OFFICE OF NAVAL RESEARCH
Contract N00014-85-C-0790
Task No. 359/627

TECHNICAL REPORT NO. 1

POLYDIOXOLANE POLYMER ELECTROLYTE

By

J. S. Foos and S. M. Erker

Prepared for Publication in the Journal of the Electrochemical Society

EIC Laboratories, Inc.
111 Downey Street
Norwood, Massachusetts 02062

October 18, 1986

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited
Polydioxolane Polymer Electrolyte

Polymer electrolytes formed by the chemical and electrochemical polymerization of a solution of LiAsF₆ in dioxolane have been examined. The liquid electrolyte has been stabilized by preparing and storing it in the presence of Li metal as a proton and carbocation scavenger. The initial results show that the polymerization of the electrolyte is readily initiated chemically by acids or oxidizing agents. The polymerization continues so that the conductivity of the resulting polymer electrolyte decreases over 24 hrs at room temperature approaching 10^{-6}S/cm.
POLYDIOXOLANE POLYMER ELECTROLYTE

J. S. Foos and S. M. Erker

There has been much interest in an all solid-state battery incorporating a polymer electrolyte (PE). Polymer electrolytes of most current interest are composed of polyethylene or polypropylene oxide (PEO or PPO) and lithium salts (1-5). These electrolytes have conductivities of \(-10^{-5}\) S/cm at temperatures between 55 and 85°C.

In past work on liquid electrolytes for secondary Li batteries, we observed that samples of dioxolane containing LiAsF₆ appeared to spontaneously polymerize giving an optically clear polymer material. The expected structure of this polymer \([\text{LiAsF}_6\text{O}_{10}]\) contains the \(-\text{C}-\text{C}-\text{O}\) sequence that occurs in PEO (6) and therefore might be expected to form complexes with alkali metal salts. It was later observed that LiAsF₆/dioxolane solutions could be stabilized by treatment with Li. Such samples remained liquid at 70°C but would polymerize rapidly when exposed to air. It was proposed that the polymerization was initiated by oxidation which produced the carbocation initiators typically implicated in dioxolane polymerization (6). A recent patent relates that acid also is an initiator for such polymerization and that treatment with base is also stabilizing (7).

The above observations suggest that the polymerization of the stabilized LiAsF₆/dioxolane might be initiated by electrochemical (EC) oxidation producing the required acid and carbocation initiators. Thus a PE might be formed in situ allowing improved interfacial contact with electrode materials, the formation of very thin electrolyte films on electrodes, and the addition of electrolyte to the cell late in assembly. Herein is reported preliminary studies of the formation and conductivity of the polydioxolane/LiAsF₆ polymer electrolyte.

EXPERIMENTAL

The synthesis of the polymer electrolytes and cell construction were carried out under an Ar atmosphere. The dioxolane (Aldrich, gold label) was distilled from sodium benzophenone ketyl. The LiAsF₆ (U.S. Steel Agrichemicals) was used as received. The electrolytes were made using cooled dioxolane containing Li metal as an acid and carbocation scavenger.

Some initial AC conductivities were done using an impedance bridge (Gen Rad 1650-B). Subsequently the conductivities were calculated from complex impedance plots using the real component values at imaginary component minima (8). Measurements were made from 100 kHz to 10 MHz with a lock-in amplifier (PAR 5204) using a method similar to one previously described (9). The cell consisted of two stainless steel (SS) electrodes held in contact with the PE. DC conductivities were measured between two Li foil electrodes supported on metal substrates. The cell was cycled at constant current and the conductivity calculated from the plateau voltages measured.

PE Synthesis.—The PE was synthesized using chemical and EC initiation.

Chemical oxidation initiation.—A trace amount of dichlorodicyano benzoguanidine (DDQ) (10-20 mg) was added to 5 ml of 2.5m LiAsF₆ in dioxolane. The solution became orange due to the DDQ but no immediate reaction was observed. After 2 h at rt, the solution was polymerized. Longer times gave polymers with increased rigidity.

EC oxidation initiation.—The general technique is to apply a current or voltage pulse between SS electrodes. At 3.0-3.7 V (vs. Li), see Fig. 1, the dioxolane is oxidized at the anode and Li plated at the cathode. This initiates the growth of polymer at the anode. The cell is allowed to set for a measured period of time and, in certain experiments, the film covered anode is then withdrawn from the bulk electrolyte. Longer setting times give thicker films.

In experiments which use very thin cells, e.g., 0.025 cm, the polymerization continues across the entire cell and the conductivity measurements are made on the PE in the synthesis cell.

EC Cells Used in PE Synthesis.—Cell I is illustrative of the cells used in potentiostated initiation experiments. The cell consists of a prismatic glass container (4 cm x 1 cm x 6 cm) containing SS working and counter electrodes, and a Li reference electrode. After polymerization, the working electrode (anode) is removed from the cell and the PE can be isolated from the substrate. If the cell is allowed to set for a long period of time after initiation (e.g., a day) and before electrode removal, then much of the electrolyte may become gelled even across a 1 cm cell. Generally films made in this manner were removed from the cell shortly after initiation and were \(-0.1\) cm thick.

In a second cell, Cell II, the thickness of the film produced is controlled by the special efforts made to exclude impurities, however, the dioxolane used was of higher quality as purchased (Aldrich gold label) than that used previously (Aldrich 99%). The solutions appeared stable at rt for days (or even weeks) even after brief exposure to air.

Chemical Preparation of the PE.—DDQ was added to 2.5m LiAsF₆ in dioxolane giving polymerization in 2 h. Although the polymerization was rapid, the polymer was not examined for more than 24 h, after which time the polymerization was essentially complete. The PE was found to be rubber-like, i.e., deforming under an applied load and recovering its original shape when the load was removed. It was difficult to cut even with a razor knife. The PE dissolved slowly in tetrahydrofuran (THF) but was apparently insoluble in diethyl ether. When heated the PE softened as heated (up to 80°C) but retained its rubbery nature.

The AC conductivities of this material, at the ambient and elevated temperatures, are shown in Table I. The conductivities increase with increasing temperature due, at least in part, to the decreasing viscosity of the polymer. Similar measurements were made using PE formed in a like manner from 2.5m LiAsF₆ in dioxolane. The PE appeared softer and the conductivity values were generally greater. An additional reaction using 1.6m LiAsF₆ electrolyte gave even a softer PE and higher conductivities. The increase in conductivity with decrease in salt concentration may result from the lowered viscosity, i.e., molecular weight, of the polymer formed. This would imply that LiAsF₆ promotes polymerization and that the degree of polymerization is dependent on LiAsF₆ concentration. On the other hand, dioxolane polymerizes readily as a result of chemical initiation in the absence of any salt (6). Thus the differences in viscosity may be due to other factors, such as the degree of salt complexation. Polymerization may also be initiated by oxygen and heat. When this occurs, the precursor...
electrolyte containing the most LiAsF$_6$ again gives the most rigid and rubber-like polymer.

<table>
<thead>
<tr>
<th>Temp. (°C)</th>
<th>2.5m LiAsF$_6$</th>
<th>2.0m LiAsF$_6$</th>
<th>1.0m LiAsF$_6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>2 x 10$^{-6}$</td>
<td>10 x 10$^{-6}$</td>
<td>40 x 10$^{-6}$</td>
</tr>
<tr>
<td>50</td>
<td>10 x 10$^{-6}$</td>
<td>30 x 10$^{-6}$</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>100 x 10$^{-6}$</td>
<td>100 x 10$^{-6}$</td>
<td></td>
</tr>
</tbody>
</table>

"DC in parentheses"

EC Preparation of The PE. The EC oxidation of dioxolane can be seen in Figure 1 which shows the cyclic voltammetric evaluation of LiAsF$_6$/dioxolane electrolyte at its oxidative limit. Using a freshly polished electrode, the first sweep shows appreciable currents due to the oxidation of dioxolane. However, on subsequent sweeps the oxidative currents are greatly diminished. The lessened currents are, of course, due to the polymer film protecting the bulk electrolyte from further oxidation.

In the initial preparations of the PE, the PE was formed in a cell (Cell I) containing liquid electrolyte in excess of the amount that would be incorporated into the PE film. Polymerizations were typically initiated potentiostatically, with the polymerization being terminated by the removal of the anode from the cell. In a typical preparation, polymerization was initiated in a 2.5m precursor solution by potentioligating the anode at 3.5V (vs. Li) for 15 s. During this time, the current jumped to ~30 mA and decreased to 2 mA. The anode was immediately removed from the cell and was covered with a 0.1 cm PE film. The film, when removed from the substrate, is transparent and flexible. Similar preparations were done using 2.0m precursor electrolyte using 3.0 and 3.5V initiation potentials (2.5V gave no polymerization). At rt, these films had AC conductivities in the range 6-8 x 10$^{-6}$ S/cm with the DC conductivities somewhat decreased (3 x 10$^{-6}$ S/cm).

It seems likely that the presence of residual volatile species would have a significant negative effect on conductivity. Therefore, films similar to those above were prepared and held under vacuum for 1 hour, the conductivities observed were the same as those quoted above.

The conductivities of the PE films formed using EC initiation are comparable in magnitude to those prepared using DBD initiation, see Table 1, with the AC conductivities generally larger than the DC conductivities. The smaller values of the DC conductivities reflect the contribution of Li ion transport to the total conductivity and the resistance at the Li/PE interface. The conductivities observed are somewhat greater than those observed for PEAs and PPO polymer electrolytes (1).

Improved PE films could be made using a thin cell in which the PE is allowed to completely fill the cell (Cell II). Moreover, this thin cell could then be used as a conductivity cell as well. Polymerizations were initiated galvanostatically and the progress of the polymerization followed by monitoring the resistance (from complex impedance measurements) across the cell. The results using a 0.025 cm cell are shown in Figure 2. The conductivity of the electrolyte drops rapidly immediately after initiation and approaches a plateau at ~4 h. The resulting film is transparent and elastic; and has an AC conductivity of 3 x 10$^{-6}$ S/cm.

Conductivity values were measured as a function of temperature up to 100°C. The conductivity at this temperature was 1 x 10$^{-4}$ S/cm with good short term thermal stability indicated by the reproducibility of conductivities remeasured at lower temperatures. As the PE is heated it appears to soften at 60°C with melting occurring in the range 120-130°C. At this temperature discoloration occurs, presumably due to the thermal instability of LiAsF$_6$.

Acknowledgement. We wish to thank the Office of Naval Research for its support of this work.

References
<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Office of Naval Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Attn: Code 413</td>
</tr>
<tr>
<td></td>
<td>800 N. Quincy Street</td>
</tr>
<tr>
<td></td>
<td>Arlington, Virginia 22217</td>
</tr>
<tr>
<td></td>
<td>Dr. Bernard Douda</td>
</tr>
<tr>
<td></td>
<td>Naval Weapons Support Center</td>
</tr>
<tr>
<td></td>
<td>Code 5042</td>
</tr>
<tr>
<td></td>
<td>Crane, Indiana 47522</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Commander, Naval Air Systems Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Attn: Code 310C (H. Rosenwasser)</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20360</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Naval Civil Engineering Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Attn: Dr. R. W. Drisko</td>
</tr>
<tr>
<td></td>
<td>Port Hueneme, California 93401</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Defense Technical Information Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Building 5, Cameron Station</td>
</tr>
<tr>
<td></td>
<td>Alexandria, Virginia 22314</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>DTNSRDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Attn: Dr. G. Bosmajian</td>
</tr>
<tr>
<td></td>
<td>Applied Chemistry Division</td>
</tr>
<tr>
<td></td>
<td>Annapolis, Maryland 21401</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Dr. William Tolles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Superintendent</td>
</tr>
<tr>
<td></td>
<td>Chemistry Division, Code 6100</td>
</tr>
<tr>
<td></td>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20375</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Dr. David Young</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Code 334</td>
</tr>
<tr>
<td></td>
<td>NORDA</td>
</tr>
<tr>
<td></td>
<td>NSTL, Mississippi 39529</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Naval Weapons Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Attn: Dr. A. B. Amster</td>
</tr>
<tr>
<td></td>
<td>Chemistry Division</td>
</tr>
<tr>
<td></td>
<td>China Lake, California 93555</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Scientific Advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Commandant of the Marine Corps</td>
</tr>
<tr>
<td></td>
<td>Code RD-1</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20380</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>U.S. Army Research Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Attn: CRD-AA-IP</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td></td>
<td>Research Triangle Park, NC 27709</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Mr. John Boyle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Materials Branch</td>
</tr>
<tr>
<td></td>
<td>Naval Ship Engineering Center</td>
</tr>
<tr>
<td></td>
<td>Philadelphia, Pennsylvania 19112</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Naval Ocean Systems Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Attn: Dr. S. Yamamoto</td>
</tr>
<tr>
<td></td>
<td>Marine Sciences Division</td>
</tr>
<tr>
<td></td>
<td>San Diego, California 91232</td>
</tr>
<tr>
<td>Name</td>
<td>Institution and Address</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>Dr. M. Wrighton</td>
<td>Chemistry Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139</td>
</tr>
<tr>
<td>Dr. B. Stanley Pons</td>
<td>Department of Chemistry, University of Utah, Salt Lake City, Utah 84112</td>
</tr>
<tr>
<td>Donald E. Mains</td>
<td>Naval Weapons Support Center, Electrochemical Power Sources Division, Crane, Indiana 47522</td>
</tr>
<tr>
<td>S. Ruby</td>
<td>DOE (STOR), M.S. 68025 Forrestal Bldg., Washington, D.C. 20595</td>
</tr>
<tr>
<td>Dr. A. J. Bard</td>
<td>Department of Chemistry, University of Texas, Austin, Texas 78712</td>
</tr>
<tr>
<td>Dr. Janet Osteryoung</td>
<td>Department of Chemistry, State University of New York, Buffalo, New York 14214</td>
</tr>
<tr>
<td>Dr. Donald W. Ernst</td>
<td>Naval Surface Weapons Center, Code R-33, White Oak Laboratory, Silver Spring, Maryland 20910</td>
</tr>
<tr>
<td>Mr. James R. Moden</td>
<td>Naval Underwater Systems Center, Code 3632, Newport, Rhode Island 02840</td>
</tr>
<tr>
<td>Dr. Bernard Spielvogel</td>
<td>U.S. Army Research Office, P.O. Box 12211, Research Triangle Park, NC 27709</td>
</tr>
<tr>
<td>Dr. Aaron Fletcher</td>
<td>Naval Weapons Center, Code 3852, China Lake, California 93555</td>
</tr>
<tr>
<td>Dr. M. M. Nicholson</td>
<td>Electronics Research Center, Rockwell International, 3370 Miraloma Avenue, Anaheim, California</td>
</tr>
<tr>
<td>Dr. Michael J. Weaver</td>
<td>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907</td>
</tr>
<tr>
<td>Dr. R. David Rauh</td>
<td>EIC Laboratories, Inc., 111 Downey Street, Norwood, Massachusetts 02062</td>
</tr>
<tr>
<td>Dr. Aaron Wold</td>
<td>Department of Chemistry, Brown University, Providence, Rhode Island 02192</td>
</tr>
<tr>
<td>Dr. Martin Fleischmann</td>
<td>Department of Chemistry, University of Southampton, Southampton SO9 5NH ENGLAND</td>
</tr>
<tr>
<td>Dr. R. A. Osteryoung</td>
<td>Department of Chemistry, State University of New York, Buffalo, New York 14214</td>
</tr>
<tr>
<td>Dr. Denton Elliott</td>
<td>Air Force Office of Scientific Research, Bolling AFB, Washington, D.C. 20332</td>
</tr>
<tr>
<td>Dr. R. Nowak</td>
<td>Naval Research Laboratory, Code 6170, Washington, D.C. 20375</td>
</tr>
<tr>
<td>Dr. D. F. Shriver</td>
<td>Department of Chemistry, Northwestern University, Evanston, Illinois 60201</td>
</tr>
<tr>
<td>Dr. Boris Cahan</td>
<td>Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106</td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Paul Delahay
Department of Chemistry
New York University
New York, New York 10003

Dr. P. J. Hendra
Department of Chemistry
University of Southampton
Southampton SO9 5NH
United Kingdom

Dr. T. Katan
Lockheed Missiles and Space Co., Inc.
P.O. Box 504
Sunnyvale, California 94088

Dr. D. N. Bennion
Department of Chemical Engineering
Brigham Young University
Provo, Utah 84602

Mr. Joseph McCartney
Code 7121
Naval Ocean Systems Center
San Diego, California 92152

Dr. J. J. Auborn
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Joseph Singer, Code 302-1
NASA-Lewis
21000 Brookpark Road
Cleveland, Ohio 44135

Dr. P. P. Schmidt
Department of Chemistry
Oakland University
Rochester, Michigan 48063

Dr. H. Richtol
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. R. A. Marcus
Department of Chemistry
California Institute of Technology
Pasadena, California 91125

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 44106

Dr. C. E. Mueller
The Electrochemistry Branch
Naval Surface Weapons Center
White Oak Laboratory
Silver Spring, Maryland 20910

Dr. Sam Perone
Chemistry & Materials Science Department
Lawrence Livermore National Laboratory
Livermore, California 94550

Dr. Royce W. Murray
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. B. Brummer
EIC Incorporated
111 Downey Street
Norwood, Massachusetts 02062

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Electrochimica Corporation
Attn: Technical Library
2485 Charleston Road
Mountain View, California 94040

Library
Duracell, Inc.
Burlington, Massachusetts 01803

Dr. A. B. Ellis
Chemistry Department
University of Wisconsin
Madison, Wisconsin 53706

Dr. Manfred Breiter
Institut fur Technische Elektrochemie
Technischen Universitat Wien
9 Getreidemarkt, 1160 Wien
AUSTRIA
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. David Aikens
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. D. H. Whitmore
Department of Materials Science
Northwestern University
Evanston, Illinois 60201

Dr. A. B. P. Lever
Chemistry Department
York University
Downsview, Ontario M3J1P3

Dr. Alan Bewick
Department of Chemistry
The University of Southampton
Southampton, S09 5NH ENGLAND

Dr. Stanislaw Szpak
Chemistry Department
York University
Downsview, Ontario M3J1P3

Dr. E. Anderson
NAVSEA-56Z33 NC #4
2541 Jefferson Davis Highway
Arlington, Virginia 20362

Dr. Gregory Farrington
Department of Materials Science and Engineering
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. Bruce Dunn
Department of Engineering & Applied Science
University of California
Los Angeles, California 90024

Dr. T. Marks
Department of Chemistry
Northwestern University
Evanston, Illinois 60201

Dr. Elton Cairns
Energy & Environment Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

Dr. Micha Tomkiewicz
Department of Physics
Brooklyn College
Brooklyn, New York 11210

Dr. D. Cipris
Allied Corporation
P.O. Box 3000R
Morristown, New Jersey 07960

Dr. Lesser Blum
Department of Physics
University of Puerto Rico
Rio Piedras, Puerto Rico 00931

Dr. M. Philpott
IBM Corporation
5600 Cottle Road
San Jose, California 95193

Dr. Joseph Gordon, II
IBM Corporation
K33/281
5600 Cottle Road
San Jose, California 95193

Dr. Donald Sandstrom
Boeing Aerospace Co.
P.O. Box 3999
Seattle, Washington 98124

Dr. Hector D. Abruna
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. T. Marks
Department of Chemistry
Northwestern University
Evanston, Illinois 60201

Dr. Carl Kannewurf
Department of Electrical Engineering and Computer Science
Northwestern University
Evanston, Illinois 60201

Dr. Richard Pollard
Department of Chemical Engineering
University of Houston
4800 Calhoun Blvd.
Houston, Texas 77004
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Robert Somoano
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91103

Dr. Johann A. Joebstl
USA Mobility Equipment R&D Command
DROME-EC
Fort Belvoir, Virginia 22060

Dr. Judith H. Ambrus
NASA Headquarters
M.S. RTS-6
Washington, D.C. 20546

Dr. Albert R. Landgrebe
U.S. Department of Energy
M.S. 6B025 Forrestal Building
Washington, D.C. 20595

Dr. J. J. Brophy
Department of Physics
University of Utah
Salt Lake City, Utah 84112

Dr. Charles Martin
Department of Chemistry
Texas A&M University
College Station, Texas 77843

Dr. H. Tachikawa
Department of Chemistry
Jackson State University
Jackson, Mississippi 39217

Dr. Theodore Beck
Electrochemical Technology Corp.
3935 Leary Way N.W.
Seattle, Washington 98107

Dr. Farrell Lytle
Boeing Engineering and
Construction Engineers
P.O. Box 3707
Seattle, Washington 98124

Dr. Robert Gotscholl
U.S. Department of Energy
MS G-226
Washington, D.C. 20545

Dr. Edward Fletcher
Department of Mechanical Engineering
University of Minnesota
Minneapolis, Minnesota 55455

Dr. John Fontanella
Department of Physics
U.S. Naval Academy
Annapolis, Maryland 21402

Dr. Martha Greenblatt
Department of Chemistry
Rutgers University
New Brunswick, New Jersey 08903

Dr. John Wasson
Syntheco, Inc.
Rte 6 - Industrial Pike Road
Gastonia, North Carolina 28052

Dr. Walter Roth
Department of Physics
State University of New York
Albany, New York 12222

Dr. Anthony Sammells
Eltron Research Inc.
4260 Westbrook Drive, Suite 111
Aurora, Illinois 60505

Dr. W. M. Risen
Department of Chemistry
Brown University
Providence, Rhode Island 02192

Dr. C. A. Angell
Department of Chemistry
Purdue University
West Lafayette, Indiana 47907

Dr. Thomas Davis
Polymer Science and Standards
Division
National Bureau of Standards
Washington, D.C. 20234

Ms. Wendy Parkhurst
Naval Surface Weapons Center R-33
Silver Spring, Maryland 20910
END

1 - 81

DTIC