An Investigation of the FAA Vertical Bunsen Burner Flammability Test Method

Patricia Cahill

August 1986

Final Report

This document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161.
NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the object of this report.
AN INVESTIGATION OF THE FAA VERTICAL BUNSEN BURNER FLAMMABILITY TEST METHOD

Pat Cahill

Federal Aviation Administration
Technical Center
Atlantic City Airport, New Jersey 08405

U.S. Department of Transportation
Federal Aviation Administration
Technical Center
Atlantic City Airport, New Jersey 08405

The vertical Bunsen burner test method, as specified in appendix F of the Federal Aviation Regulations - Part 25, was evaluated in order to update and clarify certain problem areas. Burner fuel, flame temperature and flame placement were investigated. It was determined that (1) methane gas can be used as a replacement or alternative to B-gas, (2) a minimum flame temperature specification is meaningless without specifying thermocouple wire thickness, and (3) placing the flame at the midpoint of the lower edge of the front face results in a more realistic and severe evaluation of the specimen's flammability properties.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXECUTIVE SUMMARY</td>
<td>v</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Purpose</td>
<td>1</td>
</tr>
<tr>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>2</td>
</tr>
<tr>
<td>Burner Fuel</td>
<td>2</td>
</tr>
<tr>
<td>Flame Temperature</td>
<td>4</td>
</tr>
<tr>
<td>Flame Placement</td>
<td>6</td>
</tr>
<tr>
<td>SUMMARY OF RESULTS</td>
<td>8</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>9</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>9</td>
</tr>
<tr>
<td>APPENDIX</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Illustration Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B-Gas Flames</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Methane Gas Flames</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Average Flame Temperatures</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Effect of Flame Placement on Composite Burn Results (Thickness 1/8, 1/4 Inch)</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>Effect of Flame Placement on Composite Burn Results (Thickness 3/8, 1/2 Inch)</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>Effect of Flame Placement on Composite Burn Results (Thickness 3/4, 1 Inch)</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>Effect of Flame Placement on Composite Burn Results (Front Face, Back Face)</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>Effect of Flame Placement on Foam Burn Results</td>
<td>13</td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY

This report contains the results of an evaluation of the vertical Bunsen burner test method as specified in appendix F of the Federal Aviation Regulations (FAR) Part 25. Burner fuel, flame placement, and flame temperature were evaluated.

The currently used burner fuel, B-gas, was compared to methane gas. Test results show that burn length and flame time are similar for both gases when the gases are fresh. However, a chemical reaction occurs with aging in B-gas between carbon monoxide and the iron in the steel cylinder, making it difficult to consistently regulate flame height. This problem is eliminated with the use of methane gas.

Flame placement was evaluated for test specimens ranging up to 1 inch in thickness. It was found that placing the flame at the midpoint of the lower edge of the front face resulted in a more realistic and severe evaluation of the test specimen's flammability properties. This applies to all specimens regardless of thickness. With the exception of foam, burn results show that it is necessary to test both front and back faces of test specimens 1/2 inch and greater to ensure a realistic assessment of surface flammability.

Flame temperature experiments were carried out using various thermocouple gauge sizes. Test results show that an inverse relationship exist between flame temperature and thermocouple gauge size. Therefore, a minimum flame temperature specification is meaningless without specifying the thermocouple gauge size.
INTRODUCTION

PURPOSE.

The purpose of this report is to present the results of an investigation of the vertical Bunsen burner test method as specified in appendix F of the Federal Aviation Regulations (FAR) Part 25.

BACKGROUND.

In 1951, Federal Specification CCC-T-191b, "Textile Test Methods" was issued for government procurement purposes. It included a horizontal flammability test for cloth, Method 5906, and a vertical flammability test for cloth, Method 5902, whose general apparatus and procedures were eventually used in Federal Aviation Administration (FAA) regulations.

In 1967, Amendment 15 for FAR Part 25 was issued by the FAA. This Amendment did not reference the CCC-T-191b methods, but instead, documented the test procedure with reference to Method 5902 in appendix F of FAR 25.

In 1968, Federal Test Method Standard (FTMS) 191 replaced CCC-T-191b. Method 5903 replaced Method 5902 which was dropped at the time of this change. Method 5903 differed from Method 5902 in that it specified a particular gas mixture for use as burner fuel.

The vertical Bunsen burner test method has evolved into a certification and quality control flammability test for a wide variety of aircraft interior materials (honeycomb, composites, plastic sheets, foams, fiberglass insulation, etc). It has been proven to be an effective and convenient test procedure. Nonetheless, over the years, a number of problem areas have arisen, some traceable to the original test procedure being intended for cloth materials, that create inconsistencies in data. This report presents an investigation of several of the most pertinent problem areas with the aim of producing a more clear and concise test procedure that will reduce the likelihood of ambiguous or inconsistent data.

DISCUSSION

BURNER FUEL.

Appendix F of FAR Part 25 specifies a particular gas mixture for use as Bunsen burner fuel by reference to FTMS-191 - Method 5903, "Flame Resistance of Cloth; Vertical." This specific gas mixture is commonly referred to as B-gas. However, it is sold by different trade names, depending on the gas producer. As an example, Matheson Gas Products call the gas mixture "Flame Resistance of Cloth Test Gas." Components of the gas mixture are specified as follows:

- Hydrogen 55 ± 1%
- Methane 24 ± 1%
- Ethane 3 ± 1%
- Carbon Monoxide 18 ± 1%

Many testing facilities have stated that B-gas produces inconsistent flame characteristics from cylinder to cylinder. Furthermore, this inconsistency is reflected
Evaluation of the B-gas has verified that inconsistent flame characteristics do indeed exist from cylinder to cylinder. Figure 1, photographs a, b, and c, show actual B-gas flames from three different cylinders of various ages (age listed under each photograph). The characteristics of the three B-gas flames are vividly different. Photograph c shows an especially elongated and intensely orange-spiked flame while a double cone formation is shown in photograph b. Laboratory evaluation of both flames confirmed the presence of an iron oxide compound \((\text{Fe}_2\text{O}_3)\) emanating from the flame. \(\text{Fe}_2\text{O}_3\) is a product of the reaction:

\[
2 \text{Fe(CO)}_5 + 6 \text{O}_2 \rightarrow \text{Fe}_2\text{O}_3 + 9\text{CO}_2 + \text{CO}
\]

Iron pentacarbonyl is a colorless to yellow oily liquid and is formed by the reaction of carbon monoxide (CO) with iron (Fe). The primary source of iron is the steel cylinder in which the B-gas is contained. In effect, what is seen in photograph c of figure 1 is the atomic spectrum of iron, while photograph b depicts an intermediate stage. As the cylinder ages, more iron pentacarbonyl is formed, ultimately resulting in the flame characteristic seen in photograph c. The formation of a spike or double cone in the burner flame makes it difficult to adjust the burner to give a flame of 1 1/2 inches in height as specified in appendix F of FAR, Part 25. More importantly, as the flame characteristics are altered with age, the intensity of the flame and the resulting material sample burn characteristics will also change.

Methane gas of 99 percent purity was tested as a substitute for B-gas. Referring to figure 2, note the well defined diffusion flame of the methane gas. The blue reaction zone can be seen on the outside of the luminous carbon zone, and reaches to the top of the flame. Flame height is well defined and easily regulated as a result of this well defined flame tip. In order to compare B-gas with methane, various materials were tested. Referring to table 1, it can be seen that burn lengths and flame times are very similar for both gases.

FLAME TEMPERATURE.

Appendix F of FAR, Part 25 requires that the minimum flame temperature in the center of the flame be at least 1550°F for the vertical burn test. This temperature minimum is also required for the horizontal and 45-degree tests. The 60-degree test specifies a minimum temperature of 1750°F in the hottest portion of the flame. A calibrated thermocouple pyrometer is specified for temperature measurement. However, no particular thermocouple gauge size is required.

A number of experiments, employing five different gauge size thermocouples, were performed in order to examine flame temperature in the center of the flame. Flame height (1 1/2 inches), gas delivery pressure (2 1/2 \(\pm\) 1/4 pounds psi), and all other requirements were followed according to the rule. An in-line needle valve was used to regulate gas flow. The Bunsen burner base had a 1.5 mm orifice diameter. Other bases with orifice diameters as small as 0.67 mm were evaluated with no significant test result differences. However, the base with the 1.5 mm orifice produced a conical flame with complete flame impingement around the burner mouth and, therefore, was used in all testing. The thermocouples were inserted into the flame horizontally. For comparison, B-gas and methane flame temperatures were evaluated. From figure 3, it can be seen that flame temperature and thermocouple gauge size are inversely proportional to each other. The 36-gauge Chromel Alumel thermocouple reflects the highest average temperature for both gases while the lowest average temperature is seen with the 20-gauge thermocouple.
TABLE 1. VERTICAL BURN TEST RESULTS

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>DESCRIPTION</th>
<th>Flame Time (sec) Methane</th>
<th>Flame Time (sec) B-gas</th>
<th>Burn Length (in.) Methane</th>
<th>Burn Length (in.) B-gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carpet</td>
<td>90/10 Wool Nylon Warp Dir.*</td>
<td>2.7</td>
<td>2.2</td>
<td>1.3</td>
<td>1.2</td>
</tr>
<tr>
<td>Carpet</td>
<td>90/10 Wool Nylon Weft Dir.*</td>
<td>2.4</td>
<td>1.9</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Carpet</td>
<td>85/15 Wool Nylon Warp Dir.</td>
<td>6.1</td>
<td>7.0</td>
<td>2.4</td>
<td>2.7</td>
</tr>
<tr>
<td>Carpet</td>
<td>85/15 Wool Nylon Weft Dir.</td>
<td>3.6</td>
<td>4.0</td>
<td>2.1</td>
<td>2.3</td>
</tr>
<tr>
<td>Upholstery</td>
<td>90/10 Wool Nylon</td>
<td>1.0</td>
<td>0.7</td>
<td>2.1</td>
<td>1.6</td>
</tr>
<tr>
<td>Drapery</td>
<td>35/65 Wool Synthetic</td>
<td>0</td>
<td>0</td>
<td>3.3</td>
<td>2.7</td>
</tr>
<tr>
<td>Ceiling Panel</td>
<td>Tedlar Finish Epoxy/Fiberglass Facings Phenolic/Nomex Core</td>
<td>0</td>
<td>0</td>
<td>3.3</td>
<td>3.2</td>
</tr>
<tr>
<td>Sidewall Panel</td>
<td>Tedlar Finish Epoxy/Fiberglass Facings Phenolic/Nomex Core</td>
<td>0</td>
<td>0</td>
<td>3.4</td>
<td>3.8</td>
</tr>
<tr>
<td>Partition</td>
<td>Tedlar Finish Epoxy/Fiberglass Facings Phenolic/Nomex Core</td>
<td>0</td>
<td>0</td>
<td>1.9</td>
<td>1.6</td>
</tr>
<tr>
<td>Stowbin Shelf</td>
<td>Tedlar Finish Epoxy/Fiberglass Facings Phenolic/Nomex Core</td>
<td>0</td>
<td>0</td>
<td>1.5</td>
<td>1.1</td>
</tr>
<tr>
<td>Flooring</td>
<td>Carbon/Epoxy Facings Nomex/Phenolic Core</td>
<td>0</td>
<td>0</td>
<td>1.6</td>
<td>2.1</td>
</tr>
</tbody>
</table>

* Tested in warp direction - yarns extended lengthwise
* Tested in weft direction - crossing yarns
It is known that wire (in this case, thermocouple wire) will normally be cooler than the flame gases, owing to heat losses by radiation, conduction, and convection. Thus, as the thickness of the thermocouple wire is decreased, the closer the measurement to the real flame temperature. There is obviously a limit set by the mechanical strength of the wire for the smallest diameter thermocouple wire that can be practically utilized; therefore, nothing finer than 36-gauge wire was tested.

Referring to figure 3, both the B-gas and methane flames show an average temperature of 2300°F in the center of the flame when measured with the 36-gauge thermocouple. According to Hassian and Russel, theoretical flame temperature for methane exceeds 3000°F (reference 2), thus, the measurement was reasonable and, perhaps, still below the true flame temperature.

FLAME PLACEMENT.

According to appendix F of FAR Part 25, the flame for the vertical burn test must be applied to the center line of the lower edge of the specimen. This is an ambiguous statement since it does not specify a point, but a line.

While initially a cloth materials test, the vertical burn test now encompasses interior aircraft composite materials such as class partitions which can range over one inch in thickness. For this reason, flame placement must be clearly identified.

Interior ceiling panels, wall panels, cabinet walls, structural flooring, etc., are generally sandwich composites. The composites are fabricated by bonding resin systems such as epoxies or phenolics to a honeycomb core material with an adhesive. While core materials such as balsa, glass, and aluminum are used in certain applications, core material used in aircraft composite panels is primarily an aromatic polyamide sold under the trade name of Nomex™. Testing with the Bunsen burner has shown Nomex honeycomb core to be self-extinguishing.

At the present time, the burner is positioned under the geometric center of the bottom surface of the test specimen. This is common practice in most test facilities. However, testing has shown that placing the flame on the midpoint of the lower edge of the front face produces test results that best represent the specimen's overall flammability properties. Figures 4, 5, and 6 depict various panels of different thicknesses burnt with the flame placed in the geometric center of the bottom surface and also on the midpoint of the lower edge of the front face.

No distinguishable difference in burn length can be seen for the thin specimens shown in figure 4. however, the differences are obvious when viewing the thicker panels shown in figures 5 and 6. For samples 1/2 inch and greater, geometric center flame placement does not give test results representative of the material's total flammability properties. This is due to flame impingement primarily on the self-extinguishing honeycomb core.

Referring to figure 7, note the absence of flame impingement on the back face of the panel. While flame placement on the midpoint of the lower edge of the front face gives more realistic test results, it was found that it is necessary to test the back face as well for samples 1/2 inch and greater. One test specimen, however, may be used for both front and back face testing.
According to appendix F of FAR, Part 25 thick foam parts, such as seat cushions, must be tested in 1/2-inch thickness. Referring to figure 8, flame placement on the midpoint of the lower edge of the front face resulted in a melting away of the material. However, the burn length is the same as the sample with geometric center flame placement. For foam test specimens, it is not necessary to separately test front and back faces. Unlike composite materials or carpets with different backings, polyurethane foams are homogeneous.

SUMMARY OF RESULTS

1. Burn length and flame time values are similar for both B-gas and methane when used as burner fuel if the B-gas flame characteristics have not been altered by aging. It appears that the change in the flame characteristics of B-gas with aging is a result of chemical reactions with the iron in steel storage cylinders.

2. Flame height is much easier to regulate with methane as opposed to B-gas due to methane's reproducible flame characteristics.

3. Placing the flame on the midpoint of the lower edge of the front face of composite test specimens produces more realistic and severe test results than placing the flame in the geometric center of the bottom face.

4. With the exception of foam, flammability properties of test specimens 1/2 inch and greater in thickness are best represented by testing the back face in addition to the front face (one test specimen may be used for both tests).

5. An inverse relationship exists between the measured flame temperature and thermocouple gauge size.

CONCLUSIONS

1. Methane gas can be used as a replacement or alternative to B-gas as Bunsen burner fuel because it produces similar flame characteristics and does not experience an alteration in flame characteristics as a result of storage cylinder aging effects.

2. Placement of the burner flame at the geometric center of the specimen's bottom edge does not give a realistic and severe assessment of surface flammability for composite materials.

3. With the exception of foam, all test specimens 1/2 inch and greater in thickness should be tested on both front and back faces in order to assess surface flammability.

4. A minimum temperature specification is unnecessary and meaningless without a thermocouple gauge size specified.

REFERENCES

1. Guastavino, T., Federal Aviation Administration Analytical Chemistry Laboratory, Quality Control Notebook, Page 17, 1986.

A. 1 MONTH
B. 6 MONTHS

C. 18 MONTHS

FIGURE 1. B-GAS FLAMES
FIGURE 4. EFFECT OF FLAME PLACEMENT ON COMPOSITE BURN RESULTS (THICKNESS 1/8, 1/4 INCH)
Figure 5. Effect of flame placement on composite burn results (thickness 3/8, 1/2 inch)
GEOMETRIC CENTER FLAME PLACEMENT

CEILING PANEL THICKNESS-\(\frac{3}{4}\)IN.

MIDPOINT-LOWER EDGE-FRONT FACE FLAME PLACEMENT

GEOMETRIC CENTER FLAME PLACEMENT

CEILING PANEL THICKNESS-1 INCH

MIDPOINT-LOWER EDGE-FRONT FACE FLAME PLACEMENT
FIGURE 7. EFFECT OF FLAME PLACEMENT ON COMPOSITE BURN RESULTS (FRONT FACE, BACK FACE)
Figure 8. Effect of flame placement on foam burn results.

Geometric center-flame placement

Midpoint-lower edge-front face

Polyurethane foam
Thickness-1/2 inch
APPENDIX A

DISTRIBUTION LIST

Civil Aviation Authority (5)
Aviation House
129 Kingsway
London WC2B 6NN England

Embassy of Australia (1)
Civil Air Attache
1601 Mass. Ave. NW
Washington, DC 20036

Scientific & Tech. Info FAC (1)
P.O. Box 8757 BWI Airport
Baltimore, MD 21240

Northwestern University (1)
Trisnet Repository
Transportation Center Library
Evanston, ILL 60201

ANE-40 (2)
ASW-52C4 (2)
APM-13 Nigro (2)
AEA-6b.1 (3)
ADL-32 North (1)
AES-3 (1)
ANM-60 (2)

ACT-624 (2)
AAL-62 (2)
M-493.2 (5)
Bldg. 10A

ASA-53B (2)
AAC-44.4 (2)
ACE-66 (2)
ADL-1 (1)
ALG-300 (1)
ACT-8 (1)

FAA, Chief, Civil Aviation Assistance Group (1)
Madrid, Spain
C/o American Embassy
APO-New York 09285-0001

Dick Tobiason (1)
ATA of America
1709 New York Avenue, NW
Washington, DC 20006

DOT-FAA AEU-500 (5)
American Embassy
APO New York, NY 09667

University of California (1)
Service Dept Institute of Transportation Standard Lib
412 McLaughlin Hall
Berkely, CA 94720

British Embassy (1)
Civil Air Attache ATS
3100 Mass Ave. NW
Washington, DC 20008

Director DuCentre Exp DE LA (1)
Navigation Aerineene
9141 Orly, France

A-1
MR. JOHN A. LELAND
DEPT E-29
DOUGLAS AIRCRAFT CO. 35-14
3855 LAKEWOOD BLVD.
LONG BEACH, CA. 9084

COMMANDER
U.S. ARMY AVSCOM
ATTN: DRAV-EOE, JOHN P. DOW
4300 GOODFELLOW BLVD.
ST. LOUIS, MO. 63120

MR. STAN AMES
FIRE RESEARCH STATION
BOREHAMWOOD
HERTFORDSHIRE WD6 2BL
ENGLAND

MR. L.C. VIRK
CIVIL AVIATION AUTHORITY
BARBAZON HOUSE
REDHILL
SURREY RH1 1SQ
ENGLAND

MR ARTHUR G. THORNING
CIVIL AVIATION AUTHORITY
CAA HOUSE
45-59 KINGSWAY
LONDON WC2B 6TE
ENGLAND

MR. RAY YOUNG
ENGINEERING AND AIR SAFETY DEPT
AIRCRAFT PILOTS ASSOCIATION
1625 MASSACHUSETTS AVE., N.W.
WASHINGTON, D.C. 20036

MR. LEE HOYT
WEBER AIRCRAFT CO.
2820 ONTARIO ST.
BURBANK, CALIF. 91505

DR. CALYTON E. HATHAWAY
MONSANTO COMPANY
800 N. LINDBERG BLVD., MAIL ZONE F13
ST. LOUIS, MISSOURI 63166

JULIA M. BAER
CELANESE FIBERS MARKETING CORP.
P.O. BOX 32414
CHARLOTTE, N.C. 28232

DR. LEO P. PARIS
MONSANTO RESEARCH CORP.
1515 NICHOLAS ROAD
DAYTON, OHIO 45497

MR. JAMES D. PRICE
HEATH TECHNA CORP.
19819 84TH AVE. SOUTH
KENT, WASHINGTON 98031

MR. RICHARD M. HAYES
CUSTOM PRODUCTS CO.
P.O. BOX 679
SUN VALLEY, CALIF. 91352

MR. BILL MARTINEZ, MHP, DATA SERV.
AMI INDUSTRIES, INC.
P.O. BOX 370
COLORADO SPRINGS, CALIF. 80901

MR. T. E. WATERMAN
IIII RESEARCH INSTITUTE
10 WEST 35TH ST.
CHICAGO, ILLINOIS 60616

MR. J. J. BRENNHAM
FIRE PROTECTION ENGINEER
UNITED AIRLINES, INC.
P.O. BOX 66100
CHICAGO, ILLINOIS 60666

MR. HENRI BRANTING
FAA HEADQUARTERS
AWS-120
800 INDEPENDENCE AVE. S.W.
WASHINGTON, D.C. 20591

MR. EDWARD L. LOPEZ
LOCKHEED AIRCRAFT CORP.
DEPT. 74-75, BLDG. 229-A
BOX 551
BURBANK, CALIF. 91501

DR. JAMES E. MIELKE
SCIENCE POLICY RESEARCH DIV.
CONGRESSIONAL RESEARCH SERVICES
LIBRARY OF CONGRESS
WASHINGTON, D.C. 20540

DR. D. KOURTINAS
CHEMICAL RESEARCH CENTER
NASA/AMES RESEARCH CENTER
MERRITT FIELD, CALIF. 95035

MR. THOMAS MADICK
BRITISH AEROSPACE F.I.C.
AIRCRAFT GROUP
WEYBRIDGE-BRISTOL DIVISION
FILTON HOUSE
BRISTOL, BS9 3AR, ENGLAND

A-2
MR. C. HAYDEN LEKOV
TE-10 BLDG. 10-A
NATIONAL TRANSPORTATION SAFETY BOARD
WASHINGTON, D.C. 20594

MR. JOSEPH L. BUCKLEY
FACTORY MUTUAL SYSTEM
1151 BOSTON-PROVIDENCE TURNPIKE
NORWOOD, MASS. 02062

Mr. Gary Killion
ANM-110
17900 PACIFIC HIGHWAY SOUTH
C-68966
SEATTLE, WA 98168

Mr. John Hoffmann
PORT OF NEW YORK & NEW JERSEY AUTHORITY
ONE PATH PLAZA (4TH FLOOR)
JERSEY CITY, N.J. 07302

Dr. Charles R. Crane
FAA, CAM, AAC-114
P.O. BOX 25082
OKLAHOMA, OKLA. 73125

Mr. Robert E. Kraus
KRAFT CORPORATION
300 CONSTITUTION DRIVE
MENLO PARK, CALIF. 94025

Mr. Reginald Utting
THE BOEING CO.
COMMERCIAL AIRPLANE GROUP, 747 DIV.
P.O. BOX 3707
SEATTLE, WASHINGTON 98104

Mr. John A. Blake
MAMAS & STANDARDS
E.I. DU Pont de Nemours & Co.
CHESTNUT RUN
WILMINGTON, DEL. 19899

Dr. Joseph L. Reed
E.I. DU Pont de Nemours & Co.
PLASTICS DEPT.
HOPPER TOWNE DIVISION
CHEMMARK DEPT.
WILMINGTON, DEL. 19899

Mr. Donald L. Rand
SWIFT & COMPANY
E.I. DU Pont de Nemours & Co.
HARRISBURG, PENN. 17103

Mr. George M. Johnson
CHIEF CHEMIST
PAN AMERICAN AIRWAYS, INC.
BLDG. 208 RM. 2228
J F KENNEDY INT'L AIRPORT
JAMAICA, NEW YORK 11430

Dr. C. Perry Bankston
ENERGY AND MATERIALS RESEARCH SEC.
JET PROPULSION LABORATORY
4800 OAK GROVE DR.
PASADENA, CALIFORNIA 91103

Dr. Lloyd H. Back
ENERGY AND MATERIALS RESEARCH SEC.
JET PROPULSION LABORATORY
4800 OAK GROVE DRIVE
PASADENA, CALIFORNIA 91103

Mr. Joseph A. Krist
ATHOL MANUFACTURING CORPORATION
1350 HIGHWAY 11
JERSEY CITY, N.J. 07304

Dr. A. Carlos Fernandez-Pello
MECHANICAL ENGINEERING DEPARTMENT
UNIVERSITY OF CALIFORNIA, BERKELEY
BERKELEY, CALIFORNIA 94720

Mr. W.G. Bly
DIRECTOR OF ENGINEERING
FAIRCHILD BURNS CO.
1455 FAIRCHILD DRIVE
WINSTON-SALEM, N.C. 27603

Mr. A. F. Taylor
COLLEGE OF AERONAUTICS
CRANFIELD INSTITUTE OF TECHNOLOGY
CRANFIELD, BEDFORD MK43 0AL, ENGLAND

Dr. Robert Keith
LABORATORY INDUSTRIAL MEDICINE
EASTMAN CHEMICAL CO.
KINGSPORT, TENN. 37662

Dr. H.R. Dvorak
WESSON AND ASSOCIATES, INC.
510 SOUTH WEBSTER
POSTAL BOX Ionic
MURRAY, OKLAHOMA 73068

Mr. Kenneth B. Warner
PURITAN-BENNETT CORPORATION
10000 PFLUMI ROAD
MENOMINEE, MICHIGAN 49858
MR. EVERETT A. TUSTIN
BOEING COMMERCIAL AIRPLANE COMPANY
P.O. BOX 3707, M/S 6F-26
SEATTLE, WASHINGTON 98124

C.M. SLIEPECEVICH
FLAME DYNAMICS LABORATORY
UNIVERSITY OF OKLAHOMA
1215 WESTHEIMER ST.
NORMAN, OKLAHOMA 73069

MR. R.G. CLODFELTER
AFWAL/POSH
WRIGHT-PATTERSON AFB
OHIO 45433

MR. LOUIS FRISCO
WIRE & CABLE DIVISION
RAYCHEM CORP.
300 CONSTITUTION DRIVE
MENLO PARK, CALIF. 94025

DR. EDWIN SMITH
OHIO STATE UNIVERSITY
140 W. 19TH AVE.
COLUMBUS, OHIO 43214

BERNARD GRENAHL, MGR. TECH. SERV.
AEROSPACE DIVISION
UNIVERSAL OIL PRODUCTS CO.
BANTAM, CONN. 06750

MR. WILLIAM SNODDY
AMERICAN AIRLINES
P.O. BOX 51009 MAIL STOP #10
TULSA, OKLAHOMA 74151

A. TEWARSON
FMRC
1151 BOSTON-PROVIDENCE 1'PKE
NORWOOD, MASS. 02062

MRS. CHARLOTTE GEBHART
ROHM & HAAS CO.
INDEPENDENCE MALL WEST
PHILADELPHIA, PA. 19105

MR. FRED JENKINS, ANM-1401
FEDERAL AVIATION ADMINISTRATION
4344 DONALD DOUGLAS DRIVE
LONG BEACH, CALIFORNIA 90808

MR. MATTHEW M. McCURRICK
NATIONAL TRANSPORTATION SAFETY BD.
BUREAU OF TECHNOLOGY
WASHINGTON, D.C. 20594

MR. DAN GROSS
B-66 TECHNOLOGY BUILDING
NATIONAL BUREAU OF STANDARDS
WASHINGTON, D.C. 20234

MR. A. DELMAN
THE WOOL BUREAU, INC.
TECHNICAL SERVICES CENTER
225 CROSSWAYS PARK DRIVE
WOODBURY, L.I., NEW YORK 11797

DR. JAMES M. PETERSON
THE BOEING CO.
MS/73-43
SEATTLE, WASHINGTON 98124

DR. L. BENISEK
INTERNATIONAL WOOL SECRETAIRAT
TECHNICAL CENTER, VALLEY DRIVE
ILKLEY, WEST YORKSHIRE, LS29 8PB
ENGLAND

DR. JOHN O. FUNDERSO\nE.I. DUPONT DE NEMOURS
P.O. BOX 1217
PARKERSBURG, W. VA. 26102

DR. FUMIHARU SAITO
BUILDING RESEARCH INSTITUTE
MINISTRY OF CONSTRUCTION
TATEHARA-1 OH2-MACHI
TSUKUBA-GUN
IBARAKI PREFECTURE, JAPAN

MR. PETER MEIREN
CIVIL AIR ATTACH'S(SAFETY)
BRITISH EMBASSY
3100 MASSACHUSETTS AVE. NW
WASHINGTON, D.C. 20008

T.F. LAUGHLIN, JR.
FOLKHEIM CALIFORNIA, INC.
P.O. BOX 591
FOLKHEIM, CALIF. 91401

DURFORD (CALIFORNIA) INC.
END

12-86

DTIC