Abstract

The program was directed towards characterization of electrode and photoelectrode solid-state junctions with solid polymer electrolytes (SPEs) possessing incorporated electrochromic materials. Excellent electrochemical reversibility and corresponding electrochromic phenomena were found for cells utilizing lutecium diphthalocyanine and heptyl viologen as incorporated electrochromic materials.
Solid-state electrochromic cells of the general configuration:

Lutecium Diphthalocyanine Poly(Amps) Nafion Poly(Amps) SnO$_2$ cond.
on SnO$_2$ cond. glass + SE 117 + CeCl$_3$ glass

were prepared using the supporting electrolytes (SEs) 0.1M Na$_2$SO$_4$ and 0.1M KCl. Upon subjecting the cell to anodic and cathodic voltage scans, up to four distinct color changes were observed varying from red (at anodic potentials) to violet (at cathodic potentials). Formation of the violet lutecium diphthalocyanine reduction product was not found to be contingent upon the absence of alkali cations as reported by others.

For the electrochromic cell:

\[
\text{SnO}_2 \quad / \quad \text{Poly(Amps)} \quad / \quad \text{Nafion} \quad / \quad \text{Poly(Amps)} \quad / \quad \text{SnO}_2
\]

\[
\text{glass} \quad + \quad \text{HV}^{2+} \quad / \quad 117 \quad + \quad \text{CeCl}_3 \quad / \quad \text{glass}
\]

+ NaPF$_6$

in which the heptyl viologen (HV$^{2+}$) working electrode compartment was subjected to a cathodic scan, two distinct reduction peaks were observed at respectively -1.74 and -1.90V versus the CeCl$_3$/SnO$_2$ reference/counter electrode. This corresponded to the formation of respectively, the radical and diradical cation species of HV$^{2+}$. This electrochromic cell was found to be highly electrochemically reversible as monitored by a He/Ne laser beam (583nm) transmitted through the bulk of this semi-transparent thin film solid-state cell.

The dependency of n-TiO$_2$ flatband potential (V_{fb}) for cells of the general configuration: n-TiO$_2$/Nafion 117, Redox species/SnO$_2$ conducting glass, was systematically studied for the redox species Ru(bpy)$_3^{2+}$, Fe(bpy)$_3^{2+}$ and Ru(NH$_3$)$_6^{3+}$ as a function of their concentration within the polymer. A linear relationship $V_{fb} = M (1/\text{concentration}) + b$ was found to hold for all cells. The slope (M) was found dependent upon metal complex used and its oxidation state. The sensitivity of the measured n-TiO$_2$ flatband potential to its immediate chemical environment at its interface with the redox polymer can be a strategy pursued for chemical detection.

Solid-state photoelectrochromic cells possessing the general configuration:

\[
\text{SC} \quad / \quad \text{Poly(Amps)} \quad / \quad \text{Nafion} \quad / \quad \text{Poly(Amps)} \quad / \quad \text{SnO}_2
\]

\[
+ \text{NaPF}_6 \quad / \quad 117 \quad + \text{NaPF}_6 \quad + \text{CeCl}_3 \quad / \quad \text{glass}
\]
Solid-state photoelectrochromic cells possessing the general configuration:

\[
\begin{array}{c}
\text{SC} & \text{Poly(Amps)} & + \text{NaPF}_6 & \text{Nafion} & + \text{NaPF}_6 & \text{SnO}_2 \\
+ \text{ECM} & & 117 & + \text{CeCl}_3 & \text{glass}
\end{array}
\]

where SC = n-TiO\(_2\) or n-CdS and ECM = HV\(^{2+}\) or LuH(Pc)\(_2\) were prepared.

SPE/SC junctions containing dispersed HC\(^{2+}\) behaved in a somewhat analogous manner to liquid junction PEC cells. Those cells prepared with LuH(Pc)\(_2\) directly deposited onto the semiconductor surface had these photoelectrochemical properties dictated by the SC/LuH(Pc)\(_2\) solid-state junction rather than by SPE redox properties.

TECHNICAL REPORTS SUBMITTED TO ONR DURING THIS CONTRACT (N00014-84-C-0723)

<table>
<thead>
<tr>
<th>Interim Report</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001 AA</td>
<td>November 15, 1984</td>
</tr>
<tr>
<td>0001 AB</td>
<td>January 15, 1985</td>
</tr>
<tr>
<td>0001 AC</td>
<td>March 15, 1985</td>
</tr>
<tr>
<td>0001 AD</td>
<td>May 15, 1985</td>
</tr>
<tr>
<td>0001 AE</td>
<td>July 15, 1985</td>
</tr>
<tr>
<td>0001 AF</td>
<td>September 15, 1985</td>
</tr>
<tr>
<td>0001 AG</td>
<td>January 15, 1986</td>
</tr>
<tr>
<td>0001 AH</td>
<td>May 15, 1986</td>
</tr>
<tr>
<td>0001 AJ</td>
<td>September 14, 1986</td>
</tr>
</tbody>
</table>

JOURNAL ARTICLES EMANATING FROM THIS CONTRACT:

LISTING OF PERSONNEL WHO PARTICIPATED IN THIS PROJECT:
(ONR Contract No. N00014-84-C-0723)

A. F. Sammells
N. U. Pujare
S. K. Schmidt
R. L. Cook
A. Rahn
P. Dempsey
END

12-86

DTTC