<table>
<thead>
<tr>
<th>1/2</th>
</tr>
</thead>
</table>

| A KINETIC THEORY DEVELOPMENT OF THE EQUATIONS OF MOTION |
| OF A DIATOMIC GAS(^u) |

| AIR FORCE WRIGHT AERONAUTICAL LABS |
| WRIGHT-PATTERSON AFB OH |
| W 2 STRANG SEP 86 |

| UNCLASSIFIED |
| AFWAL-TR-86-3085 |

| F/G 20/13 |
| ML |
A KINETIC THEORY DEVELOPMENT OF THE EQUATIONS OF
MOTION OF A DIATOMIC GAS

William Z. Strang, First Lieutenant, USAF
Aerodynamics and Airframe Branch
Aeromechanics Division

September 1986

Final Report for Period 1 August 1985 - 5 March 1986

Approved for public release; distribution unlimited.

FLIGHT DYNAMICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6553
NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

W.Z. STRANG, ILT, USAF

T.J. KENT, MAJ, USAF
Chief, Aerodynamics and Airframe Branch
Aeromechanics Division

FOR THE COMMANDER

DONALD A. DREESBACH
Colonel, USAF
Chief, Aeromechanics Division
Flight Dynamics Laboratory

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFWAL/F1MM, W-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.
Title
A Kinetic Theory Development of the Equations of Motion of a Diatomic Gas

Personal Author
William Z. Strang

Type of Report
Final

Time Covered
FROM 85Aug01 TO 86Mar05

Date of Report
1986/September

Page Count
107

Abstract
The Liouville equation is solved for a diatomic gas in molecular chaos. Modelling the gas molecule as a rigid rotor yields a Boltzmann-type equation in eleven independent variables. Applying Enskog's expansion method of solution to the Boltzmann-type equation and substituting the first two terms of the distribution function expansion into conservation equations produces the equivalent of the Navier-Stokes equations in five space. The resulting stress tensor predicts the development of periodic stresses approximately ten orders of magnitude smaller than the shear stresses. Other predictions agree closely with experiment and statistical thermodynamics.

Subject Terms
Diatomic Gas, Hamiltonian Mechanics, Enskog Expansion

COSATI Codes

<table>
<thead>
<tr>
<th>FIELD</th>
<th>GROUP</th>
<th>SUB. GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>01</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>04</td>
<td></td>
</tr>
</tbody>
</table>

UNCLASSIFIED UNLIMITED

Phone Number
513-255-2481

Office Symbol
AFWAL/FIMM

Security Classification of THIS PAGE
UNCLASSIFIED

Distribution/Availability of Report
Approved for public release; distribution unlimited.
FOREWORD

This report was prepared by William Z. Strang of the Aerodynamics and Airframe Branch, Aeromechanics Division, Flight Dynamics Laboratory, Air Force Wright Aeronautical Laboratories, Wright-Patterson AFB, Ohio, under Project 2404, Aeromechanics Technology, Task 240410, Aerodynamics/Airframe Technology, Unit 240410A1, Aerodynamic and Design Analysis Methods.

The work reported herein was performed during the period 1 August 1985 to 5 March 1986 by the author.

The author wishes to thank D. Sedlock and the management of the Aerodynamics and Airframe Branch for their support of this work.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II DEVELOPMENT OF THE EQUATIONS OF MOTION</td>
<td>4</td>
</tr>
<tr>
<td>III SUMMARY OF DERIVED EQUATIONS, CONSTANTS, AND ASSUMPTIONS</td>
<td>24</td>
</tr>
<tr>
<td>IV DISCUSSION</td>
<td>27</td>
</tr>
<tr>
<td>V CONCLUSION</td>
<td>32</td>
</tr>
<tr>
<td>APPENDIX A KIRKWOOD'S DEVELOPMENT OF THE COLLISION INTEGRAL</td>
<td>33</td>
</tr>
<tr>
<td>APPENDIX B EQUATIONS OF MOTION DURING COLLISION</td>
<td>39</td>
</tr>
<tr>
<td>APPENDIX C ELEMENTAL FIVE VOLUME IN SPHERICAL COORDINATES</td>
<td>47</td>
</tr>
<tr>
<td>APPENDIX D INTEGRAL IDENTITIES</td>
<td>53</td>
</tr>
<tr>
<td>APPENDIX E CONSERVATION EQUATIONS</td>
<td>59</td>
</tr>
<tr>
<td>APPENDIX F THE EQUILIBRIUM DISTRIBUTION FUNCTION</td>
<td>71</td>
</tr>
<tr>
<td>APPENDIX G DERIVATION OF THE THERMODYNAMIC PROPERTIES OF A DIATOMIC GAS</td>
<td>79</td>
</tr>
<tr>
<td>APPENDIX H DEVELOPMENT OF THE SECOND TERM OF THE EXPANSION OF THE DISTRIBUTION FUNCTION</td>
<td>85</td>
</tr>
<tr>
<td>APPENDIX I EVALUATION OF THE THERMAL FLUX FIVE VECTOR AND THE STRESS TENSOR</td>
<td>95</td>
</tr>
<tr>
<td>APPENDIX J EVALUATION OF THE COEFFICIENT OF THERMAL CONDUCTIVITY AND THE COEFFICIENT OF VISCOSITY</td>
<td>99</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>103</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\(B_i \) = a value which when multiplied by the \(i^{th} \) component of velocity produces the \(i^{th} \) component of momentum

\(C_v \) = heat capacity at constant volume

\(C_p \) = heat capacity at constant pressure

\(\psi \) = any molecular property that is a function of \(n, p_i, \) and \(T \)

\(\delta_{ij} \) = Kronecker delta function

\(\varepsilon_{ijk} \) = Levi-Civita permutation function

\(\hat{e}_i \) = unit vector in \(i \)-direction

\(f \) = distribution function

\(F_i \) = \(i^{th} \) component of a generalized force or torque

\(\mathbf{F} \) = generalized force or torque vector

\(\gamma \) = ratio of specific heats

\(H \) = Hamiltonian

\(I \) = moment of inertia

\(\mathbf{J} \) = impulse vector

\(k \) = Boltzmann's constant

\(\lambda \) = coefficient of heat conductivity

\(m \) = mass

\(\mu \) = coefficient of viscosity

\(n \) = molecular number density

\(N \) = number of molecules

\(p_i \) = \(i^{th} \) component of molecular momentum

\(\mathbf{p} \) = momentum vector of five dimensions
\(p_i \) = \(i^{th} \) component of average molecular momentum

\(P_i \) = \(i^{th} \) component of peculiar molecular momentum

\(p \) = thermodynamic pressure

\(q_i \) = \(i^{th} \) dimension in Euclidean space

\(\vec{q} \) = position vector in a Euclidean five space

\(Q_j \) = heat flux in \(j \)-direction

\(r_g \) = molecular radius of gyration

\(\rho \) = density

\(t \) = time

\(T \) = temperature

\(\tau_{ij} \) = stress tensor

\(u,v,w,\theta,\phi \) = velocity components in each degree of freedom

\(\vec{v} \) = linear velocity vector of three dimensions

\(\vec{\omega} \) = angular velocity vector of two dimensions

\(V \) = volume

\(x,y,z,\theta,\phi \) = the five independent coordinates of a rigid rotor

\(r,\beta,\epsilon,\delta \) = the four independent variables specifying a collision geometry in a Euclidean five space

\(Z \) = partition function

Subscripts

\(c \) = quantity at collision

\(o \) = value at an initial time

\(R \) = relative

\(a \) = pertaining to molecule \(a \)

\(b \) = pertaining to molecule \(b \)

\(i,j,k \) = indices
Superscripts

\[= \text{average quantity} \]
\[' = \text{quantity after collision} \]
\[0 = \text{non-divergent quantity} \]
\[\rightarrow = \text{vector quantity} \]
\[\gamma = \text{gas phase space} \]
\[\mu = \text{molecule phase space} \]
\[\cdot = \text{time derivative} \]
\[s = \text{symmetric tensor} \]
SECTION I

INTRODUCTION

This paper presents a derivation of the equations of motion of a gas whose molecules may be modelled as rigid rotors. A rigid rotor has three translational degrees of freedom and two rotational degrees of freedom, but no provisions for vibration, electronic excitation, or nuclear excitation. At moderate temperatures, however, both quantum mechanics and statistical thermodynamics show the rigid rotor to be an excellent model of the diatomic gas molecule.

Beginning with the classical Liouville equation, the author develops a "Boltzmann-type equation" governing the motion of a rigid rotor. With the exception of four additional independent variables due to angular momentum and orientation, the Boltzmann-type equation is identical to the Boltzmann equation. The Boltzmann-type equation is solved via the Hilbert-Enskog-Chapman theory1,2 for the first two terms of the expansion of the distribution function. The governing equations of motion of the gas are then derived by substituting those first two terms of the distribution function expansion into the conservation equations of mass, linear momentum, total angular momentum, and energy. The resulting equations of motion mimic the Navier-Stokes equations except with regard to the additional angular momentum conservation equations, the molecular constants, the heat flux vector, and the stress tensor.

The development of the Navier-Stokes equations from kinetic theory is based upon a smooth-sphere molecular model possessing three translational degrees of freedom only. Such a model is an excellent representation of monatomic gas molecules at moderate temperatures. The thermodynamic properties, i.e. equilibrium properties, of monatomic gases differ significantly from those of
the diatomic gases. Table 1 presents this difference and also the excellent comparison between experimental results and theoretical calculations based upon statistical thermodynamics and the above molecular models. One purpose of this study is to investigate whether weak non-equilibrium properties, i.e. flow properties, also strongly depend upon the gas type in question. If the flow properties do strongly depend on the gas type, the Navier-Stokes equations might be inaccurate when applied to some air flows. However, we shall see that this is not the case.

Another purpose of the current work is to introduce greater rigor into the development of the Boltzmann-type equation than had other workers5,6,7 Kirkwood8,9 paved the way in this regard; the present work merely specializes his development.

Some preliminary definitions and conventions are in order. The present work deals almost exclusively in a five-dimensional Euclidean space. A "surface" in this space is defined to be a four-dimensional geometry, while a "volume" is a five-dimensional geometry. Both vector and indicial notations are used in the present derivation. The specific selection of one notation over another is based upon the ease of interpretation. By convention, when the integrand is a function of the momentum, the integral limits are from negative infinity to positive infinity unless otherwise stated.

The governing equations of motion are next derived. Important results and notable assumptions are then summarized and the paper closes with a discussion and a short conclusion. Several mathematical developments appear in the appendices at the rear of the paper.
Table 1. Molecular Constants

MONATOMIC GASES

<table>
<thead>
<tr>
<th></th>
<th>exp</th>
<th>calc</th>
<th>exp</th>
<th>calc</th>
<th>exp</th>
<th>calc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>y</td>
<td>y</td>
<td>Pr$_{0\degree C}$</td>
<td>Pr$_{0\degree C}$</td>
<td>S$_{25\degree C}$</td>
<td>S$_{25\degree C}$</td>
</tr>
<tr>
<td>He</td>
<td>1.666</td>
<td>1.667</td>
<td>0.664</td>
<td>0.667</td>
<td>126.3</td>
<td>125.3</td>
</tr>
<tr>
<td>Ne</td>
<td>1.64</td>
<td>1.667</td>
<td>0.675</td>
<td>0.667</td>
<td>146.5</td>
<td>145.5</td>
</tr>
<tr>
<td>Ar</td>
<td>1.666</td>
<td>1.667</td>
<td>0.659</td>
<td>0.667</td>
<td>155.0</td>
<td>154.0</td>
</tr>
<tr>
<td>Kr</td>
<td>1.68</td>
<td>1.667</td>
<td>0.656</td>
<td>0.667</td>
<td>164.2</td>
<td>163.2</td>
</tr>
<tr>
<td>Xe</td>
<td>1.67</td>
<td>1.667</td>
<td>0.649</td>
<td>0.667</td>
<td>169.8</td>
<td>168.9</td>
</tr>
</tbody>
</table>

DIATOMIC GASES

<table>
<thead>
<tr>
<th></th>
<th>exp</th>
<th>calc</th>
<th>exp</th>
<th>calc</th>
<th>exp</th>
<th>calc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>y</td>
<td>y</td>
<td>Pr$_{0\degree C}$</td>
<td>Pr$_{0\degree C}$</td>
<td>S$_{25\degree C}$</td>
<td>S$_{25\degree C}$</td>
</tr>
<tr>
<td>H$_2$</td>
<td>1.405</td>
<td>1.400</td>
<td>0.710</td>
<td>-----</td>
<td>130.7</td>
<td>129.7</td>
</tr>
<tr>
<td>HCl</td>
<td>1.39</td>
<td>1.400</td>
<td>0.881*</td>
<td>-----</td>
<td>186.2</td>
<td>186.0</td>
</tr>
<tr>
<td>N$_2$</td>
<td>1.405</td>
<td>1.400</td>
<td>0.722</td>
<td>-----</td>
<td>191.5</td>
<td>190.8</td>
</tr>
<tr>
<td>CO</td>
<td>1.402</td>
<td>1.400</td>
<td>0.745</td>
<td>-----</td>
<td>197.5</td>
<td>196.8</td>
</tr>
<tr>
<td>O$_2$</td>
<td>1.396</td>
<td>1.400</td>
<td>0.718</td>
<td>-----</td>
<td>205.1</td>
<td>195.1</td>
</tr>
<tr>
<td>Cl$_2$</td>
<td>1.35</td>
<td>1.400</td>
<td>0.771*</td>
<td>-----</td>
<td>223.0</td>
<td>219.8</td>
</tr>
</tbody>
</table>

* Experimental results at 25\degreeC.

Entropy is in units of J/K-mole. Results gathered from Refs. 3 and 4.
SECTION II

DEVELOPMENT OF THE GOVERNING EQUATIONS OF MOTION

1. Derivation of the Boltzmann-type equation

The Liouville equation
\[
\frac{\partial^2 \gamma_f^{(N)}}{\partial t^2} = \frac{\partial \gamma_f^{(N)}}{\partial t} + \sum_{i=1}^{N} \left[\frac{\partial H}{\partial p_i} \frac{\partial \gamma_f^{(N)}}{\partial x_i} - \frac{\partial H}{\partial x_i} \frac{\partial \gamma_f^{(N)}}{\partial p_i} \right] = 0
\]

for the distribution function \(\gamma_f^{(N)}(\vec{R}_N, \vec{Q}_N, t)\) in the gas phase space \((\vec{R}_N, \vec{Q}_N)\) of systems of \(N\) molecules is the fundamental equation of classical statistical mechanics. The Liouville equation cannot generally be solved for \(\gamma_f^{(N)}\). Fortunately, such detailed information as that contained in \(\gamma_f^{(N)}\) is not needed.

The present analysis shall be restricted to the first-order distribution function, \(\gamma_f^{(1)}\), of molecule \(a\) in the sub-phase space \((\vec{R}_a, \vec{Q}_a)\) of \(\gamma\)-space. Since,

\[
\int \int \gamma_f^{(N)}(\vec{q}_{\eta}, \vec{p}_a, t) \, d\vec{p}_a \, d\vec{q}_a = \int \int \gamma_f^{(N)}(\vec{q}_{\eta}, \vec{p}_N, t) \, d\vec{p}_N \, d\vec{q}_N
\]

the distribution function \(\gamma_f^{(1)}\) is simply the integral of \(\gamma_f^{(N)}\) over the sub-phase space \((\vec{r}_\eta, \vec{q}_\eta)\) where \(\eta\) is the set of all molecules exclusive of molecule \(a\):

\[
\gamma_f^{(1)}(\vec{r}_a, \vec{q}_a, t) = \int \int \gamma_f^{(N)}(\vec{q}_{\eta}, \vec{p}_N, t) \, d\vec{p}_N \, d\vec{q}_N
\]
provided such an integral is finite. This requires $\gamma_f^{(N)} \to 0$ sufficiently fast as $|\vec{p}|, |\vec{q}| \to \infty$. The Liouville equation in terms of $\gamma_f^{(1)}$ is thus

$$\frac{d\gamma_f^{(1)}}{dt} = \frac{d}{dt} \gamma_f^{(1)} + \frac{\partial H}{\partial \gamma_f^{(1)}} - \frac{\partial H}{\partial \gamma_f^{(1)}} = 0.$$ \hspace{1cm} 4

The Liouville equation is next specialized to the case of a gas composed of rigid rotor molecules by substituting for the Hamiltonian of a rigid rotor. The Hamiltonian of a rigid rotor in an inertial reference frame is3:

$$H = \frac{1}{2m} \left[p_x^2 + p_y^2 + p_z^2 \right] + \frac{1}{2I} \left[p_\theta^2 + \frac{p_\phi^2}{\sin^2 \theta} \right] + H^e + H^i$$ \hspace{1cm} 5

where $x, y,$ and z are the Cartesian coordinates of the rotor's center of mass and θ, ϕ are the Euler angles of the rotor's orientation, such that

$$0 \leq \theta \leq \pi$$
$$0 \leq \phi \leq 2\pi.$$

H^e is the potential due to effects external to the gas. H^i, the intermolecular potential, is a function solely of the relative locations and orientations of the molecules. Substituting the rigid rotor Hamiltonian into equation four yields:

$$\frac{d\gamma_f^{(1)}}{dt} + \frac{p_x}{B_{\gamma_f}} \frac{d\gamma_f^{(1)}}{\partial p_x} + \frac{p_y}{B_{\gamma_f}} \frac{d\gamma_f^{(1)}}{\partial p_y} + \frac{p_z}{B_{\gamma_f}} \frac{d\gamma_f^{(1)}}{\partial p_z} + \frac{p_\theta^2 \cot \theta}{I \sin^2 \theta} \frac{d\gamma_f^{(1)}}{\partial p_\theta} = 0$$ \hspace{1cm} 6

5
where \(j = 1 \rightarrow x \)-direction; \(p_1 = m u_x; B_1 = m \)
\(j = 2 \rightarrow y \)-direction; \(p_2 = m v_y; B_2 = m \)
\(j = 3 \rightarrow z \)-direction; \(p_3 = m w_z; B_3 = m \)
\(j = 4 \rightarrow \Theta \)-direction; \(p_4 = \mathbf{I} \dot{\Theta}; B_4 = \mathbf{I} \)
\(j = 5 \rightarrow \Phi \)-direction; \(p_5 = (\mathbf{I} \sin^2 \Theta) \dot{\Phi}; B_5 = \mathbf{I} \sin^2 \Theta \).

The last term of equation six represents a torque causing the rotor to precess from a general rotation to a rotation where \(\Theta \) is fixed at \(\pi/2 \). However, since the momental ellipsoid of a rotor is an infinitely long circular cylinder, the free rotation of a rigid rotor is stable. Therefore, this precessional term exists only in the presence of external torques. Such torques arise from both \(\mathbf{H}^0 \) and \(\mathbf{H}^1 \). The present analysis shall be restricted to nonpolar molecules undergoing impulsive collisions so that the precessional term vanishes. Since nonpolar molecules are unaffected by external field torques, however, forces:

\[
\frac{\mathbf{T}^e}{\mathbf{q}_a} = \frac{\mathbf{r}^e}{\mathbf{q}_a} = 0.
\]

The above two assumptions lead to the equation:

\[
\frac{\partial \mathbf{T}^{(e)}}{\partial t} + \frac{\mathbf{p}_{1e}}{\mathbf{B}_{2e}} \frac{\partial \mathbf{T}^{(e)}}{\partial \mathbf{q}_{2a}} + \frac{\mathbf{T}^{(e)}}{\mathbf{J}_{1e}} \frac{\partial \mathbf{T}^{(e)}}{\partial \mathbf{p}_{2e}} + \frac{\mathbf{z}^i_{1e}}{\mathbf{J}_{2e}} \frac{\partial \mathbf{T}^{(e)}}{\partial \mathbf{p}_{2e}} = 0.
\]

Since

\[
\frac{\mathbf{z}^i_{1e} \neq \mathbf{z}^i_{1e}(\mathbf{p}_{2e})}
\]

equation eight may be rewritten with the aid of equation two as:

\[
\frac{\partial \mathbf{T}^{(e)}}{\partial t} + \frac{\mathbf{p}_{1e}}{\mathbf{B}_{2e}} \frac{\partial \mathbf{T}^{(e)}}{\partial \mathbf{q}_{2a}} + \frac{\mathbf{T}^{(e)}}{\mathbf{J}_{1e}} \frac{\partial \mathbf{T}^{(e)}}{\partial \mathbf{p}_{2e}} = \frac{1}{\mathbf{J}_{2e}} \int \mathbf{T}^{(e)}_{2e}(\mathbf{p}_{2e}, \mathbf{q}_{2a}, t) \frac{\partial \mathbf{p}_{2e}}{\partial \mathbf{q}_{2a}} d\mathbf{p}_{2e} d\mathbf{q}_{2a}.
\]
The right-hand term of equation 10 is the collision integral. The collisional integral must be reduced to be a function of \(f_a^{(1)} \). Appendix A follows Kirkwood's work\(^8,9\) for the reduction. By assuming the gas to be dilute and in molecular chaos, we find equation 10 to be equal to:

\[
\frac{d\vec{f}_a}{dt} + \frac{p_a}{B_{ja}} \frac{d\vec{f}_a}{\partial j_a} + \sum_{j=1} f_a \frac{d\vec{f}_a}{\partial \vec{f}_a} = \frac{1}{\tau} \int \left(\vec{f}_a' \vec{f}_b - \vec{f}_a \vec{f}_b' \right) d\vec{p}_a d\vec{p}_b d\vec{R}
\]

where:

\[
\vec{f}_a = \vec{f}_a(\vec{p}_a, \vec{q}_a, t) \quad \vec{f}_a' = \vec{f}_a(\vec{p}_a - \Delta \vec{p}(\tau), \vec{q}_a, t)
\]

\[
\vec{f}_b = \vec{f}_b(\vec{p}_b, \vec{q}_b, t) \quad \vec{f}_b' = \vec{f}_b(\vec{p}_b + \Delta \vec{p}(\tau), \vec{q}_b, t)
\]

and where \(\tau \) is a characteristic time long in comparison to the duration of a collision but short in comparison to a Poincaré cycle\(^6\).

Appendix B develops the actual equations of motion governing binary collisions between rigid rotors. For any given direct collision between impulsively colliding rigid rotors, we see that there exists an inverse collision. The existence of inverse collisions is of crucial importance to the present work. Boltzmann's H-Theorem\(^1\) may be shown to hold for rigid rotors and the relation

\[
dp_a dp_b = dp'_a dp'_b
\]

holds.

The relative spatial coordinate, \(\vec{q}_R \), deserves further consideration. The coordinate is a five-space volume. Only the
portion of five space in which a type b molecule is able to collide with a type a molecule within time \(t \) contributes to the collision integral. This portion of five space may be considered as a five-space cylinder with the generator \(|\vec{V}_R| \). The vector, \(\vec{V}_R \), is the relative velocity of the points of collision. From the development in Appendix C, it is straightforward to show

\[
\partial \eta = |\vec{V}_R| t \sin \theta \sin \phi \sin \psi \, \text{d} \theta \, \text{d} \phi \, \text{d} \psi \]

is the volume of the five-space cylinder in question. Equation 11 is thus:

\[
\frac{J_I}{\hbar} + \frac{\rho_{Ia}}{\hbar} J_I + J_I = \iiint \left[\left(\frac{\vec{c}_I \cdot \vec{r}_I - \vec{c}_I \cdot \vec{r}_I^*}{r_{ib}} \right) \left| \vec{V}_R \right| r^2 \sin \theta \sin \phi \sin \psi \, \text{d} \theta \, \text{d} \phi \, \text{d} \psi .
\]

Special attention must be paid to the regularity of the base of the five-space cylinder:

\[
r^2 \sin \theta \sin \phi \sin \psi \, \text{d} \theta \, \text{d} \phi \, \text{d} \psi
\]

This surface may not be regular for a true rotor. In terms of the variables of Appendix B, the surface is piecewise continuous when

\[
\cos \psi = \sqrt{\frac{|\vec{R}_I|^2 + |\vec{R}_I^*|^2}{d^2}}
\]

Therefore, the regularity of the collision surface is in question until a transformation is made to from the variables of Appendix B to the variables of Appendix C. If the collision surface is not regular along the curve in question, the collision integral will have to be separately evaluated over each regular surface.
Equation 15 is identical in form to the Boltzmann equation but has an additional four independent variables corresponding to the orientation and angular momentum of the rotor. Due to this similarity, equation 15 shall be called a Boltzmann-type equation.

2. Derivation of the Conservation Equations of a Rigid Rotor

The expansion procedure of Enskog may be extended to solve the Boltzmann-type equation. We begin by developing the conservation equations for a gas composed of rigid rotor molecules.

Let \(\Psi(\vec{p}_a, \vec{q}_a, t) \) be any scalar, vector, or tensor function of the molecular momentum, position, and time. The change of \(\Psi \) per unit time per unit volume at the point \(\vec{q}_a \) due to collisions is

\[
\int \Psi \left(\frac{\partial \vec{f}_a}{\partial t} \right) d\vec{p}_a = n \Delta \Psi
\]

where \(n \) is the number density such that

\[
\int n d\vec{q}_a = N
\]

By equation 15, we have:

\[
\int \Psi \left(\frac{\partial \vec{f}_a}{\partial t} \right) d\vec{p}_a = \int \Psi \left\{ \frac{\vec{j}_a}{J} + \frac{\vec{p}_a}{B_{\alpha}} \frac{\vec{j}_a}{\partial \vec{q}_a} + \frac{\vec{r}_a}{J} \frac{\vec{j}_a}{\partial \vec{p}_a} \right\} d\vec{p}_a
\]

where the right-hand side of equation 20 is the change of \(\Psi \) per unit time at the point \(\vec{q}_a \) due to molecular flow. By simple
manipulations (see Appendix E), equation 20 may be transformed into Enskog's general equation of change of the property
\[\Psi(\mathbf{p}_a, \mathbf{q}_a, t) : \]
\[\frac{\partial \mathbf{q}_a}{\partial t} + \frac{1}{3} \mathbf{q}_a \left[n \mathbf{p}_a \mathbf{q}_a \right] = n \left\{ \frac{1}{3} \frac{\partial \mathbf{q}_a}{\partial t} + \frac{\mathbf{p}_a}{B_{ja}} \frac{\partial \mathbf{q}_a}{\partial t} + \mathbf{q}_a \frac{\partial \mathbf{q}_a}{\partial \mathbf{p}_a} \right\} \]
\[= n \Delta \overline{\mathbf{q}} \]

Note that the number average of the molecular properties, \(\overline{\mathbf{q}}_{ja} \), are
\[\overline{\mathbf{B}}_{ja} = B_{ja} \quad \text{for } j = 1 \rightarrow 4 \]
\[\overline{B}_{5a} = 1/2 \]

Unless noted otherwise, \(B_{ja} \) will now denote \(\overline{B}_{ja} \).

For properties which are conserved during collision:
\[\Delta \overline{\mathbf{q}} = 0. \]

The conserved properties are the number of molecules (or mass), linear momentum, total angular momentum, and energy. Thus:
\[\Psi' = 1 \quad \Rightarrow \text{conservation of number of molecules} \]
\[\Psi_i^2 = \mathbf{p}_i \quad \text{for } i = 1, 2, 3 \quad \Rightarrow \text{conservation of linear momentum} \]
\[\Psi_i^3 = \alpha_i \mathbf{p}_i \quad \text{for } i = 1 \rightarrow 5 \quad \Rightarrow \text{conservation of total angular momentum} \]
\[\Psi_4^4 = \mathbf{p}_i^2 / 2B_i \quad \text{for } i = 1 \rightarrow 5 \quad \Rightarrow \text{conservation of energy} \]

where:
\[\alpha_i = \varepsilon_{ijk} \mathbf{p}_j \mathbf{p}_k \quad \text{for } i, j, k = 1 \rightarrow 3 \]
\[\alpha_i = \varepsilon_i^c \quad \text{for } i = 4, 5. \]

Upon decomposing the momentum into a mean component:
\[P_{i,j}(q_{i,j}, t) \]

and into a peculiar component

\[P_{i,j}(q_{i,j}, t) \]

and substituting for each conserved property into equation 22 yields the four conservation equations:

i) Continuity Equation:

\[
\frac{\partial n_{i,j}}{\partial t} + \sum_{j=1}^{5} \left[\frac{n_{i,j} P_{i,j}^2}{B_{i,j}} \right] = 0 \quad \text{for } j=1 \rightarrow 5
\]

ii) Conservation of Linear Momentum:

\[
\frac{\partial P_{i,j}}{\partial t} + n_{i,j} \frac{\partial P_{i,j}}{\partial q_{i,j}} + \sum_{j=1}^{5} \left[\frac{n_{i,j} P_{i,j}}{B_{i,j}} \right] = 0
\]

for \(i=1 \rightarrow 3 \); \(j=1 \rightarrow 5 \)

iii) Conservation of Total Angular Momentum:

\[
\frac{\partial L_{i,j}}{\partial t} + n_{i,j} \frac{\partial L_{i,j}}{\partial q_{i,j}} + \sum_{j=1}^{5} \left[\frac{n_{i,j} P_{i,j}^2}{B_{i,j}} \right] = 0
\]

for \(i=4,5 \); \(j=1 \rightarrow 5 \)

iv) Conservation of Energy:

\[
\frac{\kappa}{2} n_k \left[\frac{\partial T}{\partial t} + \frac{\partial P_{i,j}}{\partial q_{i,j}} \right] + \sum_{j=1}^{5} \left[\frac{n_{i,j} P_{i,j}^2}{2 B_{i,j} B_{i}} \right] + \left[\frac{n_{i,j} P_{i,j}^2}{B_{i,j} B_{i}} \right] = 0
\]

for \(i,j = 1 \rightarrow 5 \)
where the subscripts have been deleted for notational ease.

Equations 26, 27, 28, and 29 are fully derived in Appendix E.

Equations 27 and 28 show that conserving linear momentum and total angular momentum at a point is equivalent to separately conserving linear momentum and internal angular momentum. We may thus combine equations 27 and 28 to yield:

\[\sum_{i,j} \frac{\partial \rho_i}{\partial t} + \frac{n_{ij}}{B_3} \frac{\partial \rho_i}{\partial \eta_j} + \frac{1}{V_i} \left[\frac{n_{ij}}{B_3} \right] - n \mathbf{\tau}_e^{ij} = 0 \]

for \(i, j = 1 \rightarrow \infty \); \(\mathbf{\tau}_e^{ij} = \mathbf{0} \)

The five-space stress tensor and the heat flux five vector are by definition:

\[\tau_{ij} = \left[\frac{n_{ij}}{B_3} \right] = \int \mathbf{\tau} \left[\frac{n_{ij}}{B_3} \right] d\mathbf{p} \]

\[Q_{ii} = \left[\frac{n_{ii}}{2B_3B_i} \right] = \int \mathbf{Q} \left[\frac{n_{ii}}{2B_3B_i} \right] d\mathbf{p} \]

respectively. Both \(\tau_{ij} \) and \(Q_{ii} \) are determined from the distribution function, \(\tilde{f} \).

3. Enskog's Expansion Method of Solution

Under Enskog’s expansion method of solution, the distribution function is assumed expandable into the convergent infinite series:

\[\tilde{f} = \tilde{f}^0 + \tilde{f}^1 + \tilde{f}^2 + \ldots \]
The present analysis derives the first two terms of the series, \(\tilde{f}^1 \) and \(\tilde{f}^0 \).

Let the Boltzmann-type equation be defined as

\[S(\tilde{f}) = D(\tilde{f}) + J(\tilde{f}, \tilde{f}_0) = 0 \]

where

\[D(\tilde{f}) = \frac{\partial \tilde{f}}{\partial t} + \frac{p_i}{B_i} \frac{\partial \tilde{f}}{\partial \eta_i} + \xi \frac{\partial \tilde{f}}{\partial p_i} \]

and

\[J(\tilde{f}, \tilde{f}_0) = -\left(\frac{\partial \tilde{f}}{\partial \xi} \right)_e \int \left(f \tilde{f}_0 - \tilde{f} \tilde{f}_0' \right) \, dp_b \, dq_f . \]

Enskog supposed that when the Boltzmann-type operator, \(\xi \), operates on the above infinite series expansion of \(\tilde{f} \), the \(r \)th term of the resulting series depends only on the first \(r \) terms, i.e.

\[S(\tilde{f}) = S(\tilde{f}^0, \tilde{f}^1, \tilde{f}^2, \ldots) = S^0(\tilde{f}^0) + S^1(\tilde{f}^0, \tilde{f}^1) + S^2(\tilde{f}^0, \tilde{f}^1, \tilde{f}^2) + \ldots \]

The functions \(\tilde{f}^r \) are also assumed to satisfy the separate conditions:

\[S^0(\tilde{f}^0) = 0 \]
\[S^1(\tilde{f}^0, \tilde{f}^1) = 0 \]
\[S^2(\tilde{f}^0, \tilde{f}^1, \tilde{f}^2) = 0 \]

Enskog subdivided \(\xi \) such that

\[S^0 = D^0 = 0 \]
\[S^r = D^r + J^r = 0 \quad \text{for} \quad r \geq 1. \]
Equation 40 may be recast as:

\[J(f_{r_1} f_{r_2}) + J(f_{r_1} f_{r_2}) - D^{r_1} J(f_{r_1} f_{r_2}) - \ldots - J(f_{r_n} f_{r_n}) \] \[41 \]

The general solution to equation 41 is simply the sum of the particular solution and the homogeneous solution. Let the homogeneous solution be

\[\bar{f}^r = \bar{f}^r \] \[42 \]

where \(\bar{f}^r \) is the homogeneous solution to equation 41. Then:

\[0 = J\left(f_{r_1} f_{r_2} \right) + J\left(f_{r_1} f_{r_2} \right) = \left\{ J\left(f_{r_1} f_{r_2} \right) \left(f^r_{r_1} f^r_{r_2} - f^r_{r_1} - f^r_{r_2} \right) \right\} \] \[43 \]

and therefore \(\phi^r \) must be a linear combination of the conserved properties of a collision, i.e.

\[\bar{f}^r = \alpha^1 f_{r_1} + \alpha^2 f_{r_2} + \alpha^3 f_{r_3} + \alpha^4 f_{r_4} + \alpha^5 f_{r_5} / \left(f_{r_1} + f_{r_2} + f_{r_3} + f_{r_4} + f_{r_5} \right) \] \[44 \]

where \(\alpha^1, \alpha^2, \alpha^3 \) are scalars, \(\alpha^4, \alpha^5 \) is a three-vector, and \(\alpha^6, \alpha^7 \) is a five-vector. The above constants are chosen such that

\[\int \bar{f}^r \psi^i \phi_{\alpha} = 0 \] \[45 \]

for \(i = 1, 2, 3, 4; r \geq 1 \)

which ensures that the average values of \(n, T, \) and \(\bar{p}_o \) are given by

\[\int \bar{f}^r \psi^i \phi_{\alpha} = \] \[46 \]
The preceding brief overview of Enskog's method of solution brings us to the important subject of the conditions of solvability of equation 40. If equation 40 is satisfied, then

$$\int (J^i, \mathcal{D}^i) \chi_i \, d\mathbf{p} = 0 \quad \text{for } i=1,2,3,4.$$ \[47\]

By the developments of Ref. 1, J^r is divisible into pairs of terms such as $J(\mathbf{fP}_1 + \mathbf{fP}_2)$ plus a term $J(\mathbf{fP})$ if p is even. It is straightforward to show that the integral of the product of Ψ^i and these terms vanishes because

$$\Psi + \Psi_b = \Psi' + \Psi'_b$$

during a collision. Thus, a necessary condition for the solution of equation 40 is:

$$\int \mathcal{D}^r \Psi^i \, d\mathbf{p} = 0 \quad \text{for } i=1,2,3,4.$$ \[48\]

Hilbert\(^1\) proved that the above condition is also a sufficient condition for the solution of equation 40 by showing $I(\Phi^r)$ may be expressed as

$$\Omega_c(\mathbf{p}) \mathcal{F}(\mathbf{p}) + \int \Omega(\mathbf{p}, \mathbf{p}_b) \mathcal{F}(\mathbf{p}_b) \, d\mathbf{p}_b.$$ \[49\]

where $\Omega(\mathbf{p}, \mathbf{p}_b)$ is a symmetric function of \mathbf{p}, \mathbf{p}_b. Such a proof is not yet available for the present case. However, it is fully expected that

$$\int \int \mathcal{D}^r (\mathcal{F}_1 + \mathcal{F}_2 - \mathcal{F}_3 + \mathcal{F}_4) \, d\mathbf{p}_b \, d\mathbf{p}.$$ \[50\]
where \(dq_R \) is given by equation 30 is indeed expressible in the form of equation 49. By following arguments identical to those of Chapman & Cowling, it is straightforward to show that

\[
\int \int f^s \tau^s d\hat{p}_b d\hat{p}_r = \Omega(\hat{p}) \hat{f}(\hat{p}).
\]

It remains to show that

\[
\int \int f^s \tau^s (\hat{\tau}^r \cdot \hat{\tau}^r) d\hat{p}_b d\hat{p}_r = \int \Omega(\hat{p}_b \hat{p}_r) \hat{f}(\hat{p}_b) d\hat{p}_b
\]

where \(\Omega(\hat{p}, \hat{p}_b) \) is symmetric with respect to \(\hat{p}, \hat{p}_b \). This is strongly felt to be true. It will be shown that \(f^0 f^0 \) is symmetric with respect to \(\hat{p}, \hat{p}_b \). Since inverse collisions exist, the problem reduces to whether or not \(dq_R \) is symmetric with respect to \(\hat{p}, \hat{p}_b \). If \(dq_R \) is not symmetric in \(\hat{p}, \hat{p}_b \), then the principle of objectivity would be violated, i.e. the final answer would depend upon one's choice of the origin and coordinate system. Physically, this does not happen and one would therefore conclude that \(dq_R \) is indeed symmetric in \(\hat{p}, \hat{p}_b \). A mathematical proof is required, however, to rid the present work of any ambiguities in this area. The present work shall proceed on the reasonable assumption that equation 48 is a sufficient condition for the solution of equation 40.
4. Derivation of \bar{f}^0

The first term \bar{f}^0 of the series expansion of \bar{f} is easily found. By Enskog's method of division, $\mathcal{O}^0 = 0$, and the Boltzmann-type equation is:

$$0 = \sum_{\text{all}} \left(f^0_{i_1} - f^0_{i_2} \right) \bar{f}^0_{i_3} r_{i_4}^3 \sin \theta_{i_5} \sin \theta_{i_6} \sin \theta_{i_7} \sin \phi_{i_8} \, \text{d}r \, \text{d}\phi_{i_9} \, \text{d}\theta_{i_{10}}.$$

Thus, in general

$$f^0_{i_1} - f^0_{i_2} = 0$$

or

$$\ln f^0_{i_1} + \ln f^0_{i_2} = \ln f^0_{i_3} + \ln f^0_{i_4}$$

Equation 55 can hold in general only if $\ln |\bar{f}^0|$ is a linear combination of the properties conserved during collision. These properties are \mathcal{Y}_i for $i = 1, 2, 3, 4$. Thus:

$$\ln f^0_{i_1} = \beta_{i_5} \gamma_{i_6} + \beta_{i_7} \gamma_{i_8} + \beta_{i_9} \gamma_{i_{10}}$$

$$\ln f^0_{i_2} = \beta_{i_3} \gamma_{i_4} + \beta_{i_5} \gamma_{i_6} + \beta_{i_7} \gamma_{i_8} + \beta_{i_9} \gamma_{i_{10}}$$

where $i, k, l = 1 \leftrightarrow 5; j \rightarrow 1 \rightarrow 3$

By the development of Appendix F:

$$\bar{f}^0 = \prod_{i}^{n} \left(\frac{2\pi \hbar c_{i} k T}{b} \right)^{\frac{1}{2}} \exp \left(-\frac{b_{i} \mathcal{E}}{k T} \right)$$
where B_5 is $\sin^2 \theta$, not $1/2$. The equilibrium distribution function is built on the following definitions:

\begin{align*}
\int f^0 \rho_a d\rho_a &= n \\
\int f^0 \rho_a \rho_b d\rho_a &= n \rho_b \\
\int f^0 \frac{\rho_a^2}{2 \mathcal{B} } d\rho_a &= \frac{2}{\mathcal{E}} n kT.
\end{align*}

5. Derivation of f^1

The evaluation of the second term, f^1, is more difficult. By Enskog's method of division

\[f' = D' + J' = 0 \]

where D' operates on f^0 only. Since f^0 is a function only of the peculiar momentum, \vec{p}, we may recast D' in terms of \vec{p} as:

\[D' = \frac{D_p f^0}{Dt} + \sum_i \left[\frac{D_{p_i} f^0}{Dt} - \frac{\rho_i f^0}{\mathcal{B}_i} \frac{\rho_i^*}{\rho_i} \frac{\rho_i f^0}{\mathcal{B}_i} \right]. \]

The derivation of equation 62 is not presented as it is identical to the derivation presented by Chapman & Cowling. The equilibrium distribution, f^0, is already known and the first approximations

\[\frac{D_{\rho_i}}{Dt}, \quad \frac{D_{\mathcal{E}}}{Dt} \]

may be found from the conservation equations and Enskog's subdivision of \mathcal{D}. The conservation equations, equations 26, 30, and 29, may be recast as:
respectively. Enskog divided these time derivatives as follows:

\[\frac{\partial A}{\partial t} = \sum_{r=0}^{\infty} \frac{\partial A_r}{\partial t} \]

where \(A \) may be either \(n, P_0 \), or \(T \). The division of the right-hand side is:

\[\frac{\partial n}{\partial t} = -\frac{1}{\eta_1} \left[\frac{n P_{0i}}{B_i} \right] \]

\[\frac{\partial n}{\partial t} = 0 \quad \text{for } r \geq 1 \]

\[\frac{\partial P_{0i}}{\partial t} = \frac{1}{\eta_1} \left(\frac{P_{0i}}{B_i} \right) = -\frac{1}{\eta_1} \left(\frac{P_{0i}}{B_i} \right) \]

\[\frac{\partial P_{0i}}{\partial t} = -\frac{1}{\eta_1} \left(\frac{P_{0i}}{B_i} \right) \quad \text{for } r \geq 1 \]

\[\frac{\partial T}{\partial t} = -\frac{P_{0i}}{B_i} \frac{\partial T}{\partial t} - \frac{2}{S n k} \left(\frac{1}{\eta_1} \left[\frac{n P_{0i}}{B_i} \right] + \left[\frac{n P_{0i}}{B_i} \right] \frac{1}{\eta_1} \left[\frac{P_{0i}}{B_i} \right] \right) \]

\[\frac{\partial T}{\partial t} = -\frac{2}{S n k} \left(\frac{1}{\eta_1} \left[\frac{n P_{0i}}{B_i} \right] + \left[\frac{n P_{0i}}{B_i} \right] \frac{1}{\eta_1} \left[\frac{P_{0i}}{B_i} \right] \right) \quad \text{for } r \geq 1 \]
where

\[\tau_{ij} = \sum_{r=0}^{\infty} \tau_{ij}^r \quad \text{and} \quad Q_{ij}^r = \sum_{p=0}^{\infty} Q_{ij}^p \]

and

\[\tau_{ij}^r = \int_{T^r} \left[\frac{P_i P_j}{B_i} \right] \, d\bar{T} \]

\[Q_{ij}^r = \int_{T^r} \left[\frac{P_i P_j^2}{2B_i B_j} \right] \, d\bar{T} \]

By defining the first approximation to the substantive derivative as:

\[\frac{D_0}{Dt} = \frac{J_0}{J_0} + \frac{P_0}{B_0} \frac{1}{j_0} \]

equations 62 and 63 become:

\[\frac{D_0 P_0}{Dt} = \frac{Q_{ij}^0}{j_i} - \frac{1}{n} \frac{1}{j_i} \tau_{ij}^0 \]

\[\frac{D_T}{Dt} = \frac{-2}{S_W} \left\{ \frac{1}{j_i} Q_{ij}^0 + \tau_{ij}^0 \frac{1}{j_i} \left[\frac{P_0}{B_i} \right] \right\} \]

When \(r \) is zero, only the even terms of the integrands of equations 74 and 75 survive the integration. Thus,

\[Q_{ij}^0 = 0 \]

and by the definitions and results of Appendix F:

\[\tau_{ij}^0 = n k T \delta_{ij} \]

By defining the thermodynamic pressure as
The thermodynamic pressure may not equal the hydrostatic pressure. However, the hydrostatic pressure cannot be deduced because Maxwell's relations are strictly valid for a three-dimensional space only. Thus, Maxwell's relation:

\[p = -(\frac{\partial A}{\partial V})_T = kT \frac{\partial \ln Z}{\partial V} \]

cannot be used in the present study.

Substituting the first approximations to the heat flux vector and the stress tensor into equations 76 and 77 yields:

\[\frac{D\rho_i}{Dt} = \gamma_i - \frac{1}{n} S_{i,j} \frac{J_{i,j}}{J_{i,j}} \]

Substituting equation 82 into equation 62 yields:

\[D^i = I^i \left\{ \frac{D\rho_i}{Dt} + \frac{S_{i,j}}{n} \frac{J_{i,j}}{J_{i,j}} \frac{J_{i,j}}{J_{i,j}} + \frac{P_i}{B_i} \frac{J_{i,j}}{J_{i,j}} - \frac{P_i}{B_i} \frac{J_{i,j}}{J_{i,j}} \frac{J_{i,j}}{J_{i,j}} \right\} \]

Appendix H reduces equation 84 and finds that \(\xi^1 = 0 \) is equivalent to:

\[n^i I_i = -\frac{1}{V} \left\{ \left(\frac{2kT}{B_i} \right)^{V_2} \left(\frac{C_i^2}{\gamma_2} \right) \rho_i + 2 \left(\frac{B_i}{B_i} \right)^{V_2} \frac{C_i^2}{\gamma_2} \frac{J_{i,j}^2}{J_{i,j}^2} \right\} \]

where \(\rho_i \), the reduced momentum, is defined as:
\[\Phi_i = \frac{\Phi_i}{(2B_i kT)^{1/2}} \]

Appendix H derives the form of \(\Phi^1 \) as:

\[\Phi' = \frac{1}{n} \left[\left(\frac{2kT}{B_i} \right)^{1/2} J(\Phi) \Phi_i \frac{\partial n}{\partial I} \right] \]

\[+ \left(\frac{B_i}{B_j} \right)^{1/2} k(\Phi) \left[\frac{\partial \Phi_i}{\partial I} \right] \frac{J_{ij}}{J_{ji}} \]

where \(J(\Phi) \) and \(K(\Phi) \) are scalar functions of \(\Phi \), \(n \), and \(T \).

Substituting

\[\Phi' = \Phi'^{T} \]

for \(\Phi \) in the definitions of the five-space stress tensor and the heat flux five vector determines the second order approximations of \(\tau_{ij} \) and \(\Omega_j \). Appendix I details the derivations of \(\tau^1_{ij} \) and \(\Omega^1_j \).

The resulting expressions are:

\[\tau_{ij} = \frac{-kT}{\mu} \left(\frac{B_i}{B_j} \right)^{1/2} \frac{\partial \rho_i}{\partial \rho_j} \int_{-\infty}^{\infty} k_{ij} I(k_{ij}) d\Phi \]

\[= -2\mu \left(\frac{B_i}{B_j} \right)^{1/2} \frac{\partial \rho_i}{\partial \rho_j} \]

where

\[\mu = \frac{kT}{2} \int_{-\infty}^{\infty} k_{ij} I(k_{ij}) d\Phi \]

and

\[\Omega_j = \frac{-2kT}{\xi n B_i} \frac{\partial \rho_j}{\partial \rho_i} \int_{-\infty}^{\infty} \Phi' \Phi'^{T} J(\Phi) d\Phi \]

\[= \frac{-\lambda}{B_j} \frac{\partial \rho_j}{\partial \rho_i} \]

22
where

\[\lambda = \frac{2k^2T}{5n} \int \tilde{T} \cdot \hat{q} \hat{g}(\xi) \, d\xi. \]

Appendix J evaluates \(\mu \) and \(\lambda \) through the use of Sonine polynomials. Assuming that the first term of the Sonine polynomial is of sufficient accuracy, Appendix J shows:

\[\mu = \frac{7kT}{b_n} \]

\[\lambda = \frac{2k^2T}{8} \frac{b_n}{a_n} \]

\[\hat{p}_r = \hat{g} \frac{q_n}{b_n} \]

where the terms \(a_{11} \) and \(b_{11} \) can be evaluated only when the intermolecular potential is known. Since the intermolecular potential of the present problem is simply a pair of Heaviside step functions, \(a_{11} \) and \(b_{11} \) could be evaluated. Such an evaluation is likely to be very difficult. Given the assumption of impulsive collisions, the evaluation is also prone to be in significant error with respect to the experimentally measured values. Therefore, neither \(a_{11} \) nor \(b_{11} \) have been evaluated.
SECTION III

SUMMARY OF DERIVED EQUATIONS, CONSTANTS, AND ASSUMPTIONS

The equations of motion of a diatomic gas whose molecules may be modelled as rigid rotors are:

1) Conservation of the Number of Molecules:

\[
\frac{dn}{dt} + \frac{1}{\beta_{jj}} \left[\frac{n P_{ii}}{B_{jj}} \right] = 0 \quad \text{for } j = 1 \to 5
\]

2) Conservation of Total Momentum at a Point:

\[
n \frac{dP_{ii}}{dt} + \frac{n P_{ii}}{B_{jj}} \frac{dP_{ii}}{\beta_{jj}} + \frac{1}{\beta_{jj}} \left[\tau_{ii} \right] - n \tau_{ii}^{e} = 0 \quad \text{for } i, j = 1 \to 5
\]

where:

\[
\tau_{ii}^{e} = \tau_{ii}^{e} = 0
\]

\[
\tau_{ii} = \rho \delta_{ii} - 2 \mu \left(\frac{B_{ii}}{B_{jj}} \right)^{1/2} \frac{P_{ii}}{\beta_{jj}}
\]

\[
\mu = \frac{7kT}{\mu_{n}}
\]

3) Conservation of Energy:

\[
\frac{k}{2} n k \left[\frac{dT}{dt} + \frac{P_{ii}}{B_{jj}} \frac{dP_{ii}}{\beta_{jj}} \right] + \frac{1}{\beta_{jj}} \left[\frac{Q_{ii}}{\beta_{jj}} \frac{P_{ii}}{B_{jj}} \right] = 0 \quad \text{for } i, j = 1 \to 5
\]

where

\[
Q_{ii} = - \frac{\lambda}{B_{jj}} \frac{dT}{\beta_{jj}}
\]

\[
\lambda = 245 \frac{k^{2} T}{\mu_{n}}
\]
4) Equation of State:
\[\rho = n k T \]
where \(\rho \) is, by definition, the thermodynamic pressure.

Additional quantities of interest are:

i) Specific Heats:
\[C_v = 2.5 n k ; \quad C_p = 3.5 n k \]

ii) Ratio of Specific Heats:
\[\gamma = 1.400 \]

iii) Prandtl Number:
\[\Pr = \frac{\nu}{\alpha} \]

iv) Equilibrium Distribution Function:
\[\bar{f}_e^* = n \prod_{i=1}^{S} (2\pi B_i k T)^{-\nu_2} \exp \left(-\frac{\bar{P}_i^2}{2 B_i k T} \right) \]

Most assumptions made in the present analysis are identical to those of the derivation of the conventional Navier-Stokes equations. Those assumptions unique to the present analysis are listed below:

1) The molecules nonpolar. This amounts to setting \(F_o^e = F_5^e = 0 \).
2) The intermolecular collisions are impulsive.
3) That
\[\int \gamma^i \xi dP_a = 0 \]
is a sufficient condition for the Enskog expansion method of solution of equation 15. This appears to be a reasonable
assumption based on physical arguments, the form of \(f^0 \), and the existence of inverse collisions. Strictly speaking, however, the sufficiency condition is an assumption and a rigorous proof is needed.
SECTION IV

DISCUSSION

We have seen that a nonpolar diatomic gas whose molecules collide impulsively obeys a Boltzmann-type equation, namely equation 15. The differential portion of the equation is easily developed by substituting the well known Hamiltonian of a rigid rotor into the Liouville equation. The collision integral is developed along the lines of Kirkwood's work. Appendix B develops the actual governing equations of motion of a binary collision between rigid rotors. Appendix B displays the fundamental point that inverse collisions exist as long as the collision mechanics are consistent with the Hamiltonian. The rough sphere molecular model suffers in this regard, as the Hamiltonian does not account for the strain energy of the rough sphere during collision.

The derivation of the differential portion of the Boltzmann-type equation is not the straightforward extension from three degrees of freedom assumed by others. In fact, an additional term describing the precession of the rotor is generally present. Only when the molecules are nonpolar and collide impulsively does this precessional term vanish. Furthermore, it is unlikely that a general Boltzmann-type equation can be derived for a rigid, six degree of freedom molecule. Consider the classical Hamiltonian for such a molecule:

\[H = \frac{1}{2m}(p_x^2 + p_y^2 + p_z^2) + \frac{1}{2I_A \sin^2 \theta} \left[(p_\phi - p_\psi \cos \theta) \cos \psi - p_\theta \sin \theta \sin \psi \right]^2 + \frac{1}{2I_B \sin^2 \theta} \left[(p_\phi - p_\psi \cos \theta) \sin \psi + p_\theta \sin \theta \cos \psi \right]^2 + \frac{1}{2I_C} p_\psi^2 \]
where I_A, I_B, and I_C are the principal moments of inertia; θ, ϕ, and ψ are the Euler angles, and

\[0 \leq \theta \leq \pi \]
\[0 \leq \phi \leq 2\pi \]
\[0 \leq \psi \leq 2\pi. \]

Substituting the above Hamiltonian into the Liouville equation produces a complicated equation in f. There are many terms describing the precession of a general rotation to a rotation about an axis of minimum or maximum moment of inertia. These precessional terms do not disappear when the molecule is assumed to be nonpolar and to collide impulsively. The rigid rotor molecule thus appears to be the most complex molecule that obeys a Boltzmann-type equation with a minimum of assumptions. Molecular models of six degrees of freedom and more, such as the non-rigid rotor, the symmetric top, and the asymmetric top, may require an approach based upon a pair or triple distribution function.

The assumptions of the present study mirror those in the development of the Navier-Stokes equations, except in four instances. One of the assumptions different from those of the Navier-Stokes equations is the basis of the present study, namely that the gas molecule can be modelled as a rigid rotor. The two additional assumptions of impulsive collisions and nonpolar molecules eliminate the precessional term from the Boltzmann-type equation. The fourth assumption that

\[\int \gamma' D' \rho_a = 0 \]

is a sufficient condition for the solution of

\[D' + J' = 0 \]
is critical to the development of the stress tensor and the heat flux vector. If that assumption is false, then \(I(\Phi^r) \) is asymmetric with respect to \(\vec{p}_a \) and \(\vec{p}_b \). The collisional equations of motion would then change upon an interchange of the roles of molecules \(a \) and \(b \). The physics of the motion, however, does not depend upon how we select molecules \(a \) and \(b \). Therefore, this sufficiency assumption is probably correct. A rigorous proof similar to Hilbert's\(^1\) treatment in three degrees of freedom is required, however, to close the discussion on this issue.

The stress tensor is expanded in Fig. 1. Those terms containing angular quantities, \(\Theta, \Phi, I\dot{\Theta}, \) and \(I\dot{\Phi} \), are periodic because the Euler angles are periodic. Also, there are seven coefficients of "viscosity". These coefficients of viscosity and their orders of magnitude relative to the usual shear viscosity, \(\mu \), are displayed in Table 2.

Table 2. Relative Magnitudes of the Viscosity Coefficients

<table>
<thead>
<tr>
<th>Coefficient of Viscosity</th>
<th>Relative Order of Magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu)</td>
<td>1</td>
</tr>
<tr>
<td>(\sqrt{2} \mu)</td>
<td>1</td>
</tr>
<tr>
<td>(\mu/\sqrt{2})</td>
<td>1</td>
</tr>
<tr>
<td>(\mu r_g)</td>
<td>(10^{-10} m)</td>
</tr>
<tr>
<td>(\mu r_g/\sqrt{2})</td>
<td>(10^{-10} m)</td>
</tr>
<tr>
<td>(\mu / r_g)</td>
<td>(10^{10} m^{-1})</td>
</tr>
<tr>
<td>(\sqrt{2} \mu / r_g)</td>
<td>(10^{10} m^{-1})</td>
</tr>
</tbody>
</table>

29
\[
\tau_{ij} = \begin{bmatrix}
p-2\mu \left[\frac{\partial u}{\partial x} - \Delta \right] & -\mu \left[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right] & -\mu \frac{\partial \Phi}{\partial x} + \frac{\partial u}{\partial x} \frac{\partial \Phi}{\partial x} \frac{\partial \Phi}{\partial x} - \frac{1}{2}\mu \left[\frac{\partial \Phi}{\partial x} \frac{\partial \Phi}{\partial y} \right] \\
-\mu \left[\frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} \right] & p-2\mu \left[\frac{\partial v}{\partial y} - \Delta \right] & -\mu \frac{\partial \Phi}{\partial y} + \frac{\partial v}{\partial y} \frac{\partial \Phi}{\partial y} \frac{\partial \Phi}{\partial y} - \frac{1}{2}\mu \left[\frac{\partial \Phi}{\partial y} \frac{\partial \Phi}{\partial y} \right] \\
-\mu \frac{\partial \Phi}{\partial z} + \frac{\partial u}{\partial z} \frac{\partial \Phi}{\partial z} \frac{\partial \Phi}{\partial z} & -\mu \frac{\partial \Phi}{\partial z} + \frac{\partial v}{\partial z} \frac{\partial \Phi}{\partial z} \frac{\partial \Phi}{\partial z} & p-2\mu \left[\frac{\partial \Phi}{\partial z} - \Delta \right] \end{bmatrix}
\]

where:

\[
\Delta = \frac{1}{5} \left[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} + \frac{\partial \Phi}{\partial \theta} + \frac{\partial \Phi}{\partial \phi} \right]
\]

Figure 1. Stress Tensor
The molecular radius of gyration is r_g. The relative orders of magnitude of the seven coefficients of viscosity are based upon a typical value of r_g of 10^{-10} meters. The first three columns of the stress tensor generate changes in linear momentum. We see the periodic terms probably contribute negligible changes in linear momentum because of their very small coefficient of viscosity. The periodic terms will perhaps be significant only in shock layers where the gradients are large.

One should also note that a gas composed of rigid rotor molecules may have a bulk viscosity. The bulk viscosity will be due to the rotational degrees of freedom responding to energy gradients at a rate different from the response rate of the translational degrees of freedom.

The derivation of the Prandtl number is unfinished. The ratio of a_{11}/b_{11} is unity for the rigid, smooth-sphere molecular model. If this is found to hold for rigid rotors, the Prandtl number will be .8 -- a mediocre prediction. See Table 1.

The present work forms the foundation upon which a study into the properties of a gas composed of non-rigid rotors can be built. It would be most interesting to establish the Liouville equation in terms of a pair-distribution function and then substitute for the Hamiltonian of each atom of the rotor. The Hamiltonian must include the quantized intermolecular potential that holds together the rotor. If this approach is possible not only vibration, but disassociation, could be included into the governing equations of motion. The resulting equations should model the important real gas effects of hypersonic flows.
SECTION V

CONCLUSION

One may develop the equations of motion of a diatomic gas by substituting the Hamiltonian of a rigid rotor into the Liouville equation. The equations mirror the Navier-Stokes equations except with regard to an additional two equations conserving angular momentum, the stress tensor, and certain molecular constants. The assumptions of the present derivation are identical to those in the development of the Navier-Stokes equations except that the molecules are nonpolar and collide impulsively. Intriguing because it resides in a five-dimensional space, the development is a stepping-stone to a study which will include the vibration and disassociation of a diatomic gas.
APPENDIX A

Kirkwood's Development of the Collision Integral
By Gibbs' postulate, the ensemble average of any molecular function, \(\Psi(p_N, q_N) \) is the macroscopically observed value:

\[
\Psi_{\text{obs}} = \int \Psi(p_N, q_N) \frac{1}{\Omega} (p_N, q_N) dp_N dq_N
\]

Kirkwood\(^8\) argues further that the measurement of any macroscopic property is an inherent time averaging operation. Therefore,

\[
\Psi_{\text{meas}} = \frac{1}{\tau} \int_0^\tau \int \Psi(p_N, q_N) \frac{1}{\Omega} (p_N, q_N, t+\tau) dp_N dq_N ds
\]

where the time interval, \(\tau \), is long in comparison to collision durations but short in comparison to a Poincaré cycle\(^6\). Kirkwood also shows that the measured value of any molecular function, \(\Psi(p_a, q_a) \) is

\[
\Psi_{\text{meas}} = \int \Psi(p_a, q_a) \frac{1}{\Omega} (p_a, q_a, t) dp_a dq_a
\]

where

\[
\frac{1}{\Omega} (p_a, q_a, t+\tau) = \frac{1}{\tau} \int_0^\tau \frac{1}{\Omega} (p_a, q_a, t+\tau) ds
\]

Recasting equation 11 of the text in terms of the time-averaged distribution function leads to:

\[
\int \frac{\partial}{\partial t} \left(\frac{p_a}{\Omega} \right) \frac{1}{\Omega} (p_a, q_a, t) \frac{1}{\Omega} (p_a, q_a, t+\tau) + \frac{1}{\Omega} \frac{1}{\Omega} \frac{1}{\Omega} (p_a, q_a, t) = -\frac{1}{\Omega} \int \frac{1}{\Omega} \int \frac{1}{\Omega} (p_a, q_a, t+\tau) dp_a dq_a ds
\]
Through the use of the Dirac delta function, the collision integral may be extended over all γ-space:

\[\int_0^T \int \int \delta \left(\mathbf{r}_m + \mathbf{r}_n - \mathbf{r}_o \right) \mathbf{J} \cdot \mathbf{J} \, \frac{d\mathbf{p}_m}{\mathbf{p}_m} \, \frac{d\mathbf{p}_n}{\mathbf{p}_n} \, d\mathbf{q}_o \, ds = \int_0^T \int \int \delta \left(\mathbf{r}_m + \mathbf{r}_n - \mathbf{r}_o \right) \mathbf{J} \cdot \mathbf{J} \, \frac{d\mathbf{p}_m}{\mathbf{p}_m} \, \frac{d\mathbf{p}_n}{\mathbf{p}_n} \, d\mathbf{q}_o \, ds \]

where

\[\delta \mathbf{p}_m = \int_0^T \mathbf{J}_{\mathbf{p}_m} \, ds' + \mathbf{J}_{\mathbf{p}_m}^{\text{e}} \]

\[\delta \mathbf{q}_o = \int_0^T \mathbf{J}_{\mathbf{q}_o} \, ds' \]

The subscript \(o \) denotes a value at some initial instant of time, \(t \). By the principle of conservation of extension in phase space:

\[\int_0^T \int \int \delta \mathbf{r}_m \mathbf{J} \cdot \mathbf{J} \, \frac{d\mathbf{p}_m}{\mathbf{p}_m} \, \frac{d\mathbf{p}_n}{\mathbf{p}_n} \, d\mathbf{q}_o \, ds = \int_0^T \int \int \delta \mathbf{r}_m \mathbf{J} \cdot \mathbf{J} \, \frac{d\mathbf{p}_m}{\mathbf{p}_m} \, \frac{d\mathbf{p}_n}{\mathbf{p}_n} \, d\mathbf{q}_o \, ds \]

The gas shall be considered sufficiently dilute so that binary collisions are the sole mechanism of the collisional transfer of molecular properties. Since the collisions are impulsive, the intermolecular potential is a set of Heaviside step functions. The potential due to any molecule \(a \) is zero outside a certain volume of influence, \(V \). Therefore, in the region of configuration space exclusive of

\[\sum_{i=1}^{N} \mathbf{r}_i \]

the gas is in "molecular chaos". Kirkwood shows that for a dilute gas in molecular chaos:

\[\gamma_{\mathbf{r}_i}^{(n)} \left(\mathbf{p}_{nm}, \mathbf{q}_{nm}, t \right) = \gamma_{\mathbf{r}_i}^{(n)} \left(\mathbf{p}_{nm}, \mathbf{q}_{nm}, t \right) \gamma_{\mathbf{r}_i}^{(1)} \left(\mathbf{p}_{nm}, \mathbf{q}_{nm}, t \right) \]

A.8
By way of equation two of the text, this leads to:

$$\frac{d\tilde{V}_{10}}{dt} + \frac{\tilde{P}_{1a}}{\beta_1} \frac{d\tilde{V}_{10}}{dt} = -\frac{1}{t} \int \left(\tilde{r}_{10}(\tilde{r}_{1a}, \tilde{r}_{1b}, t) \tilde{r}_{10}(\tilde{r}_{1a}, \tilde{r}_{1b}, t) \tilde{r}_{10}(\tilde{r}_{1a}, \tilde{r}_{1b}, t) \right). \tag{A.9}$$

Since the intermolecular collisions are impulsive, the time interval τ may be made arbitrarily short. Thus:

$$\lim_{\tau \to 0} \left\{ \tilde{S}(\tilde{r}_{1a} + t\tilde{r}_b, \tilde{r}_b) \right\} = \tilde{S}(\tilde{r}_{1a}, \tilde{r}_b) \tag{A.10}$$

Assuming the above to be true for $\tau \to 0$ equation A.9 may be integrated at once:

$$\frac{d\tilde{V}_{10}}{dt} + \frac{\tilde{P}_{1a}}{\beta_1} \frac{d\tilde{V}_{10}}{dt} = -\frac{1}{t} \int \left(\tilde{r}_{10}(\tilde{r}_{1a}, \tilde{r}_{1b}, t) \tilde{r}_{10}(\tilde{r}_{1a}, \tilde{r}_{1b}, t) \tilde{r}_{10}(\tilde{r}_{1a}, \tilde{r}_{1b}, t) \right). \tag{A.11}$$

By Newton's second law of motion, Kirkwood recast the collision integral as:

$$\int \left\{ \frac{1}{t} \int \left(\tilde{r}_{10}(\tilde{r}_{1a}, \tilde{r}_{1b}, t) \tilde{r}_{10}(\tilde{r}_{1a}, \tilde{r}_{1b}, t) \tilde{r}_{10}(\tilde{r}_{1a}, \tilde{r}_{1b}, t) \right) \right\}. \tag{A.12}$$

The gas shall be considered to be composed of identical indistinguishable molecules. Equations A.12 and A.13 may be recast to apply to molecule phase space, μ-space. Noting:
\[\varepsilon^{(m)}(\mathbf{p}_0, \cdot, \theta, t) = \frac{N!}{(N-m)!} \varepsilon^{(m)}(\mathbf{p}_0, \cdot, \theta, t) \]

and

\[\varepsilon^{(0)}(\mathbf{p}_0, \cdot, \theta, t) = N \varepsilon^{(0)}(\mathbf{p}_0, \cdot, \theta, t) \]

leads to:

\[\frac{\partial \varepsilon^{(0)}}{\partial \mathbf{p}_0} = \frac{\partial \mathbf{p}_0}{\partial \mathbf{p}_a} \frac{\partial \varepsilon^{(0)}}{\partial \mathbf{p}_a} + \frac{\partial \mathbf{p}_0}{\partial \mathbf{p}_c} \frac{\partial \varepsilon^{(0)}}{\partial \mathbf{p}_c} - \frac{1}{2} \sum \left\{ \delta(\mathbf{p}_0 - \mathbf{p}_0^a, \mathbf{p}_a) - \delta(\mathbf{p}_0 - \mathbf{p}_0^c, \mathbf{p}_c) \right\} \varepsilon^{(0)}(\mathbf{p}_0^a, \mathbf{p}_a, \cdot, \theta, t) \varepsilon^{(0)}(\mathbf{p}_0^c, \mathbf{p}_c, \cdot, \theta, t) \]

\[\int \varepsilon^{(0)}(\mathbf{p}_0, \cdot, \theta, t) \, d\mathbf{p}_0 = N \]

\[\int \varepsilon^{(m)}(\mathbf{p}_0, \cdot, \theta, t) \, d\mathbf{p}_0 = N \varepsilon^{(m)} \]

Without any loss of generality, \(\mathbf{q}_{BO} \) may be expressed relative to \(\mathbf{q}_{30} \). Denoting this relative spatial coordinate \(\mathbf{q}_{RO} \) and dropping the superscripts from the \(\mu \)-space probability density leads to:

\[\frac{\partial \varepsilon^{(0)}}{\partial \mathbf{p}_0} = \frac{\partial \mathbf{p}_0}{\partial \mathbf{p}_a} \frac{\partial \varepsilon^{(0)}}{\partial \mathbf{p}_a} + \frac{\partial \mathbf{p}_0}{\partial \mathbf{p}_c} \frac{\partial \varepsilon^{(0)}}{\partial \mathbf{p}_c} - \frac{1}{2} \sum \left\{ \delta(\mathbf{p}_0 - \mathbf{p}_0^a, \mathbf{p}_a) - \delta(\mathbf{p}_0 - \mathbf{p}_0^c, \mathbf{p}_c) \right\} \varepsilon(\mathbf{p}_0^a, \mathbf{p}_a, \cdot, \theta, t) \varepsilon(\mathbf{p}_0^c, \mathbf{p}_c, \cdot, \theta, t) \]

This may be integrated at once:

\[\frac{\partial \varepsilon^{(0)}}{\partial \mathbf{p}_0} = \frac{\partial \mathbf{p}_0}{\partial \mathbf{p}_a} \frac{\partial \varepsilon^{(0)}}{\partial \mathbf{p}_a} + \frac{\partial \mathbf{p}_0}{\partial \mathbf{p}_c} \frac{\partial \varepsilon^{(0)}}{\partial \mathbf{p}_c} - \frac{1}{2} \sum \left\{ \delta(\mathbf{p}_0 - \mathbf{p}_0^a, \mathbf{p}_a) - \delta(\mathbf{p}_0 - \mathbf{p}_0^c, \mathbf{p}_c) \right\} \varepsilon(\mathbf{p}_0^a, \mathbf{p}_a, \cdot, \theta, t) \varepsilon(\mathbf{p}_0^c, \mathbf{p}_c, \cdot, \theta, t) \]

\[\cdot \{ \mathbf{q}_0(\mathbf{p}_0^a, \mathbf{p}_a, \cdot, \theta, t) \} \, d\mathbf{p}_0, d\mathbf{p}_R.
since, by Newton's third law of motion:

$$\Delta \vec{p}_{ab} = -\Delta \vec{p}_{ba} = \Delta \vec{p}$$

By invoking the principle of conservation of extension in phase space and by performing a second time-averaging operation over τ gives

$$\frac{\dddot{J}_a}{J_k} + \frac{\dddot{P}_b}{B_k} \frac{J_{\dot{R}}}{\dot{J}_{\dot{R}}} + \frac{\dddot{J}_{\dot{R}}}{\frac{\dot{J}_{\dot{R}}}{\dddot{J}_{\dot{R}}}} = \frac{1}{T} \int \left[\overline{\left(\frac{\dddot{f}_a}{J_k} - \frac{\dddot{P}_b}{J_{\dot{R}}} \right) f_b(\vec{p}_a, \vec{q}_b, \vec{q}_b, t) - \overline{\left(\frac{\dddot{f}_b}{J_{\dot{R}}} - \frac{\dddot{P}_a}{J_k} \right) f_a(\vec{p}_b, \vec{q}_b, \vec{q}_b, t)} \right] d\vec{p}_a d\vec{q}_a d\vec{p}_b d\vec{q}_b d\vec{q}_b$$ A.21

It can be shown2 that

$$\overline{f_a f_b} - \overline{f'_{a} f'_{b}} = O(t^4)$$ A.22

As mentioned previously, that the collisions are impulsive allows

$$\lim_{t \to 0} \left[\overline{f_a f_b} - \overline{f'_{a} f'_{b}} \right] = 0$$ A.23

Thus:

$$\frac{\dddot{J}_a}{J_k} + \frac{\dddot{P}_b}{B_k} \frac{J_{\dot{R}}}{\dot{J}_{\dot{R}}} + \frac{\dddot{J}_{\dot{R}}}{\frac{\dot{J}_{\dot{R}}}{\dddot{J}_{\dot{R}}}} = \frac{1}{T} \int \left[\overline{\left(\frac{\dddot{f}_a}{J_k} - \frac{\dddot{P}_b}{J_{\dot{R}}} \right) f_b(\vec{p}_a, \vec{q}_b, \vec{q}_b, t) - \overline{\left(\frac{\dddot{f}_b}{J_{\dot{R}}} - \frac{\dddot{P}_a}{J_k} \right) f_a(\vec{p}_b, \vec{q}_b, \vec{q}_b, t)} \right] d\vec{p}_a d\vec{q}_a d\vec{p}_b d\vec{q}_b d\vec{q}_b$$ A.24

$$\overline{f_a}(\vec{p}_a, \vec{q}_a, t) = \overline{f_a}(\vec{p}_a, \vec{q}_a, t)$$ A.25

$$\overline{f_b}(\vec{p}_b, \vec{q}_b, t) = \overline{f_b}(\vec{p}_b, \vec{q}_b, t)$$
APPENDIX B
Equations of Motion During Collision
Without loss of generality, we may locate the origin of our coordinate system at the c.g. of molecule a at the instant of impact. Further, we may also rotate the axis system to align $\vec{x_a}$ with the axis of molecule a. Thus:

The collision geometry of molecule b with respect to molecule a is uniquely described by the quantities:

$$\vec{r}_b \cdot \vec{r}_a = |\vec{r}_b| \cos \gamma.$$
The equations of motion are:

\[m_a \ddot{V}_a = m_a \ddot{V} + \ddot{I}_a \]
\[m_b \ddot{V}_b = m_b \ddot{V} + \ddot{I}_b \]
\[I_a \dddot{\omega}_a = I_a \dot{\omega}_a + \dot{\tau} x I_a \]
\[I_b \dddot{\omega}_b = I_b \dot{\omega}_b + \dot{\tau} x I_b \]
\[\ddot{I}_a + \ddot{I}_b = 0 \]

Assume:

i) \[m_a' = m_a = m_b = m \]
ii) \[I_a' = I_a = I_b' = I_b = I \]

The above assumptions in conjunction with equation B.5 yields

\[m \dddot{V}_a = m \dddot{V}_b + \dddot{\tau} \]
\[m \dddot{V}_b = m \dddot{V}_b + \dddot{\tau} \]
\[I_a \dddot{\omega}_a = I_a \dot{\omega}_a + \dot{\tau} x I_a \]
\[I_b \dddot{\omega}_b = I_b \dot{\omega}_b + \dot{\tau} x I_b \]

There are four equations, B.6 through B.9 in five unknowns, \(\dddot{\tau} \), \(\dddot{V}_a \), \(\dddot{V}_b \), \(\dddot{\omega}_a \), \(\dddot{\omega}_b \). The fifth equation of motion depends upon the rod material and surface. The rods shall be assumed to be perfectly elastic and perfectly smooth. Thus, the components of
the relative velocity tangent to the "collision plane" are unchanged by the collision while the normal component is completely reversed.

The plane of collision is that plane containing the three vectors \(\mathbf{r}_a, \mathbf{r}, \) and \(\mathbf{r}_b. \) Let the normal unit vector of this plane be denoted as \(\hat{n}_N. \) The two tangential unit vectors will be denoted \(\hat{T}_1 \) and \(\hat{T}_2, \) and where \(\hat{T}_1 \) is oriented such that \(\hat{T}_1 \cdot \hat{n}_a = 1. \) Thus, the final equations of motion are:

\[
\begin{align*}
(\hat{V}_k \cdot \hat{n}_N) \hat{n}_N & = -(\hat{V}_k \cdot \hat{n}_N) \hat{n}_N \\
(\hat{V}_b \cdot \hat{n}_N) \hat{n}_N & = (\hat{V}_b \cdot \hat{n}_N) \hat{n}_N \\
(\hat{V}_c \cdot \hat{n}_N) \hat{n}_N & = (\hat{V}_c \cdot \hat{n}_N) \hat{n}_N
\end{align*}
\]

and the relative velocities before and after collision are:

\[
\begin{align*}
\hat{V}_R' & = \hat{V}_b - \hat{V}_a + \omega_b \times \mathbf{r}_b - \omega_a \times \mathbf{r}_a \\
\hat{V}_b' & = \hat{V}_b' - \hat{V}_a' + \omega_b \times \mathbf{r}_b - \omega_a \times \mathbf{r}_a
\end{align*}
\]

One can now solve for \(\hat{T}_1, \) and then \(\hat{T}_a', \hat{T}_b', \omega_a' \) and \(\omega_b'. \) By equations B.6 through B.9:

\[
\begin{align*}
\hat{V}_b & = \hat{V}_b + \frac{3}{m} \mathbf{i} \\
\hat{V}_a & = \hat{V}_a + \frac{3}{m} \mathbf{i}
\end{align*}
\]

Thus:

\[
\begin{align*}
\hat{V}_k' & = \hat{V}_k + \frac{3}{m} \mathbf{i} - \frac{3}{m} \mathbf{i} + \omega_a \times \mathbf{r}_a - \omega_c \times \mathbf{r}_c - \left[(\hat{r}_b \times \mathbf{r}_b) \mathbf{i} \mathbf{j} + (\hat{r}_a \times \mathbf{r}_a) \mathbf{i} \mathbf{k} \right] / I
\end{align*}
\]

By equation B.13;
\[\vec{V}' = \vec{V} - \frac{2V}{m} + \frac{1}{m} \left[\vec{r}_a \times (\vec{r}_b \times \vec{J}) + \vec{r}_b \times (\vec{r}_a \times \vec{J}) \right] \]

Substituting equation B.15 into equations B.11 and B.12 shows:

\[\Omega = \left\{ \frac{1}{m} \left[(\vec{r}_b \cdot \vec{J}) \vec{r}_b - |\vec{r}_b|^2 \vec{J} + (\vec{r}_a \cdot \vec{J}) \vec{r}_a - |\vec{r}_a|^2 \vec{J} \right] - \frac{2V}{m} \right\} \cdot \vec{\Omega}_2 \]

\[\Omega = \left\{ \frac{1}{m} \left[(\vec{r}_a \cdot \vec{J}) \vec{r}_a - |\vec{r}_a|^2 \vec{J} + (\vec{r}_b \cdot \vec{J}) \vec{r}_b - |\vec{r}_b|^2 \vec{J} \right] - \frac{2V}{m} \right\} \cdot \vec{\Omega}_1 \]

Equations B.16 and B.17 can hold in general only if \(\vec{\Omega}_1 \) and \(\vec{\Omega}_2 \) which also states \(\vec{J} \parallel \vec{r}_a \) and \(\vec{J} \parallel \vec{r}_b \). Therefore, \(\vec{J} \parallel \vec{\Omega}_N \). We have found the direction of \(\vec{J} \); now we must find its magnitude. Substituting equation B.15 into equation B.10 yields:

\[\left\{ \vec{V}_R - \frac{2V}{m} + \frac{1}{m} \left[\vec{r}_a \times (\vec{r}_b \times \vec{J}) + \vec{r}_b \times (\vec{r}_a \times \vec{J}) \right] \right\} \cdot \vec{\Omega}_N = -\vec{V}_R \cdot \vec{\Omega}_N \]

\[\left\{ -\frac{2V}{m} + \frac{1}{m} \left[\vec{r}_a \times (\vec{r}_b \times \vec{J}) + \vec{r}_b \times (\vec{r}_a \times \vec{J}) \right] \right\} \cdot \vec{\Omega}_N = -2\vec{V}_R \cdot \vec{\Omega}_N \]

Since \(\vec{r}_a \cdot \vec{J} = \vec{r}_b \cdot \vec{J} = 0 \):

\[\left\{ -\frac{2V}{m} + \frac{1}{m} \left[|\vec{r}_a|^2 \vec{J} + |\vec{r}_b|^2 \vec{J} \right] \right\} \cdot \vec{\Omega}_N = -2\vec{V}_R \cdot \vec{\Omega}_N \]

Since \(\vec{J} \cdot \vec{\Omega}_N = \vec{J} \cdot \vec{\Omega}_N \), define: \(\vec{J} \cdot \vec{\Omega}_N = 1 \) which produces:

\[|\vec{J}| = \left\{ \frac{2\vec{V}_R \cdot \vec{\Omega}_N}{\lambda \lambda^* + m|\vec{r}_a|^2 + m|\vec{r}_b|^2} \right\} \vec{V}_R \cdot \vec{\Omega}_N \]

B.18

Thus:

\[\vec{J} = \left\{ \frac{2\vec{V}_R \cdot \vec{\Omega}_N}{\lambda \lambda^* + m|\vec{r}_a|^2 + m|\vec{r}_b|^2} \right\} (\vec{V}_R \cdot \vec{\Omega}_N) \cdot \vec{\Omega}_N \]

B.19

Substitution of equation B.19 into equations B.6 through B.9 yields:
The above could just as easily be cast in forms where the primed variables are the initial quantities. From equation (B.10) and the definition that $\overline{V}_b \cdot \hat{\imath}_N$ be positive in sign, the direction of $\hat{\imath}_N$ is reversed for this case. Thus:

\[
m\overline{V}'_b = m\overline{V}_b + \left\{ \frac{2mI}{2I + m|\overline{r}_a|^2 + m|\overline{r}_b|^2} \right\} (\overline{V}_b \cdot \hat{\imath}_N) \hat{\imath}_N \tag{B.20}
\]

\[
m\overline{V}' = m\overline{V} - \left\{ \frac{2mI}{2I + m|\overline{r}_a|^2 + m|\overline{r}_b|^2} \right\} (\overline{V}_b \cdot \hat{\imath}_N) \hat{\imath}_N \tag{B.21}
\]

\[
I\overline{\omega}_b \cdot I\omega'_b = \left\{ \frac{2mI}{2I + m|\overline{r}_a|^2 + m|\overline{r}_b|^2} \right\} (\overline{V}_b \cdot \hat{\imath}_N) (\hat{\overline{r}}_b \times \hat{\imath}_N) \tag{B.22}
\]

\[
I\overline{\omega}_b \cdot I\omega'_b = \left\{ \frac{2mI}{2I + m|\overline{r}_a|^2 + m|\overline{r}_b|^2} \right\} (\overline{V}_b \cdot \hat{\imath}_N) (\hat{\overline{r}}_b \times \hat{\imath}_N) \tag{B.23}
\]
Therefore, given a direct encounter where the initial velocities are \mathbf{V}_a, \mathbf{V}_b, \mathbf{V}_a^*, \mathbf{V}_b^* and the unit normal of the collision plane is \mathbf{N}, there exists an inverse encounter with initial velocities equal to the final velocity of the direct encounter and with a unit normal vector $-\mathbf{N}$ of the collision plane. Other than reversal of the collision plane unit normal vector, the geometry of the two collisions is identical in terms of \mathbf{r}, \mathbf{r}_a, \mathbf{r}_b, and \mathbf{z}.

APPENDIX C

Elemental Five Volume in Spherical Coordinates
By the method of successive projection:

\[
\begin{align*}
 x &= r \cos \phi \sin \theta \sin \alpha \\
 y &= r \sin \phi \sin \theta \sin \alpha \\
 z &= r \cos \theta \sin \alpha \\
 a &= r \cos \alpha \\
 b &= r \cos \phi \\
\end{align*}
\]

\[
J = \frac{\partial (x, y, z, a, b)}{\partial (r, \phi, \theta, \alpha, \beta)}
\]

\[
J =
\begin{bmatrix}
 \cos \phi \sin \theta \sin \alpha & -r \sin \phi \sin \theta \sin \alpha & r \cos \phi \cos \theta \sin \alpha & r \cos \phi \sin \theta \cos \alpha & r \cos \phi \sin \alpha \\
 r \cos \phi \sin \theta \sin \alpha & \cos \phi \sin \theta \sin \alpha & -r \sin \phi \sin \theta \sin \alpha & r \cos \phi \cos \theta \sin \alpha & r \cos \phi \sin \alpha \\
 \cos \phi \cos \theta \sin \alpha & r \cos \phi \cos \theta \sin \alpha & \cos \phi \cos \theta \sin \alpha & -r \sin \phi \cos \theta \sin \alpha & r \cos \phi \cos \alpha \\
 \cos \phi \cos \theta \sin \alpha & r \cos \phi \cos \theta \sin \alpha & \cos \phi \cos \theta \sin \alpha & -r \sin \phi \cos \theta \sin \alpha & r \cos \phi \cos \alpha \\
 \cos \alpha & 0 & 0 & -r \sin \alpha & r \cos \phi \cos \beta \\
 \cos \alpha & 0 & 0 & 0 & -r \sin \beta \\
 \cos \phi & 0 & 0 & 0 & -r \sin \beta
\end{bmatrix}
\]
<p>| (J =) | (\cos \theta \sin \alpha \sin \phi) | (\sin \phi \cos \theta \sin \alpha \sin \beta) | (\sin \beta \cos \theta \sin \alpha \sin \phi) | (\sin \phi \cos \alpha \sin \beta \cos \phi) |
|---|---|---|---|
| (-\sin \phi \sin \alpha \sin \beta) | (\cos \phi \cos \alpha \sin \sin \beta) | (\cos \alpha \sin \phi \sin \beta) | (\cos \theta \cos \beta) |
| (\theta) | (\theta) | (\theta) | (\theta) |
| (\theta) | (\theta) | (\theta) | (\theta) |
| (\theta) | (\theta) | (\theta) | (\theta) |</p>
<table>
<thead>
<tr>
<th>Combination</th>
<th>Permutation</th>
<th>Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>9_9_9_9_9_9</td>
<td>even 0</td>
<td>+</td>
</tr>
<tr>
<td>9_9_9_9_9_9</td>
<td>odd 1</td>
<td>-</td>
</tr>
<tr>
<td>9_9_9_9_9_9</td>
<td>even 2</td>
<td>+</td>
</tr>
<tr>
<td>9_9_9_9_9_9</td>
<td>odd 3</td>
<td>-</td>
</tr>
<tr>
<td>9_9_9_9_9_9</td>
<td>even 4</td>
<td>+</td>
</tr>
</tbody>
</table>

50
\[J = -r^4 \sin \theta \left(\cos^2 \phi + \sin^2 \phi \right) \]
\[I = -r^4 \sin \theta \sin^2 \alpha \sin^2 \beta \]

\[dV = 4 \pi r^2 \sin \theta \cos \phi \, dr \, d\theta \, d\phi = d \omega \, dr \, d\phi \]

\[dV = r^4 \sin \theta \sin^2 \alpha \sin^2 \beta \, dr \, d\theta \, d\phi \]

\[\iiint dV = \int_0^\pi \int_0^{2\pi} \int_0^r r^4 \sin \theta \sin^2 \alpha \sin^2 \beta \, dr \, d\theta \, d\phi \]

\[\iiint dV = (4 \pi)^2 (\cos \phi)^2 (\cos \theta)^2 (\cos \phi)^2 (\sin \phi^2 \theta^2 \cos \phi) \int_0^r r^4 \, dr \]

\[\iiint dV = \frac{8 \pi^2}{3} \int_0^r r^4 \, dr \]
APPENDIX D
Integral Identities
Consider the integral
\[\int_{\mathbf{c}} \phi(\mathbf{c}) d\mathbf{c} \]
where \(\mathbf{c} \) is the five vector \(\mathbf{c} = U_{\mathbf{a}} \mathbf{v}_{\mathbf{j}} \mathbf{w}_{\mathbf{j}} R_{\mathbf{a}} S_{\mathbf{a}} \)
of magnitude \(C \). Let \(\phi(C) = F(C) U^2 \). By symmetry:
\[\int_{\mathbf{c}} u^4 F(c) d\mathbf{c} = \int_{\mathbf{c}} v^4 F(c) d\mathbf{c} = \int_{\mathbf{c}} w^4 F(c) d\mathbf{c} = \int_{\mathbf{c}} r^4 F(c) d\mathbf{c} = \int_{\mathbf{c}} s^4 F(c) d\mathbf{c} \]

Then,
\[\int_{\mathbf{c}} u^4 F(c) d\mathbf{c} = \frac{1}{3} \int_{\mathbf{c}} (u^4 + v^4 + w^4 + r^4 + s^4) F(c) d\mathbf{c} = \frac{1}{3} \int_{\mathbf{c}} c^4 F(c) d\mathbf{c} \]
and
\[\int_{\mathbf{c}} F(c) d\mathbf{c} = \frac{1}{3} \int_{\mathbf{c}} c F(c) d\mathbf{c} \]
because the integrals of the non-diagonal terms vanish as they are odd functions of \(U, V, W, R, \) or \(S \). Thus
\[\int_{\mathbf{c}} F(c) d\mathbf{c} = 0. \]
For any vector \(\mathbf{a} \neq \mathbf{a}(\mathbf{c}) \)
\[\int_{\mathbf{c}} F(c)(\mathbf{a} \cdot \mathbf{c}) d\mathbf{c} = \mathbf{a} \cdot \int_{\mathbf{c}} F(c) d\mathbf{c} \]
\[= \frac{1}{3} \mathbf{a} \int_{\mathbf{c}} c^4 F(c) d\mathbf{c}. \]
Next, let \(\phi(C) = S^4 F(C) \). Where \(S = \cos \beta \). Then:
\[
\int_\mathcal{D}(C) S d\mathbf{\hat{C}} = \int_0^\pi \int_0^{2\pi} \int_0^{\cos^2 \theta} \int_0^{\sin^2 \theta} F(C) C^{4\cos^2 \theta \sin^2 \theta} \sin \theta \sin \phi d\phi d\theta d\theta'
\]

Then:

\[
\int_0^\pi \cos^3 \theta \sin^3 \theta d\theta = N \int_0^\pi \sin^3 \theta d\theta
\]

where \(N\) is a factor to be determined. Thus:

\[
\int_0^\pi \cos^3 \theta \sin^3 \theta d\theta = \frac{7}{35} \cos^3 \theta \int_0^\pi \frac{1}{3} \cos^3 \theta d\theta = \frac{1}{35}
\]

and

\[
\int_0^\pi \sin^3 \theta d\theta = -\frac{1}{3} \cos \theta (\sin^2 \theta + 2) \bigg|_0^\pi = \frac{4}{3}
\]

Thus:

\[
N = \frac{3}{35}
\]

and:

\[
\int_\mathcal{D}(C) S d\mathbf{\hat{C}} = \frac{3}{35} \int_\mathcal{D}(C) C^{4} d\mathbf{\hat{C}}.
\]

Let \(\phi(C) = F(C) R^2 S^2\) where \(R = C \cos \alpha \sin \beta\), \(S = C \cos \beta\). Then

\[
\int_\mathcal{D}(C) R^2 S^2 d\mathbf{\hat{C}} = \int_0^\pi \int_0^{2\pi} \int_0^{\cos^2 \theta} \int_0^{\sin^2 \theta} F(C) C^{4\cos^2 \theta \cos \phi \sin \theta} \sin \phi \sin \beta \sin \phi \sin \beta \sin \beta d\phi d\theta d\theta'
\]

and

\[
\int_0^\pi \int_0^{\cos^2 \theta} \int_0^{\sin^2 \theta} \cos^2 \phi \sin^2 \theta \sin^2 \beta d\phi d\theta d\theta' = N \int_0^\pi \sin^2 \theta \sin^2 \beta d\theta d\theta'
\]

\[
= \frac{4N}{3} \int_0^\pi \sin^2 \theta d\theta
\]

\[
= \frac{2\pi N}{3}
\]
Integrating with respect to β:
\[
\int_0^\theta \cos^2 \beta \sin^2 \beta \, d\beta = \int_0^\theta \cos^4 \beta (1-\cos^2 \beta)^2 \sin \beta \, d\beta \tag{D.19}
\]
\[
= \int_0^\theta (\cos^4 \beta - 2\cos^2 \beta + \cos^4 \beta) \sin \beta \, d\beta \tag{D.20}
\]
\[
= -\cos^5 \beta \bigg|_0^\theta + \frac{3}{5} \cos^3 \beta \bigg|_0^\theta - \frac{1}{3} \cos \beta \bigg|_0^\theta \tag{D.21}
\]
\[
= \frac{16}{15} \theta \tag{D.22}
\]

and next with respect to α:
\[
\int_0^\theta \cos^2 \alpha \sin^2 \alpha \, d\alpha = \int_0^\theta \cos^4 \alpha \, d\alpha - \int_0^\theta \cos \alpha \, d\alpha \tag{D.23}
\]
\[
= \left. \left[\frac{\theta}{2} + \frac{\sin 2\theta}{4} \right] \right|_0^\theta - \left. \left[\frac{\theta}{8} + \frac{\sin 2\theta}{8} + \frac{\sin 4\theta}{32} \right] \right|_0^\theta \tag{D.24}
\]
\[
= \frac{\pi}{8} \tag{D.25}
\]

Thus:
\[
\frac{2\pi}{105} = \frac{2\pi}{3} \cdot N \quad \therefore N = \frac{\pi}{35} \tag{D.26}
\]
yielding
\[
\int_\alpha^\theta K^2 S^2 F(c) \, d\hat{c} - \frac{1}{35} \int_\alpha^\theta F(c) c^4 \, d\hat{c} \tag{D.27}
\]

The integral
\[
\int_\alpha^\theta F(c) \hat{c} \, (\hat{c} \hat{c} : \hat{B}) \, d\hat{c} \tag{D.28}
\]

where $\hat{B} \neq \hat{B}(c)$ may next be evaluated.

For a typical diagonal element:
\[
\int F(c) \mathcal{U} \left(\mathcal{C} \mathcal{E}; \hat{\mathcal{B}} \right) \, d \mathcal{E} = \int F(c) \mathcal{U} \left(\mathcal{U}^* \mathcal{B}_{ss} + \mathcal{W}^* \mathcal{B}_{ss} + \mathcal{R}^* \mathcal{B}_{ss} + \mathcal{S}^* \mathcal{B}_{ss} \right) \, d \mathcal{E}
\]

D. 29

\[
= \left(\frac{3}{35} \mathcal{B}_{ss} + \frac{1}{35} \mathcal{B}_{ss} + \frac{1}{35} \mathcal{B}_{ss} + \frac{1}{35} \mathcal{B}_{ss} \right) \int F(c) \mathcal{C} \, d \mathcal{E}
\]

D. 30

\[
= \left(\frac{2}{35} \mathcal{B}_{ss} + \frac{1}{35} \mathcal{B}_{ss} \right) \int F(c) \mathcal{C} \, d \mathcal{E}
\]

D. 31

\[
\int F(c) \mathcal{U} \left(\mathcal{C} \mathcal{E}; \hat{\mathcal{B}} \right) \, d \mathcal{E} \cdot \frac{2}{35} \mathcal{B}_{ss} \int F(c) \mathcal{C} \, d \mathcal{E}
\]

D. 32

while for a typical non-diagonal element

\[
\int F(c) \mathcal{R S} \left(\mathcal{C} \mathcal{E}; \hat{\mathcal{B}} \right) \, d \mathcal{E} = \int F(c) \mathcal{R S} \left(\mathcal{R S} \mathcal{B}_{ss} + \mathcal{SR} \mathcal{B}_{ss} \right) \, d \mathcal{E}
\]

D. 33

\[
= 2 \int F(c) \mathcal{R S} \mathcal{B}_{ss} \, d \mathcal{E}
\]

D. 34

\[
= \frac{2}{35} \mathcal{B}_{ss} \int F(c) \mathcal{C} \, d \mathcal{E}
\]

D. 35

Thus:

\[
\int F(c) \mathcal{C} \left(\mathcal{C} \mathcal{E}; \hat{\mathcal{B}} \right) \, d \mathcal{E} = \frac{2}{35} \mathcal{B}_{ss} \int F(c) \mathcal{C} \, d \mathcal{E}
\]

D. 36

Since

\[
\mathcal{C} \mathcal{E}_1 \mathcal{C} \mathcal{E}_2 - \mathcal{C} \mathcal{E}_1 \mathcal{C} \mathcal{E}_2 = \mathcal{C} \mathcal{E}_1 \mathcal{C} \mathcal{E}_2 - \frac{1}{3} \mathcal{C} \mathcal{E}_1 \mathcal{C} \mathcal{E}_2 - \frac{1}{3} \mathcal{C} \mathcal{E}_1 \mathcal{C} \mathcal{E}_2
\]

D. 37

then:

57
\[\mathcal{E} \cdot \mathcal{E} = \frac{4}{5} \mathcal{C} \]

and

\[\frac{2}{35} \int_{\mathcal{E}_a} \mathcal{E} \cdot \mathcal{E} \, d\mathcal{E} - \frac{1}{14} \int_{\mathcal{E}_a} \mathcal{E} \cdot (\mathcal{E} \times \mathcal{E}) \, d\mathcal{E} \]

Therefore:

\[\int_{\mathcal{E}_a} \mathcal{E} \cdot \mathcal{E} \, d\mathcal{E} = \frac{2}{35} \int_{\mathcal{E}_a} \mathcal{E} \cdot \mathcal{E} \, d\mathcal{E} - \frac{1}{14} \int_{\mathcal{E}_a} \mathcal{E} \cdot (\mathcal{E} \times \mathcal{E}) \, d\mathcal{E} \]
APPENDIX E

Conservation Equations
From the Liouville equation

\[\frac{dE}{dt} = \frac{dE}{dt} + \frac{P_i}{B_i} \frac{dE}{dt} + E \frac{dE}{dt} = \left(\frac{d\gamma}{dt} \right)_C \]

where \(B_j \neq B_j(q_j) \), \(\gamma \) is generalized force/torque, and

- \(j=1 \Rightarrow x \quad B_1=m \)
- \(j=2 \Rightarrow y \quad B_2=m \)
- \(j=3 \Rightarrow z \quad B_3=m \)
- \(j=4 \Rightarrow \theta \quad B_4=I \)
- \(j=5 \Rightarrow \phi \quad B_5=I \sin^2 \alpha \)

Let \(\gamma(p,q,t) \) be any function of the molecular momentum, position, and time. The function may be a scalar, vector, or a tensor function. The rate of change of \(\gamma \) per unit "volume" due to collisions is:

\[\int \gamma \frac{dt}{dt} d\gamma = n \Delta \gamma. \]

But:

\[\int \gamma \frac{dt}{dt} d\gamma = \int \gamma \left[\frac{dt}{dt} + \frac{P_i}{B_i} \frac{dE}{dt} + E \frac{dE}{dt} \right] d\gamma \]

and, expanding:

\[\int \gamma \frac{dt}{dt} d\gamma = \int \gamma d\gamma - \int \frac{d\gamma}{dt} d\gamma = \frac{d\gamma}{dt} - n \frac{d\gamma}{dt} \]

E.3
If \(\psi \) happens to be a conserved quantity, then \(\Delta \overline{\psi} = 0 \). Such quantities are mass (for non-reacting gases and neglecting nuclear effects), linear momentum, total angular momentum, and energy (for non-nuclear effects). These conservation equations follow.

i) Conservation of Mass:

Under the above stipulations, this reduces to the conservation of the number of molecules. Thus, \(\psi = 1 \).

Equation E.6 becomes:

\[
\frac{\partial \rho_j}{\partial t} + \sum_i \left[\frac{n_i \rho_i}{B_i} \right] = 0, \quad j = 1 \rightarrow 5 \quad \text{E.7}
\]
B_5 is now 1/2 for the above equation as this is the number average value of B_5. Next, decompose the momentum, \(\vec{p} \), into a peculiar component, \(\vec{P} \), and a mean component \(\vec{P}_0 \). Also,

\[\vec{p} = \vec{P}(\vec{p}, \vec{q}, t) \]

Therefore:

\[\vec{p} = \vec{P}_0 + \vec{P} \quad \text{E.8} \]

Equation E.4 is thus:

\[\frac{\partial}{\partial t} \sum_{j} \frac{1}{B_j} \left[B_j (\vec{P}_i + \vec{P}_j) \right] = 0 \quad \text{E.9} \]

\[\frac{\partial}{\partial t} \sum_{j} \frac{1}{B_j} \left[\frac{n_i p_i}{B_j} \right] = 0 \quad \text{for } j = 1 \to 5 \quad \text{E.10} \]

ii) Conservation of Linear Momentum:

For \(i = 1, 2, 3 \), \(\Psi_i = p_i \), whereas \(\Psi_i = 0 \) for \(i = 4, 5 \).

Equation E.6 yields:

\[\frac{\partial}{\partial t} \sum_{j} \frac{1}{B_j} \left[B_j (\vec{P}_i + \vec{P}_j) \right] \cdot \n \left[\frac{\partial \vec{P}_i}{\partial t} + \frac{\partial \vec{P}_j}{\partial t} + \frac{n_i}{B_j} \frac{\partial \vec{P}_j}{\partial t} \right] = 0 \quad \text{E.11} \]

where \(j = 1 \to 5 \)

Since \(\vec{P} = \vec{P}(\vec{p}, \vec{q}, t) \), then \(\vec{p} = \vec{P}(\vec{q}, t) \). Thus:

\[\frac{\partial}{\partial t} \sum_{j} \frac{1}{B_j} \left[\frac{n_i p_i}{B_j} \right] \cdot \n \cdot \delta_{ij} = 0 \quad \text{E.12} \]
By continuity, however,

\[
\frac{\partial n}{\partial t} + \frac{\partial}{\partial x_i} \left[n \hat{P}^2 \right] - n \frac{\partial}{\partial x_i} \left[\frac{n \hat{P}^2}{B_i} \right] = 0
\]

E.17

\[
\text{for } i = 1 \to 5; \quad i = 1, 2, 3
\]

iii) Conservation of Total Angular Momentum:

\[
\Psi_k = \epsilon_{ijk} \psi_i \quad \text{for } \epsilon_{ijk} = 1 \to 3
\]

\[
\Psi_k = \psi_k \quad \text{for } k = 4, 5
\]

Denote \(\Psi_k \) as \(\Psi_k^* \) for \(k = 1 \to 5 \). Equation E.6 yields:

\[
\frac{\partial n}{\partial t} + \frac{\partial}{\partial x_i} \left[n \hat{P}^2 \right] - n \left\{ \frac{\partial \hat{J}_i}{\partial t} + \frac{\hat{P}_i}{B_i} \frac{\partial \hat{J}_i}{\partial x_i} + \hat{J}_i \frac{\partial \hat{P}_i}{\partial x_i} \right\} = 0
\]

E.18
Consider first $i = 1, 2, 3$. Then:

\[
\frac{\partial \bar{q}_i}{\partial t} + \frac{1}{\sigma_{ij}} \left[\frac{n \bar{p}_j}{B_i} \right] - n \frac{\partial}{\partial p_i} \left(\varepsilon_{klm} q_k \right) = 0 \tag{E.19}
\]

\[
\varepsilon_{klm} q_k \frac{\partial \bar{q}_i}{\partial t} + \frac{1}{\sigma_{ij}} \left[\frac{n}{B_j} \varepsilon_{klm} \bar{p}_j q_k \right] - n \frac{\partial}{\partial p_i} \left(\varepsilon_{klm} q_k \right) = 0 \tag{E.20}
\]

\[
\varepsilon_{klm} q_k \frac{\partial \bar{q}_i}{\partial t} + \varepsilon_{klm} q_k \frac{1}{\sigma_{ij}} \left[\frac{n}{B_j} \bar{p}_j \bar{q}_k \right] + \varepsilon_{klm} \frac{n \bar{p}_j \bar{q}_k}{B_i} \frac{\partial s_{ij}}{\partial t} - n \varepsilon_{klm} q_k \frac{\partial}{\partial p_i} \left(\varepsilon_{klm} q_k \right) = 0 \tag{E.21}
\]

\[
\varepsilon_{klm} q_k \frac{\partial \bar{q}_i}{\partial t} + \varepsilon_{klm} q_k \frac{1}{\sigma_{ij}} \left[\frac{n \bar{p}_j \bar{q}_k}{B_i} \right] + \varepsilon_{klm} \frac{n \bar{p}_j \bar{q}_k}{B_i} \frac{\partial s_{ij}}{\partial t} - n \varepsilon_{klm} q_k \frac{\partial}{\partial p_i} \left(\varepsilon_{klm} q_k \right) = 0 \tag{E.22}
\]

\[
\text{But, } \bar{p}_k \bar{q}_k = \bar{p}_k \bar{p}_k, \text{ so:} \tag{E.24}
\]

\[
\varepsilon_{klm} q_k \frac{\partial \bar{q}_i}{\partial t} + \varepsilon_{klm} q_k \frac{1}{\sigma_{ij}} \left[\frac{n \bar{p}_j \bar{q}_k}{B_i} \right] - n \varepsilon_{klm} q_k \frac{\partial}{\partial p_i} \left(\varepsilon_{klm} q_k \right) = 0 \tag{E.25}
\]
which the conservation of linear momentum crossed with the position vector. Thus, for \(i = 1, 2, 3 \), the conservation of total angular momentum equation is redundant.

For \(i = 4, 5 \), \(l_i = p_i \) and by the development of the conservation of linear momentum equation:

\[
\frac{dp_i}{dt} + \frac{n}{8} \left[\frac{p_i}{B_i} \frac{dp_i}{dt} \right] = 0
\]

E.26

where one must remember \(i = 4, 5 \).

iv) Conservation of Energy:

Now: \(\Psi = \frac{p_i^2}{2B_i} \)

Equation E.6 yields:

\[
\frac{1}{2B_i} \frac{dp_i^2}{dt} + \frac{1}{8} \left[\frac{n}{8} \frac{p_i^2}{B_i^2} \right] - n \left[\frac{1}{2B_i} \frac{dp_i^2}{dt} + \frac{p_i}{B_i} \frac{dp_i}{dt} \frac{p_i}{B_i} \right] + \Psi \frac{1}{d} [\frac{p_i^2}{B_i^2}] = 0
\]

E.27

\[
\frac{1}{2B_i} \frac{dp_i^2}{dt} + \frac{1}{8} \left[\frac{n}{8} \frac{p_i^2}{B_i^2} \right] - n \left[\frac{1}{2B_i} \frac{dp_i^2}{dt} + \frac{p_i}{B_i} \frac{dp_i}{dt} \frac{p_i}{B_i} \right] + \Psi \frac{1}{d} [\frac{p_i^2}{B_i^2}] = 0.
\]

E.28

Also:

\[
\frac{p_i p_i^2}{2} = (p_{i_1} + p_{i_2} + p_{i_3} + p_{i_4} + p_{i_5})(p_{i_1}^2 + 2p_{i_2}^2 + 2p_{i_3}^2 + 2p_{i_4}^2 + 2p_{i_5}^2)
\]

\[
= p_{i_1}^2 + 2p_{i_2}^2 + p_{i_3}^2 + p_{i_4}^2 + p_{i_5}^2 + 2p_{i_1} p_{i_2} + 2p_{i_2} p_{i_3} + 2p_{i_3} p_{i_4} + 2p_{i_4} p_{i_5} + 2p_{i_5} p_{i_1}
\]

\[
= p_{i_1}^2 + p_{i_2}^2 + 2p_{i_3}^2 + 2p_{i_4}^2 + 2p_{i_5}^2
\]

E.29

65
\[\overrightarrow{p}_{ti} = \overrightarrow{p}_{ouu} + 2 \overrightarrow{P}_i \overrightarrow{P}_i + \overrightarrow{p}_{ui}^2 + \overrightarrow{p}_{ii}^2 \]

(E.30)

\[\frac{d}{dt} \overrightarrow{p}_i = 2 \overrightarrow{P}_i \frac{d}{dt} \overrightarrow{P}_i + \frac{d}{dt} \overrightarrow{p}_i^2 \text{ where } \overrightarrow{p}_i = \overrightarrow{p}_i (t). \]

(E.31)

Thus:

\[\left\{ \frac{\overrightarrow{P}_i}{B_i} \frac{d}{dt} \overrightarrow{p}_i^2 + \frac{\overrightarrow{P}_i}{B_i} \frac{d}{dt} \left[\frac{n \overrightarrow{P}_i \overrightarrow{P}_i}{B_i} \right] - \frac{\overrightarrow{p}_i}{B_i} \overrightarrow{J}_i \right\} - n \left\{ \frac{1}{2B_i} \frac{d}{dt} \overrightarrow{p}_i^2 + \frac{\overrightarrow{p}_i}{B_i} \frac{d}{dt} \left[\frac{\overrightarrow{p}_i^2}{2B_i} \right] \right\} = 0. \]

(E.32)

By the conservation of linear momentum and total angular momentum equations:

\[\frac{\overrightarrow{P}_i}{B_i} \frac{d}{dt} \overrightarrow{p}_i^2 + \frac{\overrightarrow{P}_i}{B_i} \frac{d}{dt} \left[\frac{n \overrightarrow{P}_i \overrightarrow{P}_i}{B_i} \right] - \frac{\overrightarrow{p}_i}{B_i} \overrightarrow{J}_i = 0 = \frac{1}{2B_i} \frac{d}{dt} \overrightarrow{p}_i^2 + \frac{\overrightarrow{p}_i}{B_i} \frac{d}{dt} \left[\frac{\overrightarrow{p}_i^2}{2B_i} \right] - \overrightarrow{J}_i \frac{\overrightarrow{p}_i}{B_i}. \]

(E.33)

\[n \left\{ \frac{1}{2B_i} \frac{d}{dt} \overrightarrow{p}_i^2 + \frac{\overrightarrow{p}_i}{B_i} \frac{d}{dt} \left[\frac{\overrightarrow{p}_i^2}{2B_i} \right] \right\} = 0 \]

(E.34)

Consider equation E.33 first.

\[\frac{1}{2B_i} \frac{d}{dt} \left(\overrightarrow{p}_{ouu}^2 + \overrightarrow{p}_{uu}^2 \right) + \frac{1}{B_i} \frac{d}{dt} \left[\frac{n (\overrightarrow{p}_{ouu}^2 + \overrightarrow{p}_{uu}^2 + \overrightarrow{P}_i \overrightarrow{P}_i + 2 \overrightarrow{P}_i \overrightarrow{p}_i^2) \right] - \frac{\overrightarrow{J}_i}{B_i} \frac{\overrightarrow{p}_{ouu}}{B_i} = 0 \]

(E.35)

\[\frac{1}{2B_i} \frac{d}{dt} \left(\overrightarrow{p}_{ouu}^2 + \overrightarrow{p}_{uu}^2 \right) + \frac{1}{B_i} \frac{d}{dt} \left[\frac{n (\overrightarrow{p}_{ouu}^2 + \overrightarrow{p}_{uu}^2 + \overrightarrow{P}_i \overrightarrow{P}_i + 2 \overrightarrow{P}_i \overrightarrow{p}_i^2) \right] - \frac{\overrightarrow{J}_i}{B_i} \frac{\overrightarrow{p}_{ouu}}{B_i} + \frac{1}{2B_i} \frac{d}{dt} \overrightarrow{p}_i^2 = 0 \]

(E.36)
\[
\frac{1}{2B_i} \left[n \frac{\partial p_i}{\partial t} + p_i \frac{\partial n}{\partial t} \right] + \frac{n p_i}{B_i} \frac{\partial n}{\partial t} \frac{\partial p_i}{\partial B_i} + \frac{p_i}{2B_i} \frac{\partial p_i}{\partial t} \frac{\partial \nu_i}{\partial B_i} + \frac{p_i}{2B_i} \frac{\partial \nu_i}{\partial t} \frac{\partial p_i}{\partial B_i} + \frac{\nu_i}{2B_i} \left(\frac{\partial p_i}{\partial t} \frac{\partial \nu_i}{\partial B_i} + \frac{\partial p_i}{\partial t} \frac{\partial \nu_i}{\partial B_i} + 2 \nu_i \frac{\partial p_i}{\partial \nu_i} \right) \right] + \frac{1}{2B_i} \frac{\partial n}{\partial t} \frac{\partial p_i}{\partial B_i} = 0.
\]

By the conservation of mass, the above reduces to:

\[
\frac{n}{2B_i} \frac{\partial n}{\partial t} + \frac{n p_i}{B_i} \frac{\partial n}{\partial t} \frac{\partial p_i}{\partial B_i} + \frac{1}{2B_i} \left[n \frac{\partial p_i}{\partial t} \frac{\partial \nu_i}{\partial B_i} + \frac{p_i}{2B_i} \frac{\partial p_i}{\partial t} \frac{\partial \nu_i}{\partial B_i} + 2 \nu_i \frac{\partial p_i}{\partial \nu_i} \right] - \frac{9}{2B_i} \frac{\partial p_i}{\partial B_i} = 0.
\]

But \(p_i^2/2B_i = \frac{5 kT}{2} \). Thus

\[
\frac{\partial n}{\partial t} + \frac{n}{2B_i} \frac{\partial \nu_i}{\partial B_i} \frac{\partial \nu_i}{\partial t} \frac{\partial p_i}{\partial B_i} + \frac{1}{2B_i} \left[n \frac{\partial p_i}{\partial t} \frac{\partial \nu_i}{\partial B_i} + \frac{p_i}{2B_i} \frac{\partial p_i}{\partial t} \frac{\partial \nu_i}{\partial B_i} + 2 \nu_i \frac{\partial p_i}{\partial \nu_i} \right] - \frac{9}{2B_i} \frac{\partial p_i}{\partial B_i} + \frac{1}{2B_i} \frac{\partial \nu_i}{\partial t} \frac{\partial p_i}{\partial B_i} = 0.
\]

By the assumption of molecular chaos \(\frac{\partial p_i^2}{\partial t} = 0 \). Expanding the last term yields

\[
\frac{1}{2B_i} \frac{\partial n}{\partial t} \frac{\partial p_i}{\partial B_i} = -\frac{1}{2B_i} \left[n \frac{\partial p_i}{\partial t} \frac{\partial \nu_i}{\partial B_i} + \frac{p_i}{2B_i} \frac{\partial p_i}{\partial t} \frac{\partial \nu_i}{\partial B_i} + 2 \nu_i \frac{\partial p_i}{\partial \nu_i} \right].
\]

Thus:

\[
\frac{5}{2} \frac{n}{B_i} \frac{\partial \nu_i}{\partial B_i} \frac{\partial \nu_i}{\partial t} \frac{\partial p_i}{\partial B_i} + \frac{p_i}{2B_i} \frac{\partial p_i}{\partial t} \frac{\partial \nu_i}{\partial B_i} + \frac{p_i}{2B_i} \frac{\partial p_i}{\partial t} \frac{\partial \nu_i}{\partial B_i} + \frac{\nu_i}{2B_i} \frac{\partial p_i}{\partial \nu_i} \frac{\partial \nu_i}{\partial B_i} + \frac{\nu_i}{2B_i} \frac{\partial p_i}{\partial \nu_i} \frac{\partial \nu_i}{\partial B_i} - \frac{9}{2B_i} \frac{\partial p_i}{\partial B_i} = 0.
\]

Again, by the assumption of molecular chaos \(\frac{\partial p_i^2}{\partial t} = 0 \). In combination with the conservation of mass equations, this yields:
Next, consider equation E.34.

\[\eta \left(\frac{n T}{28} \frac{\partial T}{\partial t} + \frac{P_i}{B_i} \frac{\partial P_i}{\partial t} \right) = 0 = \eta \left(\frac{1}{2B_i} \left[\frac{\partial P_i}{\partial t} + \frac{1}{\beta_i} \frac{\partial P_i}{\partial \eta_i} \right] + \frac{P_i}{B_i} \frac{\partial \beta_i}{\partial \eta_i} \left[\frac{\partial P_i}{\partial t} \right] \right) \]

By the assumption of molecular chaos, this reduces to:

\[\eta \left(\frac{1}{2B_i} \frac{\partial P_i}{\partial t} + \frac{P_i}{B_i} \frac{\partial \beta_i}{\partial \eta_i} \left[\frac{\partial P_i}{\partial t} \right] + \frac{P_i}{B_i} \frac{\partial \beta_i}{\partial \eta_i} \left[\frac{\partial P_i}{\partial t} \right] \right) = 0. \]

Expanding:

\[\eta \left\{ \frac{P_i}{B_i} \frac{\partial \beta_i}{\partial \eta_i} + \frac{P_i}{B_i} \frac{\partial \beta_i}{\partial \eta_i} \left[\frac{\partial P_i}{\partial t} \right] + \frac{P_i}{B_i} \frac{\partial \beta_i}{\partial \eta_i} \left[\frac{\partial P_i}{\partial t} \right] \right\} = 0. \]

By molecular chaos, we have:

68
Adding equations E.44 and E.48 yields:

\[
\frac{\dot{P}_i}{\dot{B}_i} \left(n \frac{\dot{P}_i}{\dot{B}_i} + \frac{n \dot{P}_i}{\dot{B}_i} \frac{d \dot{P}_i}{d \dot{B}_i} \right) = 0
\]

E.48

which by the conservation of linear momentum and total angular momentum yields:

\[
\frac{\dot{S} n \hbar}{2} \left[\frac{J_T}{\dot{B}_i} + \frac{\dot{P}_i}{\dot{B}_i} \frac{d J_T}{d \dot{B}_i} \right] + \frac{\dot{1}}{\dot{d}_{ij}} \left[\frac{n \dot{P}_i}{\dot{B}_i} \frac{d \dot{P}_i}{d \dot{B}_i} \right] + \frac{\dot{J}_i}{\dot{B}_i} = 0.
\]

E.50
APPENDIX F
The Equilibrium Distribution Function
By Enskog's expansion method

$$J^0 = 0$$

which leads to

$$\left(\frac{J^0}{J^0} \right) = 0 = \int \left(\int \left(\frac{\hat{\tau}^0 \hat{\tau}^0}{\hat{t}^0 \hat{t}^0} - \frac{\hat{\tau}^0 \hat{\tau}^0}{\hat{t}^0 \hat{t}^0} \right) \right) V_{\text{R}} \, d\theta \, d\phi \, d\alpha \, d\alpha$$

F.1

where

$$|d_{\text{R}}|^2 = r^2 \sin \sigma \sin^2 \omega \, d\rho \, d\psi \, d\sigma$$

F.2

The only difference between the above collision integral and the collision integral for spherical molecules is the dimensional rank of the vectors d_{R} and d_{R}^0. Boltzmann's H-theorem is rank independent and therefore holds for equation F.2. Thus,

$$\tilde{\psi}^0 = \tilde{\tau}^0$$

F.3

or

$$|d_{\text{R}}|^2 \tilde{\psi}^0 = |d_{\text{R}}|^2 \tilde{\tau}^0$$

F.4

Since $\ln \tilde{\psi}^0$ is both a scalar and a conserved property of the gas, $\ln \tilde{\psi}^0$ must be a linear combination of the four conserved properties $\psi^i, i = 1 \rightarrow 4$, such that

$$|d_{\text{R}}|^2 \tilde{\psi}^0 = \beta^0 \, \dot{\psi}^0 + \beta^0 \, \dot{\psi}^0 + \beta^0 \, \dot{\psi}^0 + \beta^0 \, \dot{\psi}^0 / 28$$

F.5

for $m = 1 \rightarrow 3; i, j, k, l = 1 \rightarrow 5$ and where
\[\alpha_i = \xi \delta_i \quad \text{for} \quad i,j,k \neq 3 \]
\[\alpha_i = \xi \quad \text{for} \quad i = q, s \]

\(\beta_i \) and \(\beta^* \) are scalars, \(\beta_i \) is a three vector, and \(\beta^* \) is a five vector. Define:

\[\beta_{i} = \xi \beta_{i} \quad \text{for} \quad i,j,k \neq 3 \]
\[\beta_{i} = \beta_{i}^* \quad \text{for} \quad i = q, s \]

so that equation F.5 becomes

\[\frac{1}{4} \left(\beta_{i} + \beta_{i}^* \right) \cdot \left(\beta_{m} + \beta_{m}^* \right) = \frac{\beta_{i}^* \cdot \beta_{i}^*}{28} / 28 \]

Equation F.8 may be recast as:

\[\frac{1}{4} \left(\beta_{i} + \beta_{i}^* \right) \cdot \left(\beta_{m} + \beta_{m}^* \right) = \left(\beta_{i}^* \cdot \beta_{i}^* \right) / \beta_{i}^* \]

where \(\beta_{i} \cdot \beta_{i}^* = 0 \). Thus:

\[\frac{1}{4} \exp \left\{ \frac{\beta_{i}^* \cdot \beta_{i}^*}{28} / \beta_{i}^* \right\} \]

Define:

\[\chi_i = \beta_{i} - \left(\beta_{i}^* \cdot \beta_{i}^* \right) / \beta_{i} \]

By Enskog's method, the average value of momentum is defined as:

\[\frac{1}{2} \int \beta_1^* \, d\beta \]

Substituting equations F.10 and F.11 into equation F.12 yields
Thus, we must have:

\[\beta = -\alpha \]

for any of the integrals to be finite. Further, the first integral vanishes because its integrand is an odd function of \(\vec{x} \). Thus:

\[\eta \cdot \frac{d}{d\beta} \int (\vec{\beta} \cdot \vec{\beta}) \exp \left(\frac{-\vec{x}^2}{2\beta} \right) d\vec{x} = 0 \]

or:

\[\eta \cdot \frac{d}{d\beta} (\vec{\beta} \cdot \vec{\beta}) \int \exp \left(\frac{-\vec{x}^2}{2\beta} \right) d\vec{x} = 0 \]

However, by definition:

\[n = \int \exp \left(\frac{-\vec{x}^2}{2\beta} \right) d\vec{x} \]

which leads to

\[\vec{p} = (\vec{\beta} \cdot \vec{\beta}) \vec{\beta} \]

Thus, equation F.11 becomes

\[X_i = \vec{p} \cdot \vec{p}_i \]

Therefore, \(X_i \) is the ith component of the peculiar momentum, or:

\[\vec{p}_i = X_i \]
Therefore:
\[\frac{\tau}{\ell} = a^6 \exp \left(\frac{\alpha^2}{2B_a} \right) \]
F.21

Now:
\[n = a^6 \int \exp \left(\frac{-\alpha^2}{2B_a} \right) \, d\phi \]
F.22

From Appendix C:
\[n = \frac{8\pi^2 \alpha^2}{3} \int_0^\infty \frac{e^{-\alpha x}}{x} \, dx \]
F.23

where \(a = \frac{\nu^{(3/2)}}{2B} \)
F.24

Consecutively let:
\[n = r^2 \]
F.25
\[x = am \]
F.26

then
\[n = \frac{8\pi^2 \alpha^2}{3} \int_0^\infty e^{-\alpha x} \, dx \]
F.27

\[n = \frac{8\pi^2 \alpha^2}{3} \int_0^\infty e^{-\alpha x} \, dx \]
F.28

\[n = \frac{8\pi^2 \alpha^2}{3} \int_0^\infty e^{-\alpha x} \, dx \]
F.29

Finally, the temperature shall be defined as:
\[\frac{\xi}{2} kT = \frac{p^2}{2B_a} \]
F.30

This is the usual kinetic theory definition of temperature. Thus:
\[\frac{\xi}{2} kT = \frac{1}{28c} \int p^2 \, dp \]
F.31

\[\frac{\xi}{2} kT = \frac{1}{28c} \int p^2 \, dp \]
F.32
which by Appendix C may be recast as:

\[
S_{nkT} = \frac{g}{38} \int_0^{\infty} P^{L} \tilde{T}^0 dP.
\]

Thus, when the values of \(\tilde{T}^0 \) and \(\alpha^{(0)} \) are substituted into the above,

\[
S_{nkT} = \left(\frac{g}{38} \right) \left(\frac{\alpha^{(0)}}{2\pi b} \right)^{5/2} \int_0^{\infty} \rho^6 e^{-\rho^2} dP
\]

where \(a = \alpha^{(0)}/2b \)

In succession, let:

\[
\begin{align*}
y &= \frac{\rho^2}{x^{aq}} \\
x &= aq
\end{align*}
\]

then

\[
S_{nkT} = \left(\frac{g}{38} \right) \left(\frac{\alpha^{(0)}}{2\pi b} \right)^{5/2} \int_0^{\infty} x \frac{\rho^2}{x^{aq}} e^{-\rho^2} dx
\]

\[
S_{nkT} = \left(\frac{g}{38} \right) \frac{\alpha^{(0)}}{2\pi b} \Gamma \left(\frac{5}{2} \right)
\]

Thus:

\[
\alpha^{(n)} = \frac{1}{nkT}
\]

and \(\tilde{T}^0 \) is:

\[
\tilde{T}^0 = n \left(\frac{2\pi kT}{g} \right)^{5/2} - \frac{\rho^2}{2g^{1/2}kT}
\]

or:

\[
76
\]
\[F^* = \frac{5}{n} \prod_{\xi=1} e^{-\frac{1}{2} \xi^2 \sigma^2 / 2 \pi \cdot \xi / kT} \]
APPENDIX G

Derivation of the Thermodynamic Properties of a Diatomic Gas
The desired equilibrium properties are calculated from the partition function of the gas. Partition functions exist, however, only when energy is quantized. They are, therefore, outside the scope of classical mechanics. This is a problem with classical mechanics as a whole and is not peculiar to the present analysis. Therefore, the works of others shall be followed by assuming a classical partition function exists and is defined by:

\[z = \frac{1}{h^3} \int e^{-\frac{P^2}{2\mathcal{E}^2}} dq_1 dq_2 \]

For the present case of a diatomic gas, \(\mathcal{g} \) is five. Thus:

\[z = \frac{1}{h^5} \int e^{-\frac{P^2}{2\mathcal{E}^2}} d^5 \rho \]

\[z = \frac{V}{h^5} \int e^{-\frac{P^2}{2\mathcal{E}^2}} d^5 \rho \]

where \(V \) is the five-space volume. Using the results of Appendix F, the classical partition function is:

\[z \cdot V \left(\frac{2\pi mkT}{h^2} \right)^{\frac{5}{2}} \left(\frac{a^3 kT}{h^2} \right) \]

The specific heat at constant volume and the specific heat at constant pressure are derived from:

\[C_V = \left(\frac{\partial U}{\partial T} \right)_V \]
where \(U \) is the internal energy of the gas. The internal energy may be expressed in terms of the classical partition function as

\[
u = \frac{NkT}{2} \left(\frac{2}{J^2} \right) \]

Thus:

\[
u = \frac{NkT}{2} \frac{T^{3/2}}{2} = \frac{NkT}{2} \]

which yields

\[C_v = \frac{Nk}{2}\]

and

\[C_p = \frac{Nk}{2}\]

for the equilibrium specific heats. The ratio of specific heats is:

\[\gamma = \frac{C_p}{C_v} = 1.400\]

Expressed in terms of the classical partition function, the specific entropy is:

\[S = Nk \left[1 + \ln \left(\frac{2}{N} \right) \right] - \frac{T}{2} \left(\frac{J^2}{2} \right) \]

Thus, substituting for \(Z \) yields:

\[S = Nk \left[1 + \ln \left(\frac{2kT}{h^2} \right) \right] - \frac{T}{2} \left(\frac{J^2}{2} \right) + \frac{k}{2} \]

The volume in five space may be expressed as the product of two volumes.
where \(V_3 \) is the typical three-space volume and \(V_2 \) is the two-space 'volume' of the angular coordinates \(\theta \) and \(\phi \). Thus, equation G.13 is:

\[
S = Nk \left[\frac{V_2}{2} + l_n \left(\frac{2\pi m k T}{\hbar^2} \right)^{3/2} \frac{V_3}{N} + l_n \left| \frac{2\pi m k T V_2}{\hbar} \right| \right]
\]

The volume, \(V_2 \), is simply \(4\pi \) - the solid angle of a sphere. Thus:

\[
S = Nk \left[\frac{V_2}{2} + l_n \left(\frac{2\pi m k T}{\hbar^2} \right)^{3/2} \frac{V_3}{N} + l_n \left| \frac{2\pi m k T V_2}{\hbar} \right| \right]
\]

As known from quantum mechanics, G.16 is correct for a gas composed of heteronuclear, rigid-rotor molecules. Quantum mechanics predicts that in general

\[
S = Nk \left[\frac{V_2}{2} + l_n \left(\frac{2\pi m k T}{\hbar^2} \right)^{3/2} \frac{V_3}{N} + l_n \left| \frac{2\pi m k T V_2}{\hbar} \right| \right]
\]

where \(\sigma \) is the symmetry number such that:

\[
\sigma = 1 \text{ for heteronuclear molecule}
\]
\[
\sigma = 2 \text{ for homonuclear molecules.}
\]

The symmetry number arises out of the requirement that the wave function of a homonuclear molecule possesses a certain symmetry with respect to the interchange of the nuclei of the molecule. Classically, the symmetry number ensures that one orientation identical to another orientation does not contribute to the entropy. A rigid rotor, for example, has identical orientations
for $\theta = \pi$, $\phi = \pi$, and $\theta = \pi$, $\phi = 2\pi$. Equation G.17 predicted the values of the specific entropy given in Table 1 of the text.
APPENDIX H
Development of the Second Term of the Expansion of the Distribution Function
Since \mathbf{f} can be expressed as a function of P_1, q_1, and t, the Boltzmann-type equation may be recast as:

$$\mathbf{D} \cdot \frac{\mathbf{D} \mathbf{f}}{\mathbf{D}t} + \mathbf{J} \left[\mathbf{f} - \frac{\partial \mathbf{f}}{\partial P_1} \right] \frac{\partial P_1}{\partial \mathbf{J}} + \frac{\mathbf{P}_1}{\mathbf{B}_1} \frac{\partial \mathbf{P}_1}{\partial \mathbf{J}} - \frac{\mathbf{P}_1}{\mathbf{B}_1} \frac{\partial \mathbf{P}_1}{\partial \mathbf{J}} = \left(\frac{\partial \mathbf{f}}{\partial \mathbf{J}} \right)_c H.1$$

The Enskog expansion of \mathbf{D} yields

$$\mathbf{D} \cdot \frac{\mathbf{D} \mathbf{f}}{\mathbf{D}t} + \mathbf{J} \left[\mathbf{f} - \frac{\partial \mathbf{f}}{\partial P_1} \right] \frac{\partial P_1}{\partial \mathbf{J}} + \frac{\mathbf{P}_1}{\mathbf{B}_1} \frac{\partial \mathbf{P}_1}{\partial \mathbf{J}} - \frac{\mathbf{P}_1}{\mathbf{B}_1} \frac{\partial \mathbf{P}_1}{\partial \mathbf{J}} = H.2$$

As outlined in the text:

$$\frac{\partial \mathbf{P}_1}{\partial t} = \mathbf{f} - \frac{\mathbf{J}}{n} \frac{\partial \mathbf{P}_1}{\partial \mathbf{J}}$$

where p is the thermodynamic pressure defined as $p = nkT$.

Substituting the above into H.2 gives

$$\mathbf{D} \cdot \mathbf{f} + \mathbf{J} \left[\mathbf{f} - \frac{\partial \mathbf{f}}{\partial P_1} \right] \frac{\partial P_1}{\partial \mathbf{J}} + \frac{\mathbf{P}_1}{\mathbf{B}_1} \frac{\partial \mathbf{P}_1}{\partial \mathbf{J}} - \frac{\mathbf{P}_1}{\mathbf{B}_1} \frac{\partial \mathbf{P}_1}{\partial \mathbf{J}} = \mathbf{H}$$

Since,

$$\frac{\mathbf{S}}{\mathbf{F}} + \frac{\mathbf{S}}{\mathbf{F}} \left[\mathbf{S} - \frac{\partial \mathbf{S}}{\partial P_1} \right] \frac{\partial P_1}{\partial \mathbf{S}} + \frac{\mathbf{P}_1}{\mathbf{B}_1} \frac{\partial \mathbf{P}_1}{\partial \mathbf{S}} - \frac{\mathbf{P}_1}{\mathbf{B}_1} \frac{\partial \mathbf{P}_1}{\partial \mathbf{S}} = \mathbf{P}_1^{\mathbf{2}/2B_1kT}$$

then:

$$\ln \frac{\mathbf{S}}{\mathbf{F}} = \text{constant} + \ln \left(\mathbf{T}^{\mathbf{2}/2B_1kT} \right) - \mathbf{P}_1^{\mathbf{2}/2B_1kT} H.4$$

Thus,
\[
\frac{\partial H}{\partial T} = -\frac{P_i}{\delta_i kT}
\]

and

\[
\frac{D\ln T}{D\alpha} = \frac{D\ln [nT^{-\alpha/2}]}{D\alpha} + \frac{D\alpha}{D\alpha} \left[\frac{-P_i^2}{2\delta_i kT} \right] \]

\[\implies \frac{T^{\alpha/2} D\alpha}{nDt} \left[nT^{-\alpha/2} \right] + \frac{D\alpha}{D\alpha} \left[\frac{-P_i^2}{2\delta_i kT} \right] \]

Expanding the first right-hand term:

\[
\frac{D\alpha}{D\alpha} \left[nT^{-\alpha/2} \right] = T^{-\alpha/2} \frac{D\alpha}{D\alpha} + n \frac{D\alpha}{D\alpha} T^{-\alpha/2} \]

and substituting for \(\frac{D\alpha}{D\alpha} \) from the development of the text yields:

\[
\frac{D\alpha}{D\alpha} \left[nT^{-\alpha/2} \right] = T^{-\alpha/2} \frac{D\alpha}{D\alpha} + n \left(T^{-\alpha/2} \right) \frac{D\alpha}{D\alpha} \]

Substituting for \(\frac{D\alpha}{D\alpha} \) from the text gives

\[
\frac{D\alpha}{D\alpha} \left[nT^{-\alpha/2} \right] = nT^{-\alpha/2} \left\{ \frac{1}{\delta_i} \left[\frac{P_i}{\delta_i} \right] - \left(\frac{5}{2T} \right) \left(\frac{P_i}{\delta_i} \right) \frac{D\alpha}{D\alpha} \right\} = 0
\]

To the first approximation then, the variation of temperature during the motion of the gas follows the adiabatic law:

\[n \propto T^{-\alpha/2}\]

which implies
\[
\frac{\mathbf{S}}{2} = \frac{1}{\gamma - 1}; \quad \gamma = 1.400
\]

Equation H.7 becomes then:

\[
\frac{D}{Dt} [\mathbf{S}^* - \mathbf{P}^2_i \mathbf{D}_i \frac{D}{Dt} \left(\frac{\mathbf{P}^2_i}{2kT} \right)]
\]

Since \(P_i \neq P_i(t) \), then:

\[
\frac{D}{Dt} [\mathbf{S}^* - \mathbf{P}^2_i \mathbf{D}_i \frac{D}{Dt} \left(\frac{\mathbf{P}^2_i}{2kT} \right)]
\]

Substituting for \(\frac{D}{Dt} \) yields:

\[
\frac{D}{Dt} [\mathbf{S}^* - \mathbf{P}^2_i \mathbf{D}_i \frac{D}{Dt} \left(\frac{\mathbf{P}^2_i}{2kT} \right)]
\]

The sum of the first and last terms of equation H.3 is:

\[
\frac{1}{B_i kT} \left[\frac{\mathbf{P}^2_i}{B_i} - \frac{\mathbf{P}^2_i}{5B_i} \right] \frac{\partial}{\partial j_i}
\]

The bracketted term is a non-divergent tensor which shall be designated as \(\mathbf{P}_i \mathbf{P}_i / B_i \). Thus, the above equation becomes:

\[
\frac{1}{B_i kT} \left[\frac{\mathbf{P}^2_i}{B_i} - \frac{\mathbf{P}^2_i}{5B_i} \right] \frac{\partial}{\partial j_i}
\]

The second and third terms of equation H.3 are:

\[
\frac{\partial}{\partial n} \frac{\partial}{\partial \mathbf{P}_i} \frac{\partial}{\partial \mathbf{P}_i} + \frac{\partial}{\partial \mathbf{P}_i} \frac{\partial}{\partial \mathbf{P}_i} \frac{\partial}{\partial \mathbf{P}_i} = \frac{1}{kT} \frac{\partial}{\partial B_i} \mathbf{P}_i \frac{\partial}{\partial B_i} \mathbf{P}_i \frac{\partial}{\partial \mathbf{P}_i}
\]

88
which by the definition of the thermodynamic pressure is:

\[\frac{P}{B_i} \left[\frac{\partial f}{\partial_{ij}} - \frac{1}{n_kT} \frac{\partial f}{\partial_{ij}} \right] \]

H.19

\[= \frac{P}{B_i} \frac{\partial}{\partial_{ij}} \left[\ln |e^{f/kT}| \right] \]

H.20

The bracketted term is:

\[\ln |e^{f/kT}| = \text{const.} + \ln |T^{V/2}| - \frac{P}{2B_i kT} \]

H.21

which upon substitution into equation H.20 yields

\[\frac{P}{B_i} \frac{\partial}{\partial_{ij}} \left[\ln |e^{f/kT}| \right] = \frac{P}{B_i} \left[\frac{\partial}{\partial_{ij}} \left[\ln |T^{V/2}| \right] + \frac{P}{2B_i kT} \frac{\partial T}{\partial_{ij}} \right] \]

H.22

\[= \frac{P}{B_i} \left[\frac{P}{2B_i kT^2} \frac{\partial T}{\partial_{ij}} - \frac{Z}{2} \frac{\partial_{ij} T}{\partial_{ij}} \right] \]

H.23

\[= \frac{P}{B_i} \left[\left(\frac{P}{2B_i kT} - \frac{Z}{2} \right) \frac{\partial_{ij} T}{\partial_{ij}} \right] \]

H.24

Equation H.3 is thus:

\[\delta f^* = \left(\frac{P}{2B_i kT} - \frac{Z}{2} \right) \frac{\partial_{ij} T}{\partial_{ij}} + \frac{1}{n_kT} \frac{P}{B_i} \frac{\partial_{ij} P}{\partial_{ij}} \]

H.25
By Enskog’s solution method:

\[D' + J' = 0. \]

Thus:

\[\Pi^2 \mathcal{I}(\mathcal{F}) = -\Pi^2 \left\{ \frac{p_i}{B_i} \left(\frac{p_{i+1}}{2B_i kT} - \frac{1}{2} \right) \frac{d}{d\mathcal{F}_i} + \frac{1}{B_i kT} \left[\frac{p_i^2}{B_i} \frac{d}{d\mathcal{F}_i} \right] \right\} \quad \text{H.26} \]

Following Chapman and Cowling\(^1\), the peculiar momentum shall be non-dimensionalized to the reduced momentum. The reduced momentum is defined as:

\[\mathcal{P}_i = \left(\frac{1}{2B_i kT} \right)^{1/2} \mathcal{P}_i^2 \quad \text{H.27} \]

Defined in terms of the reduced momentum, the equilibrium distribution function is:

\[\bar{f}^e = \frac{5}{2\hbar} (2\pi B_i kT)^{1/2} e^{-\mathcal{P}_i^2} \quad \text{H.28} \]

while equation H.26 is:

\[\mathcal{V}^2 \mathcal{I}(\mathcal{F}) = -\mathcal{V}^2 \left\{ \left(\frac{2kT}{B_i} \right)^{1/2} (Q_{i+1}^2 - \frac{1}{2}) \frac{d}{d\mathcal{F}_i} \mathcal{P}_i^2 + \frac{1}{B_i kT} \left[\mathcal{P}_i^2 \frac{d}{d\mathcal{F}_i} \right] \right\} \quad \text{H.29} \]

Let us initially define \(\mathcal{F}' \):

\[\mathcal{F}' = \left[\mathcal{F}_i \frac{d}{d\mathcal{F}_i} + k_i \frac{d}{d\mathcal{F}_i} \right] \quad \text{H.30} \]

such that
\[n I(J_l) = \bar{I}^2 \left(\frac{2kT_B}{B_i} \right)^{\frac{1}{2}} \left(Q_{ii}^2 - \frac{\gamma}{2} \right) Q_i \]
H.31

\[n I(k_{ll}) = \bar{I}^2 \left(\frac{B_i}{B_i} \right)^{\frac{1}{2}} \left[\frac{P_i^* P_i}{B_i} \right] \]
H.32

Now:

\[\int \bar{I} \gamma d\hat{p} = \int \bar{I} \gamma d\hat{p} \]
H.33

\[= \frac{\partial}{\partial \mu} \left[\bar{I} \left(Q_{ii}^2 - \frac{\gamma}{2} \right) Q_i \left(\frac{2kT_B}{B_i} \right)^{\frac{1}{2}} \gamma d\hat{p} \right] + 2 \left(\frac{B_i}{B_i} \right)^{\frac{1}{2}} \left(\bar{I} \gamma d\hat{p} \right) \]
H.34

for \(l = 1, 4, 5 \)

when \(l = 1, 4, 5 \) because the above is evaluated at a point in space. The second integral is zero for all \(\varphi^1 \) because the integrand is either an odd function of \(\hat{p} \) or it is a non-divergent tensor. For \(\varphi^1 \) and \(\varphi^4 \) the first integral vanishes because the integrand is an odd function of \(\hat{p} \). For \(\varphi^5 \), the first integral may be recast as:

\[A \int_0^\infty e^{-x^2} (x^2) x^4 dx \]
H.35

where \(A \) is a constant. The solution of H.35 is:

\[A \left[\Gamma(\frac{3}{2}) - \frac{\gamma}{2} \Gamma(\frac{1}{2}) \right] = 0 \]
H.36
Thus, the conditions of solvability for the Enskog method are satisfied. Therefore, since the general solution is the sum of the particular solution and the homogeneous solution:

\[
\hat{\Phi} = -\frac{1}{n} \left\{ \sum_{j} \frac{\partial \rho}{\partial \xi_{j}} \right\} \cdot \left(\beta^{3} \cdot \rho_{\infty} \cdot \beta^{3} \cdot \rho_{\infty} \cdot \beta^{3} \cdot \rho_{\infty} \cdot \beta^{3} \cdot \rho_{\infty} \right) / 2 \beta_{0} \]

(40)

where \(\beta^{3} \) is a three vector and \(\beta^{5} \) is a five-vector where:

\[
\begin{align*}
\beta^{3}_{i} &= e_{3i} \beta^{1}_{i} & \text{for } i, k = 1 \to 3 \\
\beta^{5}_{i} &= \beta^{3}_{i} & \text{for } i = 4, 5
\end{align*}
\]

(39)

By identity, we may define

\[
\begin{align*}
\beta^{3}_{i} &= e_{3i} \beta^{1}_{i} & \text{for } i, k = 1 \to 3 \\
\beta^{5}_{i} &= \beta^{3}_{i} & \text{for } i = 4, 5
\end{align*}
\]

(38)

Thus,

\[
\hat{\Phi} = -\frac{1}{n} \left\{ \sum_{j} \frac{\partial \rho}{\partial \xi_{j}} \right\} \cdot \left(\beta^{3} \cdot \rho_{\infty} \cdot \beta^{3} \cdot \rho_{\infty} \cdot \beta^{3} \cdot \rho_{\infty} \cdot \beta^{3} \cdot \rho_{\infty} \right) / 2 \beta_{0} \]

(40)

Since equations (31) and (32) are functions of \(\beta^{2} \), \(n \), and \(T \) only, then by arguments similar to those of Chapman and Cowling

\[
J_{1} \cdot \left(\rho_{\infty} \right) \left(\frac{2kT}{\beta_{0}} \right)^{1/2} \]

(41)

\[
k_{ij} = k(\theta) \left[\frac{\rho_{\infty}^{2}}{\beta_{0}} \right] \left(\frac{\beta_{0}}{\beta_{0}} \right)^{1/2} \]

(42)
A KINETIC THEORY DEVELOPMENT OF THE EQUATIONS OF MOTION OF A DIATOMIC GAS
AIR FORCE WRIGHT AERONAUTICAL LABS
WRIGHT-PATTERSON AFB OH W Z STRANG SEP 86
UNCLASSIFIED AFWAL-TR-86-3885 F/G 20/13 NL
where \(J(\bar{\varphi}) \) and \(K(\bar{\varphi}) \) are scalar functions of \(\bar{\varphi} \), \(n \), and \(T \). To satisfy the requirement that the average molecular quantities be solely related to \(f \), we must set:

\[
\int \tilde{I}^\prime \tilde{F}^\prime \tilde{\varphi}^\prime \tilde{p} = 0 \quad \text{H.43}
\]

for \(i = 1,4,5 \)

Thus, neglecting vanishing integrals yields

\[
i = 1 \quad \int \tilde{I}^\prime \left(\tilde{\beta}^{i_{\alpha}} \cdot \tilde{\beta}^{i_{\beta}} \tilde{p}_\alpha^2 / 28_i \right) \tilde{\varphi}^\prime \tilde{p} = 0 \quad \text{H.44}
\]

\[
i = 4 \quad \int \tilde{I}^\prime \left(\tilde{\beta}^{i_{\alpha}} \cdot \tilde{\beta}^{i_{\beta}} \tilde{p}_\alpha^2 / 28_i \right) \tilde{\varphi}^\prime \tilde{p} = 0 \quad \text{H.45}
\]

\[
i = 5 \quad \int \tilde{I}^\prime \left\{ -\frac{J(\bar{\varphi})}{n} \left(\frac{2kT}{B_1} \right)^{\frac{1}{2}} \tilde{\varphi}^\prime \tilde{p} + \tilde{\beta}_i^{i_{\alpha}} \cdot \tilde{\beta}_i^{i_{\beta}} \right\} \tilde{p}_\alpha^2 \tilde{\varphi}^\prime \tilde{p} = 0 \quad \text{H.46}
\]

Equations H.44 and H.45 imply that \(\beta^{i_{\alpha}} \) and \(\beta^{i_{\beta}} \) are both zero. Equation H.46 implies that \(\beta_4^{i_{\alpha}} \) and \(\beta_4^{i_{\beta}} \) are equal and opposite in magnitude for \(j = 1,2,3 \). For \(j = 4,5 \), \(\beta_4^{i_{\alpha}} \cdot \beta_4^{i_{\beta}} \) and therefore

\[
\tilde{\beta}_i^{i_{\alpha}} \tilde{p}_\alpha^2 \quad \text{for} \quad i = 1,4,5
\]

is proportional to \(T \) and can be incorporated into the first term of the integrand of H.46. Thus, we may write:

\[
\int \tilde{I}^\prime \left\{ J(\bar{\varphi}) \tilde{\varphi}_\alpha^2 \right\} \tilde{\varphi}^\prime \tilde{p} = 0 \quad \text{H.47}
\]

and

\[
\tilde{I}^\prime \cdot -\frac{1}{n} \left\{ \left(\frac{2kT}{B_1} \right)^{\frac{1}{2}} J(\bar{\varphi}) \tilde{\varphi}_\alpha^2 \frac{1}{J_{\alpha i}} + \left(\frac{B_3}{B_1} \right)^{\frac{1}{2}} k(\bar{\varphi}) \left[\tilde{\varphi}_\alpha^2 \frac{J_{\alpha i}}{J_{\alpha i}} \right] \right\} \quad \text{H.48}
\]

93/94
APPENDIX I
Evaluation of the Thermal Flux Five Vector
and the Stress Tensor
Thermal Flux Vector:

By definition:

$$Q'_i = \int \left[\frac{P_i P_i}{B_3 B_3} \right] d\vec{p}$$ \hspace{1cm} I.1

Substituting for $$\vec{F}'$$:

$$Q'_i = \frac{1}{n} \int_T \left[\left(\frac{2kT_i}{B_i} \right)^2 \right] \left[T_i \left(T_i \frac{dR_i}{R_i} \right) + \left(\frac{B_i}{B_i} \right)^2 k(T_i) \left[\frac{G_i}{G_i} \right] \left[\frac{P_i}{T_i} \right] \right] d\vec{p}$$ \hspace{1cm} I.2

$$= \frac{1}{n} \left(\frac{2kT_i}{B_i} \right)^2 \int_T T_i \left[T_i \frac{dR_i}{R_i} \right] d\vec{p}$$ \hspace{1cm} I.3

because the integrals of odd functions of $$\vec{p}$$ vanish. Substituting $$P_i$$ for $$P_i$$ yields

$$Q'_i = \frac{1}{n} \left(\frac{2kT_i^2}{B_i} \right) \int_T T_i \left[T_i \frac{dR_i}{R_i} \right] d\vec{p}$$ \hspace{1cm} I.4

Equation I.4 may be simplified using the results of Appendix D:

$$Q'_i = \frac{-2kT_i^2}{3n} \int_T T_i \left[T_i \frac{dR_i}{R_i} \right] d\vec{p}$$ \hspace{1cm} I.5

$$Q'_i = \frac{-2kT_i^2}{3n} \int_T T_i \left[T_i \frac{dR_i}{R_i} \right] d\vec{p}$$ \hspace{1cm} I.6

or

$$Q'_i = \frac{-2kT_i^2}{3n} \int_T T_i \left[T_i \frac{dR_i}{R_i} \right] d\vec{p}$$ \hspace{1cm} I.7

where

$$\lambda = \frac{2kT_i}{3n} \int_T T_i \left[T_i \frac{dR_i}{R_i} \right] d\vec{p}$$ \hspace{1cm} I.8

The Stress Tensor

By definition:

$$\tau'_i = \int \left[\frac{P_i P_i}{B_3 B_3} \right] d\vec{p}$$ \hspace{1cm} I.9
\[
\tau^i = -\frac{1}{2}\int \left[(2\frac{d}{B_0})^2 \mathcal{J}(\theta) \frac{d}{B_0} \frac{d}{B_0} + (\frac{\cal E}{B_0})^2 \mathcal{K}(\theta) \frac{\cal E}{B_0} \frac{d}{B_0} \right] \frac{P_1 P_2}{B_0} \, d\theta
\]

\[
= -\frac{1}{n} \int \left[\mathcal{E} \left(\frac{B_0}{E_0} \right)^2 \mathcal{K}(\theta) \frac{\cal E}{B_0} \frac{d}{B_0} \right] \frac{P_1 P_2}{B_0} \, d\theta
\]

by neglecting vanishing integrals. Substituting for \(P_1 \), equation I.11 is equivalent to:

\[
\tau^i = -\frac{2\pi}{\mathcal{K}(\theta)} \int \mathcal{E} \frac{\cal E}{B_0} \frac{d}{B_0} \frac{d}{B_0} \, d\theta
\]

From the results of Appendix C, equation I.12 is:

\[
\tau^i = -\frac{2\pi}{\mathcal{K}(\theta)} \int \mathcal{E} \frac{\cal E}{B_0} \frac{d}{B_0} \frac{d}{B_0} \, d\theta
\]

which by equation H.42 is

\[
\tau^i = \frac{\mathcal{K}(\theta)}{\mathcal{K}(\theta)} \int \mathcal{E} \frac{\cal E}{B_0} \frac{d}{B_0} \frac{d}{B_0} \, d\theta
\]

In the notation of Chapman and Cowling:

\[
\tau^i = \frac{\mathcal{K}(\theta)}{\mathcal{K}(\theta)} \int \mathcal{E} \frac{\cal E}{B_0} \frac{d}{B_0} \frac{d}{B_0} \, d\theta
\]

or

\[
\tau^i = -2\mu \left(\frac{B_0}{E_0} \right)^2 \frac{d}{B_0} \frac{d}{B_0} \]

where:

\[
\mu = \frac{\mathcal{K}(\theta)}{2\mathcal{K}(\theta)} \left[k_{ij}, k_{ij} \right]
\]

Since the stress tensor has been defined as

\[
\tau^i = \sum_{i=0}^{\infty} \tau^i
\]

we have for the second approximation:

97
\[\tau_{ij} = \rho \delta_{ij} - 2\mu \left[\frac{\delta_i}{\delta_j} \right] \frac{\partial}{\partial q_j} \frac{P_{ij}}{\beta_0} \]
APPENDIX J

Evaluation of the Coefficient of Thermal Conductivity
and the Coefficient of Viscosity
We have for λ:

$$1 = \frac{2h^2 T}{3n} \int_0^1 \rho J(\rho) \, d\rho$$

A linear combination of equations J.1 and H.47 yields:

$$1 = \frac{2h^2 T}{3n} \int_0^1 \rho J(\rho)(\rho^2 - \frac{2}{3}) \, d\rho$$

which by equation H.31 is equivalent to:

$$1 = \frac{2h^2 T}{3} \int J_3 I(3) \, d\rho$$

Summarizing for a moment, the coefficients of heat conductivity and viscosity for a gas composed of rigid-rotors are:

$$1 = \frac{2h^2 T}{3} \int J_3 I(3) \, d\rho$$

The application of Sonine polynomials to the above integrals is very similar to their application in the case of a monatomic gas. Thus, only the minor arithmetic changes are noted below. The derivation again closely follows that of Chapman and Cowling.

From equation J.2, $\alpha_0 = 0$ and

$$\alpha' = \frac{1}{n} \int \left(\rho^2 - \frac{2}{3} \right) S^{(n)}(\rho^2) \, d\rho$$

where the subscripts on ρ have been deleted for notational ease since:

$$S^{(n)}(\rho^2) = \frac{2}{3} \rho^2$$

we have:

$$\alpha' = \frac{1}{n} \int \rho^2 S^{(n)}(\rho^2) \, d\rho$$

to the following:

$$= \frac{1}{n} \int \rho^2 S^{(n)}(\rho^2) \, d\rho$$
The results of Appendix C lead to:

\[\mu_r = \frac{-v}{3\pi^{1/2}} \left[\int_0^\infty \rho^{2n} \left(\sum_{i=1}^n (q_i^0)^{2n} \right) \rho^4 \, d\rho \right] \]

\[\lambda_r = \frac{-4}{3\pi^{1/2}} \left[\int_0^\infty \rho^{2n} \left(\sum_{i=1}^n (q_i^0)^{2n} \right) \rho^4 \, d\rho \right] \]

\[a_r = -\frac{\Gamma'(\beta)}{3\pi^{1/2}} \left[\frac{245}{7} \right] \text{ for } r=1 \]

Thus:

\[\frac{\lambda_r}{\mu_r} = \frac{\Gamma'(\beta)}{\pi^{1/2}} \left[\frac{245}{7} \right] \left[\frac{1}{b_n} + \frac{(B_3)^2}{B_{0}^2 B_{0}^2} + \frac{(B_{1})^2}{B_{0}^2 B_{0}^2} \right] \]

and

\[\lambda = \frac{245}{8} k^2 \left[\frac{1}{b_n} + \frac{(A_{3})^2}{A_{0} A_{0}} \right] \]

Likewise, the development of

\[\int k_{ij} \mathcal{I}(k_{ij}) \, d\bar{p} \]

begins with:

\[\beta_r = \frac{9}{8n} \left[\frac{3}{2} \sum_{i=1}^n (q_i^0)^{2n} \right] \]

which leads to:

\[\beta_r = \frac{9}{8n} \left[\frac{3}{2} \sum_{i=1}^n (q_i^0)^{2n} \right] \]

\[\gamma_r = \frac{15}{4} \left[\frac{3}{2} \sum_{i=1}^n (q_i^0)^{2n} \right] \]

\[\delta_r = \frac{32}{15} \left[\frac{3}{2} \sum_{i=1}^n (q_i^0)^{2n} \right] \]

\[\xi_r = 0 \text{ for } r=1 \]

Thus:

\[\int k_{ij} \mathcal{I}(k_{ij}) \, d\bar{p} = \left(\mu_r \right)^2 \left[\frac{1}{b_n} + \frac{(B_3)^2}{B_{0}^2 B_{0}^2} + \frac{(B_{1})^2}{B_{0}^2 B_{0}^2} \right] \]

101
and
\[\omega = \frac{(kT)}{2\mu} \left[\frac{1}{B_{1n}} + \frac{(B_{2n})^2}{B_{1n}G_{2n}} + \cdots \right] \quad \text{J.18} \]
\[\omega = \gamma kT \left[\frac{1}{B_{1n}} + \frac{(B_{2n})^2}{B_{1n}G_{2n}} + \cdots \right] \quad \text{J.19} \]

Lastly, the Prandtl number is defined as:
\[Pr = \frac{\alpha C_p}{\lambda} \quad \text{J.20} \]

For a diatomic gas molecule, \(C_p = 3.5k \). Substituting this into the above along with equations J.11 and J.19 yields
\[Pr = \frac{4a_n}{5b_n} \quad \text{J.21} \]

where the higher order terms of the Sonine polynomials have been neglected.
REFERENCES

