MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS: 1963-A
Heat Capacities of Rare Gases Adsorbed on Graphite

by

Franco Battaglia, Young Sik Kim and Thomas F. George

Prepared for Publication

in

Journal of Physical Chemistry

Departments of Chemistry and Physics
State University of New York at Buffalo
Buffalo, New York 14260

September 1986

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
The McQuistan-Hock model is used to investigate adsorption for realistic systems. After computing the partition function in the most convenient ensemble for the problem under consideration, i.e., the isothermal-isobaric ensemble, the heat capacity for submonolayer films of Ne, Ar and Xe on graphite is computed for several coverage values. Heat-capacity signatures exhibit maxima at temperature values that are in good agreement with experimental data.
HEAT CAPACITIES OF RARE GASES ADSORBED ON GRAPHITE

Franco Battaglia
Dipartimento di Chimica
II Universita' - Tor Vergata
Via Orazio Raimondo - 00173 Roma
ITALY

Young Sik Kim *
Department of Chemistry
University of Rochester
Rochester, New York 14627

Thomas F. George
Departments of Chemistry and Physics & Astronomy
State University of New York at Buffalo
Buffalo, New York 14260

Abstract

The McQuistan-Hock model is used to investigate adsorption for realistic systems. After computing the partition function in the most convenient ensemble for the problem under consideration, i.e., the isothermal-isobaric ensemble, the heat capacity for submonolayer films of Ne, Ar and Xe on graphite is computed for several coverage values. Heat-capacity signatures exhibit maxima at temperature values that are in good agreement with experimental data.

* Present address: Departments of Chemistry and Physics & Astronomy
State University of New York at Buffalo
Buffalo, New York 14260
I. Introduction

The recent discovery that submonolayer films of adsorbates on some substrates have two-dimensional phases has opened a new field: the study of two-dimensional matter, its phases, and the transitions between them. A common way to realize two-dimensional systems is to physisorb gaseous particles (atoms or simple molecules) onto solid surfaces (substrates). Dependent on particle and substrates properties, the adsorbate condenses as a homogeneous film which might reveal two-dimensional properties. Often the only task the substrate is expected to accomplish is to force the adsorbed particles into a plane, so that the substrate disturbs the adsorbed system as little as possible. In order to investigate experimentally the physical properties of two-dimensional systems, one must have substrates of high specific surface areas such as graphite (and its modifications). The essential task in a thermodynamical investigation of a physisorbed two-dimensional system is the construction of a complete group of adsorption isotherms. In practice, for an accurate determination of the entropy, calorimetric experiments to determine the specific-heat signatures are performed. Such experiments offer the possibility of studying low-dimensional order-disorder phenomena such as structural and melting phase transitions.

With respect to the order of a melting transition, the situation depends strongly on whether one considers three- or two-dimensional melting. In the former case, there is no doubt that melting is always a discontinuous event at which the system absorbs latent heat from the surroundings. In the two-dimensional case, the question as to whether melting is a discontinuous or continuous process is still open.
In the present paper we use the McQuistan-Hock model1 to compute heat-capacity signatures for two-dimensional systems of rare gases adsorbed on graphite. Experimental studies on these systems have demonstrated the existence of ordering and phase transitions2 and have identified regions of two-dimensional liquid-vapor as well as liquid-solid coexistence, accompanied by a two-dimensional critical point.3 In the next section, after a brief overview of the McQuistan-Hock model, we present our calculations and results. The third and last section is devoted to our conclusions.

II. Theory and Calculations

In a recent paper,1 McQuistan and Hock developed an exact solution for the distribution function of \(q \) indistinguishable particles on a \(2 \times N \) lattice, where \(N \) is a positive integer number. The grand-canonical partition function is written as

\[
Z_N(x,y,z,t) = \sum_{q=0}^{2N} F_{qN}(x,y,t)z^q
\]

where

\[
F_{qN}(x,y,t) = t^q \sum_{n_00, n_{11}} A[N,q,n_{00},n_{11}] x^{n_{11}} y^{n_{00}}
\]

and

\[
z = e^{\beta \mu}
\]
in which \(\mu \) is the chemical potential of the adsorbed particles, \(\beta = (k_B T)^{-1} \) with \(T \) the absolute temperature and \(k_B \) the Boltzmann constant, \(V_{00} \) is the interaction between two nearest-neighbor vacant sites, \(V_{11} \) is the interaction between two nearest-neighbor adparticles, and \(V_0 \) is the interaction between a particle and the surface. The number of unique ways \(q \) indistinguishable particles can be arranged on a rectangular \(2 \times N \) lattice to form \(n_{11} \) occupied nearest-neighbor pairs and \(n_{00} \) vacant nearest-neighbor pairs is given by \(A[N,q,n_{00},n_{11}] \) in Eq. (2) by making use of a 15-term recursion relation. In a subsequent paper,\(^4\) Hock and McQuistan computed the adsorption isotherms for what we might call the "rigid" lattice in which there is no interaction between two nearest-neighbor vacant sites: \(V_{00} = 0 \). They showed that the coverage as a function of the spreading pressure does not exhibit a first-order phase transition.

The McQuistan-Hock model is very interesting because of its simplicity, because it takes into account various interaction terms \((V_0, V_{00} \text{ and } V_{11}) \), and because it is exactly solvable. We will show here that the model is applicable to realistic systems by comparing the critical temperatures obtained from it with the critical temperatures measured in systems such as rare gases adsorbed on graphite.

In the McQuistan-Hock model, the grand canonical partition function [Eq. (1)], as \(N \to \infty \), is given by

\[
Z(N, \beta, \mu) \approx k_1 n_1^{-N},
\]

where

\[
k_1 = - \frac{r(n_1)}{s'(n_1)},
\]

and \(n_1 \) is the smallest root of

\[
s(n_1) + \beta r(n_1) = 0.
\]
\[s(\eta) \equiv \sum_{j=0}^{3} b_j \eta^j = 0 \quad (9) \]

In Eq. (8),
\[r(\eta) = \sum_{j=0}^{2} a_j \eta^j \quad (10) \]

and
\[s'(\eta) = \left(\frac{\partial s}{\partial \eta}\right)_{x,y,z} \quad (11) \]

The coefficients \(a_j(x,y,z) \) and \(b_j(x,y,z) \) in Eqs. (9) and (10) are given in Eqs. (9) and (10) of Ref. 4. The spreading pressure \(p \) can be obtained as
\[p = \frac{1}{2\beta} \ln \frac{28s'}{sz} \quad (12) \]

where \(\theta \) is the coverage as \(N \to \infty \), and
\[s(\eta) = \left(\frac{\partial s}{\partial z}\right)_{x,y,\eta} \quad (13) \]

In order to study the behavior of the heat capacity as a function of the temperature, keeping the spreading pressure \(p \) and the number of adsorbed particles \(q \) as constant it is most convenient to work within the isothermal-isobaric ensemble, whose partition function will be denoted by \(\Delta \equiv \Delta(q,\beta,p) \). The Gibbs free energy, entropy and heat capacity are given by
\[G(q,\beta,p) = -\frac{1}{\beta} \ln \Delta \quad (14) \]
\[S(q,\beta,p) = k_B \left[\ln \Delta - \frac{\delta \Delta'}{\delta} \right] \quad (15) \]
\[C(q,\beta,p) = k_B \beta^2 \left[\frac{\Delta''}{\Delta} - \left(\frac{\Delta'}{\Delta} \right)^2 \right] \quad (16) \]
where \(C(q, \beta, p) \) has a maximum at the critical temperature \(\beta = \beta^*_c \), i.e., the solution of the equation

\[
2\Delta(\Delta')^2 + 3\beta\Delta\Delta'\Delta'' - 2\beta(\Delta')^3 - \beta\Delta^2\Delta'' - 2\Delta^2\Delta'' = 0 .
\] (17)

In Eqs. (15)-(17), the prime denotes the derivative with respect to \(\beta \). In order to find \(\Delta(q, \beta, p) \), we start from its definition

\[
\Delta(q, \beta, p) \equiv \Delta_q(\beta, p) \equiv \sum_{N=1}^\infty f_q(N, \beta)\eta^N
\]

\[
= t^q \sum_{N=1}^\infty f_q(N, \beta)\eta^N ,
\] (18)

where \(\eta = e^{-2\beta p} \). Multiplying by \(z^q \), summing over \(q \) from 0 to \(2N \) and using Eqs. (3) and (4) given in Ref. 4, the following recursion relation is obtained for \(\Delta_q(\beta, p) \):

\[
d_0 \Delta_q = - d_1 \Delta_{q-1} - d_2 \Delta_{q-2} - d_3 \Delta_{q-3} + c_3 \delta_{q,3} ,
\] (19)

where \(\delta_{q,3} \) is the Kronecker delta function,

\[
d_0 = 1 - y^3 \eta , \quad (20a)
\]

\[
d_1 = -\eta(xy) + y^3 \eta + 1)t , \quad (20b)
\]

\[
d_2 = -\eta(x^3) + xy)\eta)t^2 , \quad (20c)
\]

\[
d_3 = x\eta^2(y-1)[x^2 + y\eta(2xy-1)]t^3 , \quad (20d)
\]

and \(c_3 \) is given by Eq. (24d) below. From Eq. (18) and from the recursion relation for \(f_q(N, \beta) \) as given in Ref. 4, we can compute the initial condition for \(\Delta_q(\beta, p) \). We obtain, provided \(V_0 > -2p/3 \), that

\[
\Delta_0 = \frac{y\eta}{d_0} , \quad (21a)
\]
\[\Delta_1 = 2\eta + 4\eta \Delta_0 + 2y^2 \eta \Delta_0^2 \]

(21b)

\[\Delta_2 = \frac{x\eta(1+2\eta)}{2} + 2\eta \Delta_0(2xy^2 \eta + y^2 \eta + x + 1/y) \]

\[+ \eta \Delta_0^2(2xy^3 \eta + 4y^3 \eta + x + 4) + 2\eta \Delta_0^3(1 + y^3 \eta) \]

(21c)

Let us define

\[\sum_{q=0}^{2N} z^q \Delta_q = \frac{u(z)}{v(z)} \]

(22)

where

\[u(z) = \sum_{j=0}^{3} c_j z^j \]

(23a)

\[v(z) = \sum_{j=0}^{3} d_j z^j \]

(23b)

Here the \(d_j \)'s are given by Eqs. (20) and the \(c_j \)'s are given by

\[c_0 = \eta \]

(24a)

\[c_1 = nt \left[2d_0 + \eta(4y - xy - 1) \right] \]

(24b)

\[c_2 = nt^2 \left[xd_0 + x\eta(2-x^2) \right] \]

(24c)

\[c_3 = nt^3 \left[\left(x^2 \eta + \eta(1-x)^2 \right)(xy-1) + (4-y-2x)(x-xy+2y^2 \eta) \right] - 1 \]

(24d)

If we rewrite Eq. (22) as

\[\frac{u(z)}{v(z)} = K + z \frac{C_0 + C_1 z + C_2 z^2}{1 + D_1 z + D_2 z^2 + D_3 z^3} \]

\[= K + z \frac{\chi(z)}{\delta(z)} \]

(25)

with

\[K = \frac{c_0}{d_0} \]

(26)

\[d_0^2 c_j = c_{j+1} d_0 - c_0 d_{j+1} \]

(27)
and
\[D_j = \frac{d_j}{d_0} , \quad (28) \]
we obtain
\[\Delta_q = \sum_{j=1}^{3} x(z_j) \frac{z_j^{-q}}{z_j^q} , \quad 0 < q \leq 2N \quad (29) \]

where the \(z_j \)'s are the roots of the equation
\[\delta(z) = 0 \quad (30) \]
and
\[x(z) = -\gamma(z)/\delta'(z) . \quad (31) \]

Here the prime denotes the derivative with respect to \(z \).

It is worth noting that for the special case in which \(x = y = 1 \), \(C_2 = D_3 = 0 \) and the solution of Eq. (29) gives

\[z_\pm = \frac{-n \pm \sqrt{n}}{n^t} , \quad (32) \]

and the positive root is always smaller than the absolute value of the negative root, so that for large \(q \),

\[\Delta_q = \frac{(t\sqrt{n})^q}{2(1-\sqrt{n})q+1} , \quad (33) \]

and the heat capacity per adparticle is

\[C = \frac{k_B \alpha^2}{\sinh^2 \alpha} . \quad (34) \]
where $\alpha = \beta p/2$. We note that this is the same result that would have been obtained for a system of independent, distinguishable particles, each of which has only two accessible states: the particle is on the site or it is not.

For the more general case in which $V_{11} \neq 0$, we have solved Eq. (30) numerically choosing values for the interaction constants that are likely to model rare-gas/graphite systems. In Table I, the chosen values are displayed together with the literature reference from where they have been taken. Several studies of the Ne, Ar, Xe/graphite systems have reported a broad anomaly in the specific heat at temperature values given in Table I, namely at 15.7 K for Ne, 55 K for Ar and 118 K for Xe. In Fig. 1 we present the specific heat as a function of temperature for values of the coverage of 0.1, 0.3 and 0.5. We see that maxima in the specific heat are observed in the range of the experimental critical temperatures.

III. Discussion and Conclusions

From Fig. 1 we can see that maxima in the heat-capacity signatures are found around 10-15 K for Ne, 40-52 K for Ar and 80-102 K for Xe. Let us compare these results with some experimental findings and with some other model calculations.

Steele and Karl\(^8\) reported peaks in the specific-heat measurements of Ne adsorbed on graphitized carbon black powder, where at half coverage they found a peak at 16.1 K. Antoniou\(^9\) in turn found a peak at 12 K. Huff and Dash\(^10\) made the first set of measurement of Ne adsorbed on Grafoil, for submonolayer coverages in the temperature range of 2-20 K and found peaks between 12 and 15 K. The anomalies they obtained have been confirmed by Rapp et al.\(^11\) who found, besides a first peak at 13.6 K, a second one at
around 16 K which moves up in temperature as the coverage increases, and then disappears at higher coverages.

Recent experimental studies of neutron scattering, heat capacities, and synchrotron x-ray scattering on submonolayers of Ar on graphite were all interpreted as being consistent with a continuous melting process. Migone et al. reported heat-capacity measurements of submonolayer Ar on graphite foam, with anomalies at 47.2, 49.5 and 55 K, and interpreted the first peak as a "weak" first-order transition. For Xe the situation is similar: melting of Xe physisorbed on graphite has been interpreted both as continuous and first-order melting.

The interesting aspect of the McQuistan-Hock model is that it does not allow for any first-order transition. Yet, when applied to "realistic" systems, it predicts maxima in the heat-capacity signatures at temperatures very close to the experimental ones. A single model that forbids a first-order transition but displays maxima in the heat-capacity curve is the one-dimensional lattice with nearest-neighbor interactions. Unfortunately, this model predicts those maxima at temperature values well below the experimental data. A two-dimensional model such as the square lattice predicts second-order critical temperatures above the experimental data, while the hexagonal lattice gives better agreement with experiments.

In Table II we report the ratio \(R = \frac{|V_{11}/T_c|}{\text{predicted}} \) as predicted by various models, as well as the experimental average value \(R \) of this ratio as obtained from Table I (\(|\frac{R-N}{R}| < 10\% \)). The predictions from the McQuistan-Hock model are also reported as averages because, as can be seen from Fig. 1, \(R \) is not exactly constant. From this table it is interesting to see that the McQuistan-Hock model predicts values of \(T_c \) that are in good agreement...
with the experimental measurements. The model does not allow for first-order transitions, nor does the linear-lattice model with nearest-neighbor interactions. On the other hand, the linear-lattice model predicts maxima in disagreement with experiments. In good agreement with experiments are also the anomalies predicted by the square-lattice and by the hexagonal models, the difference between the two being what we call the coordination number (CN in Table II), i.e., the number of nearest neighbors attached to each site: the experimental T_c's lie in between the predictions from the models with $CN = 3$ and $CN = 4$.

Our conclusions are the following: (i) The McQuistan-Hock model has the advantage of being exactly solvable and of giving good agreement between computed and experimental temperatures at which the maxima in the heat-capacity signatures occur. (ii) The model contains very few parameters, usually V_0, V_{00} and V_{11}; yet those parameters are sufficient to determine the "gross" features of the statistics of adsorption. This implies that the details of the various interactions occurring in real systems do not seem to play an important role. (iii) The model contains a parameter, V_{00}, which accounts for distortions of the substrate, an effect that has been invoked by various authors to explain some details of the experimental heat-capacity signatures. It would seem worthwhile to explore the dependence of the adsorption thermodynamics on V_{00}. (iv) The impossibility of showing a first-order transition, on one hand, and the good agreement between the computed and measured critical temperatures suggests that the order of the transition seen at temperatures around the T_c-values of Table I might not necessarily be of first order. (v) An important role seems to be played by the number of nearest neighbors attached to each site: the McQuistan-Hock model (with $CN = 3$) represents a logical extension from a one-dimensional to
the complete two-dimensional system. It would therefore be interesting to examine the influence of the average number of nearest neighbors on the heat capacity as a function of temperature.

Acknowledgments

This research was supported by the Office of Naval Research, the Air Force Office of Scientific Research (AFSC), United States Air Force, under Contract F49620-86-C-0009, and the National Science Foundation under Grant CHE-8519053. The United States Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation hereon.

References

Table I. Adparticle-surface (V₀) and adparticle-adparticle (V₁₁) interactions in Kelvin. Tᶜ is the critical temperature.

<table>
<thead>
<tr>
<th></th>
<th>a V₀</th>
<th>b V₁₁</th>
<th>c Tᶜ</th>
<th>d Tᶜ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ne</td>
<td>-378</td>
<td>-34.6</td>
<td>15.7</td>
<td>14.5</td>
</tr>
<tr>
<td>Ar</td>
<td>-1103</td>
<td>-120</td>
<td>55</td>
<td>51.0</td>
</tr>
<tr>
<td>Xe</td>
<td>-1912</td>
<td>-236</td>
<td>118</td>
<td>102.0</td>
</tr>
</tbody>
</table>

a From Ref. 5
b From Ref. 6
c From Ref. 7
d From this study at coverage value of 0.5

Table II. Values of the ratio R = |V₁₁/Tᶜ| from various models and from experiments (EXP); 1D = linear lattice, HL = hexagonal lattice, MQH = McQuistan-Hock lattice, SL = square lattice. For EXP and MQH the average values are reported. The coordination number is indicated in parentheses.

<table>
<thead>
<tr>
<th>Systems</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D (CN = 2)</td>
<td>4.80</td>
</tr>
<tr>
<td>HL (CN = 3)</td>
<td>2.63</td>
</tr>
<tr>
<td>MQH (CN = 3)</td>
<td>2.35</td>
</tr>
<tr>
<td>EXP</td>
<td>2.13</td>
</tr>
<tr>
<td>SL (CN = 4)</td>
<td>1.76</td>
</tr>
</tbody>
</table>
Figure Caption

1. Specific heat for Ne, Ar and Xe adsorbed on graphite using the interaction parameters given in Table I and the coverage values of 0.1, 0.3 and 0.5.
<table>
<thead>
<tr>
<th>No. Copies</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>x Office of Naval Research</td>
<td>2</td>
</tr>
<tr>
<td>Dr. David Young</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Code 1113</td>
<td>Code 334</td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td>NORDA</td>
</tr>
<tr>
<td>Arlington, Virginia 22217-5000</td>
<td>NSTL, Mississippi 39529</td>
</tr>
<tr>
<td>Dr. Bernard Douda</td>
<td>3</td>
</tr>
<tr>
<td>Naval Weapons Center</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. Ron Atkins</td>
<td>Code 50C</td>
</tr>
<tr>
<td>Chemical Division</td>
<td>China Lake, California 93555</td>
</tr>
<tr>
<td>Crane, Indiana 47522-5050</td>
<td>1</td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>Commandant of the Marine Corps</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko, Code L52</td>
<td>Code RD-1</td>
</tr>
<tr>
<td>Naval Weapons Center</td>
<td>1</td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td>x Defense Technical Information Center</td>
<td>12</td>
</tr>
<tr>
<td>Naval Ocean Systems Center</td>
<td>1</td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td>high</td>
</tr>
<tr>
<td>U.S. Army Research Office</td>
<td>1</td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td>quality</td>
</tr>
<tr>
<td>Research Triangle Park, NC 27709</td>
<td>1</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
</tr>
<tr>
<td>Mr. John Boyle</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. H. Singerman</td>
<td>Building 5, Cameron Station</td>
</tr>
<tr>
<td>Naval Ship Engineering Center</td>
<td>high</td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td>1</td>
</tr>
<tr>
<td>Philadelphia, Pennsylvania 19112</td>
<td>Navy</td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td>1</td>
</tr>
<tr>
<td>Naval Ocean Systems Center</td>
<td>1</td>
</tr>
<tr>
<td>x Dr. William Tolles</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. S. Yamamoto</td>
<td>Navatech Center</td>
</tr>
<tr>
<td>Superintendent</td>
<td>Marine Sciences Division</td>
</tr>
<tr>
<td>Applied Chemistry Division, Code 6100</td>
<td>1</td>
</tr>
<tr>
<td>San Diego, California 91232</td>
<td>1</td>
</tr>
<tr>
<td>x Dr. William Tolles</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. S. Yamamoto</td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Washington, D.C. 20375-5000</td>
<td>800 North Quincy Street</td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko, Code L52</td>
<td>Code RD-1</td>
</tr>
<tr>
<td>Naval Weapons Center</td>
<td>1</td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td>1</td>
</tr>
<tr>
<td>Mr. John Boyle</td>
<td>1</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
</tr>
<tr>
<td>Naval Ocean Systems Center</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. S. Yamamoto</td>
<td>1</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td>800 North Quincy Street</td>
</tr>
<tr>
<td>Washington, D.C. 20375-5000</td>
<td>1</td>
</tr>
<tr>
<td>Naval Ocean Systems Center</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. S. Yamamoto</td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td>800 North Quincy Street</td>
<td>1</td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td>1</td>
</tr>
<tr>
<td>Naval Ocean Systems Center</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. S. Yamamoto</td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Washington, D.C. 20375-5000</td>
<td>1</td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. J. E. Jensen
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. C. B. Harris
Department of Chemistry
University of California
Berkeley, California 94720

Dr. J. H. Weaver
Department of Chemical Engineering and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. F. Kutzler
Department of Chemistry
Box 5055
Tennessee Technological University
Cookesville, Tennessee 38501

Dr. A. Reisman
Microelectronics Center of North Carolina
Research Triangle Park, North Carolina 27709

Dr. D. DiLella
Chemistry Department
George Washington University
Washington D.C. 20052

Dr. M. Grunze
Laboratory for Surface Science and Technology
University of Maine
Orono, Maine 04469

Dr. R. Reeves
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. J. Butler
Naval Research Laboratory
Code 6115
Washington D.C. 20375-5000

Dr. Steven M. George
Stanford University
Department of Chemistry
Stanford, CA 94305

Dr. L. Interante
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Mark Johnson
Yale University
Department of Chemistry
New Haven, CT 06511-8118

Dr. Irvin Heard
Chemistry and Physics Department
Lincoln University
Lincoln University, Pennsylvania 19352

Dr. W. Knauer
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. K.J. Klaubunde
Department of Chemistry
Kansas State University
Manhattan, Kansas 66506
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. G. A. Somorjai
Department of Chemistry
University of California
Berkeley, California 94720

Dr. R. L. Park
Director, Center of Materials Research
University of Maryland
College Park, Maryland 20742

Dr. J. Murday
Naval Research Laboratory
Code 6170
Washington, D.C. 20375-5000

Dr. W. T. Peria
Electrical Engineering Department
University of Minnesota
Minneapolis, Minnesota 55455

Dr. J. B. Hudson
Materials Division
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Keith H. Johnson
Department of Metallurgy and Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. Theodore E. Madey
Surface Chemistry Section
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234

Dr. S. Sibener
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. J. E. Demuth
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. Arnold Green
Quantum Surface Dynamics Branch
Code 3817
Naval Weapons Center
China Lake, California 93555

Dr. M. G. Lagally
Department of Metallurgical and Mining Engineering
University of Wisconsin
Madison, Wisconsin 53706

Dr. A. Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02912

Dr. R. P. Van Duyne
Chemistry Department
Northwestern University
Evanston, Illinois 60637

Dr. S. L. Bernasek
Department of Chemistry
Princeton University
Princeton, New Jersey 08544

Dr. J. M. White
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. W. Kohn
Department of Physics
University of California, San Diego
La Jolla, California 92037

Dr. D. E. Harrison
Department of Physics
Naval Postgraduate School
Monterey, California 93940
<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
<th>Institution/Company</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. F. Carter</td>
<td>6170</td>
<td>Naval Research Laboratory</td>
<td>Washington, D.C. 20375-5000</td>
</tr>
<tr>
<td>Dr. John T. Yates</td>
<td></td>
<td>Department of Chemistry</td>
<td>University of Pittsburgh, Pittsburgh, Pennsylvania 15260</td>
</tr>
<tr>
<td>Dr. Richard Colton</td>
<td>6170</td>
<td>Naval Research Laboratory</td>
<td>Washington, D.C. 20375-5000</td>
</tr>
<tr>
<td>Dr. Richard Greene</td>
<td>5230</td>
<td>Naval Research Laboratory</td>
<td>Washington, D.C. 20375-5000</td>
</tr>
<tr>
<td>Dr. Dan Pierce</td>
<td></td>
<td>National Bureau of Standards</td>
<td>Washington, D.C. 20234</td>
</tr>
<tr>
<td>Dr. L. Kesmodel</td>
<td></td>
<td>Department of Physics</td>
<td>Bloomington, Indiana 47403</td>
</tr>
<tr>
<td>Dr. R. Stanley Williams</td>
<td>90024</td>
<td>Department of Chemistry</td>
<td>University of California, Los Angeles, California 90024</td>
</tr>
<tr>
<td>Dr. K. C. Janda</td>
<td></td>
<td>University of Pittsburgh</td>
<td>Chemistry Building, Pittsburg, PA 15260</td>
</tr>
<tr>
<td>Dr. E. A. Irene</td>
<td></td>
<td>Department of Chemistry</td>
<td>University of North Carolina, Chapel Hill, North Carolina 27514</td>
</tr>
<tr>
<td>Dr. Robert Gomer</td>
<td></td>
<td>Department of Chemistry</td>
<td>James Franck Institute, Chicago, Illinois 60637</td>
</tr>
<tr>
<td>Dr. Adam Heller</td>
<td></td>
<td>Bell Laboratories</td>
<td>Murray Hill, New Jersey 07974</td>
</tr>
<tr>
<td>Dr. Ronald Lee</td>
<td>R301</td>
<td>Naval Surface Weapons Center</td>
<td>White Oak, Silver Spring, Maryland 20910</td>
</tr>
<tr>
<td>Dr. Martin Fleischmann</td>
<td></td>
<td>Department of Chemistry</td>
<td>University of Southampton, Southampton 509 SNH UNITED KINGDOM</td>
</tr>
<tr>
<td>Dr. H. Tachikawa</td>
<td></td>
<td>Chemistry Department</td>
<td>Jackson State University, Jackson, Mississippi 39217</td>
</tr>
<tr>
<td>Dr. Paul Schoen</td>
<td>6190</td>
<td>Naval Research Laboratory</td>
<td>Washington, D.C. 20375-5000</td>
</tr>
<tr>
<td>Dr. John W. Wilkins</td>
<td></td>
<td>Cornell University Laboratory of Atomic and Solid State Physics</td>
<td>Ithaca, New York 14853</td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. R. G. Wallis
Department of Physics
University of California
Irvine, California 92664

Dr. J. T. Keiser
Department of Chemistry
University of Richmond
Richmond, Virginia 23173

Dr. D. Ramaker
Chemistry Department
George Washington University
Washington, D.C. 20052

Dr. R. W. Plummer
Department of Physics
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. J. C. Hemminger
Chemistry Department
University of California
Irvine, California 92717

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 41106

Dr. T. F. George
Chemistry Department
University of Rochester
Rochester, New York 14627

Dr. N. Winograd
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Dr. G. Rubloff
IBM
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. Roald Hoffmann
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. Horia Metiu
Chemistry Department
University of California
Santa Barbara, California 93106

Dr. A. Steckl
Department of Electrical and
Systems Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. W. Goddard
Department of Chemistry and Chemical
Engineering
California Institute of Technology
Pasadena, California 91125

Dr. G. Hansma
Department of Physics
University of California
Santa Barbara, California 93106

Dr. J. Baldeschwieler
Department of Chemistry and
Chemical Engineering
California Institute of Technology
Pasadena, California 91125

Dr. W. Goddard
Department of Chemistry and Chemical
Engineering
California Institute of Technology
Pasadena, California 91125
END
12-86
DTIC