MICROSCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-4.
Helicopter MLS Flight Inspection Project

Scott B. Shollenberger
Barry R. Billmann

April 1986
Final Report

This document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161.
NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the object of this report.
HELCOPTER MLS FLIGHT INSPECTION PROJECT

Scott B. Shollenberger and Barry R. Billmann

Federal Aviation Administration
Technical Center
Atlantic City Airport, NJ 08405

Federal Aviation Administration
Program Engineering and Maintenance Service
Washington, D.C. 20590

The Helicopter MLS Flight Inspection Project was conducted jointly by the FAA Technical Center and the AVN Standards National Field Office, Oklahoma City, Okla. FAA Tech Center Project Engineer, Scott B. Shollenberger. Data reduction software support was from Tech Center mathematicians D. Gallagher and P. Maccagnano.

This report describes test procedures and results of a series of tests designed to identify microwave landing system (MLS) heliport flight inspection procedures. The tests, conducted in November 1985, demonstrated the feasibility of using a helicopter to perform some portion of the flight inspection of the MLS at heliports. Significant findings included the fact that radio theodolite techniques could be used for tracking a helicopter not equipped with stability augmentation equipment. Constituent parts of a portable flight inspection package were also identified and tested.

Key Words
Helicopter Flight Inspection
Collocated MLS/Heliport
Microwave Landing System

Technical Report Documentation Page

1. Report No. DOT/FAA/CT-86/14
2. Government Accession No.
3. Recipient's Catalog No.
4. Title and Subtitle HELICOPTER MLS FLIGHT INSPECTION PROJECT
5. Report Date April 1986
6. Performing Organization Code ACT-140
7. Author(s) Scott B. Shollenberger and Barry R. Billmann
9. Performing Organization Name and Address U.S. Department of Transportation
Federal Aviation Administration
Technical Center
Atlantic City Airport, NJ 08405

U.S. Department of Transportation
Federal Aviation Administration
Program Engineering and Maintenance Service
Washington, D.C. 20590

10. Work Unit No. (TRAIS) T0701F
11. Contract or Grant No. Final Report
12. Type of Report and Period Covered April 1986
13. Sponsoring Agency Name and Address

15. Supplementary Notes

16. Abstract

17. Key Words
Helicopter Flight Inspection
Collocated MLS/Heliport
Microwave Landing System

18. Distribution Statement
This document is available to the U.S. public through the National Technical Information Service, Springfield, VA 22161

19. Security Classification of this report Unclassified
20. Security Classification of this page Unclassified
21. No. of Pages 244
22. Price $0.00

U.S. Department of Transportation
Federal Aviation Administration
Technical Center

Atlantic City Airport, NJ 08405

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXECUTIVE SUMMARY</td>
<td>vii</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Test Objectives</td>
<td>1</td>
</tr>
<tr>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>Related Documents</td>
<td>1</td>
</tr>
<tr>
<td>System Description</td>
<td>2</td>
</tr>
<tr>
<td>DATA COLLECTION AND REDUCTION</td>
<td>5</td>
</tr>
<tr>
<td>Experimental Conditions</td>
<td>5</td>
</tr>
<tr>
<td>Raw Data Plots</td>
<td>11</td>
</tr>
<tr>
<td>Approach Statistics</td>
<td>11</td>
</tr>
<tr>
<td>RESULTS</td>
<td>20</td>
</tr>
<tr>
<td>Training</td>
<td>20</td>
</tr>
<tr>
<td>Flight Inspection Equipment</td>
<td>20</td>
</tr>
<tr>
<td>Equipment Portability and Data Recording</td>
<td>22</td>
</tr>
<tr>
<td>RTT Accuracy</td>
<td>23</td>
</tr>
<tr>
<td>Decelerating Approaches</td>
<td>33</td>
</tr>
<tr>
<td>Heliport MLS Flight Inspection Procedures and Tolerances</td>
<td>33</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>39</td>
</tr>
<tr>
<td>Flight Inspection Equipment</td>
<td>39</td>
</tr>
<tr>
<td>Aircraft Requirements</td>
<td>40</td>
</tr>
<tr>
<td>RTT Accuracy</td>
<td>41</td>
</tr>
<tr>
<td>Tolerances</td>
<td>41</td>
</tr>
<tr>
<td>Procedures</td>
<td>42</td>
</tr>
<tr>
<td>APPENDIXES</td>
<td></td>
</tr>
<tr>
<td>A - UH-1H Helicopter Specifications</td>
<td></td>
</tr>
<tr>
<td>B - MLS Antennas and RTT Equipment Platforms</td>
<td></td>
</tr>
<tr>
<td>C - Subject Pilot Background Files</td>
<td></td>
</tr>
<tr>
<td>D - Accumulated Subject Flight Profiles</td>
<td></td>
</tr>
<tr>
<td>E - Laser Tracking, MLS, and RTT Data Plots</td>
<td></td>
</tr>
<tr>
<td>F - CMM and PFE Plots</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

Figure	Page
1 | MLS Antenna Location and Field Orientation 8
2 | Atlantic City Heliport MLS Approach Plate 9
3 | Approach Profile for MLS Flight Inspection with a 1000-Foot Approach Reference Point 10
4 | Raw MLS, RTT, and Laser Angle Minus Selected Angle Plots 12
5 | MLS Minus Laser (Tracking) and MLS Minus RTT Angle Plots 13
6 | RTT Differential Channel Plot 14
7 | RTT Minus Laser (Tracking) Angle Plot 15
8 | Sabreliner RTT Differential Strip Chart 26
9 | UH-1H RTT Differential Strip Chart 27
10 | RTT Minus Laser Tracking Angular Difference Plots 29
11 | RTT Azimuth Tracking Performance 30
12 | RTT Azimuth Tracking Consistency 31
13 | Orbital and Level Flight Inspection Patterns 35

LIST OF TABLES

Table	Page
1 | Data Collection Specifications 4
2 | Portable MLS Flight Inspection Equipment 6
3 | Experimental Conditions 7
4 | Flight Inspection Statistical Angle Data for MLS, RTT, and Laser Tracking in Degrees (Flights 6 and 7) 16
5 | Flight Inspection Statistical Angle Data for MLS, RTT, and Laser Tracking in Degrees (Flights 8 and 9) 17
6 | Flight Inspection Statistical Error Data in Degrees (Flights 6 and 7) 18
7 | Flight Inspection Statistical Error Data in Degrees (Flights 8 and 9) 19
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Recording Rates Used During Flight Inspection Testing</td>
<td>23</td>
</tr>
<tr>
<td>9</td>
<td>RTT Differential Statistical Data Sabreliner Azimuth Approaches</td>
<td>24</td>
</tr>
<tr>
<td>10</td>
<td>RTT Differential Statistical Data UH-1H Azimuth Approaches</td>
<td>25</td>
</tr>
<tr>
<td>11</td>
<td>RTT Differential Statistical Data UH-1H Elevation Approaches</td>
<td>25</td>
</tr>
<tr>
<td>12</td>
<td>RTT - Laser Angular Difference Statistics</td>
<td>32</td>
</tr>
<tr>
<td>13</td>
<td>RTT Elevation Results - Raw Data (in Degrees)</td>
<td>32</td>
</tr>
<tr>
<td>14</td>
<td>RTT Elevation Results - 1 Cue (in Degrees)</td>
<td>32</td>
</tr>
<tr>
<td>15</td>
<td>RTT Elevation Results - 3 Cue (in Degrees)</td>
<td>33</td>
</tr>
<tr>
<td>16</td>
<td>Orbital Flight Inspection Tolerances</td>
<td>36</td>
</tr>
<tr>
<td>17</td>
<td>Glidepath Level Flight Tolerances</td>
<td>36</td>
</tr>
<tr>
<td>18</td>
<td>95 Percent Confidence Limits for CMN and PFE</td>
<td>37</td>
</tr>
<tr>
<td>19</td>
<td>Azimuth Tracking and CMN and PFE Filter Responses</td>
<td>38</td>
</tr>
<tr>
<td>20</td>
<td>Elevation Tracking CMN and PFE Filter Responses</td>
<td>39</td>
</tr>
<tr>
<td>21</td>
<td>System Error Limits at the Approach Reference Point in Degrees</td>
<td>39</td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY

This report documents a series of tests designed to identify microwave landing system (MLS) heliport flight inspection procedures. The tests, conducted in November 1985, demonstrated the feasibility of using a helicopter to perform the final approach segment of an MLS heliport approach. A conclusion of the project testing was that current fleet standard radio theodolite telemetry (RTT) optical tracking techniques could be used to track a helicopter (at 40 to 60 knots airspeed) throughout the final approach segment to the approach reference (approximately 1000 feet in front of the antennas). Equipment are identified which were used in this data collection package and requirements are specified for a portable flight inspection package. Statistical analysis was performed on the flight inspection digital data to estimate control motion noise (CMN) and path following error (PFE). Plots of all raw and processed data are included in the appendixes.
INTRODUCTION

TEST OBJECTIVES.

This series of tests were designed to identify the methodology and equipment required to adequately flight inspect a microwave landing system (MLS) installed at a heliport. The specific project objectives included:

1. Develop and interface equipment to provide for full data rate collection of MLS data and provide a real-time data preview capability for the flight inspection technician.

2. Determine equipment requirements considering, if feasible, a portable package which could be placed in rental helicopters to support flight inspection of MLS heliport installations.

3. Determine the accuracy of radio theodolite telemetry (RTT) equipment in tracking a helicopter not equipped with stability augmentation equipment which is making a constant speed, steep angle MLS approach.

4. Determine the accuracy of RTT equipment in tracking a helicopter not equipped with stability augmentation equipment which is making low airspeed, decelerating MLS approaches.

5. Develop recommended MLS flight inspection procedures and system tolerances for system commissioning and periodic flight inspections.

BACKGROUND.

The United States/Australian Time Reference Scanning Beam (TRSB) MLS was selected as the new International Standard Approach and Landing Guidance System by the International Civil Aviation Organization (ICAO) on April 19, 1978. Planning and testing are now underway to provide for an orderly transition from system development to system implementation and utilization.

Initial operational use of this system by helicopters is expected to be established at airports. Later, it is expected that MLS approaches will be established at various heliports throughout the country with elevation path angles up to 12°. At least three heliports will receive MLS during the first procurement. The reason for this project is to establish procedures and equipment tolerances for flight checking MLS equipped heliports.

RELATED DOCUMENTS.

Many documents were reviewed and formed the basis for this study. The related documents include the following:

SYSTEM DESCRIPTION.

The test aircraft for the flight inspection project was the Army Bell 205 helicopter UH-1H, tail number 70-16344. The helicopter was made available through an interagency agreement with the Department of the Army. The instrument rated aircraft crew consisted of a safety pilot, flight inspection pilot, project engineer, flight inspection technician, and, on occasion, one observer. See appendix A for the helicopter's specifications.

The tests were flown at the Federal Aviation Administration (FAA) Technical Center's Interim Concepts Development Heliport where a Hazeltine model 2400 MLS is installed. The antenna system is collocated (azimuth and elevation antennas are separated by less than 656 feet) to the right of the heliport as the site is viewed on the inbound approach course.

The Hazeltine model 2400 MLS is a low profile, precision approach and landing system utilizing microwave phased-array antenna technology, microprocessor control, and solid-state electronics. The TRSB signal format is transmitted on any one of 200 C-band (4-8 gigahertz (GHz)) channels. The scanning beams are scanned rapidly "to" and "fro" throughout the coverage volume so that each aircraft receiving these beams can derive its own position angle directly from the time difference between the TRSB beam pulse pairs. In addition, information such as airport and runway identification, course clearance guidance (fly left or fly right), and other operational data are transmitted on the same channel.

The azimuth proportional guidance capability is provided in a sector typically -10° to +10° from approach course centerline. Clearance guidance provides a fly left or fly right indication rather than proportional guidance in the full +40° azimuth sector. When proportional guidance in the +10° sector is not possible, clearance guidance is provided to supplement the coverage sector.
The ground station characteristics were as follows:

Azimuth Station:
- Beam Width: 3.5°
- Proportional Guidance: +10°
- Clearance Sector: +10° to +40°
- Range: 20 nautical miles (nmi) +40°
- Antenna Aperture Size: 5 feet x 3.5 feet
- Phased Array Shifters: 8
- Transmitter Power: 10 watts nominal

Elevation Station:
- Beam Width: 2.4°
- Proportional Guidance: 1° to 15° (fly up 0 to 1°)
- Range: 20 nmi
- Antenna Aperture Size: 6 inches x 6 feet
- Phased Array Shifters: 8
- Transmitter Power: 5 watts nominal

The Bendix MLS airborne receiver system operates together with an MLS ground facility (transmitting navigational information) to provide approach and missed-approach landing guidance. The MLS consists of an ML-201A Angle Receiver, Control Display, two omnidirectional antennas, and associated mounting connectors. A shock and vibration (nonvibration) isolated mounting tray holds the MLS receiver. Unlike a conventional instrument landing system (ILS), the MLS receiver allows the desired azimuth and elevation angle to be selected in the cockpit.

Pilot selectable elevation and azimuth guidance allows for a combination of approaches up to -60° to +60° in azimuth (1° selectable increments) and elevation selection from 2.0° to 20.9° (in 0.1° selectable increments). However, the actual boundary limitations of this MLS installation are determined by the signal structure of the MLS ground station (i.e., +10° in proportional azimuth coverage and 1° to 15° in elevation coverage of the Hazeltine model 2400 ground system).

The ground equipment consisted of the theodolite and tripod, the RTT VHF transmitter with antenna and tripod, and the very high frequency (VHF) audio communications radio with event mark 1020 hertz (Hz) tone switch.

To facilitate rapid and safe deployment of the ground RTT equipment at the azimuth and elevation antennas, a platform was built around each site. It was necessary to locate the equipment abreast the phase centers of either the azimuth or elevation antenna. The theodolite tripod had to be located above the azimuth antenna to be abreast the phase center. The elevation antenna phase center is 6.5 feet above the ground. The platforms were marked for each tripod set-up which simplified repeatable equipment relocation. The antenna configurations are shown in appendix B.

The airborne data recording system on the UHI-1H is a 6809 microprocessor based package which is a combination of an off-the-shelf data package and FAA designed interface boards. The system is capable of recording the parameters listed in table 1 for storage on a Kennedy magnetic tape recorder on magnetic tape media. The flight inspection rack containing the equipment listed in
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Sample Rate (Hz)</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>hrs/min/sec</td>
<td>-</td>
<td>0.001 sec</td>
</tr>
<tr>
<td>Indicated Airspeed</td>
<td>knots</td>
<td>2/5</td>
<td>0.0977 knots</td>
</tr>
<tr>
<td>Vertical Velocity</td>
<td>feet/minutes</td>
<td>2/5</td>
<td>0.488 fpm</td>
</tr>
<tr>
<td>Magnetic Heading</td>
<td>degrees</td>
<td>2/5</td>
<td>0.022 degrees</td>
</tr>
<tr>
<td>Barometric Altitude</td>
<td>feet</td>
<td>2/5</td>
<td>1.95 ft</td>
</tr>
<tr>
<td>Radio Altimeter</td>
<td>feet</td>
<td>2/5</td>
<td>0.732 ft</td>
</tr>
<tr>
<td>MLS Horizontal (low) Deviation</td>
<td>microamps</td>
<td>2/5</td>
<td>0.02 microamps</td>
</tr>
<tr>
<td>MLS Vertical (low) Deviation</td>
<td>microamps</td>
<td>2/5</td>
<td>0.02 microamps</td>
</tr>
<tr>
<td>MLS Azimuth</td>
<td>degrees</td>
<td>19/39</td>
<td>0.005 deg</td>
</tr>
<tr>
<td>MLS Elevation</td>
<td>degrees</td>
<td>39</td>
<td>0.005 deg</td>
</tr>
<tr>
<td>Distance Measuring Equipment</td>
<td>feet</td>
<td>2/5</td>
<td>3 ft (DME/P)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60 ft (std) (ARINC)</td>
</tr>
<tr>
<td>All Digital MLS Flags</td>
<td>-</td>
<td>19/39</td>
<td>-</td>
</tr>
<tr>
<td>All Cross Pointer Flags</td>
<td>-</td>
<td>2/5</td>
<td>-</td>
</tr>
<tr>
<td>Transverse Acceleration</td>
<td>32.16 ft/sec^2 (g's)</td>
<td>2/5</td>
<td>0.0012 g's</td>
</tr>
<tr>
<td>Longitudinal Acceleration</td>
<td>g's</td>
<td>2/5</td>
<td>0.0012 g's</td>
</tr>
<tr>
<td>Vertical Acceleration</td>
<td>g's</td>
<td>2/5</td>
<td>0.0049 g's</td>
</tr>
<tr>
<td>Time Code Generator Time</td>
<td>milliseconds</td>
<td>-</td>
<td>0.001 sec</td>
</tr>
<tr>
<td>RTT Cross Pointer</td>
<td>millivolts</td>
<td>2/5</td>
<td>0-300 mV</td>
</tr>
<tr>
<td>Differential Cross Pointer</td>
<td>millivolts</td>
<td>2/5</td>
<td>0-300 mV</td>
</tr>
<tr>
<td>RTT Flag</td>
<td>millivolts</td>
<td>2/5</td>
<td>0-500 mV</td>
</tr>
<tr>
<td>Tone Control Event Mark</td>
<td>volts</td>
<td>2/5</td>
<td>0 or 5 V</td>
</tr>
<tr>
<td>MLS Azimuth Deviation</td>
<td>millivolts</td>
<td>2/5</td>
<td>0-300 mV</td>
</tr>
<tr>
<td>MLS Elevation Deviation</td>
<td>millivolts</td>
<td>2/5</td>
<td>0-300 mV</td>
</tr>
<tr>
<td>MLS Antenna Switch</td>
<td>volts</td>
<td>2/5</td>
<td>0 or 5 V</td>
</tr>
</tbody>
</table>
Table 2 was configured to facilitate technician operation in a helicopter environment. The equipment was shock mounted against helicopter vibrations and positioned for optimal technician usage. As this rack was the first of its kind to be implemented for flight inspection in a helicopter, the rack layout was a human engineering task. The engineering was coordinated with Oklahoma City Flight Inspection people as well as personnel assigned to the Atlantic City FAA Flight Inspection Field Office (FIFO).

DATA COLLECTION AND REDUCTION

Data collection was begun in October 1985 and completed in November 1985. There were nine data flights. The first five were system operational check flights designed to familiarize the crew with the operation of equipment and flight test procedures. The last four flights were used for the data collection. Additionally, three fixed wing Sabreliner flight inspection aircraft approaches were made. These runs provided a basis for comparison of helicopter test results. There were 25 helicopter data collection runs and three fixed wing data collection runs which consumed a total of 11 hours of flight time. Two subject pilots were used, a flight inspection pilot with the Sacramento, California, FIFO, and a research and development engineer/project pilot with the FAA Technical Center, ACT-620. The subject pilots' backgrounds are listed in appendix C. The UH-IH helicopter, tail number 70-16344, was used as the test-bed vehicle under an interagency agreement with the Avionics Research and Development Activity (AVRADA) at Fort Monmouth, New Jersey, and the FAA Technical Center. A horizontal situation indicator (HSI), which combines course deviation indicator (CDI) information along with the slaved magnetic heading, was used along with distance measurement equipment (DME) to present course deviation and approach position data to the subject pilots.

EXPERIMENTAL CONDITIONS.

The flight profiles for the project consisted of centerline and 8° offset azimuth and 3°, 4°, 6°, and 9° elevation angle approaches. The experimental conditions for each elevation approach are shown in table 3. The FAA Technical Center's heliport, located at the approach end of runway 35, was used for the flights. The heliport location is shown in figure 1 and the basic approach profile is shown in figure 2. Approaches were flown to the approach reference point (ARP). The ARP was located 1000 feet in front of the antennas. The portion of the approach during which data were collected are presented in figure 3.

The subject pilots for the project were required to fly the zero or 8° azimuth course at the selected elevation angle, to the tightest course tolerances possible while being tracked by the ground RTT theodolite equipment. The profile tracking information is recorded on the helicopter's on-board digital data recording system magnetic tape storage media as well as the flight inspection rack's digital thermal strip chart recorder. The digital data collection system recorded the parameters listed previously in table 1. Prior to each profile run, the ground RTT system was calibrated to the airborne data system. In this manner the system bias could be nulled so that the strip chart
<table>
<thead>
<tr>
<th>Equipment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR33 Graphic Recorder</td>
<td>Provides the real time, hard copy of the flight instrument parameters.</td>
</tr>
<tr>
<td>MLS Airborne Antenna</td>
<td>Provides manual or automatic switching of the forward and aft MLS antennas.</td>
</tr>
<tr>
<td>Switching Module</td>
<td></td>
</tr>
<tr>
<td>RTT Control Panel</td>
<td>Provides on-board control of ground RTT and airborne MLS signals.</td>
</tr>
<tr>
<td>Oscilloscope</td>
<td>Provides real-time visual analysis of the MLS signal in space.</td>
</tr>
<tr>
<td>(Phillips PM326-7U)</td>
<td></td>
</tr>
<tr>
<td>Oscilloscope Select Panel</td>
<td>Switching of the selected signal to be monitored on the oscilloscope.</td>
</tr>
<tr>
<td>Digital Voltmeter Panel</td>
<td>Digital monitoring of the selected alternating current (ac) or direct current (dc) signal.</td>
</tr>
<tr>
<td>MLS Adjustment and Selection Panel</td>
<td>Gain control of the azimuth and elevation signals for the RTT control panel.</td>
</tr>
<tr>
<td>VHF 1020 Hz Tone Decoder Box</td>
<td>Filters the 1020 Hz event mark tone from the RTT equipment for recording.</td>
</tr>
<tr>
<td>Bendix MLS Angle Receiver</td>
<td>Provides course guidance to the pilot from the ground station signal.</td>
</tr>
<tr>
<td>RTT Receiver</td>
<td>VHF receiver of the ground transmitter RTT reference signal.</td>
</tr>
<tr>
<td>6809 Based Data Collection Package</td>
<td>Processes data at up to 39 Hz and stores the information on magnetic tape media.</td>
</tr>
<tr>
<td>Time Code Generator</td>
<td>Provides the synchronized time signals between the data system and laser tracking for post-flight data merges.</td>
</tr>
<tr>
<td>Flight Number (No.)</td>
<td>Wind Conditions (deg at kts)</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>0</td>
<td>360 at 14</td>
</tr>
<tr>
<td></td>
<td>360 at 10</td>
</tr>
<tr>
<td></td>
<td>340 at 12</td>
</tr>
<tr>
<td></td>
<td>360 at 12</td>
</tr>
<tr>
<td></td>
<td>040 at 05</td>
</tr>
<tr>
<td></td>
<td>030 at 06</td>
</tr>
<tr>
<td></td>
<td>050 at 07</td>
</tr>
<tr>
<td></td>
<td>030 at 05</td>
</tr>
<tr>
<td>8</td>
<td>120 at 08</td>
</tr>
<tr>
<td></td>
<td>120 at 07</td>
</tr>
<tr>
<td></td>
<td>110 at 08</td>
</tr>
<tr>
<td></td>
<td>120 at 08</td>
</tr>
<tr>
<td></td>
<td>090 at 05</td>
</tr>
<tr>
<td></td>
<td>140 at 09</td>
</tr>
<tr>
<td></td>
<td>100 at 08</td>
</tr>
<tr>
<td></td>
<td>140 at 10</td>
</tr>
<tr>
<td></td>
<td>070 at 07</td>
</tr>
<tr>
<td>9</td>
<td>110 at 08</td>
</tr>
<tr>
<td></td>
<td>130 at 08</td>
</tr>
<tr>
<td></td>
<td>100 at 10</td>
</tr>
<tr>
<td></td>
<td>100 at 05</td>
</tr>
<tr>
<td></td>
<td>110 at 05</td>
</tr>
<tr>
<td></td>
<td>120 at 07</td>
</tr>
<tr>
<td></td>
<td>080 at 05</td>
</tr>
</tbody>
</table>
RUNWAY 8/26

EMLS 13 ELEVATION

AIR ANTENNA GUARD RAMP

STOP

TAXIWAY

ATLANTIC CITY MUNICIPAL TERMINAL

MLS ELEVATION ANTENNA

MLS AZIMUTH ANTENNA

APPROACH PATH

0° OFFSET

FIGURE 1. MLS ANTENNA LOCATION AND FIELD ORIENTATION
COPTER 354 HELIPORT

Atlantic City (ACY)
Atlantic City, New Jersey

Atlantic City APP CON
124.6 385.5
Atlantic City Tower
118.9 239.0
GND CON
121.9 284.6
ASR
ATIS 108.6
CLNC DEL
120.3

MIA ACY 25 NM
1600
090°
2100

RADAR REQUIRED

MISSED APPROACH: CLIMB STRAIGHT
AHEAD TO 500, THEN CLIMBING LEFT
TURN HEADING 160° TO 1400 TO
INTERCEPT THE MATF 20° A2

CATEGORY

A

H

S-ML 354° 162-1/2 100 (RA100)
N/A
S-AZ 354° 420-3/4 358(400-3/4)
N/A

HELIPAD LOCATED 135 FT. LEFT OF COURSE

Not to be used for navigation purposes.

RATE OF DESCENT 395 FT/MIN AT 75 KNOTS

39°27'N-74°35'W

Atlantic City, New Jersey

Figure 2. Atlantic City Heliport MLS Approach Plate
FIGURE 3. APPROACH PROFILE FOR MLS FLIGHT INSPECTION WITH A
1000-FOOT APPROACH REFERENCE POINT
plots and magnetic tape data could be correlated directly in the post-flight data reduction.

During the data collection phase of the project, the pilots flew one approach glidepath at a selected elevation angle flying raw data information on the HSI. The next approach was flown at the same elevation angle but with 1-cue (speed reference cue) of the flight director active. The next approach was flown at the same elevation angle but with 3-cues (speed cue, collective commands, and roll commands) from the flight director displayed on the HSI. This pattern was followed for the centerline and 8° offset azimuth approaches at the 3°, 4°, 6°, and 9° elevation angles.

Initially, laser tracking of the UH-1H was a problem due to the mounting of the laser retro-reflector on the aircraft's secondary fuselage inspection cover plate. The retro-reflector mounting location is depicted in appendix A. Acceptable tracking was accomplished when 4-inch standoffs were placed between the aircraft cover plate and the retro-reflector. This provided a two-fold benefit: (1) the displaced reflector was now visible to the ground laser site during the approach and outbound segments of the profiles; and (2) the displaced reflector was below the aircraft's slipstream keeping foreign matter off the reflector surfaces, providing improved continuous laser tracking.

RAW DATA PLOTS.

When laser tracking was available as a reference tracking system on flights 6 and 9, MLS, RTT, and laser determined angle minus the selected angle were plotted versus the range from the ground antennas. An example is shown in figure 4. For each approach the MLS measured angle was compared with the RTT and/or the laser measured angle. An example of these difference plots is shown in figure 5. The RTT differential channel was digitally recorded and plotted versus time (see figure 6). When laser tracking was available the RTT-Laser angle was plotted versus range from the antenna (see figure 7). In appendix D the runs are organized by flight number and run number.

APPROACH STATISTICS.

For each approach the mean and standard deviation of the error difference was calculated. Data used in deriving these statistics were the data recorded during the period depicted previously in figure 3. Table 4 presents the statistical data of mean, standard deviation, and sample size of MLS angle, RTT angle, and laser tracking angle for either azimuth or elevation for flights 6 and 7. Table 5 presents similar statistical data for flights 8 and 9. The resulting statistical error data are shown in tables 6 and 7. Table 6 shows the statistical error data for the plots of MLS minus RTT, MLS minus tracking, RTT differential and RTT minus tracking in degrees for flights 6 and 7. Table 7 shows the same statistical error data for flights 8 and 9.

In most cases the mean differences presented in tables 6 and 7 do not exceed 0.05°. On flight 8, results for the first four approaches show a consistent angle bias of 0.15° to 0.19° in the difference statistics. These larger biases were probably due to equipment calibration errors. This assumption is supported by the fact that on the remaining approaches the maximum mean difference was only 0.03°.
FIGURE 4. RAW MLS, RTT, AND LASER ANGLE MINUS SELECTED ANGLE PLOTS
FIGURE 6. RTT DIFFERENTIAL CHANNEL PLOT
TABLE 4. FLIGHT INSPECTION STATISTICAL ANGLE DATA FOR MLS, RTT, AND LASER TRACKING IN DEGREES (FLIGHTS 6 and 7)

<table>
<thead>
<tr>
<th>Run Number</th>
<th>Flight 6</th>
<th>Flight 7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std Dev</td>
</tr>
<tr>
<td>Run 1</td>
<td>MLS Angle</td>
<td>3.0522</td>
</tr>
<tr>
<td></td>
<td>RTT Angle</td>
<td>3.0998</td>
</tr>
<tr>
<td></td>
<td>Tracking</td>
<td>3.0448</td>
</tr>
<tr>
<td>Run 2</td>
<td>MLS Angle</td>
<td>6.1134</td>
</tr>
<tr>
<td></td>
<td>RTT Angle</td>
<td>6.1131</td>
</tr>
<tr>
<td></td>
<td>Tracking</td>
<td>6.0997</td>
</tr>
<tr>
<td>Run 3</td>
<td>MLS Angle</td>
<td>5.9852</td>
</tr>
<tr>
<td></td>
<td>RTT Angle</td>
<td>6.0045</td>
</tr>
<tr>
<td></td>
<td>Tracking</td>
<td>5.9991</td>
</tr>
<tr>
<td>Run 4</td>
<td>MLS Angle</td>
<td>6.2419</td>
</tr>
<tr>
<td></td>
<td>RTT Angle</td>
<td>6.2432</td>
</tr>
<tr>
<td></td>
<td>Tracking</td>
<td>6.2406</td>
</tr>
<tr>
<td>Run 5</td>
<td>MLS Angle</td>
<td>-7.9956</td>
</tr>
<tr>
<td></td>
<td>RTT Angle</td>
<td>-8.0546</td>
</tr>
<tr>
<td></td>
<td>Tracking</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: (-) indicates statistic was not available since laser tracking was not employed on this flight.
<table>
<thead>
<tr>
<th>Run Number</th>
<th>Flight 8 Mean</th>
<th>Flight 8 Std Dev</th>
<th>Flight 8 Samples</th>
<th>Flight 9 Mean</th>
<th>Flight 9 Std Dev</th>
<th>Flight 9 Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run 1</td>
<td>MLS Angle</td>
<td>8.1118</td>
<td>0.1427</td>
<td>1590</td>
<td>6.0294</td>
<td>0.0845</td>
</tr>
<tr>
<td></td>
<td>RTT Angle</td>
<td>7.9203</td>
<td>0.1409</td>
<td>1590</td>
<td>6.0191</td>
<td>0.0913</td>
</tr>
<tr>
<td></td>
<td>Tracking</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.9932</td>
<td>0.1823</td>
</tr>
<tr>
<td>Run 2</td>
<td>MLS Angle</td>
<td>8.2704</td>
<td>0.3965</td>
<td>1525</td>
<td>6.0471</td>
<td>0.1381</td>
</tr>
<tr>
<td></td>
<td>RTT Angle</td>
<td>8.0735</td>
<td>0.3854</td>
<td>1525</td>
<td>6.0582</td>
<td>0.1808</td>
</tr>
<tr>
<td></td>
<td>Tracking</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.9233</td>
<td>0.3267</td>
</tr>
<tr>
<td>Run 3</td>
<td>MLS Angle</td>
<td>-0.0892</td>
<td>0.1703</td>
<td>1038</td>
<td>5.9915</td>
<td>0.0887</td>
</tr>
<tr>
<td></td>
<td>RTT Angle</td>
<td>-0.2467</td>
<td>0.1747</td>
<td>1038</td>
<td>5.9905</td>
<td>0.1270</td>
</tr>
<tr>
<td></td>
<td>Tracking</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.8819</td>
<td>0.3052</td>
</tr>
<tr>
<td>Run 4</td>
<td>MLS Angle</td>
<td>0.0269</td>
<td>0.2315</td>
<td>1301</td>
<td>8.7307</td>
<td>0.6556</td>
</tr>
<tr>
<td></td>
<td>RTT Angle</td>
<td>-0.1321</td>
<td>0.2346</td>
<td>1301</td>
<td>8.9993</td>
<td>0.2057</td>
</tr>
<tr>
<td></td>
<td>Tracking</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8.5022</td>
<td>0.6930</td>
</tr>
<tr>
<td>Run 5</td>
<td>MLS Angle</td>
<td>3.0025</td>
<td>0.0497</td>
<td>1227</td>
<td>9.0783</td>
<td>0.0791</td>
</tr>
<tr>
<td></td>
<td>RTT Angle</td>
<td>2.9889</td>
<td>0.0723</td>
<td>1227</td>
<td>9.0844</td>
<td>0.1182</td>
</tr>
<tr>
<td></td>
<td>Tracking</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8.9318</td>
<td>0.3128</td>
</tr>
<tr>
<td>Run 6</td>
<td>MLS Angle</td>
<td>3.0134</td>
<td>0.0650</td>
<td>1454</td>
<td>8.9812</td>
<td>0.0811</td>
</tr>
<tr>
<td></td>
<td>RTT Angle</td>
<td>3.0051</td>
<td>0.0873</td>
<td>1454</td>
<td>8.9356</td>
<td>0.1405</td>
</tr>
<tr>
<td></td>
<td>Tracking</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8.7943</td>
<td>0.3911</td>
</tr>
<tr>
<td>Run 7</td>
<td>MLS Angle</td>
<td>3.9955</td>
<td>0.0829</td>
<td>1278</td>
<td>0.1789</td>
<td>0.1590</td>
</tr>
<tr>
<td></td>
<td>RTT Angle</td>
<td>3.9804</td>
<td>0.1097</td>
<td>1278</td>
<td>0.1279</td>
<td>0.1688</td>
</tr>
<tr>
<td></td>
<td>Tracking</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-0.0610</td>
<td>0.3748</td>
</tr>
<tr>
<td>Run 8</td>
<td>MLS Angle</td>
<td>4.0499</td>
<td>0.0944</td>
<td>1425</td>
<td>4.0588</td>
<td>0.1238</td>
</tr>
<tr>
<td></td>
<td>RTT Angle</td>
<td>4.0588</td>
<td>0.1238</td>
<td>1425</td>
<td>4.0588</td>
<td>0.1238</td>
</tr>
<tr>
<td></td>
<td>Tracking</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Run 9</td>
<td>MLS Angle</td>
<td>3.9032</td>
<td>0.1599</td>
<td>1309</td>
<td>3.8740</td>
<td>0.2112</td>
</tr>
<tr>
<td></td>
<td>RTT Angle</td>
<td>3.8740</td>
<td>0.2112</td>
<td>1309</td>
<td>3.8740</td>
<td>0.2112</td>
</tr>
<tr>
<td></td>
<td>Tracking</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: (-) indicates statistic was not available since laser tracking was not employed on this flight.
Table 6. Flight Inspection Statistical Error Data in Degrees (Flights 6 and 7)

<table>
<thead>
<tr>
<th>Run Number</th>
<th>Flight 6</th>
<th></th>
<th>Flight 7</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std Dev</td>
<td>Samples</td>
<td>Mean</td>
</tr>
<tr>
<td>Run 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLS - RTT</td>
<td>-0.0476</td>
<td>0.0267</td>
<td>277</td>
<td>0.0570</td>
</tr>
<tr>
<td>MLS - TRK</td>
<td>0.0073</td>
<td>0.0308</td>
<td>277</td>
<td>-</td>
</tr>
<tr>
<td>RTT Diff</td>
<td>0.0431</td>
<td>0.0283</td>
<td>277</td>
<td>0.0505</td>
</tr>
<tr>
<td>RTT - TRK</td>
<td>0.0550</td>
<td>0.0183</td>
<td>277</td>
<td>-</td>
</tr>
<tr>
<td>Run 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLS - RTT</td>
<td>0.0003</td>
<td>0.0172</td>
<td>354</td>
<td>0.0513</td>
</tr>
<tr>
<td>MLS - TRK</td>
<td>0.0137</td>
<td>0.0198</td>
<td>354</td>
<td>-</td>
</tr>
<tr>
<td>RTT Diff</td>
<td>-0.0155</td>
<td>0.0241</td>
<td>354</td>
<td>0.0551</td>
</tr>
<tr>
<td>RTT - TRK</td>
<td>0.0134</td>
<td>0.0186</td>
<td>354</td>
<td>-</td>
</tr>
<tr>
<td>Run 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLS - RTT</td>
<td>-0.0193</td>
<td>0.0143</td>
<td>353</td>
<td>0.0480</td>
</tr>
<tr>
<td>MLS - TRK</td>
<td>-0.0139</td>
<td>0.0145</td>
<td>353</td>
<td>-</td>
</tr>
<tr>
<td>RTT Diff</td>
<td>0.0155</td>
<td>0.0180</td>
<td>353</td>
<td>0.0565</td>
</tr>
<tr>
<td>RTT - TRK</td>
<td>0.0054</td>
<td>0.0116</td>
<td>353</td>
<td>-</td>
</tr>
<tr>
<td>Run 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLS - RTT</td>
<td>-0.0013</td>
<td>0.0183</td>
<td>816</td>
<td>0.0721</td>
</tr>
<tr>
<td>MLS - TRK</td>
<td>0.0013</td>
<td>0.0215</td>
<td>816</td>
<td>-</td>
</tr>
<tr>
<td>RTT Diff</td>
<td>-0.0271</td>
<td>0.0358</td>
<td>816</td>
<td>0.0802</td>
</tr>
<tr>
<td>RTT - TRK</td>
<td>0.0026</td>
<td>0.0183</td>
<td>816</td>
<td>-</td>
</tr>
<tr>
<td>Run 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLS - RTT</td>
<td></td>
<td></td>
<td></td>
<td>0.0590</td>
</tr>
<tr>
<td>MLS - TRK</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>RTT Diff</td>
<td></td>
<td></td>
<td></td>
<td>0.0758</td>
</tr>
<tr>
<td>RTT - TRK</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

Note: (-) indicates statistic was not available since laser tracking was not employed on this flight.
<table>
<thead>
<tr>
<th>Run Number</th>
<th>Flight 8</th>
<th>Flight 9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std Dev</td>
</tr>
<tr>
<td>Run 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLS - RTT</td>
<td>0.1915</td>
<td>0.0482</td>
</tr>
<tr>
<td>MLS - TRK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTT Diff</td>
<td>0.2084</td>
<td>0.0500</td>
</tr>
<tr>
<td>RTT - TRK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLS - RTT</td>
<td>0.19699</td>
<td>0.0497</td>
</tr>
<tr>
<td>MLS - TRK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTT Diff</td>
<td>0.2176</td>
<td>0.0486</td>
</tr>
<tr>
<td>RTT - TRK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLS - RTT</td>
<td>0.1575</td>
<td>0.0277</td>
</tr>
<tr>
<td>MLS - TRK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTT Diff</td>
<td>0.18499</td>
<td>0.0275</td>
</tr>
<tr>
<td>RTT - TRK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLS - RTT</td>
<td>0.1591</td>
<td>0.0452</td>
</tr>
<tr>
<td>MLS - TRK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTT Diff</td>
<td>0.1834</td>
<td>0.0481</td>
</tr>
<tr>
<td>RTT - TRK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLS - RTT</td>
<td>0.0136</td>
<td>0.0365</td>
</tr>
<tr>
<td>MLS - TRK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTT Diff</td>
<td>-0.0213</td>
<td>0.0372</td>
</tr>
<tr>
<td>RTT - TRK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLS - RTT</td>
<td>0.0083</td>
<td>0.0362</td>
</tr>
<tr>
<td>MLS - TRK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTT Diff</td>
<td>-0.0161</td>
<td>0.0363</td>
</tr>
<tr>
<td>RTT - TRK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLS - RTT</td>
<td>0.0151</td>
<td>0.0315</td>
</tr>
<tr>
<td>MLS - TRK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTT Diff</td>
<td>-0.0220</td>
<td>0.0290</td>
</tr>
<tr>
<td>RTT - TRK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLS - RTT</td>
<td>-0.0089</td>
<td>0.0335</td>
</tr>
<tr>
<td>MLS - TRK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTT Diff</td>
<td>-0.0013</td>
<td>0.0304</td>
</tr>
<tr>
<td>RTT - TRK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLS - RTT</td>
<td>0.0293</td>
<td>0.0549</td>
</tr>
<tr>
<td>MLS - TRK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTT Diff</td>
<td>-0.0328</td>
<td>0.0459</td>
</tr>
<tr>
<td>RTT - TRK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: (-) indicates statistic was not available since laser tracking was not employed on this flight.
RESULTS

The first four objectives addressed equipment requirements and issues in RTT tracking of the helicopter. Only after positive results were obtained in these areas was the final objective addressed. The final objective dealt with the mechanics of heliport flight inspection, i.e., tolerance determination and identification of flight inspection patterns.

TRAINING.

The subject pilots used for these tests were current and qualified UH-1H pilots with a high degree of skill and proficiency. The Technical Center pilot was very experienced in steep elevation angle MLS approaches to a heliport. Flights consisting of 6 flight hours were used to train the FIFO pilot in low airspeed steep elevation angle tracking techniques. The techniques employed included elevation tracking with collective, speed control with cyclic pitch, and sideslip crosswind corrections for azimuth. The new tracking techniques were rapidly learned. Prior to data collection, the FIFO pilot stated he was comfortable with the newly learned tracking techniques.

The subjects found the UH-1H to be stable and controllable at all speeds down through 40 knots for angles of 3° to 9°. Flyability was judged to be enhanced by the use of the flight director speed cue. Flight director collective and lateral cyclic commands for azimuth and elevation tracking were judged to be desirable but not essential. The HSI integrating compass and MLS deviation data were considered to be essential.

It was generally considered that utilization of an aircraft flight control system (AFCS) coupled to the MLS would not have yielded any significant improvement in tracking accuracy or aircraft stability. Future flight inspection data collection work should incorporate an aggregate of line pilots, as opposed to this flight test where only two extremely well qualified subject pilots were used. This user data base would be more useful in determining the effects of flight director availability and mode of flight director implementation on RTT tracking performance.

FLIGHT INSPECTION EQUIPMENT.

The first objective of the Flight Inspection project was to develop and interface the data collection system to the avionics and RTT equipment of the helicopter. The flight inspection package consisted of the equipment previously listed in table 2. This equipment adequately provided real time strip chart data to the flight inspection technician. The oscilloscope and digital voltmeter provided the technician with fixed-wing flight inspection compatible real time analog data information. The digital strip chart recorder produced thermal traces replacing the analog ink-pen galvanometer type traces. The 6809 microprocessor-based full data rate digital recording system provided recording of all parameters shown previously in table 1. If post-flight data analysis is required, this system was deemed capable of satisfying all requirements.
Results of testing indicated that rotor modulation and noise were not an issue when a frequency modulated (FM) RTT system was used. Two elements included in the flight inspection equipment rack were not required. The location of the aft mounted MLS antenna on the tail boom provided excellent reception regardless of aircraft attitude. This fact eliminates the need for the MLS airborne antenna switching module. The increased capability of the GR33 Graphic Recorder over the fleet standard strip chart recorder eliminates the need for an expanded differential function on the RTT differential control box.

The FIFO flight technicians on-board the UH-1H who utilized the flight inspection equipment rack, provided the following observations on equipment and procedures.

UH-1H rotor modulation did not affect the RTT flight inspection equipment when the FM RTT was used. This observation only applies to the main rotor/tail rotor configuration of UH-1H. Other helicopter rotor systems may cause modulation problems with the RTT equipment.

The cross on the nose of the aircraft (for optical sight alignment with the ground RTT theodolite) was not coincident with the MLS antenna, which was aft mounted on the tail boom for optimum MLS coverage. RTT tracking error on the nose was introduced when the helicopter yawed since the center of the cross and MLS antenna were no longer coincident along the longitudinal axis. This effect contributes to apparent roughness and structure of the MLS signal. Similar error will be introduced by rotation about the other axis. (Author's comment: Despite this statement, better RTT tracking of the helicopter resulted in the near field when compared with Sabreliner results.)

A bright, high contrast cross, with minimum line width of 4 inches, is required on the nose as an optical tracking aid. The large UH-1H windshields caused sun reflection problems during certain times of the day.

RTT tracking accuracy deteriorated inside 0.2 nautical mile from the antenna system. (Data presented later confirms reduced accuracy inside 0.16 nautical mile. However, RTT tracking of the UH-1H was significantly better than tracking of the Sabreliner in the near field).

The lower airspeed approaches of the helicopter versus the Sabreliner (40 to 60 knots versus 120 to 140 knots, respectively) require longer tracking scenarios. The fatigue of the technician operating the RTT equipment can be directly related to this time. This problem is accentuated when plagued with foul weather.

Site design must accommodate indelible marking of the ground antenna phase centers. Accessible ground power for RTT and communications equipment, shelter access during inclement weather, and platforms for RTT equipment are required in order to obtain repeatable RTT tracking performance.

RTT expanded scale was not needed as the recorder sensitivity range was expandable enough to accommodate this function.
Electrical system noise was apparent while airborne and during ground calibrating. Source of the noise must be considered in future flight inspection plans.

EQUIPMENT PORTABILITY AND DATA RECORDING.

The second objective of the project was to evaluate the feasibility of configuring the flight inspection rack as a portable package capable of being interfaced to a rental helicopter. The real time data analysis previously listed in table 2 represents minimum flight inspection equipment to be integrated into the portable package. The equipment could be packaged into smaller, man-portable cases with military-specified interconnect hardware. Equipment weight totalled 139 pounds. The power requirements of the entire package are 20 amps of 28 (Vdc), 1 amp of 5 Vdc, and 5 amps of 115 (Vac) at 400 cycles. The required cockpit avionics include a HSI integrating magnetic compass and MLS deviation data on one display and DME. Dzus mounted control console units would include the MLS control head, DME control head, and a dedicated VHF radio communications transceiver for the RTT ground equipment audio link.

The helicopter airframe must be modified for real time data presentation to the flight inspection technician. The modifications include a technical standard order (TSO) MLS installation, a dedicated VHF communications antenna for the RTT audio link, and access to the HSI CDI, vertical deviation indicator (VDI), and navigation failure flag circuits. Additionally, the flight inspection MLS receiver must be interfaced with the HSI to provide proper navigation display information to the pilot.

During the testing, a full data rate recording system was used to provide for post-flight data analysis. If a full data rate recording capability is required, then the portable test equipment weight is increased by 76 pounds and the 115 Vac 400-cycle power requirement is doubled to 10 amps. The full data rate recording system would also require 1 amp of 28 Vac 400-cycle power. The recording rate of parameters during the flight inspection system testing is shown in table 8.

If data recording is required, the data recording system must be interfaced with the flight inspection equipment rack to provide recording of at least parameters 1, 5, 6, 8, 9, 11, 12, and 13 from table 7. Additionally, aircraft interfaces are needed to support recording of barometric altitude, MLS horizontal and vertical deviation, DME, and navigation failure flags.
TABLE 8. RECORDING RATES USED DURING FLIGHT INSPECTION TESTING

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Sample Rate (Hz)</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>hrs/min/sec</td>
<td>39</td>
<td>0.001 sec</td>
</tr>
<tr>
<td>Barometric Altitude</td>
<td>feet</td>
<td>5</td>
<td>1.95 feet</td>
</tr>
<tr>
<td>MLS Horizontal (low) Deviation</td>
<td>microamps</td>
<td>5</td>
<td>0.02 microamps</td>
</tr>
<tr>
<td>MLS Vertical (low) Deviation</td>
<td>microamps</td>
<td>5</td>
<td>0.02 microamps</td>
</tr>
<tr>
<td>MLS Azimuth</td>
<td>degrees</td>
<td>19/29</td>
<td>0.005 degrees</td>
</tr>
<tr>
<td>MLS Elevation</td>
<td>degrees</td>
<td>39</td>
<td>0.005 degrees</td>
</tr>
<tr>
<td>DME</td>
<td>feet</td>
<td>5</td>
<td>3 feet (DME/P)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60 feet (ARINC)</td>
</tr>
<tr>
<td>RTT Crosspointer</td>
<td>millivolts</td>
<td>5</td>
<td>0-300 mV</td>
</tr>
<tr>
<td>Differential Crosspointer</td>
<td>millivolts</td>
<td>5</td>
<td>0-300 mV</td>
</tr>
<tr>
<td>Navigation Flags</td>
<td>volts</td>
<td>5</td>
<td>0 or 5 volts</td>
</tr>
<tr>
<td>Tone Event Mark</td>
<td>volts</td>
<td>5</td>
<td>0 or 5 volts</td>
</tr>
<tr>
<td>MLS Azimuth Deviation</td>
<td>millivolts</td>
<td>5</td>
<td>0-300 mV</td>
</tr>
<tr>
<td>MLS Elevation Deviation</td>
<td>millivolts</td>
<td>5</td>
<td>0-300 mV</td>
</tr>
</tbody>
</table>

RTT ACCURACY.

The third objective of the project was to determine the accuracy of RTT equipment in tracking a helicopter not equipped with stability augmentation equipment which is making a constant speed, steep angle MLS approach. Azimuth RTT tracking performance on the 0° azimuth and the 8° right azimuth was evaluated. RTT elevation tracking performance in tracking approaches on elevation angles of 3°, 4°, 6°, and 9° were evaluated. Airspeeds of 40, 50, and 60 knots were flown during the tests. Table 3 identifies the test conditions including the flight director mode available to the pilot for each UH-1H approach.

SABRELINER, UH-1H ACCURACY COMPARISON. The first issue in analyzing RTT tracking accuracy was to compare UH-1H tracking results with RTT tracking of the Sabreliner. Three Sabreliner approaches were made to the Interim Concepts Development Heliport. These approaches were followed by 25 UH-1H approaches. The only method for comparing RTT tracking performance was to digitize the
resulting strip charts traces and compare the results. Table 9 presents the digitized strip chart statistics for the Sabreliner. Digitized strip chart results for UH-1H RTT azimuth tracking are presented in table 10. UH-1H RTT elevation results are presented in table 11.

Except for the first four approaches on UH-1H flight 8, the mean RTT differential value was consistently smaller for the UH-1H (0.02° to 0.05°) than the Sabreliner mean RTT differential values (0.00° to 0.07°). Significantly less variation in the RTT differential values was obtained with the UH-1H than the Sabreliner. The Sabreliner standard deviation of the RTT differential value ranged from 0.12° to 0.19°, while the UH-1H standard deviation ranged from 0.03° to 0.06°.

When the strip charts are reviewed (figures 8 and 9), consistently similar performance in the far field (greater than 0.7 nautical mile from the antenna) resulted for both aircraft. However, considerably poorer results were obtained for azimuth RTT tracking of the Sabreliner inside 0.7 nautical mile to the antenna. This is a critical factor since the ARP may only be 1000 feet from the azimuth antenna at heliport locations. The reason for this increased dispersion in RTT tracking performance is the higher velocity (140 knots versus 60 knots) of the Sabreliner resulting in larger angular rate changes when lateral deviations occur in the vicinity of the antennas.

Results of strip chart analysis confirmed that in the vicinity of the glidepath intercept point, equivalent results could be obtained with UH-1H and the Sabreliner. However, significantly better results were obtained in close proximity to the ARP with the UH-1H. This result supports using the Sabreliner for signal coverage determination outside the glidepath intercept point. Inside this point, the UH-1H should be used for signal structure, quality, and guidance checks.

TABLE 9. RTT DIFFERENTIAL STATISTICAL DATA SABRELINER AZIMUTH APPROACHES

<table>
<thead>
<tr>
<th>Flight Number (No.)</th>
<th>Air Speed (kts)</th>
<th>Flight Director Mode</th>
<th>Azimuth Angle (deg)</th>
<th>Elevation Angle (deg)</th>
<th>RTT Diff Statistics Mean (deg)</th>
<th>Std Dev (deg)</th>
<th>Samples (No.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>140</td>
<td>Auto</td>
<td>00</td>
<td>3</td>
<td>0.07</td>
<td>0.19</td>
<td>13</td>
</tr>
<tr>
<td>1-2</td>
<td>140</td>
<td>Auto</td>
<td>00</td>
<td>3</td>
<td>0.00</td>
<td>0.12</td>
<td>12</td>
</tr>
<tr>
<td>1-3</td>
<td>140</td>
<td>Auto</td>
<td>00</td>
<td>3</td>
<td>0.07</td>
<td>0.19</td>
<td>13</td>
</tr>
</tbody>
</table>
TABLE 10. RTT DIFFERENTIAL STATISTICAL DATA UH-1H AZIMUTH APPROACHES

<table>
<thead>
<tr>
<th>Flight Number (No.)</th>
<th>Air Speed (kts)</th>
<th>Flight Director Mode</th>
<th>Azimuth Angle (deg)</th>
<th>Elevation Angle (deg)</th>
<th>RTT Diff Statistics Mean (deg)</th>
<th>Std Dev (deg)</th>
<th>Samples (No.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-1</td>
<td>40</td>
<td>RD</td>
<td>00</td>
<td>3</td>
<td>0.07</td>
<td>0.04</td>
<td>33</td>
</tr>
<tr>
<td>7-2</td>
<td>40</td>
<td>1 Cue</td>
<td>00</td>
<td>3</td>
<td>0.06</td>
<td>0.03</td>
<td>35</td>
</tr>
<tr>
<td>7-3</td>
<td>40</td>
<td>RD</td>
<td>08 Rt</td>
<td>3</td>
<td>0.05</td>
<td>0.05</td>
<td>30</td>
</tr>
<tr>
<td>7-4</td>
<td>40</td>
<td>1 Cue</td>
<td>08 Rt</td>
<td>3</td>
<td>0.07</td>
<td>0.04</td>
<td>33</td>
</tr>
<tr>
<td>7-5</td>
<td>40</td>
<td>1 Cue</td>
<td>08 Rt</td>
<td>3</td>
<td>0.06</td>
<td>0.05</td>
<td>14</td>
</tr>
<tr>
<td>8-1</td>
<td>40</td>
<td>RD</td>
<td>08 Lf</td>
<td>3</td>
<td>0.19</td>
<td>0.06</td>
<td>33</td>
</tr>
<tr>
<td>8-2</td>
<td>40</td>
<td>1 Cue</td>
<td>08 Lf</td>
<td>3</td>
<td>0.20</td>
<td>0.05</td>
<td>31</td>
</tr>
<tr>
<td>8-3</td>
<td>40</td>
<td>RD</td>
<td>00</td>
<td>6</td>
<td>0.16</td>
<td>0.03</td>
<td>29</td>
</tr>
<tr>
<td>8-4</td>
<td>40</td>
<td>RD</td>
<td>00</td>
<td>9</td>
<td>0.16</td>
<td>0.04</td>
<td>30</td>
</tr>
<tr>
<td>9-7</td>
<td>40</td>
<td>RD</td>
<td>00</td>
<td>3</td>
<td>0.04</td>
<td>0.04</td>
<td>43</td>
</tr>
</tbody>
</table>

TABLE 11. RTT DIFFERENTIAL STATISTICAL DATA UH-1H ELEVATION APPROACHES

<table>
<thead>
<tr>
<th>Flight Number (No.)</th>
<th>Air Speed (kts)</th>
<th>Flight Director Mode</th>
<th>Azimuth Angle (deg)</th>
<th>Elevation Angle (deg)</th>
<th>RTT Diff Statistics Mean (deg)</th>
<th>Std Dev (deg)</th>
<th>Samples (No.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-1</td>
<td>60</td>
<td>RD</td>
<td>00</td>
<td>3</td>
<td>-0.05</td>
<td>0.04</td>
<td>33</td>
</tr>
<tr>
<td>6-2</td>
<td>60</td>
<td>1 Cue</td>
<td>00</td>
<td>6</td>
<td>0.01</td>
<td>0.03</td>
<td>31</td>
</tr>
<tr>
<td>6-3</td>
<td>60</td>
<td>3 Cue</td>
<td>00</td>
<td>6</td>
<td>-0.02</td>
<td>0.04</td>
<td>36</td>
</tr>
<tr>
<td>6-4</td>
<td>50</td>
<td>3 Cue</td>
<td>00</td>
<td>6</td>
<td>0.02</td>
<td>0.04</td>
<td>44</td>
</tr>
<tr>
<td>8-5</td>
<td>40</td>
<td>RD</td>
<td>00</td>
<td>3</td>
<td>0.03</td>
<td>0.05</td>
<td>31</td>
</tr>
<tr>
<td>8-6</td>
<td>40</td>
<td>1 Cue</td>
<td>00</td>
<td>3</td>
<td>0.02</td>
<td>0.04</td>
<td>33</td>
</tr>
<tr>
<td>8-7</td>
<td>40</td>
<td>RD</td>
<td>00</td>
<td>4</td>
<td>0.02</td>
<td>0.04</td>
<td>32</td>
</tr>
<tr>
<td>8-8</td>
<td>40</td>
<td>1 Cue</td>
<td>00</td>
<td>4</td>
<td>0.01</td>
<td>0.04</td>
<td>29</td>
</tr>
<tr>
<td>8-9</td>
<td>40</td>
<td>3 Cue</td>
<td>00</td>
<td>4</td>
<td>0.01</td>
<td>0.03</td>
<td>32</td>
</tr>
<tr>
<td>9-1</td>
<td>40</td>
<td>RD</td>
<td>00</td>
<td>6</td>
<td>0.00</td>
<td>0.03</td>
<td>34</td>
</tr>
<tr>
<td>9-2</td>
<td>40</td>
<td>1 Cue</td>
<td>00</td>
<td>6</td>
<td>-0.04</td>
<td>0.03</td>
<td>31</td>
</tr>
<tr>
<td>9-3</td>
<td>40</td>
<td>3 Cue</td>
<td>00</td>
<td>6</td>
<td>-0.03</td>
<td>0.03</td>
<td>31</td>
</tr>
<tr>
<td>9-4</td>
<td>40</td>
<td>RD</td>
<td>00</td>
<td>9</td>
<td>-0.03</td>
<td>0.06</td>
<td>23</td>
</tr>
<tr>
<td>9-5</td>
<td>40</td>
<td>1 Cue</td>
<td>00</td>
<td>9</td>
<td>-0.02</td>
<td>0.03</td>
<td>33</td>
</tr>
<tr>
<td>9-6</td>
<td>40</td>
<td>3 Cue</td>
<td>00</td>
<td>9</td>
<td>0.01</td>
<td>0.05</td>
<td>32</td>
</tr>
</tbody>
</table>
SABRELINER RTT DIFFERENTIAL STRIP CHART

FIGURE 8. SABRELINER RTT DIFFERENTIAL STRIP CHART
HE STRIP CHARTS ARE CALCULATED FOR INVESTIGATION SAMPLE STRIP CHART
OF FLIGHT 7 FROM 1, WITH DEGREE ELEVATION, 6 DEGREE AZIMUTH AT
46 INCHES WITH RAW DATA FILE PRESENTATION FROM .5 DMH TO END OF RUN

FIGURE 9. UH-1H RTT DIFFERENTIAL STRIP CHART
RTT TRACKING ACCURACY. The laser optical tracker at the FAA Technical Center was used to determine the accuracy of the RTT when tracking a helicopter without a stability augmentation system. Accuracy estimates were obtained by comparing laser angular position with RTT angular position. An example of the difference plot is shown in figure 10. The RTT tracking difference plots can be found in appendix E.

FLIGHT DIRECTOR MODE EFFECTS AND RTT EQUIPMENT PERFORMANCE. Using the UH-1H onboard data recording system, post-flight analysis of RTT performance and flight director mode effects were made. By directly recording the MLS CDI/VDI, RTT angular data, and the RTT differential channel, RTT differential performance could be determined.

RTT AZIMUTH DIFFERENTIAL PERFORMANCE. Combining approach condition data from table 3 and results shown in tables 6 and 7, the largest difference between the MLS - RTT value and the RTT differential value for the 0° azimuth approaches was 0.028°. This difference occurred on flight 8, run 3. When the approaches were made on the 08°R azimuth, the largest mean difference was 0.021° on flight 8, run 2.

FLIGHT DIRECTOR MODE EFFECTS ON RTT AZIMUTH TRACKING. Only raw data approaches were flown during RTT azimuth evaluations when elevation approach angles were steeper than 3°. For the 3° elevation approaches, two flight director modes were employed during the azimuth tracking evaluations. The two modes used were raw data and 1 cue. RTT azimuth tracking performance was nearly identical for the two different modes. However, azimuth tracking results indicate the RTT could be used to accurately track azimuth position of the helicopter without the aid of automatic approach coupling. Plots presented in figures 11 and 12 and appendix D indicate RTT tracking was accurate to within 1000 feet of the antenna. All azimuth tracking approaches were made using a 40-knot approach speed.

The statistical results which were obtained when RTT angular position was compared with the laser angular position is shown in table 12.

Table 12 shows extremely consistent results on flight 6. The standard error was less than 0.02°. On flight 9, except for the first approach, errors approach 0.20°. The larger differences on this flight can be traced to errors in laser tracking (refer to table 7). The angular difference between MLS and laser on flight 9 were consistently larger than 0.20°.

RTT ELEVATION DIFFERENTIAL RESULTS. A total of 15 approaches were made using the UH-1H to evaluate RTT elevation tracking performance. Results are presented in tables 13, 14, and 15, depending on the flight director mode in use.
FIGURE 10. RTT MINUS LASER TRACKING ANGULAR DIFFERENCE PLOTS
FIGURE 11. RTT AZIMUTH TRACKING PERFORMANCE
Table 12. RTT - Laser Angular Difference Statistics

<table>
<thead>
<tr>
<th>Flight No.</th>
<th>Run No.</th>
<th>Mode Being Tracked</th>
<th>Sample Size</th>
<th>Difference (deg)</th>
<th>Deviation (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>3° EL</td>
<td>277</td>
<td>0.0550</td>
<td>0.0183</td>
</tr>
<tr>
<td>2</td>
<td>6° EL</td>
<td>354</td>
<td></td>
<td>0.0134</td>
<td>0.0186</td>
</tr>
<tr>
<td>3</td>
<td>6° EL</td>
<td>353</td>
<td></td>
<td>0.0054</td>
<td>0.0116</td>
</tr>
<tr>
<td>4</td>
<td>6° EL</td>
<td>816</td>
<td></td>
<td>0.0026</td>
<td>0.0183</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>6° EL</td>
<td>656</td>
<td>0.0260</td>
<td>0.1724</td>
</tr>
<tr>
<td>2</td>
<td>6° EL</td>
<td>724</td>
<td></td>
<td>0.1349</td>
<td>0.2185</td>
</tr>
<tr>
<td>3</td>
<td>6° EL</td>
<td>642</td>
<td></td>
<td>0.1086</td>
<td>0.2315</td>
</tr>
<tr>
<td>4</td>
<td>9° EL</td>
<td>739</td>
<td></td>
<td>0.4970</td>
<td>0.6036</td>
</tr>
<tr>
<td>5</td>
<td>9° EL</td>
<td>502</td>
<td></td>
<td>0.1526</td>
<td>0.2738</td>
</tr>
<tr>
<td>6</td>
<td>9° EL</td>
<td>641</td>
<td></td>
<td>0.1413</td>
<td>0.3027</td>
</tr>
<tr>
<td>7</td>
<td>0° AZ</td>
<td>940</td>
<td></td>
<td>0.1889</td>
<td>0.3143</td>
</tr>
</tbody>
</table>

Table 13. RTT Elevation Results - Raw Data (in Degrees)

<table>
<thead>
<tr>
<th>Flight No.</th>
<th>Run No.</th>
<th>Elevation Angle (deg)</th>
<th>Airspeed (knots)</th>
<th>Sample Size</th>
<th>MLS-RTT Mean</th>
<th>Std.</th>
<th>RTT Diff. Mean</th>
<th>Std.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>3</td>
<td>60</td>
<td>277</td>
<td>-0.0476</td>
<td>0.0267</td>
<td>-0.0431</td>
<td>0.0283</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>3</td>
<td>40</td>
<td>1227</td>
<td>0.0136</td>
<td>0.0365</td>
<td>-0.0213</td>
<td>0.0372</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>6</td>
<td>40</td>
<td>656</td>
<td>0.0102</td>
<td>0.0361</td>
<td>-0.0143</td>
<td>0.0378</td>
</tr>
</tbody>
</table>

Table 14. RTT Elevation Results - 1 CUE (in Degrees)

<table>
<thead>
<tr>
<th>Flight No.</th>
<th>Run No.</th>
<th>Elevation Angle (deg)</th>
<th>Airspeed (knots)</th>
<th>Sample Size</th>
<th>MLS-RTT Mean</th>
<th>Std.</th>
<th>RTT Diff. Mean</th>
<th>Std.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2</td>
<td>6</td>
<td>60</td>
<td>354</td>
<td>0.0003</td>
<td>0.0172</td>
<td>-0.0155</td>
<td>0.0241</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>3</td>
<td>40</td>
<td>1454</td>
<td>0.0083</td>
<td>0.0362</td>
<td>-0.0161</td>
<td>0.0363</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>6</td>
<td>40</td>
<td>1425</td>
<td>-0.0089</td>
<td>0.0335</td>
<td>0.0013</td>
<td>0.0304</td>
</tr>
</tbody>
</table>

32
The performance of the RTT elevation differentials can be measured by comparing the RTT differential value with the MLS VDI RTT elevation angle. The largest difference was 0.026° and occurred on flight 6, run 4. No significant difference in RTT elevation performance was detected for the three different airspeeds which were issued; 40, 50, and 60 knots.

FLIGHT DIRECTOR MODE EFFECTS ON RTT ELEVATION TRACKING: An analysis of variance (ANOVA) test was undertaken to determine if the flight director mode used had any effect on RTT elevation tracking. The statistics of interest were the RTT differential elevation angle measures. Since all elevation angle flight director mode combinations were not flown, a nested, unequal cell size design was used. The design nested the flight director mode effect within the approach angle factor. The analysis of variance results showed that the elevation approach angle had no effect on RTT elevation tracking. However, a significant difference in performance resulted with different flight director modes. When the RTT differential mean differences in tables 13, 14, and 15 are compared, the smallest differences occurred when the 1 cue flight director was used. Subject pilots stated that the workload was reduced when at least a speed cue was available.

DECELERATING APPROACHES.

The fourth objective of the testing was to determine the accuracy of RTT equipment in tracking a helicopter not equipped with stability augmentation equipment while it is making low airspeed decelerating MLS approaches. Technicians initially had difficulty in tracking the aircraft during the decelerating maneuver. Excellent results were obtained when constant airspeeds as low as 40 knots were used throughout the approach. Additionally, technicians complained of cramped muscles when having to track the helicopter over the longer approach periods associated with the slower airspeeds. Results indicate that constant speed approaches with speeds as low as 40 knots should be flown rather than decelerating approaches.

HELIPORT MLS FLIGHT INSPECTION PROCEDURES AND TOLERANCES.

The final objective was the development of heliport MLS flight inspection procedures and tolerances. Based on the results of testing and the operating requirements for MLS at heliports, patterns have been developed for flight inspection. These patterns integrate the ability of the Sabreliner to rapidly cover large distances (orbital patterns and coverage checks outside the final
approach point) with the increased RTT tracking accuracy obtained with a helicopter on the final approach segment. Except for transition routes which may be predicated on MLS guidance, flight inspection generally can be confined to the airspace within 10 nautical miles of the heliport at altitudes up to 5000 feet above ground level (AGL).

ORBIT PATTERNS. Orbital patterns should be flown on the 5- and 10-nautical mile DME arc as depicted in figure 13. The orbits should be flown at the minimum glidepath intercept altitude. One objective of the orbital patterns is to determine proper clearance sector and proportional area coverage.

Failure flag indications obtained from the strip chart recording can be used to determine the limits of the clearance sector. Measured azimuth deviation will be used to determine the boundary between the clearance sector and proportional coverage. Using the charted final approach azimuth, the approximate azimuth course width can be measured by comparing time from full scale deflection to centered CDI in both directions. Tolerances for orbital measurements are shown in table 16.

GLIDEPATH COVERAGE. Two level flight runs should be made beginning at 10 miles and continuing inbound to limits of elevation coverage. The altitudes for each run should be 5000 feet AGL and minimum glidepath intercept altitude as shown in figure 13. Proper elevation angle guidance should be displayed from 1° below minimum glidepath angle to the coverage limit. The flightpath should be aligned along the final approach course. Approximate angular course width can be determined by comparing DME values at full scale fly-up on glidepath and full scale fly-down indications. Tolerances for glidepath flight inspection patterns are shown in table 17.

FINAL APPROACH SEGMENT PPE AND CNN RESULTS. Both azimuth and elevation signal quality should be verified on each operational final approach segment. The minimum and maximum charted elevation angles should be inspected along each charted final approach azimuth. A helicopter should be used for this portion of the flight inspection.

The recorded RTT differential channel data were analyzed to determine appropriate helicopter MLS flight inspection tolerances for the final approach segment. The CNN was estimated using a digital filter which has the following high pass transfer function.

\[
H(s) = \frac{s}{s + a}
\]

From Related Documents, item 7,

\[a = 0.3 \text{ radians/second for azimuth tracking}
0.5 \text{ radians/second for elevation tracking}\]
FIGURE 13. ORBITAL AND LEVEL FLIGHT INSPECTION PATTERNS
Since the RTT differential channel was sampled at a 5 Hz rate during recording, classical Z transform techniques yielded the following difference equations to obtain the appropriately filtered responses.

\[Y_n = 0.97087(X_n - X_{n-1} + 0.97Y_{n-1}) \text{ for azimuth tracking} \]
\[Y_n = 0.95238(X_n - X_{n-1} + 0.95Y_{n-1}) \text{ for elevation tracking} \]

where \(X_n \) = the \(n \)th observation of the RTT differential channel value and
\(Y_n \) = \(n \)th CMN filter response value.

Similarly, the PFE was estimated through the application of a low pass filter which has the following transfer function:

\[H(s) = \frac{W}{S^2 + 2SW + W^2} \]

where from Related Documents, item 7,
\(W = 0.78125 \text{ radians/second for azimuth tracking, and} \)
\(W = 2.34375 \text{ radians/second for elevation tracking.} \)
For the 5 Hz sampling rate, the following difference equations were obtained through Z transform techniques:

\[Y_n = 0.00525(X_n + 2X_{n-1} + X_{n-2}) + 1.7101Y_{n-1} + 0.731Y_{n-2} \]

for azimuth tracking

and

\[Y_n = 0.0361(X_n + 2X_{n-1} + X_{n-2}) + 1.2405Y_{n-1} - 0.38471Y_{n-2} \]

for elevation tracking

\[X_n = \text{RIT Differential channel value at } n\text{th observation and } Y_n = \text{n}th \text{ PFE filter response value.} \]

For each UH-1H approach the output from the CMN and PFE filters have been plotted. The standard deviation of the filtered output has been calculated. Table 18 presents the 95 percent confidence limits for CMN and PFE for each approach.

TABLE 18. 95 PERCENT CONFIDENCE LIMITS FOR CMN AND PFE

<table>
<thead>
<tr>
<th>Flight No.</th>
<th>Run No.</th>
<th>RTT Tracking Mode</th>
<th>Sample Size</th>
<th>95% Confidence Value (Deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>3° EL</td>
<td>837</td>
<td>0.0510 0.0635</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6° EL</td>
<td>778</td>
<td>0.0301 0.0623</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6° EL</td>
<td>860</td>
<td>0.0255 0.0631</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>6° EL</td>
<td>1231</td>
<td>0.0341 0.0659</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0° AZ</td>
<td>1668</td>
<td>0.0495 0.0607</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0° AZ</td>
<td>1700</td>
<td>0.0511 0.0656</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>08°R AZ</td>
<td>1500</td>
<td>0.0566 0.0512</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>08°R AZ</td>
<td>1594</td>
<td>0.0701 0.0612</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>08°R AZ</td>
<td>1534</td>
<td>0.0634 0.0580</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>08°L AZ</td>
<td>1590</td>
<td>0.0745 0.0699</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>08°L AZ</td>
<td>1525</td>
<td>0.0743 0.0679</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0° AZ</td>
<td>1038</td>
<td>0.0461 0.0352</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0° AZ</td>
<td>1301</td>
<td>0.0789 0.0670</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3° EL</td>
<td>1227</td>
<td>0.0431 0.0645</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3° EL</td>
<td>1454</td>
<td>0.0398 0.0637</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>4° EL</td>
<td>1278</td>
<td>0.0259 0.0523</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>4° EL</td>
<td>1425</td>
<td>0.0277 0.0542</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>4° EL</td>
<td>1309</td>
<td>0.0313 0.0587</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>6° EL</td>
<td>930</td>
<td>0.0388 0.0863</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6° EL</td>
<td>879</td>
<td>0.0316 0.0867</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6° EL</td>
<td>908</td>
<td>0.0344 0.1167</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>9° EL</td>
<td>711</td>
<td>0.0789 0.1899</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>9° EL</td>
<td>948</td>
<td>0.0516 0.1301</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>9° EL</td>
<td>942</td>
<td>0.0436 0.1264</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0° AZ</td>
<td>1015</td>
<td>0.0606 0.0576</td>
</tr>
</tbody>
</table>
For elevation guidance, Related Documents, item 7, identifies maximum angular measures of PFE and CMN at the approach reference point. Linear tolerances are identified for azimuth guidance at the ARP. These azimuth tolerances would equate to large angular tolerances (PFE = 1.145°, CMN = 0.659°) because of the extremely short distance from the ARP to the azimuth antenna (1000 feet) at heliports. As a result, the tolerance for PFE was set at an overall limit of 0.250° and CMN was set to an overall limit of 0.100° for azimuth guidance. Tables 19 and 20 present the PFE and CMN filter responses for all approaches. The run value represents the standard deviation of the filter response and the 1000 feet table entry represents the filter response at 1000 feet from the antennas. The time history plots of the filter responses during each approach are contained in appendix F. Also presented on the plots are the recommended tolerance limits and the location of the 1000 feet ARP. Table 21 presents the recommended tolerances for azimuth and elevation system errors.

Table 19. AZIMUTH TRACKING CMN AND PFE FILTER RESPONSES

<table>
<thead>
<tr>
<th>Flight No.</th>
<th>Run No.</th>
<th>AZ (deg)</th>
<th>EL (deg)</th>
<th>Sample</th>
<th>Tolerance Run 1000 feet</th>
<th>CMN Tolerance Run 1000 feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1668</td>
<td>0.250 0.030 0.000</td>
<td>0.100 0.025 0.039</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>1700</td>
<td>0.250 0.033 0.001</td>
<td>0.100 0.026 0.063</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>0</td>
<td>3</td>
<td>1015</td>
<td>0.250 0.029 0.025</td>
<td>0.100 0.030 0.117</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>0</td>
<td>6</td>
<td>1038</td>
<td>0.250 0.018 0.016</td>
<td>0.100 0.023 0.097</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>0</td>
<td>9</td>
<td>1301</td>
<td>0.250 0.034 0.026</td>
<td>0.100 0.039 0.092</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>8 L</td>
<td>3</td>
<td>1500</td>
<td>0.250 0.026 0.003</td>
<td>0.100 0.028 0.033</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>8 L</td>
<td>3</td>
<td>1594</td>
<td>0.250 0.030 0.005</td>
<td>0.100 0.035 0.086</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>8 L</td>
<td>3</td>
<td>1534</td>
<td>0.250 0.029 0.005</td>
<td>0.100 0.032 0.068</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>8 R</td>
<td>3</td>
<td>1590</td>
<td>0.250 0.035 0.001</td>
<td>0.100 0.037 0.246</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>8 R</td>
<td>3</td>
<td>1525</td>
<td>0.250 0.034 0.007</td>
<td>0.100 0.037 0.309</td>
</tr>
</tbody>
</table>
TABLE 20. ELEVATION TRACKING PFE AND CMN FILTER RESPONSES

<table>
<thead>
<tr>
<th>Flight No.</th>
<th>Run No.</th>
<th>AZ (deg)</th>
<th>EL (deg)</th>
<th>Sample No.</th>
<th>Tolerance PFE</th>
<th>Run 1000 feet</th>
<th>Tolerance CMN</th>
<th>Run 1000 feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>837</td>
<td>0.133</td>
<td>0.032</td>
<td>0.004</td>
<td>0.050</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>1227</td>
<td>0.133</td>
<td>0.032</td>
<td>0.041</td>
<td>0.050</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>0</td>
<td>3</td>
<td>1454</td>
<td>0.133</td>
<td>0.032</td>
<td>0.044</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0</td>
<td>4</td>
<td>1278</td>
<td>0.144</td>
<td>0.026</td>
<td>0.033</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0</td>
<td>4</td>
<td>1425</td>
<td>0.144</td>
<td>0.027</td>
<td>0.019</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0</td>
<td>4</td>
<td>1309</td>
<td>0.144</td>
<td>0.043</td>
<td>0.005</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>678</td>
<td>0.166</td>
<td>0.031</td>
<td>0.016</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3</td>
<td>0</td>
<td>686</td>
<td>0.166</td>
<td>0.032</td>
<td>0.034</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>1231</td>
<td>0.166</td>
<td>0.033</td>
<td>0.050</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1</td>
<td>0</td>
<td>930</td>
<td>0.166</td>
<td>0.043</td>
<td>0.000</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>2</td>
<td>0</td>
<td>879</td>
<td>0.166</td>
<td>0.043</td>
<td>0.000</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3</td>
<td>0</td>
<td>908</td>
<td>0.166</td>
<td>0.058</td>
<td>0.002</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>4</td>
<td>0</td>
<td>711</td>
<td>0.199</td>
<td>0.095</td>
<td>0.001</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>5</td>
<td>0</td>
<td>948</td>
<td>0.199</td>
<td>0.065</td>
<td>0.008</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>6</td>
<td>0</td>
<td>942</td>
<td>0.199</td>
<td>0.063</td>
<td>0.018</td>
<td>0.050</td>
</tr>
</tbody>
</table>

TABLE 21. SYSTEM ERROR LIMITS AT THE APPROACH REFERENCE POINT IN DEGREES

<table>
<thead>
<tr>
<th>Function</th>
<th>Bias PFE</th>
<th>Bias CMN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach Azimuth</td>
<td>+0.100°</td>
<td>+0.250°</td>
</tr>
<tr>
<td>Approach Elevation</td>
<td>+0.067°</td>
<td>+0.133°*</td>
</tr>
</tbody>
</table>

*Limit degrades linearly from 0.133° at 3° elevation angles to 0.266° at 15° elevation angles.

CONCLUSIONS

Based on the results of the helicopter microwave landing system (MLS) flight inspection tests, several conclusions can be made:

FLIGHT INSPECTION EQUIPMENT.

1. The flight inspection rack, as constructed, can support real time flight inspection procedures for inspection of MLS installed at heliports. The equipment will provide strip chart data suitable for identifying signal structure and coverage. Two items included in the equipment rack but not needed are the expanded differential function on the radio theodolite telemetry (RTT) control panel and the MLS airborne antenna switching module.
2. If accurate estimates of Path Following Error (PFE) and Control Motion Noise (CMN) are required, the flight inspection rack must be augmented with a magnetic tape drive for data recording to support post-flight data processing. The data recording system tested can adequately support this requirement.

3. All flight inspection equipment functioned as designed. Minor rearrangement of equipment on the rack would provide for better human factors engineering.

4. Due to rotor modulation with the current flight standard amplitude modulation (AM) RTT equipment, new state-of-the-art frequency modulation (FM) RTT equipment was used. No rotor modulation noise was detected with the FM equipment.

AIRCRAFT REQUIREMENTS.

1. In order to install flight inspection equipment in a leased helicopter for flight inspection, the helicopter must meet the following requirements:

 a. The aircraft must have an installed Technical Standard Order (TSO) MLS.

 b. The aircraft must be equipped with a horizontal situation indicator (HSI) with access to the course deviation indicator (CDI) and vertical deviation indicator (VDI) circuits and navigation failure flag circuits.

 c. The aircraft must have a dedicated very high frequency (VHF) antenna for the RTT ground link receiver.

 d. Payload and power requirements include:

 (1) Installed equipment weight is 139 pounds in the mounting rack.

 (2) Power requirements of the airborne equipment are 20 amperes of 28 volts direct current (dc), 1 amper of 5 volts dc, and 5 amperes of 115 volts 400 hertz (Hz) alternating current (ac).

 (3) If data recording is necessary, the ac power requirement is increased by 5 amperes to a total of 10 amperes of 115 volts 400 Hz ac power.

 (4) If data recording is necessary, the weight requirement is increased by 76 pounds to 215 pounds total equipment weight.

2. An aircraft flight control system (AFCS) is not required since the RTT can accurately track a helicopter not equipped with automatic stabilizing equipment. However, significant improvement in RTT elevation tracking performance occurred when the flight director was used in a single speed cue mode. This conclusion applies only to helicopters of the equivalent weight class as the VH-1H (8000-9000 pounds).
RTT ACCURACY.

1. FM RTT equipment can be used to accurately track a helicopter which is making MLS approaches. However, technician training is necessary to obtain optimal theodolite tracking performance.

2. Comparison of digitized strip chart data showed that elevation RTT results for the Sabreliner and UH-1H were similar down to the ARP located 1000 feet from the antenna.

3. Significantly better RTT azimuth tracking resulted with the UH-1H between 0.7 nautical mile from the azimuth antenna and the 1000 feet ARP. Outside 0.7 nautical mile, RTT tracking of azimuth resulted in similar performance with the UH-1H and Sabreliner.

4. RTT equipment could accurately track the UH-1H on steep approach angles ranging from 3° through 9°, the maximum angle tested.

5. Because of the need to track to an ARP only 1000 feet from the azimuth antenna, it will be necessary to utilize a helicopter for a portion of the flight inspection procedure.

6. Independent laser tracking of the UH-1H helicopter demonstrated that the RTT tracking was consistently accurate. Bias errors between laser tracking and RTT were consistently less than 0.02° for elevation tracking and 0.05° in azimuth.

TOLERANCES.

1. For the most part, the flight inspection tolerances identified in Federal Aviation Administration (FAA) Standard 022b (see Related Documents) can be applied to flight inspection of an MLS installed at a heliport.

2. For elevation, the PFE tolerance of 0.133° to 0.199° for 3° to 9° elevation angles, respectively, can be met. The elevation CMN tolerance of 0.05° can also be met.

3. The linear azimuth tolerances identified for azimuth PFE and CMN in FAA Standard 022b should not be used for heliport flight inspection. Since the ARP is only 1000 feet from the azimuth antenna, the PFE of +20 feet represents a 1.145° angular tolerance. Similarly, the CMN tolerance of +10.5 feet represents a 0.68° angular tolerance at the ARP. The overall azimuth PFE and CMN angular limits of 0.25° and 0.10° identified in Standard 022b should be used for heliport flight inspection. Testing has shown RTT tracking of the helicopter can meet these tolerances.

4. If PFE and CMN is to be determined accurately, digital data recording of the RTT differential channel for post-flight data processing is required.
PROCEDURES.

1. Testing has shown that the helicopter should be integrated into the procedures for flight inspection of heliport MLS's. These tests resulted in similar far field RTT performance with the UH-1H and Sabreliner and superior near field performance with the UH-1H. The helicopter should be used for all testing inside the final approach point. The Sabreliner or other fixed wing aircraft should be used for coverage, clearance to proportional area checks, orbital runs, and level flight glidepath profiles.

2. Except for cases where the MLS signal is used to transition to or from the en route structure, coverage volume need only be checked to a range of 10 miles and an altitude of 5000 feet above ground level (AGL).

3. Level flight orbits should be flown at 5 and 10 nautical miles at the minimum glidepath intercept altitude. Level flight profiles should also be flown on the azimuths used for approach. These profiles should be flown at the minimum glideslope intercept altitude and at 5000 feet AGL.

4. The helicopter profiles should include approach azimuth flights on the minimum elevation angle. The profiles will be repeated for each azimuth used for an approach centerline guidance.

5. The departure procedures should be inspected using a helicopter from the take-off point along the departure azimuth until the en route environment is reached.
APPENDIX A

UH-1H HELICOPTER SPECIFICATIONS
<table>
<thead>
<tr>
<th>CONDITION</th>
<th>TAKEOFF</th>
<th>LANDING</th>
<th>LIMITING FUEL</th>
<th>WEIGHT</th>
<th>MOM (GR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLOCABLE C.G. WEIGHT</td>
<td>9500</td>
<td>9500</td>
<td>187</td>
<td>400</td>
<td>187</td>
</tr>
<tr>
<td>TOTAL AIRCRAFT WEIGHT</td>
<td>-7787</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPERATING WEIGHT PLUS ESTIMATED LANDING FUEL WEIGHT</td>
<td>6964</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPERATING WEIGHT</td>
<td>6483</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALLOCABLE LOAD/10% OF TOTAL WEIGHT</td>
<td>1712</td>
<td>2536</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERMISSIBLE C.G. FROM TAKEOFF</td>
<td>FROM</td>
<td>130</td>
<td>476</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERMISSIBLE C.G. LANDING</td>
<td>FROM</td>
<td>130</td>
<td>476</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISTRIBUTION OF ALLOWABLE LOAD (PAYLOAD)

<table>
<thead>
<tr>
<th></th>
<th>UPPER COMPARTMENTS</th>
<th>LOWER COMPARTMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEIGHT</td>
<td>CARGO</td>
<td>WEIGHT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CORRECTIONS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>CHANGES (as of 13/10/97)</th>
<th>14 CONNECTIONS</th>
<th>15 REQUIRED CONNECTIONS</th>
<th>16 REQUIRED CONNECTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. W/L FUEL</td>
<td>58.2</td>
<td>179</td>
<td>179</td>
<td>-824</td>
</tr>
<tr>
<td>C. L/W FUEL</td>
<td>12.8</td>
<td>12.8</td>
<td>12.8</td>
<td>12.8</td>
</tr>
<tr>
<td>MISC VARIABLES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESTIMATED LANDING CONDITION</td>
<td>71</td>
<td>179</td>
<td>918.23</td>
<td></td>
</tr>
</tbody>
</table>

COMPUTED BY

COMPUTED BY

WEIGHT AND BALANCE CLEARANCE FORM F

Figure A-1. UH-1H Weight and Balance Form
FIGURE A-2. UH-1H ANTENNA AND LASER RETRO-REFLECTOR PLACEMENT
FIGURE A-1. PRINCIPAL DIMENSIONS DIAGRAM - TYPICAL
APPENDIX B

MLS ANTENNAS AND RTT EQUIPMENT PLATFORMS
FIGURE B-1. HAZELTINE MODEL 2400 MLS ANTENNA SYSTEM
APPENDIX C

SUBJECT PILOT BACKGROUND FILES
Subject Pilot Background Profiles

Subject A
.Sacramento FIFO
.Total Flight Hours - 6000 hrs
.Flight Inspection Fixed Wing - 2500 hrs
(Sabre - 2200 hrs, Lt Twin - 300 hrs)
.Helicopter Hours - 500 hrs
(UH-1H - 400 hrs, other - 100 hrs)

Subject B
.FAA Technical Center
.Total Flight Hours - 3000 hrs
.Helicopter Hours - 2000 hrs
(UH-1H - 1700 hrs, other - 300 hrs)

FIGURE C-1. SUBJECT PILOT BACKGROUND PROFILES
APPENDIX D

ACCUMULATED SUBJECT FLIGHT PROFILES
Flight Wind Approach HTI Azimuth Elevation
<table>
<thead>
<tr>
<th>Flight Number</th>
<th>Wind Conditions</th>
<th>Approach Number</th>
<th>Tracking Angle (deg)</th>
<th>Azimuth (deg)</th>
<th>Elevation (deg)</th>
<th>FD Mode</th>
<th>Airspeed (kts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>360 at 14</td>
<td>1</td>
<td>EL</td>
<td>0.0</td>
<td>3.0</td>
<td>Raw Data</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>360 at 10</td>
<td>2</td>
<td>EL</td>
<td>0.0</td>
<td>6.0</td>
<td>1-Cue</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>360 at 12</td>
<td>3</td>
<td>EL</td>
<td>0.0</td>
<td>6.0</td>
<td>3-Cue</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>360 at 12</td>
<td>4</td>
<td>EL</td>
<td>0.0</td>
<td>6.0</td>
<td>3-Cue</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>040 at 05</td>
<td>1</td>
<td>AZ</td>
<td>0.0</td>
<td>3.0</td>
<td>Raw Data</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>070 at 06</td>
<td>2</td>
<td>AZ</td>
<td>0.0</td>
<td>3.0</td>
<td>1-Cue</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>050 at 07</td>
<td>3</td>
<td>AZ</td>
<td>8.0</td>
<td>3.0</td>
<td>Raw Data</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>070 at 06</td>
<td>4</td>
<td>AZ</td>
<td>8.0</td>
<td>3.0</td>
<td>1-Cue</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>050 at 05</td>
<td>5</td>
<td>AZ</td>
<td>8.0</td>
<td>3.0</td>
<td>1-Cue</td>
<td>40</td>
</tr>
<tr>
<td>8</td>
<td>120 at 08</td>
<td>1</td>
<td>AZ</td>
<td>8.0</td>
<td>3.0</td>
<td>Raw Data</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>120 at 07</td>
<td>2</td>
<td>AZ</td>
<td>8.0</td>
<td>3.0</td>
<td>1-Cue</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>110 at 08</td>
<td>3</td>
<td>AZ</td>
<td>0.0</td>
<td>6.0</td>
<td>Raw Data</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>120 at 08</td>
<td>4</td>
<td>AZ</td>
<td>0.0</td>
<td>9.0</td>
<td>Raw Data</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>090 at 05</td>
<td>5</td>
<td>EL</td>
<td>0.0</td>
<td>3.0</td>
<td>Raw Data</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>140 at 09</td>
<td>6</td>
<td>EL</td>
<td>0.0</td>
<td>3.0</td>
<td>1-Cue</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>100 at 06</td>
<td>7</td>
<td>EL</td>
<td>0.0</td>
<td>4.0</td>
<td>Raw Data</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>140 at 10</td>
<td>8</td>
<td>EL</td>
<td>0.0</td>
<td>4.0</td>
<td>1-Cue</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>070 at 07</td>
<td>9</td>
<td>EL</td>
<td>0.0</td>
<td>4.0</td>
<td>3-Cue</td>
<td>40</td>
</tr>
<tr>
<td>110 at 08</td>
<td>10</td>
<td>1</td>
<td>EL</td>
<td>0.0</td>
<td>6.0</td>
<td>Raw Data</td>
<td>40</td>
</tr>
<tr>
<td>150 at 08</td>
<td>11</td>
<td>2</td>
<td>EL</td>
<td>0.0</td>
<td>6.0</td>
<td>1-Cue</td>
<td>40</td>
</tr>
<tr>
<td>100 at 10</td>
<td>12</td>
<td>3</td>
<td>EL</td>
<td>0.0</td>
<td>6.0</td>
<td>3-Cue</td>
<td>40</td>
</tr>
<tr>
<td>100 at 05</td>
<td>13</td>
<td>4</td>
<td>EL</td>
<td>0.0</td>
<td>9.0</td>
<td>Raw Data</td>
<td>40</td>
</tr>
<tr>
<td>110 at 05</td>
<td>14</td>
<td>5</td>
<td>EL</td>
<td>0.0</td>
<td>9.0</td>
<td>1-Cue</td>
<td>40</td>
</tr>
<tr>
<td>120 at 07</td>
<td>15</td>
<td>6</td>
<td>EL</td>
<td>0.0</td>
<td>9.0</td>
<td>3-Cue</td>
<td>40</td>
</tr>
<tr>
<td>050 at 05</td>
<td>16</td>
<td>7</td>
<td>AZ</td>
<td>0.0</td>
<td>3.0</td>
<td>Raw Data</td>
<td>40</td>
</tr>
</tbody>
</table>

FIGURE D-1. ACCUMULATED SUBJECT FLIGHT PROFILES
APPENDIX E

LASER TRACKING, MLS AND RTT DATA PLOTS
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 6
Run Number 1

Elevation Tracking
Raw Data
60 knots Airspeed
Azimuth 0.0 deg
Elevation 3 deg

FIGURE E-1. UH-1H PLOTS FOR FLIGHT 6, RUN 1
Figure E-2. Plots of Laser Tracker, RTT and MLS Data
FIGURE E-4. PLOT OF RTT-LASER TRACKER DATA
FIGURE E-5. PLOT OF RTT DIFFERENTIAL DATA
UH-1H Flight Inspection
DIT Differential Plots

Flight Number 6
Run Number 2

Elevation Tracking
1 Cue
60 knots Airspeed
Azimuth 0.0 deg
Elevation 6 deg

FIGURE E-6. UH-1H PLOTS FOR FLIGHT 6, RUN 2
FIGURE E-7. PLOTS OF LASER TRACKER, RTT AND MLS DATA
FIGURE E-8. PLOTS OF MLS-RTT AND MLS-LASER TRACKER DATA
FIGURE E-10. PLOT OF RTT DIFFERENTIAL DATA
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 6
Run Number 3

Elevation Tracking
3 Cue
60 knots Airspeed
Azimuth 0.0 deg
Elevation 6 deg

FIGURE E-11. UH-1H PLOTS FOR FLIGHT 6, RUN 3
FIGURE E-12. PLOTS OF LASER TRACKER, RTT AND MLS DATA
FIGURE E-13. PLOTS OF MLS-RTT AND MLS-LASER TRACKER DATA
RUN # 3
FLIGHT INSPECTION UMF106 10/26/85
AZIMUTH = 0.00
ELEVATION = 0.00

FIGURE E-14. PLOT OF RTT-LASER TRACKER DATA
FIGURE E-15. PLOT OF RTT DIFFERENTIAL DATA
UH-1H Flight Inspection
FRT Differential Plots

Flight Number 6
Run Number 4

Elevation Tracking
3 Cue
50 knots Airspeed
Azimuth 0.0 deg
Elevation 6 deg

FIGURE E-16. UH-1H PLOTS FOR FLIGHT 6, RUN 4
FIGURE E-17. PLOTS OF LASER TRACKER, RTT AND MLS DATA
FIGURE E-18. PLOTS OF MLS-RTT AND MLS-LASER TRACKER DATA
RUN # 4
FLIGHT INSPECTION UHF106 10/28/83
AZIMUTH = 0.00
ELEVATION = 6.00

FIGURE E-19. PLOT OF RTT-LASER TRACKER DATA
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 7
Run Number 1

Azimuth Tracking
Raw Data
40 knots Airspeed
Azimuth 0.0 deg
Elevation 3 deg

FIGURE E-21. UH-1H PLOTS FOR FLIGHT 7, RUN 1
FIGURE E-22. PLOT OF RIT DIFFERENTIAL DATA
RUN # 1
FLIGHT INSPECTION UN# 107 10/30/83
AZIMUTH = 0.00
ELEVATION = 3.00

FIGURE E-23. PLOTS OF MLS AND RTT DATA
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 7
Run Number 2

Azimuth Tracking
1 Cue
40 knots Airspeed
Azimuth 0.0 deg
Elevation 3 deg

FIGURE E-25. UH-1H PLOTS FOR FLIGHT 7, RUN 2
RUN # 2
FLIGHT INSPECTION UNF107 10/30/85
AZIMUTH: 0.00
ELEVATION: 3.00

FIGURE E-27. PLOTS OF MLS AND RTT DATA
FIGURE E-28. PLOT OF MLS-RRT DATA
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 7
Run Number 3

Azimuth Tracking
Raw Data
40 knots Airspeed
Azimuth 0.8 deg Right
Elevation 3 deg

FIGURE E-29. UH-1H PLOTS FOR FLIGHT 7, RUN 3
FIGURE E-30. PLOT OF RTT DIFFERENTIAL DATA
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 7
Run Number 4

Azimuth Tracking
1 Cue
40 knots Airspeed
Azimuth 0.8 deg Right
Elevation 3 deg

FIGURE E-33. UH-1H PLOTS FOR FLIGHT 7, RUN 4
FIGURE E-34. PLOT OF RTT DIFFERENTIAL DATA
FIGURE E-35. PLOTS OF MLS AND RTT DATA
HELICOPTER MLS (MICROWAVE LANDING SYSTEM) FLIGHT INSPECTION PROJECT(U) FEDERAL AVIATION ADMINISTRATION TECHNICAL CENTER ATLANTIC CITY NJ

S B SHOLLENBERGER ET AL APR 86

F/G 17/7 NL
FIGURE E-36. PLOT OF MLS-RTT DATA
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 7
Run Number 5

Azimuth Tracking
1 Cue
40 knots Airspeed
Azimuth 0.8 deg Right
Elevation 3 deg

FIGURE E-37. UH-1H PLOTS FOR FLIGHT 7, RUN 5

E-37
FIGURE E-38. PLOT OF RTT DIFFERENTIAL DATA
RUN # 5
FLIGHT INSPECTION UHF107 10/30/85
AZIMUTH = -- -8.00
ELEVATION = -- 3.00

FIGURE E-39. PLOTS OF MLS AND RTT DATA
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 8
Run Number 1

Azimuth Tracking
Raw Data
40 knots Airspeed
Azimuth 0.8 deg Left
Elevation 3 deg

FIGURE E-41. UH-1H PLOTS FOR FLIGHT 8, RUN 1
FIGURE E-42. PLOT OF RTT DIFFERENTIAL DATA
FIGURE E-43. PLOTS OF MLS AND RTT DATA

RUN # 1
FLIGHT INSPECTION UNFI 10 10/30/85
AZIMUTH = 8.00
ELEVATION = 3.00
FIGURE E-44. PLOT OF MLS-RTT DATA
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 8
Run Number 2

Azimuth Tracking
1 Cue
40 knots Airspeed
Azimuth 0.8 deg Left
Elevation 3 deg

FIGURE E-45. UH-1H PLOTS FOR FLIGHT 8, RUN 2
RUN # 2
FLIGHT INSPECTION UNFI08 10/30/85
AZIMUTH ± 8.00
ELEVATION ± 3.00

FIGURE E-47. PLOTS OF MLS AND RTT DATA
FIGURE E-48. PLOT OF MLS-RTT DATA
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 8
Run Number 3

Azimuth Tracking
Raw Data
40 knots Airspeed
Azimuth 0.0 deg
Elevation 6 deg

FIGURE E-49. UH-1H PLOTS FOR FLIGHT 8, RUN 3
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 8
Run Number 4

Azimuth Tracking
Raw Data
40 knots Airspeed
Azimuth 0.0 deg
Elevation 9 deg

FIGURE E-53. UH-1H PLOTS FOR FLIGHT 8, RUN 4
FIGURE E-55. PLOTS OF MLS AND RTT DATA
FIGURE E-56. PLOT OF MLS-RTT DATA
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 8
Run Number 5

Elevation Tracking
Raw Data
40 knots Airspeed
Azimuth 0.0 deg
Elevation 3 deg

FIGURE E-57. UH-1H PLOTS FOR FLIGHT 8, RUN 5
FIGURE E-60. PLOT OF MLS-RTT DATA
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 8
Run Number 6

Elevation Tracking
1 Cue
40 knots Airspeed
Azimuth 0.0 deg
Elevation 3 deg

FIGURE E-61. UH-1H PLOTS FOR FLIGHT 8, RUN 6
FIGURE E-63. PLOTS OF MLS AND RTT DATA
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 8
Run Number 7

Elevation Tracking
Raw Data
40 knots Airspeed
Azimuth 0.0 deg
Elevation 4 deg

FIGURE E-65. UH-1H PLOTS FOR FLIGHT 8, RUN 7

E-65
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 8
Run Number 8

Elevation Tracking
1 Cue
40 knots Airspeed
Azimuth 0.0 deg
Elevation 4 deg

FIGURE E-69. UH-1H PLOTS FOR FLIGHT 8, RUN 9
FIGURE E-70. PLOT OF RTT DIFFERENTIAL DATA
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 8
Run Number 9

Elevation Tracking
3 Cue
40 knots Airspeed
Azimuth 0.0 deg
Elevation 4 deg

FIGURE E-73. UH-1H PLOTS FOR FLIGHT 8, RUN 9
FIGURE E-74. PLOT OF RTT DIFFERENTIAL DATA
RUN # 9
FLIGHT INSPECTION UNFI08 10/30/85
AZIMUTH = 0.00
ELEVATION = 4.00

FIGURE E-75. PLOTS OF MLS AND RTT DATA
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 9
Run Number 1

Elevation Tracking
Raw Data with Laser Tracking
40 knots Airspeed
Azimuth 0.0 deg
Elevation 6 deg

FIGURE E-77. UH-1H PLOTS FOR FLIGHT 9, RUN 1
FIGURE E-78. PLOTS OF LASER TRACKER, RTT AND MLS DATA
FIGURE E-79. PLOTS OF MLS-RTT AND MLS-LASER TRACKING DATA
RUN # 1
FLIGHT INSPECTION UNIT 108 10/30/68
AZIMUTH = 0.00
ELEVATION = 5.00

FIGURE E-80. PLOT OF RTT-LASER TRACKING DATA
FIGURE E-81. PLOT OF RTT DIFFERENTIAL DATA
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 9
Run Number 2

Elevation Tracking
1 Cue with Laser Tracking
40 knots Airspeed
Azimuth 0.0 deg
Elevation 6 deg

FIGURE E-82. UH-1H PLOTS FOR FLIGHT 9, RUN 2
FIGURE E-83. PLOTS OF LASER TRACKER, RTT AND MLS DATA
FIGURE E-85. PLOT OF RTT-LASER TRACKING DATA
FIGURE E-86. PLOT OF RTT DIFFERENTIAL DATA
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 9
Run Number 3

Elevation Tracking
3 Cue with Laser Tracking
40 knots Airspeed
Azimuth 0.0 deg
Elevation 6 deg

FIGURE E-87. UH-1H PLOTS FOR FLIGHT 9, RUN 3
FIGURE E-88. PLOTS OF LASER TRACKER, RTT AND MLS DATA
FIGURE E-90. PLOT OF RTT-LASER TRACKING DATA
RUN # 3
FLIGHT INSPECTION UMF109 10/30/83
AZIMUTH = 0.00
ELEVATION = 6.00

FIGURE E-91. PLOT OF RTT DIFFERENTIAL DATA
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 9
Run Number 4

Elevation Tracking
Raw Data with Laser Tracking
40 knots Airspeed
Azimuth 0.0 deg
Elevation 9 deg

FIGURE E-92. UH-1H PLOTS FOR FLIGHT 9, RUN 4
FIGURE E-93. PLOTS OF LASER TRACKER, RTT AND MLS DATA
FIGURE E-94. PLOTS OF MLS-RTT AND MLS-LASER TRACKING DATA
RUN # 4
FLIGHT INSPECTION UNFIOR 10/30/85
AZIMUTH = 0.00
ELEVATION = 9.00

FIGURE E-95. PLOT OF RTI-LASER TRACKING DATA
Figure E-96. Plot of RTT Differential Data
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 9
Run Number 5

Elevation Tracking
1 Cue with Laser Tracking
40 knots Airspeed
Azimuth 0.0 deg
Elevation 9 deg

FIGURE E-97. UH-1H PLOTS FOR FLIGHT 9, RUN 5
FIGURE E-98. PLOTS OF LASER TRACKER, RTT AND MLS DATA
RUN 6 S
FLIGHT INSPECTION UNFIOS 10/30/85
AZIMUTH -- 0.00
ELEVATION -- 9.00

FIGURE E-99. PLOTS OF MLS-RTT AND MLS-LASER TRACKING DATA
Figure E-101. Plot of RTT Differential Data.
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 9
Run Number 6

Elevation Tracking
3 Cue with Laser Tracking
40 knots Airspeed
Azimuth 0.0 deg
Elevation 9 deg

FIGURE E-102. UH-1H PLOTS FOR FLIGHT 9, RUN 6
FIGURE E-104. PLOTS OF MLS-RTT AND MLS-LASER TRACKING DATA
FLIGHT INSPECTION UNF109 10/30/85
AZIMUTH = 0.00
ELEVATION = 9.00

FIGURE E-106. PLOT OF RTT DIFFERENTIAL DATA
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 9
Run Number 7

Elevation Tracking
Raw Data with Laser Tracking
40 knots Airspeed
Azimuth 0.0 deg
Elevation 3 deg

FIGURE E-107. UH-1H PLOTS FOR FLIGHT 9, RUN 7
FIGURE E-108. PLOTS OF LASER TRACKER, RTT AND MLS DATA
FIGURE E-110. PLOT OF RTT-LASER TRACKING DATA
APPENDIX F

CMN AND PFE PLOTS
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 6
Run Number 1

Elevation Tracking
Raw Data
60 knots Airspeed
Azimuth 0.0 deg
Elevation 3 deg

FIGURE F-1. UH-1H PLOTS OF CMN AND PFE FOR FLIGHT 6, RUN 1
FIGURE F-2. PLOT OF CHN DATA WITH TOLERANCE LIMITS
FIGURE F-3. PLOT OF PFE DATA WITH TOLERANCE LIMITS
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 6
Run Number 2

Elevation Tracking
1 Cue
60 knots Airspeed
Azimuth 0.0 deg
Elevation 6 deg

FIGURE F-4. UH-1H PLOTS OF CMN AND PFE FOR FLIGHT 6, RUN 2
FIGURE F-5. PLOT OF CMN DATA WITH TOLERANCE LIMITS
UH-1H Flight Inspection
FTR Differential Plots

Flight Number 6
Run Number 3

Elevation Tracking
3 Cue
60 knots Airspeed
Azimuth 0.0 deg
Elevation 6 deg

FIGURE P-7. UH-1H PLOTS OF CMN AND PPE FOR FLIGHT 6, RUN 3
UH-1H Flight Inspection
RT11 Differential Plots

Flight Number 6
Run Number 4

Elevation Tracking
3 Cue
50 knots Airspeed
Azimuth 0.0 deg
Elevation 6 deg

FIGURE F-10. UH-1H PLOTS OF CMN AND PFE FOR FLIGHT 6, RUN 4
FIGURE F-11. PLOT OF CMN DATA WITH TOLERANCE LIMITS

RUN # 6
FLIGHT INSPECTION UNF106 10/28/85
AZIMUTH = 0.00
ELEVATION = 6.00
NO. OF SAMPLES = 1231
TWICE STD. DEV. = 0.0341 95% LIMIT

DATA PERFORMED BY THE FAA SENSING CENTER
SELECTED WITH APPROVAL 12/31/85
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 7
Run Number 1

Azimuth Tracking
Raw Data
40 knots Airspeed
Azimuth 0.0 deg
Elevation 3 deg

FIGURE F-13. UH-1H PLOTS OF CMN AND PFE FOR FLIGHT 7, RUN 1
Figure F-15. Plot of PFE data with tolerance limits.
Figure 6-16. H-6-18 Plots of GMR and PRI for Flight 7, Run 2
RUN # 2
FLIGHT INSPECTION UHF 107 10/30/83
AZIMUTH = 0.00
ELEVATION = 3.00
NO. OF SAMPLES = 1700
TWICE STD. DEV. = 0.0656 95% LIMIT

FIGURE F-18. PLOT OF PFE DATA WITH TOLERANCE LIMITS
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 7
Run Number 3

Azimuth Tracking
Raw Data
40 knots Airspeed
Azimuth 0.8 deg Right
Elevation 3 deg

FIGURE F-19. UH-1H PLOTS OF CMN AND PFE FOR FLIGHT 7, RUN 3
RUN # 3
FLIGHT INSPECTION UHF#7 10/30/83
AZIMUTH = -8.00
ELEVATION = 3.00
NO. OF SAMPLES = 1500
TWICE STD. DEV. = 0.0566 95% LIMIT

FIGURE F-20. PLOT OF CHN DATA WITH TOLERANCE LIMITS
FIGURE F-21. PLOT OF PFE DATA WITH TOLERANCE LIMITS
O~ji

F: 13

FLIGHT NUMBER 7

RTI Differential Plots

Cue Azimuth Tracing

40 Knots Airspeed

Azimuth 0.8 deg Right
Elevation 3 deg
FIGURE F-23. PLOT OF CMN DATA WITH TOLERANCE LIMITS
RUN 4
FLIGHT INSPECTION UHF107 10/30/85
AZIMUTH = -8.00
ELEVATION = 3.00
NO. OF SAMPLES = 1594
TWICE STD. DEV. = 0.0602 95% LIMIT

FIGURE F-24. PLOT OF PFE DATA WITH TOLERANCE LIMITS
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 7
Run Number 5

Azimuth Tracking
1 Cue
40 knots Airspeed
Azimuth 0.8 deg Right
Elevation 3 deg

FIGURE F-25. UH-1H PLOTS OF CMN AND PFE FOR FLIGHT 7, RUN 5

F-25
FIGURE P-26. PLOT OF CMN DATA WITH TOLERANCE LIMITS
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 8
Run Number 1

Azimuth Tracking
Raw Data
40 knots Airspeed
Azimuth 0.8 deg Left
Elevation 3 deg

FIGURE F-28. UH-1H PLOTS OF CHN AND PFE FOR FLIGHT 8, RUN 1
FIGURE P-29. PLOT OF CMN DATA WITH TOLERANCE LIMITS
FIGURE F-30. PLOT OF PFE DATA WITH TOLERANCE LIMITS
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 8
Run Number 2

Azimuth Tracking
1 Cue
40 knots Airspeed
Azimuth 0.8 deg Left
Elevation 3 deg

FIGURE F-31. UH-1H PLOTS OF CMN AND PFE FOR FLIGHT 8, RUN 2

F-31
FIGURE F-32. PLOT OF CNN DATA WITH TOLERANCE LIMITS
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 8
Run Number 3

Azimuth Tracking
Raw Data
40 knots Airspeed
Azimuth 0.0 deg
Elevation 6 deg

FIGURE F-34. UH-1H PLOTS OF CMN AND PFE FOR FLIGHT 8, RUN 3
RUN 3
FLIGHT INSPECTION UHF108 10/30/85
AZIMUTH: 0.00
ELEVATION: 6.00
NO. OF SAMPLES = 1038
TWICE STD. DEV. = 0.0352 95% LIMIT

FIGURE F-36. PLOT OF PFE DATA WITH TOLERANCE LIMITS
Flight Number 8
Run Number 4

Azimuth Tracking
Raw Data
40 knots Airspeed
Azimuth 0.0 deg
Elevation 9 deg

FIGURE F-37. UH-1H PLOTS OF CMN AND PFE FOR FLIGHT 8, RUN 4
FIGURE F-38. PLOT OF CMN DATA WITH TOLERANCE LIMITS
FIGURE F-39. PLOT OF PFE DATA WITH TOLERANCE LIMITS
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 8
Run Number 5

Elevation Tracking
Raw Data
40 knots Airspeed
Azimuth 0.0 deg
Elevation 3 deg

FIGURE F-40. UH-1H PLOTS OF CMN AND PFE FOR FLIGHT 8, RUN 5

F-40
FIGURE F-41. PLOT OF CMN DATA WITH TOLERANCE LIMITS
FIGURE F-42. PLOT OF PFE DATA WITH TOLERANCE LIMITS
FIGURE F-43. UH-1H PLOTS OF CMN AND PFE FOR FLIGHT 8, RUN 6
FIGURE F-44. PLOT OF CMN DATA WITH TOLERANCE LIMITS
FIGURE F-45. PLOT OF PFE DATA WITH TOLERANCE LIMITS
UH-1H Flight Inspection
FRTT Differential Plots

Flight Number 8
Run Number 7

Elevation Tracking
Raw Data
40 knots Airspeed
Azimuth 0.0 deg
Elevation 4 deg

FIGURE F-46. UH-1H PLOTS OF CMN AND PFE FOR FLIGHT 8, RUN 7
FIGURE F-47. PLOT OF CMN DATA WITH TOLERANCE LIMITS
FIGURE F-48. PLOT OF PFE DATA WITH TOLERANCE LIMITS
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 8
Run Number 8

Elevation Tracking
1 Cue
40 knots Airspeed
Azimuth 0.0 deg
Elevation 4 deg

FIGURE F-49. UH-1H PLOTS OF CMN AND PFE FOR FLIGHT 8, RUN 8
FIGURE F-50. PLOT OF CNN DATA WITH TOLERANCE LIMITS
FIGURE F-51. PLOT OF PFE DATA WITH TOLERANCE LIMITS
UH-1H Flight Inspection
RTI Differential Plot

Flight Number 9
Run Number 9

Elevation Tracking
3 Cue
40 knots Airspeed
Azimuth 0.0 deg
Elevation 4 deg

FIGURE F-52. UH-1H PLOTS OF CMN AND PFE FOR FLIGHT 8, RUN 9
FLIGHT INSPECTION UMF100 10/30/65
AZIMUTH = 0.00
ELEVATION = 4.00
NO. OF SAMPLES = 1309
TWICE STD. DEV. = 0.0313 95% LIMIT

FIGURE F-53. PLOT OF CMN DATA WITH TOLERANCE LIMITS
RUN # 9
FLIGHT INSPECTION UNF108 10/30/85
AZIMUTH = 0.00
ELEVATION = 4.00
NO. OF SAMPLES = 1309
TWICE STD. DEV. = 0.0857 95% LIMIT

FIGURE F-54. PLOT OF PFE DATA WITH TOLERANCE LIMITS
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 9
Run Number 1

Elevation Tracking
Raw Data with Laser Tracking
40 knots Airspeed
Azimuth 0.0 deg
Elevation 6 deg

FIGURE F-55. UH-1H PLOTS OF CMN AND PFE FOR FLIGHT 9, RUN 1
FIGURE F-56. PLOT OF CMN DATA WITH TOLERANCE LIMITS
FIGURE F-57. PLOT OF PFE DATA WITH TOLERANCE LIMITS
OH-6H Flight Inspection

Wing Differential Flaps

Flight Number 9
Run Number 2

Elevation Tracking
Line with Laser Tracking
400 Feet Airspeed
295 Weight 9.9 deg
Elevation 5 deg

FIGURE 5-58. OH-6H PLOTS OF CHWS AND LFE FOR FLIGHT 9, RUN 2
FIGURE F-59. PLOT OF CMN DATA WITH TOLERANCE LIMITS
FIGURE F-60. PLOT OF PFE DATA WITH TOLERANCE LIMITS
UH-1H Flight Inspection
FTI Differential Plots

Flight Number 9
Run Number 3

Elevation Tracking
3 Cue with Laser Tracking
40 knots Airspeed
Azimuth 0.0 deg
Elevation 6 deg

FIGURE F-61. UH-1H PLOTS OF CMN AND PFE FOR FLIGHT 9, RUN 3
FIGURE F-62. PLOT OF CMN DATA WITH TOLERANCE LIMITS
FIGURE F-63. PLOT OF PFE DATA WITH TOLERANCE LIMITS
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 2
Run Number 4

Elevation Tracking
Raw Data with Laser Tracking
40 knots Airspeed
Azimuth 0.0 deg
Elevation 9 deg

FIGURE F-64. UH-1H PLOTS OF CMN AND PFE FOR FLIGHT 2, RUN 4
FIGURE F-66. PLOT OF PFE DATA WITH TOLERANCE LIMITS
UH-1H Flight Inspection
FT7 Differential Plots

Flight Number 7,
Run Number 5

Elevation Tracking
1 Cue with Laser Tracking
40 knots Airspeed
Azimuth 0.0 deg
Elevation 9 deg

FIGURE F-67. UH-1H PLOTS OF CMN AND PFE FOR FLIGHT 9, RUN 5

F-67
FIGURE F-68. PLOT OF CHN DATA WITH TOLERANCE LIMITS
RUN # 5
FLIGHT INSPECTION UNFI09 10/30/85
AZIMUTH = 0.00
ELEVATION = 0.00
NO. OF SAMPLES = 948
TWICE STD. DEV. = 0.1301 95% LIMIT

FIGURE F-69. PLOT OF PFE DATA WITH TOLERANCE LIMITS
UH-1H Flight Inspection
RTF Differential Plots

Flight Number 9
Run Number 6

Elevation Tracking
3 Cue with Laser Tracking
40 knots Airspeed
Azimuth 0.0 deg
Elevation 9 deg

FIGURE 7-70. UH-1H PLOTS OF CMN AND PFE FOR FLIGHT 9, RUN 6

F-70
RUN # 6
FLIGHT INSPECTION UNF109 10/30/85
AZIMUTH = 6.00
ELEVATION = 9.00
NO. OF SAMPLES = 942
TWICE STD. DEV. = 0.1264 95% LIMIT

FIGURE F-72. PLOT OF PFE DATA WITH TOLERANCE LIMITS
UH-1H Flight Inspection
RTT Differential Plots

Flight Number 9
Run Number 7

Elevation Tracking
Raw Data with Laser Tracking
40 knots Airspeed
Azimuth 0.0 deg
Elevation 3 deg

FIGURE F-73. UH-1H PLOTS OF CMN AND PFE FOR FLIGHT 9, RUN 7
FIGURE F-74. PLOT OF CMN DATA WITH TOLERANCE LIMITS
FIGURE F-75. PLOT OF PFE DATA WITH TOLERANCE LIMITS
END
12-86
DTIC