (i-C_{3}F_{7})_{2} \quad (3)$$

Comparison is made for results with other azo compounds.
EXPERIMENTAL AND THEORETICAL STUDY OF THE ETHYL RADICAL UNIMOLECULAR DISSOCIATION

Y. SIMON, J.F. FOUCAUT and G. SCACCHI
Département de Chimie Physique des Réactions
UA CNRS 328, INPL (ENSI) et Université de Nancy I
1, rue Grandville 54000 NANCY (France)

In the literature, the kinetic data on the unimolecular process of dissociation of ethyl radical are somewhat old [Lin and Back 1966 (1); Loucks and Laidler 1967 (2)] and rather scattered. We have considered it would be interesting to return to the study of this elementary reaction. The pyrolysis of C₆H₆, which includes it, had been studied in the following conditions: conventional static system, initial pressure between 1 and 300 torr, temperature between 793 and 813 K. The rate constant k is evaluated by the expression: 

\[ k = \frac{C_2H_4}{2k_t} \left( \frac{r_{CH_4}}{r_{C_2H_4}} \right)^{1/2} \]

where \( r_{CH_4} \) and \( r_{C_2H_4} \) are the initial rates of formation of \( CH_4 \) and \( C_2H_4 \) and \( k_t \) the rate constant of the termination processus (2 \( C_2H_5 \)).

The experimental results (fall-off curves) are interpreted by the RRKM theory and two approaches of TROE.

1 - RRKM treatment.

We have used the R.R.K.M. program of R.G. Gilbert (Q.C.P.E. n° 460) (3).

- chosen parameters for \( C_2H_5 \) radical: frequencies : 2995 (5), 1432 (4), 1037 (2), 988 (2), 540 (1); external symmetry number : 2; optical isomer : +2; internal rotation : \( \chi = 45.1 \text{ cm}^{-1} \) and internal symmetry number : 6.
- Details of the activated complex employed: frequencies : 3047 (4), 1466 (3), 1023 (2), 923 (3), 600 (2); external symmetry number : 1; optical isomer : +1.
- Other details: moments of inertia ratio: 1.14 to 1.20 (depending of \( T \)); collision diameter : 2.9 Å; activation energy at \( 0 \text{ K} : E_a = 38.8 \text{ kcal.mole}^{-1} \).

These parameters give an excellent agreement between theoretical and experimental fall-off curves at any temperature. Arrhenius expressions for \( k_m \) and \( k_{bim} \) (the low pressure second order rate constant) can be derived (see further).
2 - First approach of TROE.

The modification of Kassel integral made by TROE (4) leads to the following expression:

\[
1 - k_{\text{uni}} = \frac{1}{f(s)} \int_{s=0}^{s_{K}^{-1}} \frac{e^{-s} \exp(-s) \, ds}{1 + \frac{k_{b}^{0}}{k_{b}^{0}} \left( \frac{s}{s_{K}^{-1}} \right)^{s_{K}^{-1}}}
\]

with \( f(s) = \frac{1}{\int_{s=0}^{s_{K}^{-1}} \exp(-s) \, ds} \) and \( k_{b}^{0} = k_{\text{bim}}^{P} \)

The "effective" values \( S_{K} \) and \( B_{K} \) of Kassel parameters \( S \) and \( B \) are estimated from the 15 frequencies of \( C_{2}H_{5} \). [14 frequencies of RRKM theory + 350 cm\(^{-1}\) instead of internal rotation] and \( E_{0} = 40.0 \) kcal.mole\(^{-1}\).

The method of determination of \( k_{w} \) and \( k_{\text{bim}}^{P} \) is the following one:

The theoretical curve : \( \log I \) vs \( \log \left( \frac{k_{\text{bim}}^{P}}{k_{w}} \right) \) - \( \log I \) can be rewritten:

\[
\log k_{\text{uni}} - \log k_{w} \text{ vs } \log P - \log k_{\text{uni}} + \log k_{\text{bim}}^{P} \text{ and can be derived from the experimental curve : } \log k_{\text{uni}} \text{ vs } \log P - \log k_{\text{uni}} \text{ by two translations leading to } k_{w} \text{ and } k_{\text{bim}} \text{ (least square method). The fitting between the two curves is very good and allows us to propose Arhenius expressions for } k_{w} \text{ and } k_{\text{bim}}.
\]

3 - Second theoretical approach of TROE.

The Lindemann-Hinshelwood theory leads to the "switching function"

\[
F_{\text{LH}}: \quad k_{\text{uni}} \frac{k_{w}}{k_{\text{bim}}} = \frac{x}{1 + x} = F_{\text{LH}}(x) \text{ with } x = \frac{k_{b}^{0}}{k_{b}^{0}} = \frac{k_{\text{bim}}^{P}}{k_{w}}
\]

TROE (5) has shown that realistic reduced fall-off curves can be represented well by adding a broadening factor \( F(x) \) to the above expression:

\[
k_{\text{uni}} \frac{k_{w}}{k_{\text{bim}}} = \frac{x}{1 + x} F(x) \text{ with } \log F(x) = \frac{\log F_{\text{cent}}}{1 + \left( \frac{0.75 - 1.27 \log F_{\text{cent}}}{2} \right)^{2}}
\]

\( F_{\text{cent}} \) is evaluated from the effective parameters \( S_{K} \) and \( B_{K} \) and the collisional deactivating efficiency \( \beta_{c} \).

To present experimental and theoretical results in \( \log k_{\text{uni}} \) vs \( \log P \) scales it is necessary to have transformed \( P \) into \( x \) : \( k_{w} \) can be evaluated by any extrapolation method and \( k_{\text{bim}}^{P} \) by an expression, proposed by TROE, which is a product of different factors calculable from parameters relative to reactant radical.
Chosen parameters: frequencies (those of RRKM); $E_p = 40.0$ kcal. mole$^{-1}$; collision diameter 4.4 Å; number of oscillators: 14; number of internal rotations: 1; number of oscillators which disappear during the reaction: 3; moment of inertia ratio: 1.14 to 1.70; Lennard-Jones interaction energies $\epsilon = 1.39 \times 10^7$ J. mole$^{-1}$; average energy transferred per collision: $<\Delta E> = 10$ KJ. mole$^{-1}$.

The theoretical fall-off curve calculated *a priori* from the above expressions do not fit very well with the "experimental" points $\log \frac{k_{uni}}{k_m}$ vs $\log P$. By a method of trial and error we have successively modified the values of $k_m$ and $k_{bim}$ until we obtained the best agreement. Again the fitting is excellent at any temperature and we can deduce Arrhenius expressions for $k_m$ and $k_{bim}$:

4 - *Best Arrhenius expressions for $k_m$ and $k_{bim}$:*

Taking into account the thermochemistry, the best Arrhenius expressions for $k_m$ and $k_{bim}$ are obtained by RRKM method:

$k_m = 10^{14} \exp \left( -\frac{41000}{RT} \right)$ s$^{-1}$ and $k_{bim} = 10^{18.3} \exp \left( -\frac{34300}{RT} \right)$ cm$^3$ mole$^{-1}$ s$^{-1}$.

The best RRKM treatment in the literature is that of Lin and Laidler (6) on the experimental results of Lin and Back and Loucks and Laidler:

$k_m = 10^{14.5} \exp \left( -\frac{41100}{RT} \right)$ s$^{-1}$ and $k_{bim} = 10^{18.54} \exp \left( -\frac{34600}{RT} \right)$ cm$^3$ mole$^{-1}$ s$^{-1}$, in very good agreement with our work. The study of Michael and Suess (7) leads to $E_m = 44.500$ cal. mole$^{-1}$ which is undoubtedly too high.

(3) R.G. GILBERT - Program QCPE n° 460.
THE PHOTOCHROMICAL AND THERMAL DECOMPOSITION OF SOME SIMPLE α-DICARBONYL COMPOUNDS IN THE GAS PHASE

R.A. Back,
Division of Chemistry,
National Research Council of Canada.

Recent studies are described of the photochemical and thermal decomposition of a number of simple α-dicarbonyl compounds in the gas phase, including glyoxal (cis and trans), oxalic acid, glyoxylic acid, pyruvic acid, 1,2-cyclobutanedione, and 1,2-dimethyl-cyclobutene-3,4-dione. A variety of mechanisms of decomposition is observed; where it is possible, internal transfer of H is the preferred path, in other cases concerted molecular decomposition occurs. Rate constants and Arrhenius parameters are presented for the thermal reactions, and mechanisms are discussed and compared for both the thermal and the photochemical decompositions.
UV-Laser Induced Decomposition of 1,2-Dichloropropane

M. Schneider, R. Weller, J. Wolfrum
Physikalisch-Chemisches Institut
Universität Heidelberg

The thermal dehydrochlorination of 1,2-dichloropropane is known to run predominantly by unimolecular four-center elimination leading to a characteristic pattern of the product distribution (3-chloropropene, cis-1-chloropropene, trans-1-chloropropene, 2-chloropropene). 2-chloropropene is only a minor product while the cis/trans ratio of 1-chloropropane is much higher than unity. We were interested in the alternative radical chain process which is strongly inhibited by the products. The experiments were carried out at temperatures between 570 and 670K using an excimer laser (XeCl, $\lambda = 308\text{nm}$, 400mJ/pulse, 80Hz maximum repetition rate) to start the chain by photolysis of the substrate. At low conversion the quantum yield was in the order of one hundred but decreased drastically with formation of the chloropropenes. From the product distribution it was possible to deduce the relative abstraction rates of the reaction

$$\text{Cl} + \text{C}_3\text{H}_6\text{Cl}_2 \rightarrow \text{HCl} + \text{C}_3\text{H}_5\text{Cl}_2$$

at the three differently substituted carbon atoms. In contrast to the thermal reaction 2-chloropropene is the main product, but the cis/trans ratio of 1-chloropropane remains high. The results are compared with other dehydrochlorination reactions and a computer model in order to simulate inhibition effects.
The Thermal Decomposition of Unsymmetrical Dimethylhydrazine

K. Brezinsky and F. L. Dryer
Princeton University
Princeton, N.J. 08544, U.S.A.

D. Schmitt and D. Lourme
Office National d'Etudes et de Recherches Aerospatiales
92320 Chatillon, France

A short study of unsymmetrical dimethylhydrazine (UDMH) decomposition in the Princeton flow reactor in the temperature range 761-799K and at one atmosphere indicates that the overall conversion of UDMH to products proceeds through the initial formation of formaldehyde dimethyl hydrazone (FDH) with subsequent decomposition of FDH into smaller products. This sequence has not been observed and reported before in any of the published high temperature studies of UDMH decomposition. However, the present observations are the only existent direct measurements of intermediates formed as a function of extent of reaction, and the UDMH conversion to FDH is so rapid as to have been missed in previous studies. The conversion to FDH proceeds isoergically, i.e. without overall chemical energy release. Heat release in the UDMH decomposition appears to occur from the subsequent decomposition of UDMH into smaller products.

Using three flow reactor experiments at three different initial temperatures and the same initial UDMH concentration a first order rate constant for the conversion process to FDH has been generated. A series of three flow reactor experiments at the same temperature but different initial concentrations of UDMH has indicated that the decomposition is very near first order. The Arrhenius rate parameters developed and the experimentally observed first order nature of the reaction have been used in calculation of UDMH droplet burning characteristics.
Oxidation of formaldehyde at low oxygen concentration.

M. V. VANPEE*, K. SAHECHIAN†, V. VIOSSAT‡, J. CHAMBOUX‡.

* Department of Chemical Engineering, University of Massachussetts, Amherst, Ma. 01003.
† Laboratoire de Chimie Générale, Université P. et M. Curie C.N.R.S. UA 40870, 4 Place Jussieu, 75252 PARIS CEDEX 05.

One of the authors studied the slow oxidation of formaldehyde at temperature about 400°C in pyrex vessels treated with acid boric and in untreated vessels (1-2). When CH₂O/O₂ mixtures contain low oxygen amount, a clear break is observed in the course of the reaction when oxygen consumption is complete. Until this moment the behaviour of (CO formation, pressure change and temperature) is the same as those for mixtures containing higher oxygen amounts. After the break, the CO formation rate increases, the hydrogen begins to appear with a rate similar to CO one; a break is also observed on the pressure change curve, and at the same time, the temperature falls abruptly (fig. 1-2).

From the scheme proposed:

1. \[ H₂CO + O₂ → H₂O₂ + CO \]
2. \[ HO₂ + H₂CO → H₂O₂ + H₂O₂ \]
3. \[ HO₂ + HO₂ → H₂O₂ + O₂ \]
4. \[ H₂O₂ + M → 2 HO + M \]
5. \[ H + H₂O₂ → H₂ + HO₂ \]
6. \[ H₂O₂ + M → H₂O₂ + M \]
7. \[ H + H₂CO → H₂ + H₂O \]
8. \[ H₂O₂ + H → H₂O₂ + H₂ \]
9. \[ OH + H₂CO → H₂O + H₂O₂ \]
10. \[ OH + H₂O₂ → H₂O₂ + O₂ \]
11. \[ HO₂ → 1/4 H₂O₂ + 1/2 O₂ \]
12. \[ H₂O₂ → H₂O + 1/2 O₂ \]

The observations can be interpreted by the existence of two distinct mechanisms. In the presence of oxygen the reactions 0 → 5 and 9 → 12 occur involving HO₂ and H₂O₂; the reaction is a degenerated branching reaction with homogeneous and heterogeneous terminations; reactions 11 and 12 have to be included to obtain a good agreement with experimental pressure change.
curves. In the second mechanism, in absence of oxygen, the reaction may be
considered as a linear chain reaction with formation of CO and H₂ (reactions
4 → 12).

From the proposed mechanism, simulated curves (CH₂O, O₂, CO, H₂,
H₂O, H₂O₂ evolution, pressure change, temperature) have been obtained with
computer (fig. 3). The rate constants for reactions 0 → 10 are the recom-
mended values of literature (3-8), k₁₁ and k₁₂ are "fitted" according to
experimental conditions.

The agreement with experimental curves is good for different
conditions of temperature, mixture richness, wall treatment.

Bibliographie.

(2) M. VANPEE Thèse - Louvain (Belgique) 1956.
(4) J. PETERS, G. MAHEN, 14th symposium (International) on combustion. The
combustion Institute, Pittsburgh, 1975, 133.
(6) D.L. BAULCH and col. Evaluated Kinetic Data for high temperature
(7) A. FONTIJN, M.A. CLYNE. Reactions of small transient speacies.
(8) Chemical kinetics and photochemical data for use in stratospheric
modeling, NASA, 1985, J.P.L. publication 85-37, C.I.T., Pasadena
California.
Fig. 1 — Études du produit de la réaction du mélange 55 mm O₂ et 45 mm CI₂O à 30°C. Chambre de réaction propre : 3,4 m³, longueur de la réaction de 2,3 m. La composition de la sortie est montrée à 30°C et 1013 mm Hg. La pression est mesurée en mm Hg à la température de 30°C.

\[ \Delta P_{cm} = 49 \text{ ml/min formaldehyde} + 4,2 \text{ ml/min O₂} \cdot 30 \text{°C} \]

\[ \Delta T = \text{décomposition de X} \cdot \text{découlement induit de CH₂O} \]

Fig. 3 — Combustion du mélange 11 CH₂O + 1 O₂ - (CH₂O) : 40 mm Hg
- (O₂) : 4,4 mm Hg - T : 43°C.
\( \Delta T \) et \( \Delta P \) : courbes expérimentales.

\[ T = 305 K \]
\[ CH₂O/O₂ = 2/1 \]
This paper deals with the ignition phenomena observed when a hot laminar jet of inert gases is injected into an air fuel combustible mixture. The paper concentrates especially on the air methane mixtures where a special and interesting phenomenon has been observed.

The normal ignition process is a series of reactions in the center of the jet which produce enough heat to prevent the lowering of the jet temperature owing to heat losses by conduction. A luminous column always precedes the actual ignition.

Methane does not follow this normal ignition process. Figure 1 shows that the ignition diagram is quite different from a normal one. First there is no preignition glow region. The region where no luminosity is observed changes abruptly to the point where the column branches into explosion. Secondly the limit of ignition no longer has a minimum in the flammable range but continuously decreases with decreasing concentration of methane and is prolonged to the lean side by a curve which limits a new zone. In this zone a luminous region of special shape appears in the jet. This luminous zone is shown in Figure 1. Unlike the usual preignition glow, this glow has sharp edges. The glow is strongest not at the axis of the jet but at its outside boundary, giving the impression of an inverted flame front with its apex anchored at the center of the jet. The analogy of this pseudoflame with a true flame is superficial since the luminous reaction zone is self-propagating only under the critical conditions of the experiment.

In order to get insight into the pseudoflame phenomenon, radial and longitudinal concentrations and temperature profiles were taken within the
jet. These profiles demonstrated that the luminous zone is a zone of fast reaction and that no reaction at all occurs in the dark zones. To explain the sharpness of the transition between these two zones, a branching chain mechanism is postulated and the boundary between the two zones is interpreted as being the geometrical locus where the branching probability ($a$) of the chain reactions equals the probability ($s$) of rupture: $a = s$ (1)

If this locus and the temperature and concentration field are known, equation (1) can be expressed in terms of concentration and temperature alone. This program was carried out experimentally and led for equation (1) to the following expression:

$$\frac{[O_2]}{[CH_4]} = k \exp \frac{E}{RT} \quad (2)$$

with $E = 40,000$ cal/mole and $k = 4.2 \times 10^{-6}$.

In terms of a branching chain mechanism, equation (2) indicates that the oxygen molecule is in the branching chain process. Methane acts in the opposite direction and therefore would be associated with the chain breaking process. These opposite effects of the oxygen and methane molecules are illustrated by a simple experiment. If the temperature of the jet is raised and if the methane and oxygen concentration, remain unchanged, the reaction zone moves upstream in the jet. The same effect is found if the temperature of the jet is maintained constant but if the oxygen concentration is progressively raised by changing the oxygen index of the outside atmosphere. If, however, the oxygen index is maintained constant but the methane concentration raised, the reaction zone moves downstream.
This experiment shows clearly the inhibiting properties of methane on its own combustion. A search for a reaction mechanism is underway.

DILUTE HYDROCARBON OXIDATION IN THE PRESENCE OF THE 
CO/H₂O/O₂ REACTION BETWEEN 960-1250 K AT 1 ATM

R.A. Yetter and F.L. Dryer
Department of Mechanical and Aerospace Engineering
Princeton University
Princeton, NJ 08544

The carbon monoxide - hydrogen - oxygen reaction, seeded with small quantities of hydrocarbons, is studied to yield information on specific elementary reaction rates and on general mechanistic behavior of the overall reaction. Experiments are conducted in an atmospheric flow reactor between 960 and 1250 K from which stable species concentrations and temperature profiles are obtained as a function of flow reactor position (or equivalently, time). Detailed modeling calculations and sensitivity analysis techniques are used to guide and analyze the experiments. The carbon monoxide reaction is used to produce a controllable bath of \( \text{H}, \text{O}, \text{and OH} \) radicals in large concentrations with which the hydrocarbon can interact. The reaction chemistry of the hydrocarbon is studied by evaluating the disappearance profiles of the hydrocarbon and its relations to and perturbations of the reacting bath characteristics. In particular, the elementary reactions of hydroxyl radical with methane and with propene were studied at 1020 K and values for the specific rate constants of \( k_{\text{\text{CH₄}+\text{OH}}} = 1.6 \times 10^{12} \text{ cm}^3\text{molec}^{-1}\text{s}^{-1} \) and \( k_{\text{\text{C₃H₆}+\text{OH}}} = 8.0 \times 10^{12} \text{ cm}^3\text{molec}^{-1}\text{s}^{-1} \) were obtained. The value for the \( \text{CH₄} + \text{OH} \)
rate constant is in good agreement with current literature values (e.g., Hadronich, S. and Felder, W., Twentieth Symposium (International) on Combustion, 1984). Rate data for direct comparison with the measured \( \text{C}_3\text{H}_6 + \text{OH} \) rate constant is unavailable; however, the present value is in agreement with the high pressure rate constant theoretically predicted by Smith et al. (Smith, G.P., Fairchild, P.W., Jeffries, J.B., and Crosley, D.R., J. Chem. Phys. 89, 1985). The technique is presently being applied to the reaction of ethyl radicals with molecular oxygen and the ethyl thermal decomposition reaction.
KINETIC AND CHEMICAL STUDY OF THE GAS-PHASE
OXIDATION OF ISOBUTANE AND PROPANE

by B. VOGIN, G. SCACCHI and F. BARONNET

Département de Chimie-Physique des Réactions, U.A. 328 CNRS
INPL-ENSIC, I, rue Grandville - F 54042 NANCY France

Despite a large number of investigations of the mechanism of gas-phase oxidations (especially of alkanes), some problems have remained unresolved. They are mentioned in a paper published a few years ago by S.W. BENSON and P.S. NANGIA (1). Among these problems, there are still controversies about the free radical mechanism, especially the reactions of HO2 and the role of OH as chain carrier, the self reactions of RO2, the initiation reactions and the isomerisation steps of RO2. There is also a general lack of reliable rate data for the elementary steps and this seems to justify further experimental investigations.

The slow oxidation of light alkanes (from C2 to C5) have been so far accounted for by two theoretical reaction schemes:
- a mechanism developed by FISH and co-workers (2) emphasizing the role of the isomerisation reactions of alkylperoxy radicals RO2;
- the olefinic theory proposed by KNOX (3); according to this theory, the conjugate olefin is the dominant reaction product, up to 80 %; the reaction products come from the subsequent reactions of the olefin.

FISH (2) tried to unify these two theories into a single general mechanism. However, the elementary steps have to be described in more detail; it is not obvious that the oxidation of light alkanes is a purely homogeneous reactions and it is sometimes suggested that the olefin formation might be heterogeneous.

In order to contribute to a better knowledge of the oxidation mechanism of light alkanes, we have studied the slow oxidation of isobutane and propane at slow extents of reaction, at subatmospheric pressures, in the temperature range 300-350°C, in a static reaction vessel made of Pyrex. For each reaction, the major primary products are identified and measured by GLC after expansion and quenching in a sampling bulb. Trace amounts of peroxides are measured by chemiluminescence (t).

In the case of the slow oxidation of isobutane, the primary products of the reaction are: isobutene, isobutene oxide, propene, formaldehyde, propionaldehyde and acetone, peroxides and water. The product distribution is given in Table I.

Table I

<table>
<thead>
<tr>
<th>PRODUCTS</th>
<th>C3H6</th>
<th>CH3CHO</th>
<th>HCHO</th>
<th>CH3 \cdot CH2 \cdot O</th>
<th>CH2 \cdot CH2 \cdot O</th>
<th>C2H4</th>
<th>C2H2 \cdot CH2 \cdot O</th>
<th>C2H5CH2OH</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROPANE</td>
<td>17.7</td>
<td>17.1</td>
<td>5.6</td>
<td>9.5</td>
<td>2.4</td>
<td>5.7</td>
<td>2.7</td>
<td>0</td>
</tr>
<tr>
<td>ISOBUTANE</td>
<td>17.7</td>
<td>C2H5CH2OH</td>
<td>HCHO</td>
<td>CH3 \cdot CH2 \cdot O</td>
<td>CH2 \cdot CH2 \cdot O</td>
<td>CH3</td>
<td>CH3 \cdot CH2 \cdot O</td>
<td>CH3 \cdot CH2 \cdot O</td>
</tr>
</tbody>
</table>

Table I

In the case of the slow oxidation of isobutane, the primary products of the reaction are: isobutene, isobutene oxide, propene, formaldehyde, propionaldehyde and acetone, peroxides and water. The product distribution is given in Table I.
Taking into account these products and the present knowledge of radical oxidation reactions, we are able to put forward a radical scheme accounting for the formation of these products. Since, as mentioned before, there are not enough experimental rate data for these radical steps, we have estimated the Arrhenius parameters of nearly all these elementary steps by the methods of Thermochemical Kinetics proposed by Benson (5). The calculated values obtained in our experimental conditions have been compared to our experimental results. The agreement is generally good and the following results have been obtained:

- the chief primary product (67 %, see Table 1) is isobutene and there is a parallel formation of isobutene oxide. An outline of the corresponding reaction scheme is given in Figure 1. Our results are compatible, taking into account the estimates of the rate constants, with a negligible direct route for olefin formation and also a negligible heterogeneous formation of the conjugate olefin;
- ketones (acetone) and aldehydes (acetaldehyde) come from alkoxy radicals RO·, probably formed by the disproportionation of peroxyl radicals RO2·.

\[
2 \text{RO}_2 \cdot \rightarrow 2 \text{RO} + \text{O}_2
\]

- the small quantities of peroxides (hydrogen peroxide, hydroperoxides) are formed by hydrogen transfer reactions of HO2· and RO2· radicals;
- water comes from the hydrogen transfer reactions of hydroxyl radicals which become important chain carriers in the early stages of the reaction; an accurate measurement of water formation is rather difficult to perform.

The detailed reaction mechanism and the corresponding rate constants will be given in the poster.

Since experimental errors cannot be completely excluded and because the methods of Thermochemical Kinetics only give estimates of the rate constants, we have thought that it might be interesting to study another example according to the same methods; we have chosen the oxidation of propane.

The slow oxidation of propane yields the following primary products: propene, propene oxide, ethylene, formaldehyde, acetaldehyde, peroxides, water and trace amounts of oxetane (trimethylene oxide). The distribution of the reaction products is given in Table 1.

At first sight, it appears that the products are very similar to those obtained in the case of isobutane oxidation, which suggests that the two reactions have a substantial number of common features.
Propene is the largely dominant reaction product (72 %, see Table 1) and its formation is mainly due to the decomposition of the isomerised alkyl peroxyl radical; the propene fraction due to heterogeneous steps can be neglected. There is also a parallel formation of propene oxide. Here again, the aldehydes (acetaldehyde and formaldehyde) come from the decomposition of alkoxyl radicals. The substantial amounts of water are accounted for by the reaction of OH.

In this case again, we have built the proposed reaction scheme from the product distribution and estimated the corresponding rate constants by the methods of Thermochemical Kinetics.

These parallel experimental investigations of the slow oxidations of isobutane and propane show that both reactions can be described by a single reaction mechanism. The only difference consists in the numerical value of the rate constants for the elementary steps. From a mechanistic point of view, our results, corroborated by Thermochemical Kinetics calculations, show the importance of the isomerisation steps of alkyl peroxyl radicals by intramolecular hydrogen abstraction. These steps are necessary if we want to account for the product distribution.

The present work stresses the role of Thermochemical Kinetics to identify the major kinetic steps in a complex reaction mechanism.

References

A SIMPLIFIED CHEMICAL KINETIC REACTION MECHANISM
FOR PROPANE OXIDATION

A.Y. ABDALLA*, J.C. BOETTNER, N. CATONNEI, P. DAGAUT, F. GAILLARD

C.N.R.S., Centre de Recherches sur la Chimie de la Combustion et des Hautes Températures, 45071 Orléans-Cedex, France.

The provision of a realistic accurate chemical mechanism is essential for the successful modelling of the combustion processes. The use of simplified schemes, yet still reproduce experimental data over wide ranges of operating conditions, recently has been recommended as a practicable approach (1, 2).

A simplified kinetic mechanism for the oxidation of propane was proposed. The mechanism was built up by eliminating the unimportant reactions from a comprehensive chemical kinetic reaction mechanism for the oxidation of propane (3). The elimination was based on calculating the percentage contribution of an elementary reaction to the total net rate of formation or consumption of a species. If the percentage contribution of a reaction was less than 5% over the whole working temperature range, that reaction was eliminated. The elimination process was carried out for equivalence ratios varied between 0.6-1.5.

However, it was possible to form the simplified mechanism from 23 chemical species and 55 elementary reactions instead of 41 chemical species and 168 elementary reactions in the case of the comprehensive mechanism. The simplified mechanism and the used rate coefficients in the present work are given in Table 1. Reverse reaction rates have been calculated from the equilibrium constants computed from thermodynamical data (4). In the mechanism, the propane is assumed to decompose and react thermally to form lower-molecular intermediate hydrocarbon followed by the reaction and oxidation of these intermediates to final products.

A numerical simulation to simulate the condition behind the reflected shock wave was carried out. Then, the mechanism was used to reproduce the experimental results, ignition delay time, obtained from the shock

* On leave from Zagazig University, Egypt.
<table>
<thead>
<tr>
<th>No.</th>
<th>Reaction</th>
<th>A</th>
<th>n</th>
<th>E</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H H INER H2 INER</td>
<td>+.6396E+18</td>
<td>-1.0</td>
<td>+0.00</td>
<td>WARN.A.84 -2.884</td>
</tr>
<tr>
<td>2</td>
<td>H H2O2 H2 O2</td>
<td>+.2500E+14</td>
<td>+0.0</td>
<td>+0.69</td>
<td>WARN.A.84 -2.884</td>
</tr>
<tr>
<td>3</td>
<td>H H2O2 OH OH</td>
<td>+.1500E+15</td>
<td>+0.0</td>
<td>+1.00</td>
<td>WARN.A.84 -2.142</td>
</tr>
<tr>
<td>4</td>
<td>H OH INER H2O INER</td>
<td>+.7595E+22</td>
<td>-2.0</td>
<td>+0.00</td>
<td>WARN.A.84 -2.142</td>
</tr>
<tr>
<td>5</td>
<td>O H2 OH H</td>
<td>+.1500E+08</td>
<td>+2.0</td>
<td>+7.55</td>
<td>WARN.A.84 -2.237</td>
</tr>
<tr>
<td>6</td>
<td>H H2O2 H2O2</td>
<td>+.2000E+13</td>
<td>+0.0</td>
<td>+1.50</td>
<td>WARN.A.84 -1.826</td>
</tr>
<tr>
<td>7</td>
<td>H OH INER H2O INER</td>
<td>+.7875E+16</td>
<td>+0.0</td>
<td>+0.00</td>
<td>HAKC.77 -2.884</td>
</tr>
<tr>
<td>8</td>
<td>H O2 OH O</td>
<td>+.2200E+15</td>
<td>+0.0</td>
<td>+16.80</td>
<td>BAULC.73 -0.168</td>
</tr>
<tr>
<td>9</td>
<td>H2O2 OH H2O H2O2</td>
<td>+.7000E+13</td>
<td>+0.0</td>
<td>+1.43</td>
<td>WARN.A.84 -3.315</td>
</tr>
<tr>
<td>10</td>
<td>H2O2 INER OH OH</td>
<td>+.1050E+16</td>
<td>+0.0</td>
<td>+45.41</td>
<td>BAULC.73 -2.884</td>
</tr>
<tr>
<td>11</td>
<td>H H2O2 H2 O2</td>
<td>+.1700E+11</td>
<td>+0.0</td>
<td>+3.75</td>
<td>BAULC.73 -2.142</td>
</tr>
<tr>
<td>12</td>
<td>H2O2 O2 OH O2</td>
<td>+.2000E+14</td>
<td>+0.0</td>
<td>+0.00</td>
<td>WARN.A.84 -2.142</td>
</tr>
<tr>
<td>13</td>
<td>H2 OH H2O H</td>
<td>+.1000E+09</td>
<td>+1.6</td>
<td>+3.30</td>
<td>WARN.A.84 -2.884</td>
</tr>
<tr>
<td>14</td>
<td>H2O O OH OH</td>
<td>+.1500E+11</td>
<td>+1.14</td>
<td>+17.26</td>
<td>WARN.A.84 -2.884</td>
</tr>
<tr>
<td>15</td>
<td>H2O2 OH H2O O2</td>
<td>+.2000E+14</td>
<td>+0.0</td>
<td>+0.00</td>
<td>WARN.A.84 -2.142</td>
</tr>
<tr>
<td>16</td>
<td>O H INER O2 INER</td>
<td>+.0997E+18</td>
<td>-1.0</td>
<td>+0.00</td>
<td>WARN.A.84 -2.884</td>
</tr>
<tr>
<td>17</td>
<td>O H INER inh INER</td>
<td>+.5425E+17</td>
<td>-0.6</td>
<td>+0.00</td>
<td>DIX L.81 -2.884</td>
</tr>
<tr>
<td>18</td>
<td>CO H2O2 CO2 OH</td>
<td>+.1750E+15</td>
<td>+0.0</td>
<td>+23.60</td>
<td>BAULC.76 -2.884</td>
</tr>
<tr>
<td>19</td>
<td>CO OH CO2 H</td>
<td>+.6220E+07</td>
<td>+1.5</td>
<td>-0.74</td>
<td>WARN.A.84 -2.996</td>
</tr>
<tr>
<td>20</td>
<td>HCO O2 CO HO2</td>
<td>+.3300E+14</td>
<td>-0.4</td>
<td>+0.00</td>
<td>VEYRE.81 -1.996</td>
</tr>
<tr>
<td>21</td>
<td>HCO INER H CO INER</td>
<td>+.2500E+15</td>
<td>+0.0</td>
<td>+10.80</td>
<td>WARN.A.84 -2.454</td>
</tr>
<tr>
<td>22</td>
<td>HCO OH CO H20</td>
<td>+.5000E+14</td>
<td>+0.0</td>
<td>+0.00</td>
<td>WARN.A.84 -2.112</td>
</tr>
<tr>
<td>23</td>
<td>HCO H CO H2</td>
<td>+.2000E+15</td>
<td>+0.0</td>
<td>+0.00</td>
<td>WARN.A.84 -2.454</td>
</tr>
<tr>
<td>24</td>
<td>HCO O CO OH</td>
<td>+.3000E+14</td>
<td>+0.0</td>
<td>+0.00</td>
<td>WARN.A.84 -1.897</td>
</tr>
<tr>
<td>25</td>
<td>CH4 INER CM4 H INER</td>
<td>+.3200E+18</td>
<td>+0.0</td>
<td>+85.43</td>
<td>WARN.A.84 -2.237</td>
</tr>
<tr>
<td>26</td>
<td>CM4 OH CMH H20</td>
<td>+.1000E+06</td>
<td>+2.14</td>
<td>+2.11</td>
<td>COHEN.83 -2.136</td>
</tr>
<tr>
<td>27</td>
<td>CM3 O CH20 N</td>
<td>+.7000E+14</td>
<td>+0.0</td>
<td>+0.00</td>
<td>WARN.A.84 -2.884</td>
</tr>
<tr>
<td>28</td>
<td>CH20 OH HC0 H20</td>
<td>+.3000E+14</td>
<td>+0.0</td>
<td>+1.20</td>
<td>WARN.A.84 -2.884</td>
</tr>
<tr>
<td>29</td>
<td>CH20 H HC0 H2</td>
<td>+.2300E+14</td>
<td>+0.0</td>
<td>+3.99</td>
<td>WARN.A.84 -2.884</td>
</tr>
<tr>
<td>30</td>
<td>CH20 O HC0 OH</td>
<td>+.2500E+14</td>
<td>+0.0</td>
<td>+3.51</td>
<td>WARN.A.84 -2.242</td>
</tr>
<tr>
<td>31</td>
<td>CH20 H2O2 HC0 H202</td>
<td>+.1300E+13</td>
<td>+0.0</td>
<td>+8.00</td>
<td>LLOYD.74 -0.959</td>
</tr>
<tr>
<td>32</td>
<td>C2H6 OH C2H5 H20</td>
<td>+.8700E+10</td>
<td>+1.05</td>
<td>+1.81</td>
<td>TULLY.84 -2.884</td>
</tr>
<tr>
<td>33</td>
<td>CH3 CH3 CH3 H</td>
<td>+.2410E+01</td>
<td>-0.40</td>
<td>+0.00</td>
<td>WARN.A.84 -2.884</td>
</tr>
<tr>
<td>34</td>
<td>C2H5 O2 C2H4 H20</td>
<td>+.2000E+13</td>
<td>+0.0</td>
<td>+5.00</td>
<td>WARN.A.84 -2.454</td>
</tr>
<tr>
<td>35</td>
<td>C2H5 H2 C2H5 H20</td>
<td>+.3000E+14</td>
<td>+0.0</td>
<td>+2.97</td>
<td>WARN.A.84 -1.826</td>
</tr>
<tr>
<td>36</td>
<td>C2H4 OH CM4 CH20</td>
<td>+.1700E+14</td>
<td>+0.0</td>
<td>+0.00</td>
<td>WESTB.83 -2.884</td>
</tr>
<tr>
<td>37</td>
<td>C2H3 C2H2 H</td>
<td>+.1600E+15</td>
<td>+0.0</td>
<td>+37.80</td>
<td>WARN.A.84 -2.884</td>
</tr>
<tr>
<td>38</td>
<td>C2H3 O2 CH20 HC0</td>
<td>+.4000E+13</td>
<td>+0.0</td>
<td>-0.25</td>
<td>OUTA.84 -2.884</td>
</tr>
<tr>
<td>39</td>
<td>C2H2 O2 HC0 HC0</td>
<td>+.4000E+13</td>
<td>+0.0</td>
<td>-25.00</td>
<td>GARDI.68 -2.884</td>
</tr>
<tr>
<td>40</td>
<td>C2H2 CH3 C2H5 H</td>
<td>+.1700E+17</td>
<td>+0.0</td>
<td>+84.84</td>
<td>WESTB.84 -0.315</td>
</tr>
<tr>
<td>41</td>
<td>C2H2 OH NC3H7 H20</td>
<td>+.1026E+03</td>
<td>+2.61</td>
<td>+0.331</td>
<td>COHEN.83 -0.701</td>
</tr>
<tr>
<td>42</td>
<td>C2H2 OH IC3H7 H20</td>
<td>+.1074E+02</td>
<td>+2.71</td>
<td>-1.438</td>
<td>COHEN.82 -0.701</td>
</tr>
<tr>
<td>43</td>
<td>C2H2 H2O NC3H7 H202</td>
<td>+.1120E+14</td>
<td>+0.0</td>
<td>+19.40</td>
<td>WESTB.85 -1.018</td>
</tr>
<tr>
<td>44</td>
<td>C2H2 H2O IC3H7 H202</td>
<td>+.3390E+13</td>
<td>+0.0</td>
<td>+17.00</td>
<td>WESTB.85 -1.018</td>
</tr>
<tr>
<td>45</td>
<td>C2H2 H NC3H7 H2</td>
<td>+.5620E+08</td>
<td>+2.0</td>
<td>+3.00</td>
<td>WESTB.84 -0.864</td>
</tr>
<tr>
<td>46</td>
<td>C2H2 H IC3H7 H2</td>
<td>+.8700E+07</td>
<td>+2.0</td>
<td>+5.00</td>
<td>WESTB.84 -0.864</td>
</tr>
<tr>
<td>47</td>
<td>C2H2 O NC3H7 OH</td>
<td>+.1120E+15</td>
<td>+0.0</td>
<td>+7.85</td>
<td>WESTB.85 -2.884</td>
</tr>
<tr>
<td>48</td>
<td>C2H2 O IC3H7 OH</td>
<td>+.2820E+14</td>
<td>+0.0</td>
<td>+5.20</td>
<td>WESTB.85 -2.884</td>
</tr>
<tr>
<td>49</td>
<td>NC3H7 C2H4 CH3</td>
<td>+.9500E+14</td>
<td>+0.0</td>
<td>+31.00</td>
<td>WESTB.84 -2.884</td>
</tr>
<tr>
<td>50</td>
<td>IC3H7 C2H4 CH3</td>
<td>+.2000E+11</td>
<td>+0.0</td>
<td>+29.59</td>
<td>KERR .99 -2.884</td>
</tr>
<tr>
<td>51</td>
<td>NC3H7 C3H6 H</td>
<td>+.1250E+15</td>
<td>+0.0</td>
<td>+37.00</td>
<td>JACKS.61 -2.454</td>
</tr>
<tr>
<td>52</td>
<td>IC3H7 C3H6 H</td>
<td>+.6350E+14</td>
<td>+0.0</td>
<td>+36.90</td>
<td>KERR .59 -2.454</td>
</tr>
<tr>
<td>53</td>
<td>NC3H7 o2 C3H6 H202</td>
<td>+.1000E+13</td>
<td>+0.0</td>
<td>+5.00</td>
<td>WESTB.84 -2.454</td>
</tr>
<tr>
<td>54</td>
<td>IC3H7 O2 C3H6 H20</td>
<td>+.1600E+13</td>
<td>+0.0</td>
<td>+5.00</td>
<td>WESTB.84 -2.454</td>
</tr>
<tr>
<td>55</td>
<td>CH4 OH C2H5 CH20</td>
<td>+.7900E+13</td>
<td>+0.0</td>
<td>+0.00</td>
<td>WESTB.85 -1.485</td>
</tr>
</tbody>
</table>
The comparison between the experimental and calculated results is shown in Fig. 1. A fair agreement, generally, in the testing ranges, was observed.

Then, the mechanism was subjected to a sensitivity analysis using the "brute force" method. A sensitivity coefficient, $S$, was defined:

$$ S = \frac{\log \left( \frac{\Delta \tau}{\tau} \right)}{\log \left( \frac{\Delta k}{k} \right)} $$

where $\Delta \tau$ is the change in the ignition delay time, $\tau$, due to a $\Delta k$ change in the rate coefficient $k$. The sensitivity coefficient in case of stoichiometric propane-O$_2$ mixtures was calculated and tabulated in Table 1. It can be seen that the calculated ignition delay is sensitive to the rate coefficients for the reactions involving C$_3$H$_8$, in particular the thermal decomposition step $R(40)$. There is also a big influence of rate coefficient of chain branching reaction $R(8)$.

The mechanism can reproduce also the burning velocity. Further, when the mechanism used to reproduce the experimental results, obtained from a jet-stirred reactor operated in intermediate temperature range up to 10 atmospheres (3), the computed results were too far from the experimental ones. However, it can be concluded that the simplified mechanism is only suitable to reproduce global informations and not detail kinetic ones.

REFERENCES

GAS-PHASE OXIDATION OF BENZENE AND DERIVATIVES; FORMATION AND FURTHER CONVERSION OF PHENOLS

R. Louw and P. Mulder
Center for Chemistry and the Environment
Gorlaeus Laboratories, The State University of Leiden
P.O. Box 9502
2300 RA LEIDEN, The Netherlands

ABSTRACT

The gas-phase oxidation of benzene and derivatives is important in the chemistry of the atmosphere and in combustion. Our study deals with kinetic and mechanistic features of the oxidation of arenes between 400-1000K.

A detailed thermokinetic outline is given for the formation of phenol from benzene, the major arene derived product at low degrees of conversion. Data on the kinetic H/D isotope effect support our mechanistic interpretation.

However, phenol is not a stable compound under the reaction conditions employed. At moderate degrees of oxidative degradation dibenzo furan (DBF) was found to be a major product. DBF and chlorinated DBF's are observed in stack gases of waste incinerators. The mechanism(s) of DBF's will be discussed.
High-Temperature Propane Oxidation

I. N. Moskvina, S. S. Polyak, L. B. Romanovich

Institute of Chemical Physics, Academy of Sciences of the USSR

Propane oxidation has been studied by the kinetic tracer method (p,ex reactor, s/v = 0.7 and 12 cm⁻¹, T = 455°C, p = 170 torr. About 1% propylene differently labeled with 14C was added to an equimolecular propene/ oxygen mixture.

The qualitative composition of radioactive species was: C₃H₆, C₂H₄, CH₂O, CH₃OH, CH₃CHO, C₃H₆O, CH₃COCH₃, same as for oxidation at 313°C, but for C₃H₆, C₂H₄, C₃H₆O, CO₂ the yields were higher, and for CH₃CHO, CH₂OH lower. Propylene oxide had one reacor - propylene, while other species were formed both from propene and propylene.

The radioactivity distribution at 455°C was different from that for low-temperature oxidation - a larger part of CH₃CHO, CH₂O, CH₃OH, C₂H₄ were generated by propylene.

Use of the differently labeled propylene revealed its reactivity in CH₃CHO, CH₂O, CH₃OH, and C₂H₄ formation. The probability of CH₃CHO generation by groups 1-2 and 2-3 was approximately the same. At 313°C the probability of CH₃CHO formation from groups 1-2 and 2-3 was 0.3 and 0.7, respectively. This suggested that the subsequent propylene reactions were due to addition at the double bond, rather than to formation of all radicals.

At 313°C an increase in s/v to 12 cm⁻¹ completely stopped the reaction, while at 455°C the maximum rate decreased ~4-fold, and the induction period increased ~3-fold. The composition of species and the radioactivity distribution were the same as for an unfilled reactor. It was found from the kinetics of the added acetaldehyde accumulation at 313°C that in low-temperature propane oxidation CH₃CHO was the branching agent.
THE INITIAL STAGE OF METHANE OXIDATION AT HIGH PRESSURES

Vedeneev V.I., Goldenberg N.Ya., Gorban' N.I., Teitelboim M.A.

The kinetics of methane oxidation at high pressures has been studied in a number of works, nobody, however, has specially investigated its initial stage. Nevertheless, the initial stage can markedly affect the course of the process as a whole.

The object of the present work is to construct and analyze on a computer an isothermal kinetic model describing the mechanism of the initial stage of methane oxidation at high pressures ($P \geq 50$ atm.) and moderate temperatures ($T \sim 600$ K).

A mechanism has been proposed for the initial stage of the process, represented by a combination of elementary reactions and Arrhenius' expressions for the rate constants of each one of them. The constants of controlling elementary reactions were specially analyzed based on the presently available experimental and theoretical data.

The initial oxidation stage, experimentally revealed as the induction period of a degenerated branching process, has been established to constitute a branching reaction proceeding under certain quasi-stationary conditions characterized by approximate equality of the branching and the quadratic termination rates. The combinations of reactions resulting in chain branching have been ascertained, and the influence of each one of the quadratic reactions on the kinetics of the oxidation process initial stage has been investigated.

The proposed mechanism of the initial stage of methane oxidation qualitatively describes the experimentally revealed kinetic regularities and explains the formation of the principal oxidation products: methanol, formaldehyde and water, but, naturally, does not account for their subsequent transformations, since only the very first stage of the process is involved.
TITLE: Kinetics of the Halogen Catalyzed Elimination of HCl from 1,1,1-Trichloroethane.

AUTHORS: A.S. Rodgers and P. Jerus, Department of Chemistry, Texas A&M University, College Station, Texas 77843 U.S.A.

In the halogen catalyzed elimination of HCl from 1,1,1-Trichloroethane the rate limiting step may be either (1) or (2).

\[ \text{CH}_3\text{CCl}_3 + X + \text{CH}_2\text{CCl}_3 + \text{HX} \] (1)

\[ \text{CH}_3\text{CCl}_3 + X + \text{CH}_2\text{CCl}_2 + \text{XCl} \] (2)

If one estimates the C-H bond dissociation energy in \text{CH}_3\text{CCl}_3 as -104 kcal mol\(^{-1}\), based on \text{CH}_3\text{CF}_3\(^{1}\); and the C-Cl bond energy as -73 kcal mol\(^{-1}\), based on \text{C}_2\text{Cl}_6\(^{2}\); the thermochemistry of the four possible reactions for \(X=\text{Br} \) and \(I\) can be estimated as:

\[ \text{CH}_3\text{CCl}_3 + \text{Br} + \text{CH}_2\text{CCl}_3 + \text{BrH} \quad \Delta H^\circ_F = 16.3 \] (3)

\[ \text{CH}_3\text{CCl}_3 + \text{Br} + \text{CH}_2\text{CCl}_2 + \text{BrCl} \quad \Delta H^\circ_F = 20.8 \] (4)

\[ \text{CH}_3\text{CCl}_3 + I + \text{CH}_2\text{CCl}_3 + \text{IH} \quad \Delta H^\circ_F = 32.7 \] (5)

\[ \text{CH}_3\text{CCl}_3 + I + \text{CH}_2\text{CCl}_2 + \text{ICl} \quad \Delta H^\circ_F = 22.8 \] (6)

Based on these estimates one would expect the rate limiting steps (and thus the mechanism) to be different for \(\text{Br}_2\) catalysis compared to \(\text{I}_2\) catalysis. These reactions have been studied in the gas phase from 560 to 640 K and their kinetics determined manometrically and stoichiometry verified by g.l.c. analysis.

The reaction of bromine with \(\text{CH}_3\text{CCl}_3\) was first order in \(\text{CH}_3\text{CCl}_3\) and the first order rate constants depended on \([\text{Br}_2]\)^{1/2}. The amount of \(\text{CH}_2 - \text{CCl}_2\) formed was in good agreement with the increase in pressure (\(\Delta P\)) for less than 50% conversion and only traces of \(\text{CH}_3\text{CHCl}_2\) was found even when 150 torr of HBr was added to the reaction. These data are consistent with the following mechanism for the bromine catalyzed reaction.
\[
\begin{align*}
\text{Br}_2 + 2\text{Br} & \rightarrow K_{\text{Br}} \\
\text{CH}_3\text{CCl}_3 + \text{Br} & \rightarrow \text{CH}_3\text{CCl}_3 + \text{HBr} \quad (3) \\
\text{CH}_3\text{CCl}_3 & \rightarrow \text{CH}_2=\text{CCl}_2 + \text{Cl} \quad (7) \\
\text{Cl} + \text{HBr} & \rightarrow \text{HCl} + \text{Br} \quad (8)
\end{align*}
\]

For this mechanism: Rate \(= k_3 K_{\text{Br}} \left(\text{Br}_2\right)^{1/2} \left(\text{CH}_3\text{CCl}_3\right)\).

The rate of the reaction was reduced by only 7\% when 145 torr of HBr was added to the initial reaction mixture which indicates that \(k_7 \gg k_3 \left(\text{HBr}\right)\) under the experimental conditions.

From a consideration of similar reactions\(^1,3-4\), we have interpreted the data obtained for \(k_3\) to yield: \(\log \left(k_3/M^{-1}a^{-1}\right) = (11.30 \pm 0.3) - (19.94 \pm 0.82)/8\) which fits the observed rate constants with an average deviation of 8\%.

One can estimate \(E_3 = 3 \pm 1.5 \text{ kcal mol}^{-1}\) from similar reactions\(^1,3\) so that \(\Delta H_3(298) = 16.2 \text{ kcal mol}^{-1}\) and \(\Delta H^\circ(\text{CCl}_3\text{CH}_2-H) = \Delta H^\circ(\text{H}-\text{Br}) + 16.2 = 103.7 \text{ kcal mol}^{-1}\).

In preliminary experiments at 600K it was also found that \(I_2\) catalyzed the decomposition of \(\text{CH}_3\text{CCl}_3\) to yield \(\text{CH}_2 = \text{CCl}_2\) and \(\text{HCl}\) and that, at less than 50\% conversion, the agreement between \(d\Phi\) and the extent of reaction as determined by g.i.e. analysis was excellent. This showed that only the elimination of HCl was taking place. However, when HI was added to the initial reaction mixture \(d\Phi/dt\) was noticeably decreased and \(\text{CH}_3\text{CHCl}_2\) was a major product. This suggested that reaction (6) rather than (5) was rate limiting and that the mechanism for the \(I_2\) catalyzed reaction was:
\[ I_2 + 2I \rightleftharpoons K_I \]

\[ CH_3Cl_2 + I \rightleftharpoons CH_3CCl_2 + Cl \]

\[ CH_3CCl_2 + I_2 \rightleftharpoons CH_3CCl_2I + I \]

\[ CH_3CCl_2I \rightarrow CH_2=CCl_2 + HI \]

\[ HI + Cl \rightarrow HCl + I_2 \]

Making the steady state assumption and assuming that reaction(s) (12) will keep the concentration of ICl low, one then obtains: Rate = \( k_6 K_I^{1/2}(I_2)^{1/2}(CH_3CCl_2) \).

This is the concentration dependence observed experimentally over an eleven fold variation in \((CH_3CCl_2)/(I_2)\). An analysis of the rate data from 565 to 610K resulted in \( \log \left( \frac{k_6}{M^{-1} s^{-1}} \right) = (10.65 \pm 0.16) - \frac{23.25 \pm 0.4}{\Delta} \).

If one assumes that \( E_0 = 0 \) kcal mol\(^{-1}\) based on the results of similar reactions with \( I_2 \) and \( Br_2 \), then \( \Delta H^\circ(298) = 23.5 \) kcal mol\(^{-1}\) and \( \Delta H^\circ(CH_3CCl_2-Cl) = \Delta H^\circ(I-Cl) + 23.5 - 73.8 \pm 1.5 \) kcal/mol.

References


1. Computer programs and data bases have been built for the mechanistic modelling and the simulation of gas phase reactions. Only specific comments on the system (fig. 1) will be given here.

Building the reaction mechanism is achieved by a program, which is able to write the complete list of the primary elementary processes of the reaction from the list of the reactants. Generally, the mechanism is very impressive and should be reduced at the moment by hand. Progresses in this field are expected from expert systems (see below).

The thermochemical data of molecules and free radicals are computed by the methods of the thermochemical kinetics, developed by BENSON. The only data needed for these calculations are the structural formulae of the compounds. In the future, the kinetic parameters will be found in a bibliographic data base and the methods of BENSON for the kinetics will be programmed (see fig. 2); the number of data will be increased and the consistency of all types of data (thermochemical, kinetic, bibliographic, computerized) will be checked and improved.

From the mechanism and the associated data, a compiler furnishes the rate laws as a function of current concentrations and temperature.

The above programs and data bases involve the usual problems encountered in computer chemistry: - external and internal coding of chemical structures, reactions and of their properties - algorithms of canonicity, searching for substructures - relational data base operating system.

The simulation of the reaction in a given reactor needs to solve the material, energy and momentum balances. As it is well known, the corresponding algebraic or differential equations remain difficult to solve, because they are very stiff, coupled and non-linear. Various numerical algorithms have been used or tested, from the simplest ones up to more sophisticated.

2. Applications of this system have been achieved in the case of the pyrolysis of neopentane and propane at high temperature, the chlorination of
ethylene (CHLOE Process, ATOCHEM), the thermal reaction of chlorine and methane (BENSON's patent), etc... It has been shown, in the case of neopentane pyrolysis, that the same mechanism accounts for experimental results in the temperature range 700-1300 K and from KNUDSEN pressures to around 1 atm. This is in favour of using such fundamental models for engineering purposes.

3. Which is the state of the art in this field?

One of the first attempts to solve complex reaction mechanisms has been that of EDELSON (BELL Co.). The programs by the NASA and SANDIA laboratories for chemical kinetics (respectively NASAKIN and CHEMKIN) have been developed for simulating reactions and include thermochemical data bases; these codes are well documented. Another program, SPYRO, specially devoted to pyrolysis reactions, has been developed by KTI. The most prominent feature of this program is its ability to cope with very complex mixtures. This is due to the central concept of lumping both components and reactions.

4. What are nowadays the prospects?

They concern both the kinetic themes and the methodology.

The kinetic themes include both fundamental (elucidation of complex reaction mechanisms, determination of thermochemical data of molecules and free radicals, and of kinetic parameters of elementary processes) and engineering objectives (energy, chemicals, ecology).

The core of the elucidation of complex reaction mechanisms is the generation of the mechanism itself; the method described here is far from being satisfactory: simultaneously, too much and not enough processes are generated, because no stoichiometric and kinetic knowledges are put in the machine, nor qualitative rules, nor quantitative laws or data, so that the generating system works blindfold. The way for doing better is an expert system, of which a general scheme is shown in the figure 3. Among others, knowledges such as stoichiometric and kinetic experimental results, thermochemical and kinetic data, rules for writing elementary reactions and building reaction mechanisms, rules of lumping, etc..., have to be taken into account.

The determination of quantitative data by the methods of BENSON has been achieved for thermochemistry, the work for kinetics is to be done.
Further more increments (see fig. 2) and improvements in the fields of oxidation and combustion are needed.

As concerns engineering prospects, the state of the art in gas phase reactions permits us to use a mechanistic modelling for solving such problems as improving conversion, selectivity and energy saving on existing plants, designing new processes for producing chemicals.

Mechanistic modelling also occurs in ecology, for example in meteorology and in safety. Regarding this last point, our thermochemical program has been extended to CHETAH calculations.

![Diagram](image-url)
THE THERMAL DECOMPOSITION OF n-Hexane


University College of Swansea, Swansea SA2 8PP, United Kingdom.

The initial stages (C<~2 reaction) of the thermal decomposition of n-hexane have been investigated in the ranges 723-823 K and 10-100 Torr using a conventional static system with gas chromatographic analysis of the hydrocarbon products. A typical distribution of product yields (Torr) is shown below for the pyrolysis of 50 Torr of n-hexane for 20 seconds at 798 K.

<table>
<thead>
<tr>
<th>Product</th>
<th>Yield (Torr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄</td>
<td>0.434</td>
</tr>
<tr>
<td>C₂H₆</td>
<td>0.189</td>
</tr>
<tr>
<td>C₂H₂</td>
<td>0.494</td>
</tr>
<tr>
<td>C₃H₆</td>
<td>0.376</td>
</tr>
<tr>
<td>1-C₄H₈</td>
<td>0.207</td>
</tr>
<tr>
<td>1-C₅H₁₀</td>
<td>0.063</td>
</tr>
<tr>
<td>H₂</td>
<td>0.051</td>
</tr>
</tbody>
</table>

[The yield of hydrogen is calculated so as to maintain the C/H balance.]

Plots of product yield against reaction time are linear, i.e. there is no sign of the self-inhibition as observed for several other alkanes.

It is shown that the overall mechanism is

1. \( C₆H_{14} + 2 \) radicals
2. \( 1\text{-C}_2\text{H}_8 + (C_2\text{H}_6 + C_2\text{H}_4) + 2\text{C}_2\text{H}_4 + \text{C}_2\text{H}_6 \)
3. \( 2\text{-C}_6\text{H}_{13} + (C_3\text{H}_6 + C_2\text{H}_4) + C_3\text{H}_6 + C_2\text{H}_4 + \text{CH}_3 \)
4. \( 3\text{-C}_6\text{H}_{13} + 1\text{-C}_4\text{H}_{10} + \text{C}_2\text{H}_4 \)
5. \( 3\text{-C}_6\text{H}_{13} + 1\text{-C}_4\text{H}_{10} + \text{CH}_3 \)
6. \( \text{C}_2\text{H}_5 + \text{C}_2\text{H}_4 + \text{H} \)
7. \( \text{H} + \text{C}_6\text{H}_{14} + \text{H}_2 + \text{C}_2\text{H}_6 \)
8. \( \text{CH}_3 + \text{C}_6\text{H}_{14} + \text{CH}_4 + \text{C}_6\text{H}_{13} \)
9. \( \text{C}_2\text{H}_5 + \text{C}_6\text{H}_{14} + \text{C}_2\text{H}_6 + \text{C}_6\text{H}_{13} \)
10. \( 2\text{C}_2\text{H}_5 + \text{C}_4\text{H}_{10} \) or \( \text{C}_2\text{H}_4 + \text{C}_2\text{H}_6 \)

From the data on the rate of ethane formation, we estimate

\[ \log(k_g/cm^3 \text{ mol}^{-1} \text{ s}^{-1}) = 13.30 - 17.9 \text{ kcal mol}^{-1}/(2.3 \text{ RT}) \]

which provides the familiar curved Arrhenius plot when combined with published data for both lower and higher temperatures. From data on product
yields, we obtain the relative yields of products from reactions (2)-(5) i.e. decompositions of $C_6H_{13}$ isomers to be

\[(2) : (3) : (4) : (5) = 1 : 9 : 1.3 : 4.7\]

with a small temperature dependence. The relative proportion of the products arising from 1- and 2-$C_6H_{13}$ is in marked contrast to the corresponding proportions in n-butane pyrolysis of about 1 : 3. We conclude that isomerisation via a strain-free, 6-membered, cyclic transition state

\[1-C_6H_{13} \rightarrow 2-C_6H_{13}\]

occurs giving the roughly 1:10 equilibrium proportions of 1- and 2-$C_6H_{13}$ estimated by us. This conclusion is supported by estimates which suggest that the isomerisation is about an order of magnitude faster than the competing decomposition process. Any isomerisation involving 3-$C_6H_{13}$ would, at best, involve a strained 5-membered, cyclic, transition state. Simple estimates suggest that this isomerisation has a rate comparable with or perhaps somewhat slower than the competing decomposition. Thus no definite conclusion can be drawn concerning the significance, if any, of this type of isomerisation.

The absence of self-inhibition in the pyrolysis of n-hexane and in that of n-butane is in marked contrast to the strong self-inhibition by the olefin products observed in the pyrolyses of several other alkanes. To investigate this phenomenon further we have made a detailed comparison of the pyrolyses of n-hexane and of neopentane. The self-inhibition of the latter is due mainly to the abstraction of allylic H from the product isobutene by the chain carrying radical, $CH_3$, the resultant resonance stabilized radical then becoming involved in termination reactions. We have calculated the effect of a similar mechanism on the pyrolysis of n-hexane. In this case only $C_3H_6$ and $1-C_4H_8$ are relevant products since, while $1-C_5H_{10}$ does have allylic H, the resultant pentenyl radical can unimolecularly decompose with loss of $CH_3$ and thus cannot lead to inhibition.
By making sensible (we hope!) assumptions about the reactivity of \( \text{C}_2\text{H}_5 \) towards allylic \( \text{H} \), we estimate for 798 K and 50 Torr \( n \)-hexane

\[
\frac{\text{(Inhibited rate)}}{\text{(Uninhibited rate)}} = \frac{1}{1 + 20f}
\]

where \( f \) is the fractional extent of reaction which may be compared with the ratio \( \frac{1}{1 + 117f} \) which we estimate from published data for neopentane in the same conditions. The implications of these two expressions are illustrated in the diagram as plots of \( f \) against reaction time for the stated conditions. For neopentane a pronounced curve is obtained whereas for \( n \)-hexane, the curvature is so slight that the experimental results are very well fitted by a straight line even though, as illustrated, there is some inhibition of the reaction. The fundamental reason for the difference lies in the fact that \( \text{C}_2\text{H}_5 \) is much less reactive than \( \text{CH}_3 \) towards abstraction of \( \text{H} \).

---

![Diagram](image-url)
Chain kinetics in igniting hydrocarbon-air mixtures studied by transient OH fluorescence following photolytic perturbation

C. Morley and L.J. Kirsch
Shell Research Ltd., Thornton Research Centre, P.O. Box 1, Chester, CH1 3SH, UK

The chemistry leading to autoignition of hydrocarbon-air mixtures is complex but a simplified model of the kinetics has been developed [1, 2] which can account for much of the observed behaviour below about 850 k. This has recently been extended [3] by improving the interpretation in terms of fundamental chemistry for alkanes but even so a number of important parameters are empirically fitted (in a non-unique way) from ignition delay measured in a rapid compression machine. The present work uses a new experimental method to verify the general features of the model and to determine its parameters experimentally.

Cool flames in n-heptane air mixtures have been stabilised at atmospheric pressure on a flat flame burner. The mixture is heated in a few tens of milliseconds by passing through an electrically-heated porous board made of sintered metal fibres. A cool flame develops downstream sometimes followed by a second stage of ignition. OH was detected by fluorescence induced by an excimer pumped doubled dye laser at 282 nm. Initial experiments found unexpectedly large OH signals from the region between the cool flame and the second stage of ignition. However, the signal was found to be dependent on the square of the laser intensity suggesting that the OH was being produced photolytically. At low intensities natural OH with a fluorescence signal proportional to the laser intensity could be detected with a sharply peaking concentration in the cool flame, as expected.

By detecting the OH with a second lower powered dye laser fired a variable time after the first the decay of OH back to its steady state...
concentration following its photolytic production could be observed. A similar perturbation method has previously been used in hot flames by Chou and Dean [4]. By observing the dependence of the signal on the wavelength of the photolysis laser the photolytic species was shown to be a peroxide, probably hydrogen peroxide. In the post cool flame region the OH decay could be fitted over a thousand fold drop in concentration to the sum of 3 exponentials. The interpretation is in terms of the generalised model [1, 3] shown in the figure. The initial fast decay is ascribed to the reaction of OH with the fuel ($k_1$). The second slow decay is essentially determined by the termination rate ($k_3$) after the OH and RO$_2$ have equilibrated. The slowing to the third rate is caused by decomposition of the branching agent ($k_6$) becoming significant. The results show that the kinetic chains are short, with the propagation, termination and branching rates all of comparable size. This contrasts with earlier formulations of the model [1-3] but is consistent with the conclusions of Baldwin et al [5]. The experimentally determined rates were consistent with those derived from literature rate constants where these were available.

Chemical mechanism for initial stages of hydrocarbon oxidation
MODELING NITRIC OXIDE FORMATION IN COMBUSTION*

James A. Miller
Combustion Research Facility
Sandia National Laboratories
Livermore, CA 94550

ABSTRACT

Nitric oxide formation under lean combustion conditions is well understood and can be predicted accurately by the Zel'dovich, or thermal, NO mechanism. However, complications arise under rich conditions and when nitrogen is chemically bound in the fuel. These situations have in common the feature that hydrogen cyanide is formed as an intermediate.

The development of a kinetic model that accurately describes NO formation under a wide range of conditions requires a close interaction among modeling, theory, and experiment. This paper will describe such an interaction. Particular topics to be covered include

1) modeling nitric oxide formation in well-stirred reactors,
2) the conversion of \( HCN \) to \( NO \) and \( N_2 \) in low-pressure \( H_2/O_2/Ar - HCN \) flames,
3) hydrocarbon/nitric-oxide interactions in low pressure flames,
4) the theoretical prediction of the rate coefficients for \( O + HCN \rightarrow \) products and \( OH + HCN \rightarrow \) products.

* Research sponsored by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences.
MODELLING OF THE GAS PHASE FREE RADICAL CHEMISTRY OF THE PLASMA ETCHING PROCESS: CF\textsubscript{4} AND CF\textsubscript{4}/O\textsubscript{2} MIXTURES

I.C. Plumb and K.R. Ryan
CSIRO Division of Applied Physics, Sydney, Australia 2070

Although plasmas of CF\textsubscript{4} and mixtures of CF\textsubscript{4} with O\textsubscript{2} are used widely for the etching of semiconductors, the chemistry of these plasmas is not well understood. A model has been developed which places emphasis on the gas phase free radical reactions occurring in these plasmas and the calculations of the model are compared with the experimental results of Smolinsky and Flamm [1].

Important requirements for the model are dissociation rates and branching ratios for the dissociation paths. Electron impact dissociation rates for CF\textsubscript{4} and O\textsubscript{2} have been deduced from the experimental measurements of consumption of CF\textsubscript{4} and O\textsubscript{2} in CF\textsubscript{4}/O\textsubscript{2} plasmas as a function of feed gas composition and flow rate. Dissociation rates for other species have been calculated relative to CF\textsubscript{4} where cross-section data are available, or set equal to the CF\textsubscript{4} dissociation rate where no data are available. The dissociation paths for CF\textsubscript{4} have been deduced from a knowledge of the free radical reaction rates and the stable product distribution observed downstream of a radio-frequency discharge by Smolinsky and Flamm. It is concluded that CF\textsubscript{2} is a direct product of electron impact of CF\textsubscript{4} and that its rate of production is about twice that of CF\textsubscript{3}. This direct formation of CF\textsubscript{2} from CF\textsubscript{4} rather than by electron impact dissociation of CF\textsubscript{3} is an important feature of the model.
For $\text{CF}_4$ plasmas, the amount of $\text{CF}_4$ consumed is low because gas phase reactions between $F$ and both $\text{CF}_2$ and $\text{CF}_3$ lead to the rapid re-forming of $\text{CF}_4$ [2]

$$\text{CF}_2 + F \rightarrow \text{CF}_3 \quad (1)$$
$$\text{CF}_3 + F \rightarrow \text{CF}_4 \quad (2)$$

The effect of reactions (1) and (2) under conditions appropriate to plasma etching is to hold the concentrations of $\text{CF}_3$, $\text{CF}_2$ and $F$ virtually constant over a wide range of flow rates. When $\text{Si}$ is added to the plasma, the model predicts only minor changes in the concentrations of the major species in the discharge but significant changes to the stable products observed downstream.

In $\text{CF}_4/\text{O}_2$ plasmas, rapid gas phase reactions between $O$ atoms and both $\text{CF}_3$ and $\text{CF}_2$ [3,4]

$$\text{CF}_3 + O \rightarrow \text{COF}_2 + F \quad (3)$$
$$\text{CF}_2 + O \rightarrow \text{COF} + F \quad (4a)$$
$$\quad \rightarrow \text{CO} + 2F \quad (4b)$$
$$\text{COF} + O \rightarrow \text{CO}_2 + F \quad (5)$$

allow the $F$ concentration to increase, which is in accord with experimental observations. The model is able to predict the trend of the experimental results as the mixture composition and flow rate are changed. The agreement for concentrations of the observed stable products CO, CO$_2$ and COF$_2$ is generally better than a factor of two over a wide range of experimental conditions. Although the molecular fluorine concentrations predicted by the model are lower than those observed experimentally, the total amount of fluorine produced ($F$ and $F_2$) is in good agreement and it is suggested that
atomic fluorine may have been combining on the surface of the sampling pinhole in the experiments of Smolinsky and Flamm.

A total of 49 gas phase reactions were included in the model for CF$_4$/O$_2$ plasmas. However, it can be shown that only 13 have important effects on the results of the modelling. Five of these are electron impact dissociation processes and the remaining eight are free radical reactions. Of the eight important free radical reactions, the rate coefficients for all except one are well established.

For both CF$_4$ and CF$_4$/O$_2$ plasmas, the calculations of the model are in good agreement with the experimental data over a wide range of experimental conditions. This confirms the importance of gas phase free radical reactions in these plasmas.

REFERENCES

The reaction between CF$_3$ radicals and the surfaces of interest were studied in a VLF* flow reactor whose total pressure was kept in the millitorr range. The CF$_3$ radicals were generated from CF$_3$I both by UV (248 nm) and IR-multiphoton photolysis, and the subsequent gas-phase reaction products were followed by mass spectrometry and by in situ REMPI (resonance-enhanced multiphoton ionization) of CF$_3$. The surface reaction was found to yield CO, HF, CO$_2$, COF$_2$, and SiF$_4$. The H$_2$O level was greatly reduced in comparison to our earlier studies, nevertheless, hydrogen-containing products were clearly observable, indicating that trace amounts of water readily react with CF$_3$.

The kinetics of homogeneous CF$_3$ recombination, which we also measured under our conditions on an absolute basis, served as the "clock" for the surface reactions. The rates for the irreversible surface loss of CF$_3$ and for the formation of CO and other surface reaction products were measured as a function of temperature of the substrate surface, and a simple Langmuir-type kinetic model was used to describe the heterogeneous reactions, which are competing with homogeneous gas-phase chemistry.

The REMPI studies of CF$_3$ indicate the real-time behavior of the radical in the presence of the hot surface and directly obtain the sticking coefficient of CF$_3$. We believe these values to be of great fundamental and practical interest as they represent the first values for sticking coefficients of radicals that were obtained in a direct way.
<table>
<thead>
<tr>
<th>Name</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butkovskaya N.I.</td>
<td>E31</td>
</tr>
<tr>
<td>Campbell I.M.</td>
<td>E29</td>
</tr>
<tr>
<td>Campargue R.</td>
<td>E8</td>
</tr>
<tr>
<td>Canosa-Mas C.</td>
<td>E44</td>
</tr>
<tr>
<td>Cantin M.</td>
<td>E39</td>
</tr>
<tr>
<td>Carlier M.</td>
<td>E53</td>
</tr>
<tr>
<td>Caralp F.</td>
<td>E47</td>
</tr>
<tr>
<td>Carr R.W.</td>
<td>I20</td>
</tr>
<tr>
<td>Cartwright P.C.</td>
<td>F6</td>
</tr>
<tr>
<td>Castaño F.</td>
<td>I10</td>
</tr>
<tr>
<td>Castella M.</td>
<td>17</td>
</tr>
<tr>
<td>Castillejo M.</td>
<td>E18</td>
</tr>
<tr>
<td>Cathonnet M.</td>
<td>E52, I63</td>
</tr>
<tr>
<td>Caubet P.</td>
<td>B2</td>
</tr>
<tr>
<td>Cavalli S.</td>
<td>D4</td>
</tr>
<tr>
<td>Chakir A.</td>
<td>E52</td>
</tr>
<tr>
<td>Chamboux J.</td>
<td>159</td>
</tr>
<tr>
<td>Chandler D.W.</td>
<td>I11</td>
</tr>
<tr>
<td>Cheskis S.G.</td>
<td>F5</td>
</tr>
<tr>
<td>Chinnick S.J.</td>
<td>E55</td>
</tr>
<tr>
<td>Chráščik I.</td>
<td>E24, E25</td>
</tr>
<tr>
<td>Cohen N.</td>
<td>14</td>
</tr>
<tr>
<td>Çöme G.M.</td>
<td>J2</td>
</tr>
<tr>
<td>Copeland R.A.</td>
<td>E21</td>
</tr>
<tr>
<td>Costes M.</td>
<td>B2</td>
</tr>
<tr>
<td>Cox R.A.</td>
<td>C1, E42, E51</td>
</tr>
<tr>
<td>Crim F.F.</td>
<td>D1</td>
</tr>
<tr>
<td>Crossley D.R.</td>
<td>E21</td>
</tr>
<tr>
<td>Cvutanovic R.J.</td>
<td>I17, I25</td>
</tr>
<tr>
<td>Dagaut P.</td>
<td>E52, I63</td>
</tr>
<tr>
<td>Davies J.M.</td>
<td>E42</td>
</tr>
<tr>
<td>Davidovits P.</td>
<td>C4</td>
</tr>
<tr>
<td>Deakyne C.A.</td>
<td>68</td>
</tr>
<tr>
<td>Deson J.</td>
<td>E11</td>
</tr>
<tr>
<td>Devolder P.</td>
<td>I30</td>
</tr>
<tr>
<td>Dóbé S.</td>
<td>G2</td>
</tr>
<tr>
<td>Dognon A.M.</td>
<td>E47</td>
</tr>
<tr>
<td>Donovan R.J.</td>
<td>E22, F6</td>
</tr>
<tr>
<td>Dörthe G.</td>
<td>B2</td>
</tr>
<tr>
<td>Dove J.E.</td>
<td>G4</td>
</tr>
<tr>
<td>Droge A.T.</td>
<td>H3</td>
</tr>
<tr>
<td>Dryer F.L.</td>
<td>I56, I61</td>
</tr>
<tr>
<td>Duguay B.</td>
<td>B6</td>
</tr>
<tr>
<td>Dunning Jr. T.H.</td>
<td>A3</td>
</tr>
<tr>
<td>Dupeyrat G.</td>
<td>G7</td>
</tr>
<tr>
<td>Durup-Ferguson M.</td>
<td>B7</td>
</tr>
<tr>
<td>Duval M.C.</td>
<td>B1, I8</td>
</tr>
<tr>
<td>Dyer P.E.</td>
<td>I16</td>
</tr>
<tr>
<td>Dyet J.A.</td>
<td>E14</td>
</tr>
<tr>
<td>Eley C.D.</td>
<td>E50</td>
</tr>
<tr>
<td>Endo Y.</td>
<td>G4</td>
</tr>
<tr>
<td>Ewig F.</td>
<td>E23</td>
</tr>
<tr>
<td>Fahr A.</td>
<td>148</td>
</tr>
<tr>
<td>Faraji F.</td>
<td>147</td>
</tr>
<tr>
<td>Farantos S.C.</td>
<td>E20</td>
</tr>
<tr>
<td>Farrow R.L.</td>
<td>I11</td>
</tr>
<tr>
<td>Fayeton J.</td>
<td>B7</td>
</tr>
<tr>
<td>Ferguson E.E.</td>
<td>G6</td>
</tr>
<tr>
<td>Figuera J.M.</td>
<td>E18, I2</td>
</tr>
<tr>
<td>Fleming J.G.</td>
<td>E33</td>
</tr>
<tr>
<td>Fleming J.W.</td>
<td>H6</td>
</tr>
<tr>
<td>Forges H.</td>
<td>I26</td>
</tr>
<tr>
<td>Forst W.</td>
<td>D3</td>
</tr>
<tr>
<td>Forys M.</td>
<td>E24, E25</td>
</tr>
<tr>
<td>Fotakis C.</td>
<td>E20, E26</td>
</tr>
<tr>
<td>Foucaut J.F.</td>
<td>I55</td>
</tr>
</tbody>
</table>
Johnson K. : B5
Jolly G.S. : 128
Joseph T. : E4
Jourdain J.L. : C5
Jouvet C. : Bl, 18
Jue Wang : B4
Jusinski L.E. : 137
Just Th. : ES4, ES9

Kaes A. : E12
Kajimoto O. : F2
Kaufman V. : 117
Keiffer M. : G5
Kemény S. : I24
Kenner R.D. : E12
Kerr E.A. : E22
Kerr J.A. : 127
Kimura K. : F2
King F.D. : I13
Kirsh L.J. : J4
Kishkovitch G.P. : E65, 150
Kleinermanns K. : F3
Klemm R.B. : E34, E37
Koda S. : 64
Kohse-Höinghaus K. : ES4
Kolb C.E. : C4
Körtvélyesi T. : I45
Kozliner M.Z. : 138
Kucheryavii S.I. : A2
Kulakov P.V. : E5
Kvaran A. : ES5, 19

Lafage C. : E32, 130
Laganά A. : E4, E5
Lahmani F. : E10

Lalo C. : E11
Langridge-Smith P.R.R. : F6
Larin I.K. : E28
László B. : E3
Laufer A.H. : 148
Lar L.W. : D2
Lawley K.F. : F6
Lebėhot A. : EB
Le Bras G. : C5, E43
Lee L. : E33
Lempereur F. : E11
Lendvay G. : E3
Leone S.R. : F1
Lesclaux R. : E47
Levitsky A.A. : 13
Lifshitz C. : E7
Lightfoot P.D. : D2, 141
Lim K.F. : D5
Lin M.C. : H6
Löhmansröben H.G. : D6
Longwell J.P. : 118
Lourée D. : 158
Louv R. : 164
Lovejoy E.R. : C7
Lūdviksson A. : 19
Luther K. : D6

Maas U. : E56
Mackay M. : 153
Malegat L. : 16
Mandy M.E. : E4
Marquaire P.M. : J2
Marquetette J.B. : G7
Marshall P. : E29
Marshall R.M. : J3
Verdasco E. : B3
Veyret B. : E51, I26
Vidóczy T. : I24
Viggiano A.A. : G8
Vincier C. : H5
Viossat V. : I59
Vogin B. : I62

Wagner A.F. : A3, I5
Walker R.M. : H2
Wallington T.J. : C2
Walravens B. : E60
Walsh R. : E50, I41
Wang N.S. : C7
Warnatz J. : E56
Watts I.M. : E50
Wayne R.P. : E44, I21, I34
Weiner B.R. : I22
Weller R. : I57
Westmoreland P.R. : I18
Wiesen P. : I42
Wilkinson J.P.T. : E22
Wine P.H. : C7, E41
Winer A.M. : C2
Witte F. : C8
Wolfum J. : I57
Worsnop D.R. : C4

Yamada C. : G4
Yarwood B. : E46
Yetter R.A. : I61

Zabarnick B. : H6
Zabel F. : C3
Zahniser M.S. : C4
Zare R.N. : I19
Zeilner R. : E23, G1, I35
Zetzsch C. : C8
Zevgolis D. : E15
THE 9th INTERNATIONAL SYMPOSIUM ON GAS KINETICS
has been sponsored by:

• Aérospatiale
• British Gas
• British Petroleum Company plc.
• Centre National de la Recherche Scientifique
• Commissariat à l'Energie Atomic (CEN-Saclay-DPC)
• Communauté Urbaine et Ville de Bordeaux
• Conseil Régional d'Aquitaine
• Electricité de France
• Elf Aquitaine - SNEA(P)
• Gaz de France
• IBM France
• ICI plc.
• Institut Français du Pétrole
• Lambda Physik
• Ministère de la Défense (DRET)
• Ministère de l'Environnement
• Photon Science Instruments
• Quantel
• Shell Research Ltd.
• Société Européenne de Propulsion
• SOPRA
• Université de Bordeaux I
• US Army - European Research Office
• USAF - European Office of Aerospace Res. and Develop.
• US Naval Research - Branch Office, London

We gratefully acknowledge the financial assistance given by these organisations.