INFRARED TRANSMITTING ANALOGS OF SIALON(U) BATTELLE
COLUMBUS DIV OH P J MELLING 08 OCT 86 TR-1
N90014-86-K-0313
The report describes the development of materials based on Ge, Ga, P and S as infrared window materials for the 8-12 μm region.
OFFICE OF NAVAL RESEARCH
Contract N00014-86-C-0313
Technical Report No. 1

Infrared Transmitting Analogs of SiAlON
by
Peter J. Melling
Prepared for Publication
in the
SPIE Proceedings

Battelle
Columbus Division
505 King Avenue
Columbus, Ohio 43201-2693
October 8, 1986

Reproduction in whole or in part is permitted for
any purpose of the United States Government.

* This document has been approved for public release
and sale; its distribution is unlimited

86 10 17 005
Infrared transmitting analogs of SiAlON

Peter J. Melling
Battelle Columbus Division
505 King Avenue, Columbus, Ohio 43201-2693

Abstract

There is a requirement for new materials which are transparent in the 8-12 μm range and have superior thermal shock resistance, mechanical strength, toughness and thermal stability compared to those materials which are presently available. In oxide systems, the SiAlON family of ceramics and glasses is known to have particularly good thermal shock resistance and mechanical properties, thus GeGaSP analogs of the SiAlON ceramics should be a promising system to investigate for new materials. Preliminary results of an experimental study are reported.

Introduction

Typically, materials for infrared (IR) transmitting windows and domes have inadequate combinations of properties; they need to have satisfactory IR transmission to resist environmental degradation and they need to be cost-effective in their fabrication. There are three basic approaches that can be used to fabricate a ceramic: the growth of single crystals, the consolidation of powder to give a polycrystalline ceramic and fabrication as a glass. Single crystals are usually exceedingly difficult to fabricate in sizes large enough to be useful. Ceramics can be prepared in composition ranges where glasses cannot be formed and in fine-grained polycrystalline ceramics careful heat treatments can be used to provide toughening of the final body. Glasses have many advantages over polycrystalline ceramics in other ways, however, Glasses do not usually need to be densified, as they are fully dense as cast; they can be molded or slumped into final shape using simple technology; and, provided they do not phase separate, glasses do not suffer from optical scattering losses due to grain growth.

Oxynitride ceramics in general, and the SiAlON system in particular, are known to have mechanical properties superior to conventional oxide ceramics(1), particularly in terms of hardness and thermal shock resistance. However, because of the position of the absorption bands present in oxide and oxynitride ceramics, they are unsuitable for 8-12 μm transmitting materials. In order to shift the absorption to longer wavelengths, a move to heavier atoms is required. The necessary shift in wavelength should be achieved by using the elements, one period down on the Periodic Table to give the GeGaSP system.

Background

There are no previous reports on work in the GeGaSP system and the only previous work on the Ge-S-P system is that by A.R. Hilton(2), which was performed about 20 years ago. In that work, Hilton studied a series of phase diagrams of chalcogenide glass systems (Table 1). He reported that the glasses in the Ge-S-P system had the highest softening points and among the highest hardnesses of the composition ranges he studied.

Table 1. Highest Softening Points of the Glasses Studied by A.R. Hilton(2)

<table>
<thead>
<tr>
<th>Glass Composition</th>
<th>Softening Temperature (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si-Sb-S</td>
<td>280</td>
</tr>
<tr>
<td>Si-Sb-Se</td>
<td>270</td>
</tr>
<tr>
<td>Si-P-Te</td>
<td>180</td>
</tr>
<tr>
<td>Ge-P-S</td>
<td>520</td>
</tr>
<tr>
<td>Ge-P-Se</td>
<td>420</td>
</tr>
<tr>
<td>Ge-P-Te</td>
<td>380</td>
</tr>
<tr>
<td>Si-As-Te</td>
<td>475</td>
</tr>
<tr>
<td>Ge-As-Te</td>
<td>270</td>
</tr>
</tbody>
</table>
As part of the study, Hilton investigated the relationship between hardness and softening temperature for a wide range of chalcogenide glasses and found a clear positive correlation\(^{(2)}\). The IR spectra of glasses in the Ge-S system show very good transmission up to \(\mu\)m, but spectra of glasses in the Ge-P-S system have a cutoff at about 7 \(\mu\)m\(^{(4)}\). The origin of this band, which causes the cutoff, is uncertain, but it could arise either from structural rearrangement in the glass or from phosphate or other oxide impurities.

Sample Preparation

Two methods are being used in this work to prepare materials for study: one employs a conventional rocking furnace with modifications to make the system explosion-resistant and the other employs a chemical vapor deposition (CVD) system to prepare mixed powders for further processing. The advantages of CVD powder preparation are the potential for reduced contamination and the ability to produce prereacted mixed powders suitable for further processing.

In conventional sealed-tube melting the reactants, as elements, are sealed in a quartz ampoule which is then heated in a furnace. The apparatus we are using is shown in Figure 1; a rocking furnace was chosen to ensure complete mixing of the glass components. A problem with this approach, which is more significant with phosphorus- and sulfur-containing glasses such as those studied in this work than with the more traditional silicates and arsenides, is the generation of high pressures in the ampoule during the melting phase which can lead to explosions. To use the germanium-sulfur system as an example, the reaction between germanium and sulfur does not go to completion until germanium melts at 935°C. At that temperature, the vapor pressure of sulfur exceeds 10 MPa, so we are using thick-walled (3 mm wall) ampoules with stainless steel pipe containment. In this arrangement, the ampoule is mounted in the pipe before being placed in the furnace and is retained in the pipe during quenching at the end of the run. This system is highly satisfactory and has survived a number of catastrophic failures of the ampoule. If ampoule failure occurs at high temperature, however, it is necessary to replace the pipe, as the vapor generated by the glass melt is very corrosive.

Because of problems associated with preparing glasses from the elements, we are investigating the CVD preparation of mixed powders, which will then be melted conventionally. This should substantially reduce the maximum temperatures required during the melting process and hence reduce the problems associated with high temperatures. To obtain the powders, we react gaseous precursors such as GeCl\(_4\) vapor and PH\(_4\) in an HCl flame in a Technier burner. In this apparatus, a flame is burnt in an inert chamber and the powder is collected as soot on the chamber walls. High reaction temperatures and quench rates can be achieved with this method.

Ge-Ga-S-P Glasses

Preliminary experiments with melt compositions in the same ratio as compositions in the center of the 5-SiAION region of the SiAION phase diagram produced glassy material that had incompletely melted and batches prepared with excess phosphorus were prone to explosions on cooling, an observation which is consistent with the work in reference (2) where it was found that high phosphorus glass melts were prone to explode.

A glass in the Ge-P-S system which Hilton\(^{(2)}\) reported to be stable, Ge\(_0.4\)P\(_0.4\)S\(_0.2\), was prepared. This glass was reported as being homogeneous, but under the scanning electron microscope a globular structure is observed (Figure 2) which strongly suggests that phase separation is occurring. A differential thermogram (Figure 3), measured under dry nitrogen, shows a glass transition at 417°C, which is close to the reported softening temperature of 450°C and a deviation in the baseline at 450°C, which suggests a second glass transition that could be due to a second phase. X-ray diffraction (XRD) of the glass gives a completely amorphous diffractogram. A Knoop hardness of 346 with a standard deviation of 32 was obtained; this is harder than any of the values obtained by Hilton\(^{(2)}\) (all samples measured by Hilton were \(<250\)). Reduction of the sulfur content to give the composition Ge\(_0.45\)P\(_0.35\)S\(_0.2\) resulted in a polycrystalline metallic looking material with a high electrical conductivity, as did addition of gallium to give the composition Ge\(_0.35\)Ga\(_0.12\)S\(_0.18\)P\(_0.35\).

To begin investigating the low phosphorus region of the phase diagram, a melt with the composition GeGa\(_0.25\)S\(_1.5\) was prepared. This gave a good glass, and the IR transmission spectrum on a sample 2 mm thick is shown in Figure 4. The origin of the absorption band at 9.5 \(\mu\)m is uncertain, but it is probably due to a rearrangement of the structure from that of the GeS\(_1.5\) glass which does not show the band\(^{(2)}\). The Knoop hardness, determined with a 100 g load, was 214 with a standard deviation of 14. A differential thermogram given in Figure 5 shows a glass transition at 308°C and a crystallization at 420°C.
Conclusions

Glasses in the GeGaSP system have considerable potential for IR window applications, but that potential needs to be explored in considerably more detail before a judgement can be made. Gallium can be incorporated into germanium sulfide compositions and a stable glass prepared, but that this incorporation results in a deleterious absorption band at 9.5 μm. The origins of this band need to be investigated to determine whether it can be removed by suitable purification procedures or compositional variations.

Acknowledgements

I wish to acknowledge the technical assistance of Steve Bright and Garry Campbell. This work was supported in part by the Office of Naval Research.

References

Figure 1. Rocking Furnace
FIGURE 2. SEM (1000X) OF Ge$_{0.4}$P$_{0.4}$O$_{0.2}$ GLASS

FIGURE 3. DTA OF Ge$_{0.4}$P$_{0.4}$O$_{0.2}$ GLASS
FIGURE 4. INFRA-RED SPECTRUM OF GeGa0.2Si1.9 GLASS

FIGURE 5. DTA OF GeGa0.2Si1.9 GLASS
BASIC DISTRIBUTION LIST

Technical and Summary Reports June 1986

<table>
<thead>
<tr>
<th>Organization</th>
<th>Code</th>
<th>Organization</th>
<th>Code</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defense Documentation Center</td>
<td>12</td>
<td>Naval Weapons Center</td>
<td>385</td>
<td>1</td>
</tr>
<tr>
<td>Cameron Station</td>
<td></td>
<td>China Lake, CA 93555</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alexandria, VA 22314</td>
<td></td>
<td>ATTN: Code 385</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td>3</td>
<td>National Bureau of Standards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
<td>Washington, DC 20234</td>
<td></td>
<td></td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
<td>Attn: Ceramics Glass and Solid State</td>
<td>Inorganic Materials Division</td>
<td>1</td>
</tr>
<tr>
<td>Arlington, VA 22217</td>
<td></td>
<td>Science Division</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: Code 431</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code 413</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Naval Air Development Center</td>
<td>1</td>
<td>Naval Missile Center</td>
<td>3312-1</td>
<td></td>
</tr>
<tr>
<td>Code 606</td>
<td>Materials Consultant</td>
<td>Point Mugu, CA 92041</td>
<td>92041</td>
<td>1</td>
</tr>
<tr>
<td>Warminster, PA 18974</td>
<td></td>
<td>ATTN: Code 606</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: Dr. J. DeLuccia</td>
<td></td>
<td>3312-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>1</td>
<td>Army Research Office</td>
<td>12211</td>
<td></td>
</tr>
<tr>
<td>Naval Surface Weapons Center</td>
<td></td>
<td>Triangle Park, NC 27709</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10901 New Hampshire Ave.</td>
<td></td>
<td>ATTN: Metallurgy & Ceramics Program</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>White Oak Laboratory</td>
<td></td>
<td>Chemistry Program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver Spring, MD 20910</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: Mr. W. Messick Code K22</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Air Force Materials Laboratory</td>
<td>1</td>
<td>Scientific Advisor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wright-Patterson AFB</td>
<td></td>
<td>Commandant of the Marine Corps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dayton, OH 45433</td>
<td></td>
<td>Washington, DC 20380</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: Dr. N. Tallan</td>
<td></td>
<td>ATTN: Code AX</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Naval Postgraduate School</td>
<td>1</td>
<td>Army Materials and Mechanics Research Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monterey, CA 93940</td>
<td></td>
<td>Watertown, MA 02172</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: Mechanical Engineering</td>
<td></td>
<td>ATTN: Dr. R. N. Katz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department</td>
<td></td>
<td>1</td>
<td>02172</td>
<td>1</td>
</tr>
<tr>
<td>Naval Air Systems Command</td>
<td>1</td>
<td>Naval Sea Systems Command</td>
<td>05R</td>
<td></td>
</tr>
<tr>
<td>JP #1</td>
<td></td>
<td>NC #2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1411 Jeff Davis Highway</td>
<td>2521 Jeff Davis Highway</td>
<td>Arlington, VA 22202</td>
<td>22202</td>
<td>1</td>
</tr>
<tr>
<td>Arlington, VA 22202</td>
<td>ATTN: Code 05R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: Code 03D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space and Naval Warfare</td>
<td>1</td>
<td>Office of Naval Technology</td>
<td>0712</td>
<td></td>
</tr>
<tr>
<td>Systems Command</td>
<td></td>
<td>Department of the Navy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC#1</td>
<td></td>
<td>800 N. Quincy Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2511 Jeff Davis Highway</td>
<td>22217</td>
<td>Arlington, VA 22217</td>
<td>22217</td>
<td>1</td>
</tr>
<tr>
<td>Arlington, VA 22202</td>
<td>ATTN: Code 0712</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ATTN: Dr. S. Sacks</td>
<td></td>
<td>Code 0712</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naval Oceans System Center</td>
<td>1</td>
<td>Air Force Office of Scientific</td>
<td>0725</td>
<td></td>
</tr>
<tr>
<td>San Diego, CA 92132</td>
<td></td>
<td>Research/NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: Library</td>
<td></td>
<td>Building 410</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bolling Air Force Base</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Washington, DC 20332</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATTN: Electronics & Materials Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Directorate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defense Metals and Ceramics</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Information Center</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battelle Memorial Institute</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>505 King Avenue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columbus, OH 43201</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SUPPLEMENTARY DISTRIBUTION LIST
Optical Ceramics

Dr. H. E. Bennett
Code 38101
Naval Weapons Center
China Lake, CA 93555

Dr. F. Klocek
Texas Instruments
P. O. Box 660246
Dallas, TX 75266

Dr. C. Dale Perry
US Army Missile Command
Redstone Arsenal
Huntsville, AL 02134

Mr. J. Blair
Eastman Kodak Co.
Dept.144, Hawkeye Plant
901 Elmgrove Road
Rochester, NY 14650

Dr. D. N. Lewis
Code 6360
Naval Research Laboratory
Washington, DC 20375

Dr. W. Rhodes
GTE Laboratories
40 Sylvan Road
Waltham, MA 02134

Mr. R. Bradshaw
BMD Systems Command
LEH
P.O. Box 1500
Huntsville, AL 35807

Mr. C. Martin
BMD-Advances Technology Ctr.
Huntsville, AL 35807

Mr. R. Rice
W. R. Grace Company
7379 Route 32
Columbia, MD 21044

Dr. J. Burdett
Chemistry Department
University of Chicago
Chicago, IL 60637

Ms. D. J. Martin
AFWL/ARBE
Kirtland AFB, NM 87117

Mr. D. Roy
Coor Porcelain Co.
Golden, CO 80401

Dr. R. Gentilman
Raytheon Co.,Research Div.
131 Spring Street
Lexington, MA 02173

Dr. Y. Mehrrotra
Perkin-Elmer Company
100 Wooster Heights Road
Danbury, CT 06810

Dr. J. Savage
Royal Signals and Radar Establishment
St. Andrews Road
Great Malvern,
WORCS, WR14 3PS
England

Dr. G. Geoffroy
Chemistry Department
Pennsylvania State Univ.
University Park, PA 16802

Dr. Y. Melling
Ceramics & Glass Technology
 Battelle Columbus Labs
Columbus, OH 43201

Dr. R. W. Schwartz
Code 3854
Naval Weapons Center
China Lake, CA 93555

Dr. A. Harker
Rockwell International
P.O. Box 1085
1049 Camino Dos Rios
Thousand Oaks, CA 91360

Dr. R. Moreen
Rockwell Internations
3370 Mila Loma Avenue
Anaheim, CA 92803

Mr. W. Tropf
Applied Physics Lab.
Johns Hopkins Road
Laurel, MD 20810

Dr. D. C. Harris
Code 3854
Naval Weapons Center
China Lake, CA 93555

Dr. P. E. D. Morgan
Rockwell Science Center
P. O. Box 1085
Thousand Oaks, CA 91360

S. Wax
Mat’ls Science Office
DARPA
1400 Wilson Blvd.
Arlington, VA 22209

Dr. T. A. Hewston
Code 3854
Naval Weapons Center
China Lake, CA 93555

Dr. S. Musikant
General Electric Co.
P. O. Box 8555
Philadelphia, PA 19101

Dr. W. White
Mat’ls Research Lab
Pennsylvania State Univ
University Park, PA 16802

Dr. M. E. Hills
Code 3854
Naval Weapons Center
China Lake, CA 93555

Dr. C. Pantano
Materials Science Lab.
Pennsylvania State Univ.
University Park, PA 16802

Dr. A. Wold
Chemistry Department
Brown University
Providence, RI 02912

Dr. B. Mortimer
Royal Air Force
Farnborough
Hants
England