COLLISIONLESS COUPLING IN THE AMPTE (ACTIVE MAGNETOSPHERIC PARTICLE TRACE) (U) NAVAL RESEARCH LAB WASHINGTON DC K PAPADOPOULOS ET AL. 29 SEP 96
Collisionless Coupling in the AMPTE Artificial Comet

K. Papadopoulos

Science Applications International Corporation
McLean, Virginia 22102

J. D. Huba

Geophysical and Plasma Dynamics Branch
Plasma Physics Division

A. T. Y. Lui

Applied Physics Laboratory
Johns Hopkins University
Laurel, Maryland 20707

This research was partially sponsored by the Office of Naval Research and the Defense Nuclear Agency under Subtask S99QMXBC, work unit 00146 and work unit title "Weapons Phenomenology and Code Development."

Approved for public release; distribution unlimited.
Analysis of previously reported observations of the solar wind-barium interaction associated with the AMPTE artificial comet release of Dec. 27, 1984 is presented. Based on these results, we argue that the solar wind couples momentum (and energy) to the barium ions through both laminar and turbulent processes. The laminar forces acting on the particles are the laminar electric and magnetic fields; the turbulent forces are associated with the intense electrostatic wave activity. This wave activity is shown to be caused by a cross-field solar wind proton-barium ion streaming instability. The observed wave frequencies and saturated amplitudes are consistent with our theoretical analysis.
8a. NAME OF FUNDING/SPONSORING ORGANIZATION
Office of Naval Research
Defense Nuclear Agency

16. SUPPLEMENTARY NOTATION

This research was partially sponsored by the Office of Naval Research and the Defense Nuclear Agency under Subtask S99QMXBC, work unit 00146 and work unit title "Weapons Phenomenology and Code Development."
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. OBSERVATIONAL RESULTS</td>
<td>1</td>
</tr>
<tr>
<td>III. COLLISIONLESS MOMENTUM COUPLING: THEORETICAL CONCEPTS</td>
<td>4</td>
</tr>
<tr>
<td>IV. COMPARISON BETWEEN THEORY AND OBSERVATIONS</td>
<td>8</td>
</tr>
<tr>
<td>V. SUMMARY AND CONCLUSIONS</td>
<td>10</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>12</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>13</td>
</tr>
</tbody>
</table>
COLLISIONLESS COUPLING IN THE AMPTE ARTIFICIAL COMET

I. INTRODUCTION

The in situ measurements of the plasma parameters from the AMPTE (Active Magnetospheric Particle Tracer Explorers) artificial comet releases (Valenzuela et al., 1986; Haerendel et al., 1986) in the solar wind provide us with a unique set of data to test the available theories on the subject of collisionless coupling of magnetized plasma streams under high Mach number conditions ($M_A \gg 1$) (Haerendel et al., 1986). The subject is very opportune since it is the controlling factor that determines the momentum coupling process occurring in the interaction of the solar wind with the cometary plasma generated by the ionization of the neutral coma. The overall comet structure, the applicability of MHD or kinetic models, the presence or absence of a cometary shock and the type of the resulting ionopause (Mendis and Houpis, 1982; Ip and Axford, 1982; Fedder et al., 1986; Sagdeev et al., 1986) depends critically on the wave-particle processes producing the momentum coupling, the thermalization, and the isotropization in the interaction. It is the purpose of the present note to compare the AMPTE in situ observations of the plasma parameters and wave signatures (Gurnett et al., 1985; Haerendel et al., 1986) with the theoretical concepts currently applied to the high Mach number interaction problem. In the next section we present a brief description of the experiment as well as the relevant data. Section III reviews the theoretical models for coupling. Section IV compares the AMPTE data with the observations.

II. OBSERVATIONAL RESULTS

During the artificial comet experiment on Dec 27, 1984 two canisters of barium were released from the IRM (Ion Release Module) spacecraft. The release was on the morning side of the earth at a geocentric radial distance of roughly 17 earth radii. The canisters were exploded simultaneously at a distance - 1 km from the spacecraft at 1232 UT. The explosion

Manuscript approved June 5, 1986.
produced an expanding barium cloud which was rapidly ionized by solar UV ($\tau_i = 28$ sec where τ_i is the photoionization time). The interaction of the solar wind, which was flowing at ~ 550 km/sec, with the ionized barium cloud was recorded by the IRM instruments inside the cloud and the magnetic cavity that was created. The UKS spacecraft, located ~ 170 km away, was outside the magnetic cavity and measured magnetic disturbances and particle fluxes generated by the interaction. A schematic of the spacecraft positions and the magnetic field structure is shown in Fig. 1. We comment that in addition to the in situ observations made by the IRM and UKS spacecraft, ground based and airborne optical data were also obtained during the release. Such data provides important information on the macroscopic behavior of the solar wind - barium interaction. However, for the purposes of the present study this data is not used since we are concerned with the detailed evolution of plasma and field quantities which is not provided by optical data.

We present a set of plasma and field measurements which highlight the dynamic interaction of the solar wind and the barium cloud in Figs. 2-4. In Fig. 2 we show measurements of the electron density from 15 eV to 30 eV [n_e (Fig. 2a)], the flow velocity of the solar wind protons measured in the range 20 eV to 40 keV in GSE coordinates [V_{px} (Fig. 2b) and V_{pz} (Fig. 2c)], and the magnitude of the interplanetary magnetic field [B (Fig. 2d)] (Haerendel et al., 1986). We note that the magnetic field is in the y-direction and that the electron density does not include the cold electrons associated with the barium ions. The magnetic cavity generated by the barium ions is clearly seen during the time UT 12:32:02 and UT 12:33:15. Figure 3 shows the low frequency electric field measurements as a function of time and frequency (Gurnett et al., 1985), the magnitude of the magnetic field, and the barium ion density. Figure 4 displays the electric field spectrum upstream of the ion cloud at the time of maximum intensity (UT 12:34:27) (Gurnett et al., 1985). The electrostatic waves reached amplitudes in excess of 140 mV/m. Since the electron density in Fig. 2 does not include the cold electrons, for times prior to 12:34:30 UT we will use the number density from Fig. 3, which is based upon wave emissions at the plasma frequency. For the time period 12:34:30 UT - 12:35:30 UT the values of the electron, proton, and barium densities are not well-known. Finally, for times later than 12:35:30 UT we use the data presented in Fig. 2.
On the basis of these measurements the following picture describing the spatial evolution of the coupling between the solar wind protons and the barium emerges. For times later than UT 12:36:20 the solar wind parameters correspond to the ambient conditions ($n_e = 2 \, \text{cm}^{-3}$, $V_{px} = 550 \, \text{km/sec}$, $T_e = 2 \times 10^5 \, \text{oK}$ and $B = 10 \, \text{Y}$). The interaction between the solar wind protons and the barium cloud starts at the point marked 1, which corresponds to UT 12:36:20, as seen from the initiation of the slowing down of the solar wind (Fig. 2b). During the time period UT 12:36:20 - UT 12:35:15 the initial slowing down rate is relatively weak and is accompanied by moderate wave activity (Fig. 3), density and magnetic field compression (Fig. 2a,d). There is no plasma flow in the z-direction (Fig. 2c). This time coincides with the time that the UK spacecraft records fluxes of hot electrons (> 100 eV). A much stronger slowing down rate is observed between UT 12:35:15 and UT 12:34:25, accompanied by strong electrostatic wave activity near the local proton lower hybrid frequency. For $B = 30 - 90\, \text{Y}$, $n_p = 2 - 10 \, \text{cm}^{-3}$, and $n_e = 2 - 120 \, \text{cm}^{-3}$ we note that the proton lower hybrid frequency is $f_{Hp} = 10 - 30 \, \text{Hz}$. The magnetic field, density, and the temperature continue to increase, while the value of V_{pz} remains relatively unchanged. This continues until UT 12:34:25 which is marked as 3. At this point the magnetic field has a value $B = 85 \, \text{Y}$, the solar wind stream has slowed down to $V_{px} = 270 \, \text{km/sec}$, corresponding to 0.4 keV flow energy, while a broad ion distribution is observed with an equivalent temperature of $4 \times 10^6 \, \text{oK}$ (i.e., 0.4 KeV). Notice that at this point the solar wind has lost more than 80% of its flow energy and its thermal spread is comparable to its flow speed. This corresponds to the peak of the electrostatic wave activity (see Fig. 3). The slowing down of the solar wind continues until UT 12:33:20. The magnetic field exceeds 120 Y and approaches its maximum value of 145 Y. Finally, at UT 12:33:15 we note the beginning of the magnetic cavity, the suppression of the wave activity, and the appearance of sunward flowing 0.5 KeV ions. A summary of the key parameters observed during the above times is given in Table I.

We note that there is a marked difference in the nature of the slowing down of the solar wind between the time periods UT 12:36:20 - UT 12:35:27 and UT 12:35:27 - UT 12:34:17. In the former case we point out that the low frequency electrostatic wave activity is intense and that there is little change in the z-component of the solar wind velocity. In the latter time period, the electrostatic noise has weakened considerably and there is
a substantial increase in \(V_{pz} \). These issues will be discussed in more detail in Section IV.

III. COLLISIONLESS MOMENTUM COUPLING: THEORETICAL CONCEPTS

Prior to discussing the interpretation of the above data with respect to the physics of momentum coupling, we present a brief review of the various coupling processes. We consider the following momentum equation in the \(x \) direction for a solar wind proton (i.e., radial direction perpendicular to the ambient magnetic field \(\mathbf{B} = B \hat{e}_y \)).

\[
\frac{dV_{pz}}{dt} = \frac{eE}{m_p} + \Omega_p V_{pz} - \nu^*(V_{pz} - V_b)
\]

(1)

where the subscript \(p \) refers to solar wind protons, \(\Omega_p = eB/m_p c, \nu^* \) is an anomalous ion-ion collision frequency, \(V_b = V_b \hat{e}_x \) is the streaming barium velocity, \(e \) is the charge, and \(m \) is the mass. The first term on the RHS of (1) arises from a laminar electric field usually associated with the leading edge of the magnetic compression; it acts to accelerate barium ions and to slow down solar wind protons. The second term is the magnetic force which is associated with Larmor coupling. The final term corresponds to turbulent "pick up" of the solar wind and arises because of plasma instabilities. For plasma turbulence such that \(\nu^* > \Omega_p \), it is clear that turbulent coupling can dominate over Larmor coupling. Also, notice that the force \(\Omega_p V_{pz} \) associated with Larmor coupling is proportional to the value of \(V_{pz} \) and will be very weak as long as \(V_{pz} \approx 0 \). The time evolution of \(V_{pz} \) is given by

\[
\frac{dV_{pz}}{dt} = \frac{eE}{m_z} = \frac{eV_{pz}B}{px} = \Omega_p V_{pz}
\]

(2)

In deriving (2) we assume \(E_{pz} = V_{pz} B/c \) which is the motional electric field of the solar wind.

The subject of the appropriate value of \(\nu^* \) and the dominant instability that drives it has been extensively studied. We refer the interested reader to Lampe et al. (1975) and summarize only the key conclusions. The counterstreaming between the barium ions and solar wind protons generates a local velocity distribution function such as shown in Fig. 5. Figure 5 is drawn for convenience in the solar wind reference frame. For singly ionized barium the electrons have a relative velocity \(\hat{V} = V_{e} \hat{e}_x \) with respect to the solar wind protons given by \(V_{e} = V_{pz}(n_b/n_e) \) where \(n_b \) is the density of the barium and \(n_e = n_b + n_p \).
The dispersion equation for this situation is given by (Papadopoulos et al., 1971)

\[
D(\omega, k) = \frac{\omega_b^2}{k^2 v_b^2} \left[\frac{\omega - k v_{px} \cos \theta}{k v_b^2} \right] Z \left(\frac{\omega}{k v_b^2} \right) + \frac{\omega_p^2}{k^2 v_p^2} Z \left(\frac{\omega}{k v_p^2} \right) + 1 - \frac{\omega_e^2}{c^2 k^2} \left[1 + \frac{\omega_e^2}{c^2 k^2} \right]^{-1} = 0
\]

(3)

where \(\omega_\alpha = \left(\frac{4 \pi n_\alpha e^2}{m_\alpha} \right)^{1/2} \) is the plasma frequency and \(v_\alpha = \left(\frac{T_\alpha}{m_\alpha} \right)^{1/2} \) is the thermal speed of species \(\alpha \) (e: electron, b: barium; p: proton), \(k = k_x \hat{e}_x + k_z \hat{e}_z \), \(\theta = \tan^{-1}(k_z/k_x) \), \(v = v_{px} \hat{e}_x \), \(\Omega_e = eB/m_e c \) is the electron cyclotron frequency, \(\beta_e = \frac{8 \pi n_e T_e B}{\Omega_e} \) and \(Z'(\zeta) = -Z(1 + \zeta Z(\zeta)) \) with \(Z \) the plasma dispersion function. In writing (3) we have assumed \(k \cdot B = 0 \) (i.e., \(k_y = 0 \)) so that we are only considering flute modes, and have assumed that the ions are unmagnetized (valid for \(\omega > \Omega_p, b \) and \(k p, b >> 1 \) where \(\rho_{p,b} \) is the mean ion Larmor radius of the protons and barium ions, respectively) and the electrons are magnetized. We comment that retaining a finite \(k_y \) can generate the modified two stream instability via \(V_e \) (McBride et al., 1972). However, this instability produces little momentum coupling between the counterstreaming ions; it primarily heats electrons and generates electron tails parallel to \(B \).

We can simplify (3) by assuming cold ions, i.e., \(v_b << \omega/k - v_{px} \cos \theta \) and \(v_p << \omega/k \). In this limit \(Z(\zeta) = -1/\zeta - 1/2\zeta^2 \) and (3) can be written as

\[
\frac{\alpha \omega_{Hp}^2}{(\omega - k v_p)^2} + \frac{\omega_{Hp}^2}{\omega^2} = 1 - \frac{\omega_0^2}{k^2 c^2}
\]

(4)

where the proton lower hybrid frequency is

\[
\omega_{Hp}^2 = \omega_p^2 \left(1 + \frac{\omega^2}{\Omega_e^2} \right)^{-1}
\]

(5a)

\[
\alpha = \frac{n_b}{n_p} \frac{m_p}{m_b}
\]

(5b)

and

\[
\omega_0^2 = \frac{\omega_e^2}{\Omega_e^2} \frac{\omega_e^2}{1 + \omega_e^2/\Omega_e^2} \left(1 + \beta_e \right)
\]

(5c)
Notice that as long as \(\frac{n_b}{n_p} < \frac{m_b}{m_p} = 137 \) then \(\alpha < 1 \) and the small term in the dispersion relation is due to barium ions. This implies that when \(\frac{n_b}{n_p} < 137 \) the excited waves will be proton, rather than barium, lower hybrid waves.

For \(\alpha < 1 \) and \(\omega_0^2 << \omega^2 \), the most unstable waves have the following approximate frequency and wavenumber

\[
\omega_r = \omega_{Hp} \quad (6a)
\]

\[
\gamma = 0.69 \, \alpha^{1/3} \omega_{Hp} \quad (6b)
\]

\[
k \cos \theta = \frac{\omega_{Hp}}{V_p} \quad (6c)
\]

On the other hand, for values of \(\omega_0^2/\omega^2 \) sufficiently large, the modes can be stabilized because of electromagnetic effects (Papadopoulos et al., 1971; Lampe et al., 1975). The criterion for instability is given by

\[
\cos \theta < \frac{\omega_{Hp}}{V_p} \omega_e (1 + \alpha^{1/3})^{3/2} (1 + \beta_e)^{1/2} = \cos \theta_0. \quad (7)
\]

For the parameters of interest, we note that \(\alpha << 1 \) and \(\beta_e << 1 \) and (7) can be rewritten as

\[
\cos \theta < \frac{V_{Ap}}{V_p} \left(1 + \frac{n_b}{n_p}\right)^{-1} \quad (8)
\]

where \(V_{Ap} = B/(4\pi n_p m_p)^{1/2} \) is the local Alfvén velocity associated with the protons. Notice that the angle \(\theta_0 \) separates the angular region of unstable modes from stable modes in the plane perpendicular to the magnetic field (Fig. 6). For values of the RHS of (8) which are comparable to or larger than unity, the entire k-space plane is unstable, and as shown in Lampe et al. (1975), complete ion-ion momentum coupling accompanies the interaction. The instability weakens substantially when the stable region around \(V_p \) increases (i.e., \(\theta_0 \) increases) leaving only weak off angle modes unstable.

To better illustrate the linear properties of the counterstreaming ion-ion instability, we present numerical solutions of (3) for parameters relevant to the AMPTE release of Dec. 27, 1984. In Figs. 7 and 8 we take
$m_b/m_P = 137, \nu_p/V_{px} = 0.3, \nu_b/V_{px} = 0.01,$ and $\beta_e = 0.0$. The most significant variations are for n_b/n_p and V_{Ap}/V_{px} so we present results for a range of values for these parameters. In Figs. 7 and 8 we plot γ_M/ω_{Hp} vs V_{Ap}/V_{px} for $n_b/n_p = 0.5, 2.0, 5.0$ and 10.0 (or $\alpha = 3.7 \times 10^{-3}, 1.5 \times 10^{-2}, 3.7 \times 10^{-2},$ and 7.4×10^{-2}, respectively). In Fig. 7 we consider $\theta = 0^\circ$, while in Fig. 8 we consider $\theta = 60^\circ$. Here γ_M is the maximum growth rate as a function of k. We have not plotted ω_r or k but note that (6a) and (6c) are in reasonable agreement with the numerical values. In Fig. 7 we note the following. First, in the limit $V_{Ap}/V_{px} \gg 1$, the growth rate asymptotes to its maximum value which is approximately given by (6b) [e.g., for $n_b/n_p = 0.5$ (\alpha = 3.7 \times 10^{-3})$ we obtain $\gamma_M/\omega_{Hp} = 0.108$]. Also, in this limit we note that the maximum growth rate increases as n_b/n_p increases. Second, as V_{Ap}/V_{px} decreases the growth rate decreases; for sufficiently small values of V_{Ap}/V_{px} the modes are stabilized because of electromagnetic effects. However, note that the critical value of V_{Ap}/V_{px} which stabilizes the modes decreases with decreasing n_b/n_p (e.g., for $V_{Ap}/V_{px} = 2$ the mode is stable for $n_b/n_p = 10.0$ but unstable for $n_b/n_p = 0.5$). This is consistent with (8) which, for $\theta = 0$, can be written as $V_{Ap}/V_{px} > (1 + n_b/n_p)$.

We also note that the critical value of V_{Ap}/V_{px} predicted by (8) is somewhat greater than is found from Fig. 7. That is, for $n_b/n_p = 0.5, 2.0, 5.0,$ and 10.0, (8) predicts $\gamma = 0$ for $V_{Ap}/V_{px} = 1.5, 3.0, 6.0,$ and $11.0,$ respectively; however, Fig. 7 shows that $\gamma = 0.01 \omega_{Hp}$ for $V_{Ap}/V_{px} = 1.2, 2.0, 3.6,$ and $5.5.$ The reason for this is that (8) is based upon the assumption of $\omega = \nu_p$ protons ($\omega >> k\nu_p$) but for the parameters used in Fig. 7 (i.e., $\nu_p/V_{px} = 0.3$) this assumption breaks down as V_{Ap}/V_{px} decreases and thermal effects allow the modes to grow in the stable "cold" plasma regime.

In Fig. 8 we plot γ_M/ω_{Hp} vs. V_{Ap}/V_{px} for the same parameters as in Fig. 7 but we consider $\theta = 60^\circ$. The basic features of Fig. 8 are the same as Fig. 7. However, two points are worth mentioning. First, and most important, unstable modes exist for values of V_{Ap}/V_{px} that lead to stable modes in the case of $\theta = 0$. In fact, for all values of n_b/n_p considered, strong growth (i.e., $\gamma > 0.01 \omega_{Hp}$) exists for $V_{Ap}/V_{px} > 2$, and in the case of $n_b/n_p = 0.5$ exists for $V_{Ap}/V_{px} > 0.5$. Again, this behavior is consistent with (8). Second, we note that for the same values of n_b/n_p, the maximum growth rates are smaller for $\theta = 60^\circ$ than $\theta = 0^\circ$. This appears to be inconsistent with (6b) which indicates the maximum growth rate does
not depend upon angle. The reason for the discrepancy is the effect of thermal protons which have a stabilizing influence because of ion Landau damping. Finally, we note that we have chosen \(\theta = 60^\circ \) because nonlinear studies have demonstrated that if the angular region of unstable waves initially satisfied the condition \(\cos \theta < \cos \theta_0 = 0.5 \) (i.e., \(\theta_0 = 60^\circ \)) then the entire \(k \)-plane subsequently becomes unstable resulting in complete momentum coupling between the ion streams. If \(\cos \theta > 0.5 \) then the situation, although mildly unstable, is quickly stabilized by finite temperature effects with little momentum coupling.

IV. COMPARISON BETWEEN THEORY AND OBSERVATIONS

We now proceed to analyze the observations with the theoretical models described in Section III. Our approach is to examine in detail the key times marked as 1-4 in Figs. 2 and 3. Table 1 gives the values of the important plasma parameters. We note that all of the data are not well known and we have made estimates of some values. Also, in comparing the theoretical conditions for instability with experimentally observed parameters, one does not expect to find "grossly" unstable conditions since the turbulence observed is generally in the nonlinear regime (i.e., near marginal stability).

The slowing down of the solar wind begins at the point marked 1 in Figs. 2 and 3. From Table 1 we see that \(n_b/n_p = 0.2 \) and \(V_{Ap}/V_p = 0.4 \); from Fig. 8 note that these conditions are marginally stable for the ion-ion instability. Therefore the beginning of the interaction is consistent with the minimum condition for a momentum coupling cross field, counterstreaming proton-barium instability. The theoretically expected electrostatic waves cover the range between \(f_{Hp} = 10 \) Hz and \(f_{ce} = 560 \) Hz, with most of the energy confined in the 15-40 Hz region. At the time marked 2 (UT 12:35:15) the magnetic field compression starts and there is an attendant increase in \(V_{Ap}/V_{px} \). Thus, this leads to conditions more favorable to instability and we expect the entire \(k \)-plane to become unstable leading to strong momentum coupling. Figures 2 and 3 seem to confirm this. The range of the unstable waves corresponds to 22 Hz - 1.6 kHz with the most of the energy in the 22 - 60 Hz region. Notice that between times marked 1 - 3, the value of \(V_{pz} \) is relatively unchanged and remains close to zero, while \(V_{px} \) is reduced.
sharply. The ion-ion driven interaction seems to terminate at the time marked 3 (UT 12:34:27). At this time the solar wind speed is \(V_{px} = 250 \) km/sec; the protons have lost more than 80% of their initial energy. We comment that the proton temperature is of the order \(5 \times 10^6 \) °K so that the proton thermal speed is \(v_p = 200 \) km/sec and the wave modes are subsequently suppressed because of proton Landau damping. This is consistent with the wave measurements shown in Fig. 4. Following the time marked 3 (UT 12:34:27) till 4 (UT 12:33:50) the value of \(V_{px} \) continues to decrease to almost zero. However, the data are indicative of a different interaction. The slowing down is characterized by very weak electrostatic activity and most important, by an increase in the value of \(V_{pz} \) which reaches 250 km/sec when \(V_{px} \) approaches zero. This is the type of interaction expected from Larmor coupling described by (1) and (2) for \(v^* < q_p \). It is basically a gyration of the protons about the magnetic field which is piled up in the front of the barium cloud. This stage is followed by entry into the magnetic cavity. We can associate the observed sunward flux of 0.5 keV protons with the thermal expansion of the protons when \(V_{pz} \) became small.

The detailed spectrum presented in Fig. 4 allows a further comparison with theoretical concepts. As noted before, the instability saturates by trapping. For the proton-barium situation and with \(a << 1 \) the phase velocity \(V_{ph} \) of the unstable waves lies near the barium flow velocity (see Fig. 6). In the solar wind reference frame we note that (Lampe et al., 1975)

\[
V_{ph} = V_{px} \left(1 - 2^{-4/3} a^{1/3}\right) \tag{9}
\]

Waves growing with this phase velocity will trap protons when their potential is of the order of

\[
e\Phi = \frac{1}{2} m_p v_{ph}^2 = \frac{1}{2} m_p V_{px}^2 \tag{10a}
\]

and barium when

\[
e\Phi = \frac{1}{2} m_b (g/2)^{2/3} v_{pz}^2. \tag{10b}
\]

By comparing (10a) and (10b) we find that as long as
the condition for proton trapping (10a) will be reached first and will saturate the instability. Since in our case (11) is satisfied, we expect that the instability will saturate by trapping the protons. This is similar to the saturation of the Buneman instability studied by Davidson et al. (1970) which saturates by trapping electrons rather than protons, despite the fact that \(V_{ph} \) is near the proton beam. The amplitude of the electric field required to trap the protons is

\[
E = \frac{1}{4} \frac{m_p V_{px}}{e} \omega_{Hp}.
\]

(12)

For the parameters given in Table I (i.e., \(V_{px} = 250 - 400 \) km/sec and \(\omega_{Hp} = 107 - 145 \) sec\(^{-1} \)) we find that (12) predicts \(E = 67 - 145 \) mV/m. Gurnett et al. (1985) report values of \(E = 140 \) mV/m while noting that the 10 Hz channel was saturated. Thus, these field values are consistent with the saturation by trapping. Note that the peak spectral density in Fig. 5 is \(\leq 20 \) Hz which is consistent with theoretical values. The value of \(v^* \) can be estimated on the basis of the wave spectral energy density \(S(\omega) \) in the lower hybrid region, as given in Fig. 4. It is approximately given by (Papadopoulos, 1977)

\[
v^* = \frac{D}{(V_{px} - V_{ph})^2} = \frac{e^2}{m_p^2} \frac{S(\omega = \omega_{Hp})}{V_{px}^2} = 100 \left(\frac{100 \text{ km/sec}}{V_{px}} \right)^2 \left(\frac{S(\omega = \omega_{Hp})}{10^{-4} \text{ V}^2/\text{m}^2/\text{Hz}} \right)
\]

where \(D \) is the diffusion coefficient in velocity space. For the measured values at 12:34:27 and \(S(\omega = \omega_{Hp}) \) given by Fig. 4 we find \(v^* = 12 - 20 \) so that \(v^* \gg Q_p, Q_b \).

V. SUMMARY AND CONCLUSIONS

We have presented an analysis of previously reported observations on the solar wind-barium interaction associated with the AMPTE artificial comet release of Dec. 27, 1984. Based on these results we have argued that
the solar wind couples momentum (and energy) to the barium ions through both laminar and turbulent processes [see (1)]. The laminar forces acting on the particles are the laminar electric and magnetic fields; the turbulent forces are associated with the intense electrostatic wave activity. This wave activity has been shown to be caused by a cross-field proton-barium ion streaming instability. The observed wave frequencies and saturated amplitudes are consistent with our theoretical analysis.

The following picture emerges. After the barium is released from the canisters, it expands outward and is photolonized. The expanding barium cloud forms a compressed density and magnetic field region on the sunward side of the expansion. As the solar wind protons stream into this region they first interact with the barium ions to generate relatively weak off-angle electrostatic turbulence. This occurs when \(\frac{n_B}{n_p} \leq 1 \) and \(\frac{V_{ap}}{V_{px}} \leq 1 \). This turbulence acts to couple the solar wind protons and barium ions, and the protons slow down (see in Fig. 1 between marks 1 and 2). As the protons move deeper into barium ion shells they encounter the compressed magnetic field region (which increases the local proton Alfvén speed) and a more dense barium ion region (which increases \(\frac{n_B}{n_p} \)). These two factors allow stronger wave growth to occur; this corresponds to the intense wave activity observed between the times marked 2 and 3 on Fig. 3. This turbulence causes the solar wind protons to slow down even more, and also produces proton and barium ion heating. Finally, the protons undergo a gyration about the compressed magnetic field which is indicated by a decrease in \(V_{px} \) and an increase in \(V_{pz} \). We expect a similar type of interaction to occur in the solar wind-comet interaction. This topic is currently under study and will be reported elsewhere.

There are two more points that we would like to address. The first is about the electron heating and electron acceleration. The observed electron heating seems consistent with adiabatic heating. However, in addition to the local heating, the UK spacecraft observed electron fluxes with energy larger than 100 eV, i.e., the period between our marks 1-3. This is the period during which the lower hybrid instability was operating. For the flute mode (\(k_y = 0 \)) instability discussed above, the electrons are adiabatic. However, field aligned suprathermal electron tails can be produced by the non-flute modes (\(k_y \neq 0 \)), corresponding to the
electron-ion modes mentioned in Section III. These modes have frequencies typically 5-6 f_{Hp} and saturate at a lower level. The details of this interaction will be discussed elsewhere. It is sufficient here to note that the existence of wave frequencies in the 200 Hz to 1 kHz range is consistent with the model and with the electron fluxes observed by the UK spacecraft. Second, although the solar wind barium interaction results in complete momentum coupling, the barium has not been picked up by the solar wind during the 3-4 min of the measurements. This is due to the large barium mass and density which would require times of the order of 8-10 min to be picked up. This should be contrasted with the lithium releases for which pick up occurred at much shorter times.

The AMPTE data presented supports both the laminar and turbulent coupling mechanisms that have been proposed for debris-air coupling following a HANE (Longmire, 1963; Lampe et al., 1975; Goodrich et al., 1985). To our knowledge, this is the only experimental data which unambiguously demonstrates the various coupling mechanisms, and lends strong support to the HANE coupling models developed at NRL. Furthermore, it is indicative of the type of data that would be valuable in understanding the DNA/NRL early time experiment; well resolved data on the evolution of the magnetic field, particles, and wave activity. Finally, the good agreement between theory and data suggests that other data involving the coupling of counterstreaming plasmas be examined; specifically, the recent data obtained from the space missions to Halley's comet should be investigated with regard to the physics of HANEs.

Acknowledgment

We appreciate valuable discussions on the AMPTE observations with Drs. G. Haerendel, G. Paschmann, S.M. Krimigis, and D.A. Gurnett. This research has been supported by NASA (K.P. and A.T.Y.L.), and ONR and DNA (J.D.H.).
REFERENCES

TABLE I
Plasma Parameters for the 27 Dec. 1984 AMPTE Release

<table>
<thead>
<tr>
<th>UT</th>
<th>V<sub>px</sub> (km/sec)</th>
<th>V<sub>pz</sub> (km/sec)</th>
<th>B (Y)</th>
<th>n<sub>e</sub> (cm<sup>-3</sup>)</th>
<th>n<sub>p</sub> (cm<sup>-3</sup>)</th>
<th>n<sub>Ba</sub> (cm<sup>-3</sup>)</th>
<th>f<sub>Hp</sub> (hz)</th>
<th>V<sub>Ap</sub> (km/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:36:20</td>
<td>-550</td>
<td>0</td>
<td>20</td>
<td>6*</td>
<td>5</td>
<td>1*</td>
<td>12</td>
<td>195</td>
</tr>
<tr>
<td>12:35:15</td>
<td>-400</td>
<td>0</td>
<td>50</td>
<td>20*</td>
<td>10*</td>
<td>10*</td>
<td>23</td>
<td>345*</td>
</tr>
<tr>
<td>12:34:27</td>
<td>-250</td>
<td>-50</td>
<td>85</td>
<td>110</td>
<td>10*</td>
<td>100</td>
<td>17</td>
<td>586*</td>
</tr>
<tr>
<td>12:33:50</td>
<td>-75</td>
<td>-250</td>
<td>130</td>
<td>3010</td>
<td>10*</td>
<td>3000</td>
<td>5</td>
<td>896*</td>
</tr>
</tbody>
</table>

*Estimate
Fig. 1 - Schematic of the spacecraft positions and magnetic field structure for the Dec. 27, 1984 AMPTE release.
Fig. 2 - Particle and field data (from Haerendel et al., 1986).
(a) Electron density (cm\(^{-3}\)). (b) Solar wind proton velocity (km/sec) in the x-direction (GSE coordinates). (c) Solar wind proton velocity (km/sec) in the y-direction (GSE coordinates). (d) Magnetic field (nT).
Fig. 3 – Particle, field, and electric field wave data (from Gurnett et al., 1985). The barium ion density is based upon emissions at the plasma frequency. Note the intense, low frequency (f ~ 30 Hz - 1 kHz) electrostatic waves during between the times marked 2 and 3.
Fig. 4 — Electric field spectral density as a function of frequency for times UT 12:34:27 and UT 12:33:16 (from Gurnett et al., 1985). Note that the most intense waves for UT 12:34:27 (marked 3 on Figs. 2 and 3) are low frequency (i.e., f ~ 30 Hz).
Fig. 5 - Local velocity distributions of the solar wind protons, barium ions, and electrons in the solar wind frame of reference.
Fig. 6 - Schematic of unstable waves driven by the magnetized ion-ion instability in the \(k_x - k_z \) plane. The relative drift between ions is in the \(x \)-direction.
Fig. 7 - Plot of $\frac{\gamma_M}{\omega_{Hp}}$ vs $\frac{V_{ap}}{V_{px}}$ for $\theta = 0^\circ$ and $\frac{n_b}{n_p} = 0.5, 2.0, 5.0, 10.0$. Here γ_m is the maximum growth rate with respect to the wavenumber k.
Fig. 8 - Plot of $\frac{\gamma_M}{\omega_{Hp}}$ vs. V_{Ap}/V_{px} for $\theta = 60^\circ$ and $n_b/n_p = 0.5, 2.0, 5.0, 10.0$. Note that for these parameters ($\theta = 60^\circ$), the modes are excited for lower values of V_{Ap}/V_{px} than in the previous case ($\theta = 0^\circ$), consistent with (8).
DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

ASSISTANT SECRETARY OF DEFENSE
COMM, CMD, CONT 7 INTELL
WASHINGTON, DC 20301

DIRECTOR
COMMAND CONTROL TECHNICAL CENTER
PENTAGON RM BE 685
WASHINGTON, DC 20301
01CY ATTN C-650
01CY ATTN C-312 R. MASON

DIRECTOR
DEFENSE ADVANCED RSCH PROJ AGENCY
ARCHITECT BUILDING
1400 WILSON BLVD.
ARLINGTON, VA 22209
01CY ATTN NUCLEAR
01CY ATTN STRATEGIC TECH OFFICE

DEFENSE COMMUNICATION ENGINEER CENTER
1860 WISHLIE AVENUE
RESTON, VA 22090
01CY ATTN CODE RS10
01CY ATTN CODE RS12

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, DC 20305
01CY ATTN STVL
01CY ATTN TITL
01CY ATTN DOST
03CY ATTN RAAE

COMMANDER
FIELD COMMAND,
DEFENSE NUCLEAR AGENCY
KIRTLAND, AFB, NM 87115
01CY ATTN FCPF

DEFENSE NUCLEAR AGENCY
SAO/DNA
BUILDING 20676
KIRTLAND AFB, NM 87115
01CY D.C. THORNBURG

DIRECTOR
BMD ADVANCED TECH CTR
HUNTSVILLE OFFICE
P.O. BOX 1500
HUNTSVILLE, AL 35807
01CY ATTN ATC-T MELVIN T. CAPPS
01CY ATTN ATC-Q W. DAVIES
01CY ATTN ATC-R DON RUSS

DIRECTOR
INTERSERVICE NUCLEAR WEAPONS SCHOOL
KIRTLAND AFB, NM 87115
01CY ATTN DOCUMENT CONTROL

DIRECTOR
JOINT PROGRAM MANAGEMENT OFFICE
WASHINGTON, DC 20330
01CY ATTN J-3 WWMCCS EVALUATION OFFICE

DIRECTOR
JOINT STRAT TGT PLANNING STAFF
OFFUTT AFB
OMAHA, NE 68112
01CY ATTN JSTPS/JLKS
01CY ATTN JPST G. GOETZ

CHIEF
LIVERMORE DIVISION FLD COMMAND DNA
DEPARTMENT OF DEFENSE
LAWRENCE LIVERMORE LABORATORY
P.O. BOX 508
LIVERMORE, CA 94550
01CY, ATTN FCPRL

COMMANDANT
NATO SCHOOL (SHAPE)
APO NEW YORK 09172
01CY ATTN U.S. DOCUMENTS OFFICER

UNDER SECY OF DEF FOR RSCH & ENGRG
DEPARTMENT OF DEFENSE
WASHINGTON, DC 20301
01CY ATTN STRATEGIC & SPACE SYSTEMS (OS)

COMMANDER/DIRECTOR
ATMOSPHERIC SCIENCES LABORATORY
U.S. ARMY ELECTRONICS COMMAND
WHITE SANDS MISSILE RANGE, NM 88002
01CY ATTN DELAS-EO, F. WILES

DIRECTOR
U.S. ARMY BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MD 21005
01CY ATTN TECH LIBRARY,
EDWARD BAICY

COMMANDER
U.S. ARMY SATCOM AGENCY
FT. MONMOUTH, NJ 07703
01CY ATTN DOCUMENT CONTROL
DEPARTMENT OF DEFENSE CONTRACTORS

AEROSPACE CORPORATION
P.O. BOX 92957
LOS ANGELES, CA 90009
01CY ATTN L. GARFUNKEL
01CY ATTN T. SALMI
01CY ATTN V. JOSEPHSON
01CY ATTN S. BOVER
01CY ATTN D. OLSEN

ANALYTICAL SYSTEMS ENGINEERING CORP
5 OLD CONCORD ROAD
BURLINGTON, MA 01803
01CY ATTN RADIO SCIENCES

AUSTIN RESEARCH ASSOC., INC.
1901 RUTLAND DRIVE
AUSTIN, TX 78758
01CY ATTN L. SLOAN
01CY ATTN R. THOMPSON

BERKELEY RESEARCH ASSOCIATES, INC.
P.O. BOX 983
BERKELEY, CA 94701
01CY ATTN J. WORKMAN
01CY ATTN C. PRETTIE
01CY ATTN S. BRECHT

BOEING COMPANY, THE
P.O. BOX 3707
SEATTLE, WA 98124
01CY ATTN G. KEISTER
01CY ATTN D. MURRAY
01CY ATTN G. MALL
01CY ATTN J. KENNEY

CHARLES STARK DRAPER LABORATORY, INC.
55 TECHNOLOGY SQUARE
CAMBRIDGE, MA 02139
01CY ATTN J. B. COX
01CY ATTN J. P. GILMORE

GTE SYLVANIA, INC.
ELECTRONICS SYSTEMS GRP-EASTERN DIV
77 A STREET
NEEDHAM, MA 02194
01CY ATTN DICK STEINHOF

HSS, INC.
2 ALFRED CIRCLE
BEDFORD, MA 01730
01CY ATTN DONALD HANSEN

ILLINOIS, UNIVERSITY OF
137 COBLE HALL
150 DAVENPORT HOUSE
CHAMPAIGN, IL 61820
(ALL CORRESP ATTN DAN MCCLELLAND)
01CY ATTN K. YEH

INSTITUTE FOR DEFENSE ANALYSES
1801 NO. BEAUREGARD STREET
ALEXANDRIA, VA 22311
01CY ATTN J. M. KEIN
01CY ATTN ERNEST BAUER
01CY ATTN HANS WOLFARD
01CY ATTN JOEL BENGSTON

COMSAT LABORATORIES
22300 COMSAT DRIVE
CLARSKSBURG, MD 20871
01CY ATTN G. HYDE

CORNELL UNIVERSITY
DEPARTMENT OF ELECTRICAL ENGINEERING
ITHACA, NY 14850
01CY ATTN D. T. FARLEY, JR.

ELECTROSPACE SYSTEMS, INC.
BOX 1359
RICHARDSON, TX 75080
01CY ATTN M. LOGSTON
01CY ATTN SECURITY (PAUL PHILLIPS)

EOS TECHNOLOGIES, INC.
606 Wilshire Blvd.
Santa Monica, CA 90401
01CY ATTN C. B. GABBARD
01CY ATTN R. LELEVER

ESL, INC.
495 JAVA DRIVE
SUNNYVALE, CA 94086
01CY ATTN D. T. FARLEY, JR.

GENERAL ELECTRIC COMPANY
SPACE DIVISION
VALLEY FORGE SPACE CENTER
GODDARD BLVD KING OF PRUSSIA
P.O. BOX 8555
PHILADELPHIA, PA 19101
01CY ATTN M. H. BORTNER

GENERAL ELECTRIC TECH SERVICES
CO., INC.
HMES
COURT STREET
SYRACUSE, NY 13201
01CY ATTN G. MILLMAN

GEOPHYSICAL INSTITUTE
UNIVERSITY OF ALASKA
FAIRBANKS, AK 99701
(ALL CLASS ATTN: SECURITY OFFICER)
01CY ATTN T. N. DAVIS (UNCLASS ONLY)
01CY ATTN NEAL BROWN (UNCLASS ONLY)

KAMAN TEMPO-CENTER FOR ADVANCED
STUDIES
816 STATE STREET (P.O DRAWER QQ)
SANTA BARBARA, CA 93102
01CY ATTN DASIA
01CY ATTN W. S. KNAPP
01CY ATTN W. C. MAHARA
01CY ATTN B. GAMBILL

LINKABIT CORP
10453 ROSELLE
SAN DIEGO, CA 92121
01CY ATTN IRWIN JACOBS

LOCKHEED MISSILES & SPACE CO., INC
P.O. BOX 504
SUNNYVALE, CA 94088
01CY ATTN DEPT 60-12
01CY ATTN D. R. CHURCHILL
SRI INTERNATIONAL
333 RAVENSWOOD AVENUE
MENLO PARK, CA 94025
01CY ATTN J. CASPER
01CY ATTN DONALD NEILSON
01CY ATTN ALAN BURNS
01CY ATTN G. SMITH
01CY ATTN R. TSUNODA
01CY ATTN DAVID A. JOHNSON
01CY ATTN WALTER G. CHESNUT
01CY ATTN CHARLES L. RINO
01CY ATTN WALTER JAYE
01CY ATTN J. VICKREY
01CY ATTN RAY L. LEADABRAND
01CY ATTN G. CARPENTER
01CY ATTN G. PRICE
01CY ATTN R. LIVINGSTON
01CY ATTN V. GONZALES
01CY ATTN D. MCDANIEL

TECHNOLOGY INTERNATIONAL CORP
75 WIGGINS AVENUE
BEDFORD, MA 01730
01CY ATTN W.P. BOQUIST

TRW DEFENSE & SPACE SYS GROUP
ONE SPACE PARK
REDONDO BEACH, CA 90278
01CY ATTN R. K. PLEBUCHE
01CY ATTN S. ALTSCHULER
01CY ATTN D. DEE
01CY ATTN D. STOCKWELL
SMTF/1575

VISIDYNE
SOUTH BEDFORD STREET
BURLINGTON, MA 01803
01CY ATTN W. REIDY
01CY ATTN J. CARPENTER
01CY ATTN C. HUMPHREY

UNIVERSITY OF PITTSBURGH
PITTSBURGH, PA 15213
01CY ATTN: W. ZABUSKY
PLEASE DISTRIBUTE ONE COPY TO EACH OF THE FOLLOWING PEOPLE (UNLESS OTHERWISE NOTED)

NAVAL RESEARCH LABORATORY
WASHINGTON, DC 20375
DR. M. GURSKY - CODE 4100
DR. J.M. GOODMAN - CODE 4180
DR. P. RODRIGUEZ - CODE 4750
DR. P. MANGE - CODE 4101
DR. R. MEIER - CODE 4140
CODE 2628 (22 COPIES)
CODE 1220

A.F. GEOPHYSICS LABORATORY
L.G. HANSCOM FIELD
BEDFORD, MA 01731
DR. T. ELKINS
DR. W. SNIDER
MRS. R. SAGALYN
DR. J.M. FORBES
DR. T.J. KENESHEA
DR. W. BURKE
DR. H. CARLSON
DR. J. JASPERSE
DR. F.J. RICH
DR. N. MAYNARD
DR. D.N. ANDERSON

BOSTON UNIVERSITY
DEPARTMENT OF ASTRONOMY
BOSTON, MA 02215
DR. J. AARONS
DR. M. MENDILLO

CORNELL UNIVERSITY
ITHACA, NY 14850
DR. B. FEJER
DR. R. SUDAN
DR. D. FARLEY
DR. M. KELLEY

HARVARD UNIVERSITY
HARVARD SQUARE
CAMBRIDGE, MA 02138
DR. M.B. McELROY

INSTITUTE FOR DEFENSE ANALYSIS
1801 N. BEAUREGARD STREET
ARLINGTON, VA 22211
DR. E. BAUER

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PLASMA FUSION CENTER
CAMBRIDGE, MA 02139
LIBRARY, NW16-252
DR. T. CHANG
DR. R. LINDZEN

NASA
GODDARD SPACE FLIGHT CENTER
GREENBELT, MD 20771
DR. N. MAYNARD (CODE 696)
DR. R.P. BENSON
DR. K. MAEDA
DR. S. CURTIS
DR. M. DUBIN

COMMANDER
NAVAL AIR SYSTEMS COMMAND
DEPARTMENT OF THE NAVY
WASHINGTON, DC 20360
DR. T. CZUBA

COMMANDER
NAVAL OCEAN SYSTEMS CENTER
SAN DIEGO, CA 92152
DR. R. ROSE - CODE 5321

NOAA
DIRECTOR OF SPACE AND ENVIRONMENTAL LABORATORY
BOULDER, CO 80302
DR. A. GLENN JEAN
DR. G.W. ADAMS
DR. K. DAVIES
DR. R. P. DONNELLY

OFFICE OF NAVAL RESEARCH
800 NORTH QUINCY STREET
ARLINGTON, VA 22217
DR. G. JOINER

LABORATORY FOR PLASMA AND FUSION ENERGIES STUDIES
UNIVERSITY OF MARYLAND
COLLEGE PARK, MD 20742
JHAN VARYAN HELLMAN,
REFERENCE LIBRARIAN
<table>
<thead>
<tr>
<th>Institution</th>
<th>Address</th>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pennsylvania State University</td>
<td>University Park, PA 16802</td>
<td>J.S. Nisbet</td>
</tr>
<tr>
<td>University of Illinois</td>
<td>Dept. of Electrical Engineering</td>
<td>R. Divany</td>
</tr>
<tr>
<td>Princeton University</td>
<td>Plasma Physics Laboratory</td>
<td>F. Perkins</td>
</tr>
<tr>
<td>Stanford University</td>
<td>Stanford, CA 94305</td>
<td>R. Livingston</td>
</tr>
<tr>
<td>SRI International</td>
<td>333 Ravenswood Avenue</td>
<td>L.C. Heimerl</td>
</tr>
<tr>
<td>Stanford University</td>
<td>Stanford, CA 94305</td>
<td>R. Hard</td>
</tr>
</tbody>
</table>
IONOSPHERIC MODELING DISTRIBUTION LIST
(UNCLASSIFIED ONLY)

PLEASE DISTRIBUTE ONE COPY TO EACH OF THE FOLLOWING PEOPLE (UNLESS OTHERWISE NOTED)

NAVAL RESEARCH LABORATORY
WASHINGTON, DC 20375
- DR. M. CURSKY - CODE 4100
- DR. J. M. GOODMAN - CODE 4180
- DR. P. RODRIGUEZ - CODE 4750
- DR. P. MANOE - CODE 4101
- DR. R. MEIER - CODE 4140
- CODE 2628 (22 COPIES)
- CODE 1220

A.F. GEOPHYSICS LABORATORY
L.G. HANSCOM FIELD
BEDFORD, MA 01731
- DR. T. ELKINS
- DR. W. SWIDER
- MRS. R. SAGALYN
- DR. J. M. FORBES
- DR. T. J. KENESHEA
- DR. W. BURKE
- DR. H. CARLSON
- DR. J. JASPERSE
- DR. F. J. RICH
- DR. N. MAYNARD
- DR. D. W. ANDERSON

BOSTON UNIVERSITY
DEPARTMENT OF ASTRONOMY
BOSTON, MA 02215
- DR. J. AARONS
- DR. M. MENDILLO

CORNELL UNIVERSITY
ITHACA, NY 14850
- DR. B. FEJER
- DR. R. SUDAN
- DR. D. FARLEY
- DR. M. KELLEY

HARVARD UNIVERSITY
HARVARD SQUARE
CAMBRIDGE, MA 02138
- DR. M.B. MCELROY

INSTITUTE FOR DEFENSE ANALYSIS
1801 N. BEAUREGARD STREET
ARLINGTON, VA 22211
- DR. E. BAUER

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PLASMA FUSION CENTER
CAMBRIDGE, MA 02139
- LIBRARY, MW16-242
- DR. T. CHANG
- DR. R. LINDZEN

NASA
GODDARD SPACE FLIGHT CENTER
GREENBELT, MD 20771
- DR. R. MAYNARD (CODE 696)
- DR. R.F. BENSON
- DR. K. MAEDA
- DR. S. CURTIS
- DR. M. DUBIN

COMMANDER
NAVAL AIR SYSTEMS COMMAND
DEPARTMENT OF THE NAVY
WASHINGTON, DC 20360
- DR. T. CZUBA

COMMANDER
NAVAL OCEAN SYSTEMS CENTER
SAN DIEGO, CA 92152
- MR. R. ROSE - CODE 5321

NOAA
DIRECTOR OF SPACE AND ENVIRONMENTAL LABORATORY
BOULDER, CO 80302
- DR. A. GLENN JEAN
- DR. G.W. ADAMS
- DR. K. DAVIES
- DR. R. F. DONNELLY

OFFICE OF NAVAL RESEARCH
800 NORTH QUINCY STREET
ARLINGTON, VA 22217
- DR. G. JOINTER

LABORATORY FOR PLASMA AND FUSION ENERGIES STUDIES
UNIVERSITY OF MARYLAND
COLLEGE PARK, MD 20742
- JHAN VARIAN HELLMAN,
 REFERENCE LIBRARIAN
END

12-86

DTTC