| AD-A172 826 | THEORETICAL INVESTIGATION OF THREE-DIMENSIONAL SHOCK WAVE-TURBULENT BOUND (U) RUTGERS - THE STATE UNIV NEW BRUNSWICK N J DEPT OF MECHANICAL D D KNIGHT JAN 86 UNCLASSIFIED RU-TR-163-MAE-F AFOSR-TR-86-0893 F/G 20/4 |
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1961 A
THEORETICAL INVESTIGATION OF THREE-DIMENSIONAL SHOCK WAVE-TURBULENT BOUNDARY LAYER INTERACTIONS

Part IV

Doyle D. Knight

Interim Report for Period 1 October 1984 to 30 September 1985
Approved for Public Release - Distribution Unlimited

Air Force Office of Scientific Research
Building 410
Bolling AFB
Washington, DC 20332

January 1986
The principal focus of the research effort is the understanding of 3-D shock wave-turbulent boundary layer interactions (3-D turbulent interactions). The theoretical model consists of the Reynolds-averaged 3-D compressible Navier-Stokes equations, with turbulence incorporated using the algebraic turbulent eddy viscosity model of Baldwin and Lomax. During the fourth year, research efforts focused on both 2-D and 3-D turbulent interactions.
In former category, the theoretical model was examined for a series of separated 2-D compression corner flows at Mach 2 and 3. Calculations were performed for four separate compression corners using a 2-D compressible Navier-Stokes code employing MacCormack's hybrid algorithm. The results were compared to earlier computations using the Beam-Warming algorithm, and recent experiment data for turbulent Reynolds stresses. It was observed that the calculated Reynolds stresses differed significantly from the experimental measurements due to the inability of the turbulence model to incorporate the multiple scale effects of the turbulence structure downstream of reattachment. The computed results using the MacCormack hybrid algorithm were observed to be insensitive to the Courant number.

In the category of 3-D turbulence interactions, research efforts were concentrated on two configurations, namely 1) the 3-D sharp fin, and 2) the 3-D swept compression corner. In the former case, the computed flowfield for the 20 deg sharp fin at Mach 3 and a Reynolds number of 9.3×10^6 was compared with the calculated results of Horstman (who employed the Jones-Launder turbulence model) and experimental data of the Princeton Gas Dynamics Laboratory. The overall comparison with experiment was very good. The two separate calculations were observed to be in close agreement. The overall flowfield structure, consisting of a large vortical structure, was identified. In the case of the 3-D swept compression corner, three separate computations were performed for the $(\alpha, \lambda) = (24, 60)$ deg configuration, and the results compared with experiment. Further examination of these results is in progress.
PREFACE

This report presents the research accomplishments for the fourth year (1 October 1984 to 30 September 1985) of the research investigation entitled "Theoretical Investigation of Three-Dimensional Shock-Wave Turbulent Boundary Layer Interactions."

The research has benefited from the assistance of several individuals, including Dr. James Wilson (Air Force Office of Scientific Research), and Drs. James Keller and Mr. Manual Salas (NASA Langley Research Center). The important and helpful interactions with S. Bogdonoff, C. Horstman, R. Kimmel, B. Shapey and L. Smits are also acknowledged.
Table of Contents

I. Introduction .. 9

II. Research Accomplishments for the Fourth Year and Research Program for the Fifth Year

A. 2-D Turbulent Interactions .. 10
B. 3-D Turbulent Interactions ... 15
 1. 3-D Sharp Fin .. 15
 2. 3-D Swept Compression Corner 18
C. Research Program for Fifth Year 24

III. Publications and Scientific Interactions 27

A. Written Publications ... 27
B. Interaction with Research Group at Princeton Gas Dynamics Laboratory ... 30
C. Interaction with NASA Ames Research Center 33
D. Spoken Papers Presented at Technical Meetings 37
E. Seminars ... 37

IV. List of Personnel .. 38

V. References ... 39

VI. Figures .. 42

VII. Appendix I .. 49

"A Comparative Study of the Hybrid MacCormack and Implicit Beam-Warming Algorithms for a Two-Dimensional Supersonic Compression Corner" by C. Ong and D. Knight (AIAA Paper No. 86-0204)
"The Flowfield Structure of the 3-D Shock Wave-Boundary Layer Interaction Generated by a 20 deg Sharp Fin at Mach 3" by D. Knight, C. Horstman, B. Shapey and S. Bogdonoff (AIAA Paper No. 86-0343)
List of Illustrations

Fig. 1 3-D Sharp Fin .. 42

Fig. 2 3-D Swept Compression Corner 42

Fig. 3 Comparison of Computed and Experimental Surface Pressure for 3-D Swept Compression Corner \((\alpha, \lambda) = (24, 60) \) deg (Horstman 1984) .. 43

Fig. 4 Computational Region for 3-D Swept Compression Corner .. 43

Fig. 5a Computed Surface Pressure (Knight) for 3-D Swept Compression Corner \((\alpha, \lambda) = (24, 60) \) deg at \(z = 2.03 \) cm .. 44

Fig. 5b Computed Surface Pressure (Knight) for 3-D Swept Compression Corner \((\alpha, \lambda) = (24, 60) \) deg at \(z = 4.06 \) cm .. 44

Fig. 5c Computed Surface Pressure (Knight) for 3-D Swept Compression Corner \((\alpha, \lambda) = (24, 60) \) deg at \(z = 6.09 \) cm .. 45

Fig. 5d Computed Surface Pressure (Knight) for 3-D Swept Compression Corner \((\alpha, \lambda) = (24, 60) \) deg at \(z = 8.12 \) cm .. 45

Fig. 5e Computed Surface Pressure (Knight) for 3-D Swept Compression Corner \((\alpha, \lambda) = (24, 60) \) deg at \(z = 10.16 \) cm .. 46

Fig. 6 Computed (Knight) and Experimental Surface Pressure for 3-D Swept Compression Corner at \((\alpha, \lambda) = (24, 60) \) deg .. 46

Fig. 7a Computed Surface Pressure (Knight) for 3-D Swept Compression Corner \((\alpha, \lambda) = (24, 60) \) deg in conical coordinates .. 47
Fig. 7b Computed Surface Pressure (Horstman) for 3-D Swept Compression Corner \((\alpha, \lambda) = (24, 60)\) deg in conical coordinates

Fig. 7c Computed Surface Pressure (Knight and Horstman) for 3-D Swept Compression Corner \((\alpha, \lambda) = (24, 60)\) deg in conical coordinates

List of Tables

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Theoretical Research on 2-D Shock Wave Turbulent Boundary Layer Interactions : Computations of 2-D Compression Ramp</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2</td>
<td>Theoretical Research on 3-D Shock Wave Turbulent Boundary Layer Interactions : Computations of 3-D Sharp Fin</td>
<td>16</td>
</tr>
</tbody>
</table>
Section I. Introduction

In the original proposal (Knight 1981), the general goals of the theoretical research program were described. Although specific programmatic changes have naturally occurred during the past four years, the fundamental objectives remain the same, namely:

- To determine the accuracy of a theoretical model of 3-D shock wave-turbulent boundary layer interactions ("3-D turbulent interactions"), where the theoretical model consists of the 3-D mean compressible Navier-Stokes equations with a turbulent eddy viscosity.
- To investigate the flow structure of 3-D turbulent interactions in simplified geometries through a close cooperative research effort between theory and experiment.
- To evaluate the hypothesized physical structure of the 3-D turbulent interactions at a variety of conditions outside the range of experiments.

These goals represent a chronological sequence of objectives. A major portion of the first three years focused on the first objective (Knight 1982, 1983, 1984a) through a close collaboration with the Princeton Gas Dynamics Laboratory. The overall evaluations have been strongly favorable, and provide the impetus for achievement of the second goal. During the fourth year, the research program has made significant progress in achieving the second objective. In the following sections, the research accomplishments for the fourth year and research program for the fifth year are presented.
Section II. Research Accomplishments for the Third Year and Research Program for Fourth Year

A. 2-D Turbulent Interactions

Although the principal focus of the research effort is the understanding of 3-D turbulent interactions, a modest effort has been directed towards 2-D turbulent interactions over the past four years. The same theoretical model has been employed for both the 2-D and 3-D research, namely, the Reynolds-averaged compressible Navier-Stokes equations with the Baldwin-Lomax turbulent eddy viscosity model.

During the first two years (Knight 1982, 1983), the objective of the 2-D turbulent interaction effort was the examination of the efficacy of the theoretical model through comparison of the computed flowfields with the mean flowfield measurements of Settles (Settles, Gilbert and Bogdonoff 1980) for the 2-D supersonic compression ramp. Calculations were performed (see Table 1) for the entire experimental matrix of Settles at a nominal Mach number of 3, ramp angles from 8 deg to 24 deg, and Reynolds numbers $Re_{\infty} = 0.76 \times 10^6$ to 7.7×10^6. The experimental data, consisting of surface pressure, skin friction, surface oil flow visualization, and boundary layer profiles of pitot and static pressure, provided an extensive database for examination of the efficacy of the theoretical model. The numerical algorithm of Beam and Warming (1978) was employed for solution of the theoretical equations. The conclusions of the research effort, summarized in Visbal (1983) and Visbal and Knight (1984), are the following:

a. The determination of the length and velocity scales of the Baldwin-Lomax turbulent eddy viscosity in the outer region is unsuitable in the vicinity of separation. The model predicts a sudden, unphysical decrease in the turbulence length scale of approximately an order of magnitude, resulting in an corresponding unphysical reduction in the magnitude of the eddy viscosity.
Table 1. Theoretical Research

2-D Shock Wave Turbulent Boundary Layer Interactions

Computations of 2-D Compression Ramp

<table>
<thead>
<tr>
<th>Year</th>
<th>Code</th>
<th>Mach No. (nominal)</th>
<th>Ramp Angle (α, deg)</th>
<th>Reynolds No. (Reₘ)</th>
<th>Data Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>81-82</td>
<td>B-W</td>
<td>3</td>
<td>8 deg</td>
<td>1.6 x 10⁶</td>
<td>P_W, C_f, U, M, p</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16 deg</td>
<td></td>
<td>P_W, C_f, U, M, p</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20 deg</td>
<td></td>
<td>P_W, C_f, X_S, X_T, U, M, p</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24 deg</td>
<td></td>
<td>P_W, C_f, X_S, X_T, U, M, p</td>
</tr>
<tr>
<td>82-83</td>
<td>B-W</td>
<td>3</td>
<td>20 deg</td>
<td>0.76 x 10⁶</td>
<td>P_W, X_S, X_T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.4 x 10⁶</td>
<td>P_W, X_S, X_T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.6 x 10⁶</td>
<td>P_W, X_S, X_T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.7 x 10⁶</td>
<td>P_W, X_S, X_T</td>
</tr>
<tr>
<td></td>
<td>B-W</td>
<td>2</td>
<td>16 deg</td>
<td>0.25 x 10⁶</td>
<td>P_W, X_S, X_T</td>
</tr>
<tr>
<td>83-84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84-85</td>
<td>MH</td>
<td>3</td>
<td>8 deg</td>
<td>1.6 x 10⁶</td>
<td>P_W, C_f, X_T, U, M, p</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16 deg</td>
<td></td>
<td>P_W, C_f, X_T, U, M, p</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20 deg</td>
<td></td>
<td>P_W, C_f, X_T, X_S, X_T, U, M, p</td>
</tr>
<tr>
<td></td>
<td>MH</td>
<td>2</td>
<td>16 deg</td>
<td>0.25 x 10⁶</td>
<td>P_W, X_S, X_T</td>
</tr>
</tbody>
</table>

Note: There are typically two or more computations for each case

Legend for Numerical Algorithm:
- B-W Beam and Warming's Method (Beam and Warming 1978)
- MH MacCormack's Hybrid Method (MacCormack 1982)

Legend for Data Comparison with Experiment:
- P_W Wall static pressure
- C_f Wall skin friction coefficient
- X_S, X_T Separation and Reattachment points
- U Velocity
- M Mach No. Profiles
- P Static pressure profiles
b. The Baldwin-Lomax model exhibits an insufficient upstream propagation of the corner interaction.

c. The incorporation of a 'relaxation model' into the turbulent eddy viscosity model improves the prediction of the upstream propagation. The relaxation model introduces an additional length scale, which is observed to be Reynolds number dependent.

d. The Baldwin-Lomax model, with or without the relaxation model, fails to accurately predict the rapid recovery of the boundary layer downstream of reattachment. This deficiency was attributed to the inability of the theoretical model to simulate the observed rapid amplification of the turbulent fluctuations (Settles, Baca, Williams and Bogdonoff 1980, Delery 1983) across a shock-boundary layer interaction. The effect of the inclusion of the relaxation model is to diminish the turbulent eddy viscosity, thereby increasing the upstream propagation as noted in c.) above. While improving the flowfield prediction upstream of the corner, the empirical relaxation model therefore produces the wrong behavior downstream of reattachment.

On the basis of these results, a second effort in 2-D turbulent interactions was initiated during the second year, and completed in the fourth year. The objectives of this effort are:

a. Examination of the sensitivity of the computed flows to the numerical algorithm.

The understanding of the characteristics of a numerical algorithm is crucial to the evaluation of the theoretical equations which it solves. It was deemed important, therefore, to develop a second 2-D compressible Navier-Stokes code using the popular MacCormack hybrid algorithm (MacCormack 1982), and to recompute many of the same cases which Visbal had computed using the Beam-Warming algorithm. In addition, effort was focused on determining whether the
steady-state numerical solutions obtained using the MacCormack hybrid algorithm displayed any sensitivity to the time step employed (i.e., Courant number).

b. Direct comparison of computed and measured Reynolds shear stress for the 2-D compression ramp

Subsequent to the theoretical investigation of Visbal and Knight, a series of experiments (Muck et al. 1983, 1984a, b) were performed at the Princeton Gas Dynamics Laboratory to measure the Reynolds shear stress for the 2-D supersonic compression ramp at Mach 3 for ramp angles of 8, 16, and 20 deg at Re_{\infty} = 1.6 \times 10^6. This experimental database provided the opportunity for direct comparison with the computed Reynolds shear stress. The objective, therefore, is to understand the reasons for the failure of the Baldwin-Lomax turbulent eddy viscosity model to predict the rapid recovery of the boundary layer downstream of reattachment.

A series of computations were performed using the Reynolds-averaged compressible Navier-Stokes equations and the same Baldwin-Lomax turbulence model (see Table 1). Calculations were performed for a Mach 2 compression corner at 16 deg and Re_{\infty} = 0.25 \times 10^6, and for a Mach 3 compression corner at 8, 16, and 20 deg and Re_{\infty} = 1.6 \times 10^6. The computations at Mach 3 employed the same grid spacing, turbulence model parameters and upstream profile as employed by Visbal and Knight. The calculations differed only in the numerical algorithm utilized (MacCormack hybrid vs. Beam-Warming).

The conclusions of the research are (see Appendix I):

a. The computed Reynolds shear stress profiles are observed to be significantly different from the experimental data. The height of the computed peak shear stress is typically a factor of two to four too small. The magnitude of the computed peak shear stress is in approximate agreement with the experimental data for the 16 deg corner, and displays a modest decrease with downstream distance. For the 20 deg corner, the computed peak shear stress shows a rapid
decrease with downstream distance, in disagreement with the experimental results.

d. The Baldwin-Lomax model, based upon the mixing length concept, is incapable of accurately predicting the recovery of a separated 2-D compression corner flow. The mixing length model is formulated on the concept of an equilibrium turbulent boundary layer exhibiting a single characteristic velocity scale (Tennekes and Lumley 1972). Downstream of reattachment, there are two characteristic velocity scales of the turbulence, namely, 1) an outer velocity scale associated with the turbulence fluctuations in the outer portion of the reattaching shear layer, and 2) an inner velocity scale $u_\ast = \sqrt{\tau_w(x)/\rho_w(x)}$ associated with the imposition of the no-slip boundary condition downstream of reattachment, which creates an 'inside layer' within the boundary layer. A more physically realistic turbulence model is required for 2-D separated compression corner flows, which incorporates the effect of the upstream history on the turbulence and the oscillatory motion of the shock wave structure (Dolling and Murphy 1982, Dolling and Or 1983).

c. The computed flowfields utilizing the Beam-Warming and MacCormack Hybrid algorithms are overall in excellent agreement. This implies, therefore, that the effect of numerical damping, which was incorporated differently in the two methods, is negligible on the flowfield elements examined (e.g., surface pressure, skin friction, and boundary layer profiles of velocity, temperature, density and Reynolds shear stress).

d. The steady-state solutions using MacCormack's hybrid algorithm are observed to be insensitive to the Courant number.

It is evident, therefore, that further research is needed to provide an adequate qualitative and quantitative understanding of the separated 2-D supersonic compression ramp flows. Firstly, a 'new look' at theoretical modelling for these flows is required. It is clearly evident, on the basis of the results cited above, that the present theoretical model (i.e., the Rey-
nolds-averaged compressible Navier-Stokes equations with the Baldwin-Lomax turbulent eddy viscosity model) does not embody the correct physics for 2-D separated compression corners. Current efforts are directed towards reviewing these issues, and developing alternative approaches. Secondly, the recent experimental measurements of Reynolds shear stress for the 2-D compression corner by Kuntz, Amatucci and Addy (1986) using an LDV differ significantly from the earlier measurements of Muck et al; typically, the maximum values of the kinematic Reynolds shear stress differ by a factor of two to four depending on ramp angle. Additional detailed experimental investigation of these flows is clearly needed.

B. 3-D Turbulent Interactions

The principal focus of the overall research program is the understanding of 3-D turbulent interactions. During the first three years of the research effort, the principal objective was the determination of the efficacy of the theoretical model, namely, the 3-D Reynolds-averaged compressible Navier-Stokes equations with turbulence incorporated using the Baldwin-Lomax algebraic turbulent eddy viscosity model. The 3-D sharp fin configuration (Fig. 1) at Mach 3 was selected for the initial investigations. It was observed that the theoretical model provided good agreement with the experimental data (see Table 2). Consequently, in the fourth year a major effort focused on the development of the mean flowfield model for the 3-D sharp fin configuration. In addition, a new configuration, the 3-D swept compression corner, was computed during the fourth year. In the following sections, the results of the fourth year are described.

1. 3-D Sharp Fin at 20 deg

The configurations computed during the first three years (Table 2) involve a range of fin angles from 4 deg to 20 deg and Reynolds numbers from 2.8×10^5 to 9.3×10^5. Overall, the agreement between the computed and experimental results is very good (Knight 1984b, 1985a, 1985b; Knight et al 1986) for both the algebraic turbulent eddy viscosity of Baldwin and Lomax (Knight 1984b, 1985a, 1985b; Knight et al 1986) and the two-equation Jones-Lauder
Table 2. Theoretical Research

3-D Shock Wave Turbulent Boundary Layer Interactions

Computations of 3-D Sharp Fin

<table>
<thead>
<tr>
<th>Year</th>
<th>Mach No. (nominal)</th>
<th>Fin Angle (α, deg)</th>
<th>Reynolds No. (Re₆₀₀)</th>
<th>Data Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>81-82</td>
<td>3</td>
<td>4</td>
<td>9.3 x 10⁵</td>
<td>(p_w), sfc visual, (p_p), yaw, (c_h), (c_p), pitch</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10</td>
<td>9.3 x 10⁵</td>
<td>(p_w), sfc visual, (p_p), yaw, (c_h), (c_p), pitch</td>
</tr>
<tr>
<td>82-83</td>
<td>3</td>
<td>10</td>
<td>2.8 x 10⁵</td>
<td>(p_w), sfc visual, (p_p), yaw</td>
</tr>
<tr>
<td>83-84</td>
<td>3</td>
<td>20</td>
<td>9.3 x 10⁵</td>
<td>(p_w), sfc visual, (p_p), yaw</td>
</tr>
</tbody>
</table>

NOTE: Each configuration typically represents two or more computations. The purpose of multiple calculations is to investigate the effects of grid resolution.

Legend for Data Comparison with Experiment:

- \(p_w\): Wall static pressure
- sfc visual: Surface flow visualization (oil flow or kerosene-lampblack)
- \(p_p\): Pitot Pressure
- yaw: Yaw Angle
- \(c_h\): Wall heat transfer coefficient (Stanton No.)
- \(c_p\): Static pressure profiles
- pitch: Pitch Angle
(1972) turbulence model (Knight 1985b, Knight et al 1986), for which the computations were performed by Dr. C. C. Horstman of NASA Ames. On the basis of this verification of the efficacy of the theoretical model for this configuration, the computed flowfields using both theoretical models were employed to determine the structure of the mean flowfield. The principal conclusions of the investigation for the 20 deg sharp fin are (Appendix II):

- The three-dimensional velocity fields computed by both theoretical models are in close agreement, except within the immediate vicinity of the surface (specifically, within the lower approximate 20% of the boundary layer), where differences of the order of 10% to 20% exist in the yaw angle.

- The computed turbulent Reynolds shear stress profiles differ by an order of magnitude and more within the 3-D interaction region.

- The similarity of the computed velocity fields and significant difference in computed turbulent Reynolds shear stresses imply that the 3-D sharp fin interaction is principally an inviscid, rotational flow except within the immediate vicinity of the surface.

- The computed flowfields display a prominent vortical structure associated with the shock-boundary layer interaction. This large structure agrees with the flowfield models of Token (1974) and Kubota and Stollery (1982). The calculated flow reveals two significant surfaces, namely, 1) a three-dimensional surface of separation which originates from the line of coalescence (separation) and spirals into the center of the vortical structure, and 2) an upper surface, extending upstream into the undisturbed portion of the flow, which defines the extent of the flowfield which is entrained into the vortical structure.

An important element of this research has been the close collaboration between Dr. C. C. Horstman (NASA Ames), Prof. S. Bogdonoff and his colleagues (Princeton Gas Dynamics Laboratory), and the present author. The most recent 3-D sharp fin configuration ($\alpha_g = 20$ deg, $\delta_\infty = 0.5$ inch) exemplifies this...
productive interaction. As indicated in Section III.B and III.C, the specific configuration was selected after detailed discussion, and the computations for both the Baldwin-Lomax model (Knight) and Jones-Launder model (Horstman) were performed prior to the experiment.

2. 3-D Swept Compression Corner

The second major focus for the 3-D turbulent interaction research in the fourth year was the computation of a selected configuration for the 3-D swept compression corner. This specific geometry, described in terms of the compression corner angle α (measured in the streamwise direction) and sweepback angle λ (Fig. 2), represents an important family of 3-D turbulent interactions. The 3-D sharp fin and 2-D compression ramp may be considered specific cases of the 3-D swept compression corner family corresponding to (α, λ) equal to $(90, \alpha_y)$ and $(\alpha, 0)$ deg, respectively. Extensive experimental data has been obtained for a large number of configurations of the 3-D swept compression corner at Mach 3 at the Princeton Gas Dynamics Laboratory (Settles, Perkins and Bogdonoff 1980; Settles and Bogdonoff 1982; McKenzie 1983; Settles and Teng 1984). The data includes surface pressure and kerosene-lampblack surface flow visualization for more than forty different (α, λ) configurations at values of α and λ up to 24 deg and 70 deg, respectively (Settles 1983). Detailed flowfield surveys of pitot pressure and yaw angle have been obtained for $(\alpha, \lambda) = (24, 40)$ deg at two different Reynolds numbers.

A series of 3-D swept compression corner configurations have been calculated by Horstman (Settles, McKenzie and Horstman 1984; Horstman 1984) using the 3-D mean compressible Navier-Stokes equations. The $(\alpha, \lambda) = (24, 40)$ deg configuration was computed using the algebraic eddy viscosity model of Cebeci-Smith (1974) and the two-equation $k - \varepsilon$ model of Jones-Launder (1972) for two Reynolds numbers. The computed results were found to be in reasonable agreement with experiment, although discrepancies were noted in the surface pressure distribution. In addition, a total of thirty-five (35) different configurations were calculated by Horstman at various (α, λ) using the Jones-Launder $(k-\varepsilon)$ turbulence model with the wall function model of Viegas and Rubesin. The numerical results displayed close agreement with the measured boundary in the (α, λ) plane between cylindrical and conical flow. Recently,
however, a debate has arisen concerning the existence of the cylindrical-conical boundary (Wang and Bogdonoff 1986). These computations displayed good agreement with experimental data for surface pressure for a number of \((\alpha, \lambda)\) configurations. The model, however, failed to accurately predict the surface pressure distribution for high sweepback angles for which the flow exhibited a large separation region inferred from the surface streamlines. In particular, the disagreement for the \((\alpha, \lambda) = (24, 60)\) deg configuration is most noticeable (Fig. 3). Subsequent computations by Horstman (unpublished) utilizing finer streamwise grid spacing improved the prediction of the surface pressure within and downstream of the corner region; however, the pressure distribution upstream of the corner remained essentially unaffected.

The marginal performance of the Jones-Launder turbulence model (using the Viegas-Rubesin wall function model) for the \((\alpha, \lambda) = (24, 60)\) deg configuration motivated a reexamination of this flowfield using the theoretical model of the present author, which utilizes the Baldwin-Lomax turbulence model. The objectives of this research effort are the following:

- To examine the accuracy of the Baldwin-Lomax model for the class of 3-D swept compression corner interactions
- To examine the sensitivity of the computed flowfield to the turbulence model employed
- To provide a theoretical data base for detailed analysis of the flowfield structure

A total of three separate computations were performed for the \((\alpha, \lambda) = (24, 60)\) deg configuration. In all cases, the freestream Mach number \(M_\infty = 2.95\), and the freestream total pressure \(p_{T\infty} = 100\) psia.

Case 1: Grid System and Upstream Boundary Layer Profile Equivalent to Horstman

The first computation of the \((\alpha, \lambda) = (24, 60)\) deg configuration employed approximately the same grid spacing as Horstman (1984). A total
of forty (40) streamwise grid planes were incorporated. Within each plane, a total of 729 ordinary grid points were utilized (27 x 27), with an additional 162 points within the computational sublayer. The total number of grid points was 35,640. The spanwise grid spacing (z-direction) was uniform. The grid in the y-direction was stretched geometrically to resolve the boundary layer on the surface.

The upstream boundary layer profile was the same as employed by Horstman. It is important to note that the upstream boundary of the computational domain was parallel to the corner line (Fig. 4) for both Horstman and the present author. Horstman utilized the same boundary layer profile at all points on the upstream boundary with \(\delta = 0.38 \) cm, effectively simulating a boundary layer which had developed from a swept leading edge. In the experiment, however, the leading edge of the flat plate (to which the swept compression corner was affixed), was perpendicular to the oncoming flow, thereby implying a boundary layer whose thickness varied on the upstream boundary of the computational domain. This effect was examined later (Case 2).

The freestream total temperature \(T_{\infty} \) was 495 deg R, and the wall temperature 520 deg R in agreement with Horstman. These values are in agreement with the experiment.

Case 2: Modified Upstream Boundary Layer Profile

The second computation utilized the same grid system as Case 1, with a total of 35,640 grid points. The upstream profile, however, was chosen to accurately represent the oncoming boundary layer in the experiment. A separate boundary layer code, developed through AFOSR support (Knight 1983, 1984a), was utilized to compute an upstream profile corresponding to the flat plate leading edge perpendicular to the oncoming flow. The boundary layer profile on the upstream surface was in good agreement with the experimental boundary layer which developed on the flat plate in the wind tunnel. The boundary layer thickness \(\delta_{\infty} \) on the upstream boundary varied from 0.091 cm to 0.38 cm over the 13.2 cm width of the computational domain.
The freestream total temperature T_{∞} was 479 deg R, in agreement with the experiment (Kimmel 1985). The wall temperature 505 deg R in agreement with the experiment and previous computational studies of the 3-D sharp fin.

Case 3: Modified Spanwise (Z-Direction) Grid Spacing

The third computation utilized the same grid spacing in the x- and y-directions as Cases 1 and 2. The spanwise (z-direction) mesh, however, was modified. As indicated previously, the spanwise grid spacing for Cases 1 and 2 was uniform and equal to 0.508 cm. At the apex of the swept compression corner (i.e., at the intersection of the corner line and the plane of symmetry), the size of the 3-D interaction is small. It was deemed necessary, therefore, to examine the effect of refining the grid in the spanwise direction in the vicinity of the apex in order to accurately resolve the 'inception region'. Consequently, in Case 3 a highly stretched grid spacing was employed in the z-direction, with a fine spacing $\Delta z = 4.57 \times 10^{-3}$ cm near the symmetry plane ($z = 0$), and a larger spacing $\Delta z = 0.539$ cm near the right boundary. The total number of grid points in the z-direction increased from 27 (Cases 1 and 2) to 46. The overall total number of grid points was 60,720.

The upstream profile was identical to Case 2, and the boundary layer thickness δ_{∞} on the upstream boundary varied from 0.091 cm to 0.38 cm over the 13.2 cm width of the computational domain.

The total temperature and surface temperature were identical to Case 2.

The results for Cases 1 to 3 are presented in Figs. 5 through 7. In Fig. 5a to 5e, the computed surface pressure is displayed at five spanwise locations, corresponding to $z = 2.03$ cm, 4.06 cm, 6.09 cm, 8.12 cm and 10.15 cm. As indicated above, the boundary layer thickness on the upstream surface (Fig.
4) is $s_{aw} = 0.38$ cm for Case 1 (in agreement with the profile of Horstman), and varies from 0.091 cm to 0.38 cm for Cases 2 and 3. The vertical axis is the surface pressure, normalized by the upstream static pressure p_∞. The horizontal axis is the streamwise distance $x - x_{\text{corner}}$, where x_{corner} is the streamwise location of the corner line at the specified spanwise location. In Fig. 6, the computed and experimental surface pressure are displayed in conical coordinates, where the horizontal axis is $(x - x_{\text{corner}})/(z + z_{\text{origin}})$, and $z_{\text{origin}} = 1.6$ cm is the z-coordinate of the approximate virtual origin as estimated from the experimental surface flow visualization. The experimental data was obtained at $z = 7.62$ cm, 9.4 cm, 9.65 cm and 10.16 cm. The computed profiles in Fig. 6 are obtained at $z = 12.2$ cm. Additional profiles (not shown) indicate that the computed surface pressure is approximately conical outside of an initial inception region at the apex.

Several features are evident from Figs. 5 and 6:

1. The calculated upstream propagation is insensitive to the boundary layer on the upstream surface.

The computed surface pressure profiles for Case 1, which employed a uniform boundary layer thickness on the upstream boundary surface (thereby simulating a swept leading edge to the flat plate), is quantitatively very similar to the profiles of Cases 2 and 3, which employed a non-uniform boundary layer thickness on the upstream boundary surface (thereby simulating a straight leading edge to the flat plate, as employed in the experiment). There is a slight decrease in the upstream propagation for Cases 2 and 3 as compared with Case 1.

2. The calculated upstream propagation is in good agreement with the experimental data as indicated in Fig. 6.

3. The computed pressure profile upstream of the corner is quantitatively different from the experiment (Fig. 6). The computed profile fails to reproduce the rapid pressure rise (although the location of the beginning of the pressure rise is accurately predicted as in-
4. The peak pressure at the corner is accurately predicted (Fig. 6).

5. The recovery of the surface pressure downstream of the corner is somewhat sensitive to the upstream boundary layer profile, with Cases 2 and 3 displaying a more rapid recovery than Case 1. Nevertheless, the computed pressure downstream of the corner is too low.

6. The computed surface pressure is insensitive to the refinement in the grid spacing in the spanwise direction near $z = 0$, i.e., the calculated profiles for Cases 2 and 3 are nearly identical.

In Fig. 7a, calculated surface pressure profiles are displayed in conical coordinates $(x - x_{\text{corner}})/(z + z_{\text{origin}})$ for the Baldwin-Lomax model (Cases 1 to 3). The spanwise location of the profiles is typically 11.9 cm, which is within the region where the computed surface pressure profiles display approximate conical similarity. In Fig. 7b, calculated surface pressure profiles are shown for three cases using the Jones-Launder model (Cases 4 through 6) at a spanwise location of 11.9 cm. Case 4 represents the original computation by Horstman, with the minimum streamwise grid spacing $\Delta x = 0.38$ cm. The computations using the Baldwin-Lomax model utilized the same streamwise grid spacing. In Case 5, the streamwise grid spacing was refined with $\Delta x_{\text{min}} = 0.25$ cm. Both Case 4 and 5 utilized the original 3-D version of the Viegas-Rubesin wall function model ('Viegas-Rubesin I'). In Case 6, a modification of the Viegas-Rubesin model was employed ('Viegas-Rubesin II'). In Fig. 7c, the profiles of Figs. 7a and 7b are incorporated in a single plot. Several observations are evident from Figs. 7a-c, namely:

1. The computed upstream influence is relatively insensitive to the turbulence model.

2. The calculated profiles upstream of the corner consistently fail to reproduce the rapid pressure rise and subsequent drop (see Fig. 6).
3. The peak pressure at the corner for the Jones-Launder model is sensitive to the streamwise grid spacing and version of the wall function model (i.e., Viegas-Rubesin I or II).

4. The peak pressure at the corner for the Baldwin-Lomax model is insensitive to the streamwise grid spacing. The computed peak corner pressures for Cases 1 to 3 and 6 are essentially identical.

5. The pressure profiles downstream of the corner for the Baldwin-Lomax model (Cases 1 to 3) and the Jones-Launder model with the refined streamwise grid (Cases 5 and 6) are very similar.

At the present time, further investigation of the computed flowfields is in progress. Several possible causes for the discrepancy between the computed and measured surface pressure are under investigation, including a) effect of grid resolution, and b) inadequacies in the turbulence modelling.

C. Research Program for Fifth Year

The research program for the remainder of the fifth year focuses on two principal objectives (Knight 1985c):

1. Analysis of 3-D Swept Compression Corner:
 \[(\alpha, \lambda) = (24, 60) \text{ deg at } Re_{\infty} = 2.5 \times 10^5\]

The computed results for the 3-D swept compression corner at \((\alpha, \lambda) = (24,60) \text{ deg and } Re_{\infty} = 2.5 \times 10^5\), obtained during the previous year, are analyzed in detail. A detailed comparison of the computed flowfields using the Baldwin-Lomax model (Knight) and Jones-Launder model (Horstman) is performed, including profiles of yaw angle, pitch angle, velocity, Mach number and static pressure. A comparison of particle pathlines is also performed to examine the predicted flowfield structure. A significant effort is focused on the examining the quality of the numerical grid to assure the fidelity of the computed solution.
2. Calculation of 3-D Swept Compression Corner:

\[(\alpha, \lambda) = (24, 60) \text{ deg at } Re_{\infty} = 9.5 \times 10^5\]

The 3-D swept compression corner at \((\alpha, \lambda) = (24, 60) \text{ deg and } Re_{\infty} = 9.5 \times 10^5\) is computed. The choice of this configuration is based upon several factors:

a. Concurrence with Experimental Effort at Princeton Gas Dynamics Laboratory

A major investigation of the 3-D swept compression corner at \((\alpha, \lambda) = (24, 60) \text{ deg and } Re_{\infty} = 9.5 \times 10^5\) is planned for 1985-1986 at the Princeton Gas Dynamics Laboratory (Bogdonoff, Andreopoulos and Smits 1985, p. 66). This effort will include a detailed flowfield study near feature lines (e.g., lines of coalescence) and in the inception region. The computation of this configuration during the same period will provide opportunities for continued close interaction between the theoretical and experimental efforts. This interaction can include the utilization of the computed flowfields to suggest locations for experimental measurements.

b. Complement the Previous Calculation of the 3-D Swept Compression Corner at \((\alpha, \lambda) = (24, 60) \text{ deg for } Re_{\infty} = 2.5 \times 10^5\)

The present calculation will complement the previous computational study of the same geometry at the lower Reynolds number \(Re_{\infty} = 2.5 \times 10^5\). These combined studies will provide a detailed examination of the effects of Reynolds number on this complex interaction. Previous experience with the 3-D sharp fin at \(\alpha_g = 10 \text{ deg indicated that certain features (e.g., the overshoot in pitot pressure upstream of the theoretical inviscid shock and outside the boundary layer) were accurately predicted at the lower Reynolds number, but not as closely at the higher Reynolds number. In addition, certain features (e.g., the overshoot in yaw angle in the same physical location) were not accurately predicted at either Reynolds number. This
experience strongly suggests the importance of performing separate computations at different Reynolds numbers for each geometrical configuration (i.e., specific values of α and λ) of the 3-D swept compression corner.
Section III. Publications and Scientific Interactions

A. Written Publications - Cumulative Chronological List

1. 1 October 1981 - 30 September 1982

[*] Research sponsored by AFOSR Grant 82-0040
[**] Research sponsored by AFOSR Grant 80-0072
[***] Research sponsored by AF Contract F-33615-C-3008
2. 1 October 1982 - 30 September 1983

3. 1 October 1983 - 30 September 1984

4. 1 October 1984 - 30 September 1985

B. Interactions with Research Group at Princeton Gas Dynamics Laboratory - 1 October 1984 to 1 November 1985

1. 11 October 1984: Meeting with Princeton Gas Dynamics Lab Research Group

Topics: 1) Discussion of computed results for 3-D sharp fin ($\alpha = 20$ deg and $\delta = 0.5$ inch).

2) Discussion of planned boundary layer profile measurements for the 3-D sharp fin ($\alpha = 20$ deg, $\delta = 0.5$ inch) at Princeton Gas Dynamics Laboratory.

3) Discussion of C. Horstman's calculations for the 3-D swept compression corner.

4) Discussion of future collaborative computational and experimental research on 3D turbulent interactions.

2. 3 December 1984: Conversation with S. Bogdonoff

Topics: 1) Discussion of joint paper with Princeton, Rutgers and NASA Ames on flowfield structure of 3-D sharp fin.

3. 3 December 1984: Conversation with S. Goodwin

Topics: 1) Discussion of experimental surface pressure data for 3-D sharp fin ($\alpha = 20$ deg, $\delta = 0.5$ inch).

4. 21 December 1984: Conversation with S. Bogdonoff

Topics: 1) Discussion of boundary layer profile measurements for 3-D sharp fin ($\alpha = 20$ deg, $\delta = 0.5$ inch).

2) Discussion of future experimental measurements for 3-D swept compression corner.
5. 20 February 1985: Conversation with S. Bogdonoff

Topics: 1) Discussion of initial experimental boundary layer measurements for 3-D sharp fin ($\alpha = 20$ deg, $s = 0.5$ inch).

2) Discussion of recent measurements of 3-D sharp fin ($\alpha = 17.25$ deg)

6. 22 April 1985: Conversation with S. Bogdonoff

Topics: 1) Discussion of initial experimental boundary layer measurements for 3-D sharp fin ($\alpha = 20$ deg, $s = 0.5$ inch).

2) Discussion of planned measurements for 3-D swept compression corner.

7. 21 May 1985: Conversation with S. Bogdonoff

Topics: 1) Discussion of planned second experimental data set for 3-D sharp fin ($\alpha = 20$ deg, $s = 0.5$ inch).

2) Discussion of planned computation of 3-D swept compression corner for (α, λ) = (24,60) deg.

3) Discussion of experimental investigation of 17.25 deg sharp fin, 25 deg semi-cone and (α, λ) = (30,60) swept compression corner.

8. 1 August 1985: Conversation with S. Bogdonoff

Topics: 1) Discussion of structure of 3-D sharp fin flowfield.

9. 22 August 1985: Conversation with S. Bogdonoff

Topics: 1) Discussion of flowfield structure for 3-D swept
2) Discussion of planned experimental investigation of symmetric 3-D sharp fin.

3) Discussion of future computations for 3-D swept compression corner.

10. 23 September 1985: Conversation with S. Bogdonoff

Topics: 1) Discussion of 3-D turbulent interaction flowfield structures for sharp fin and swept compression corner.

11. 9 Oct 1985: Meeting with Princeton Gas Dynamics Lab Research Group

Topics: 1) Discussion of experimental surface visualization (kerosene lampblack) for 3-D sharp fin

2) Discussion of experimental schlieren photographs for 3-D sharp fin

Topics: 1) Discussion of computed particle pathlines for 3-D sharp fin ($\alpha = 20$ deg, $\delta = 0.5$ inch).

2) View videotape of particle pathlines

2) Development of model for mean flowfield structure for 3-D sharp fin
C. Interactions with C. C. Horstman (NASA Ames Research Center)
1 October 1984 - 1 November 1985

1. 16 Oct 1984: Conversation with Mike Horstman

Topics: 1) Current computations of 3-D sharp fin for fin angles of 10 to 20 deg

2) Discussion of secondary separation line structure for 3-D sharp fin

2. 28-30 November 1984: Conversations with Mike Horstman

Topics: 1) Discussion of status of computations for 3-D sharp fin by Horstman and Knight

2) Discussion of future computations

3. 4 February 1985: Conversation with Mike Horstman

Topics: 1) Discussion of comparison of computed results by Knight and Horstman for 3-D sharp fin (α = 20 deg, s = 0.5 inch)

4. 14 February 1985: Conversation with Mike Horstman

Topics: 1) Further discussion of computed results for 3D sharp fin.

2) Requested additional computed results from Horstman for comparison

3) Discussion of future work

5. 28 February 1985: Conversation with Mike Horstman

Topics: 1) New wall function turbulence model employed by Horstman
6. 25 March 1985: Conversation with Mike Horstman

Topics: 1) Effect of new wall function model on predicted results for swept compression corner

7. 16 April 1985: Visit by Mike Horstman to Rutgers University

Topics: 1) Flowfield structure for 3-D sharp fin interaction

2) Contents of joint paper with Knight, Horstman, Bogdonoff and Shapey for AIAA 24th Aerospace Sciences Meeting in Jan 1986

3) Discussion of recent computated results for 3-D swept compression corner

4) Discussion of 2-D compression ramp, including calculations by C. Ong (Rutgers), and Dennis Johnson (NASA Ames).

5) Discussion of experimental fluid dynamics program at NASA Ames

8. 25 April 1985: Conversation with Mike Horstman

Topics: 1) Contents of joint paper with Knight, Horstman, Bogdonoff and Shapey for AIAA 24th Aerospace Sciences Meeting in Jan 1986

2) Discussion of computational results for 3-D swept compression corner \((\alpha, \lambda) = (24,60)\) deg

9. 10 and 19 June 1985: Conversation with Mike Horstman

Topics: 1) Discussion of new 3-D finite volume code being developed by Mike Horstman
2) Discussion of parameters for 3-D sharp fin calculations

10. 16 July 1985: Conversation with Mike Horstman

Topics: 1) Boundary conditions employed by Horstman for 3-D swept compression corner calculations

11. 16 August 1985: Communication with Mike Horstman

Topics: 1) Sent Mike Horstman the results of computations by Knight for 3-D swept compression corner ($\alpha, \lambda) = (24,60)\deg$

12. 22 August 1985: Communication with Mike Horstman

Topics: 1) Sent Mike Horstman additional results of computations for 3-D swept compression, with emphasis on effect of upstream boundary conditions

13. 6 September 1985: Conversation with Mike Horstman

Topics: 1) Discussion of comparison of computed (Knight and Horstman) and experimental (Princeton Gas Dynamics Lab) data for 3-D sharp fin ($\alpha = 20\deg$, $\delta = 0.5\text{ inch}$)

14. 16 Oct 1985: Communication with Mike Horstman

Topics: 1) Sent comparison of experimental and computed profiles of pitot pressure and yaw angle for 3-D sharp fin ($\alpha = 20\deg$, $\delta = 0.5\text{ inch}$). Copies also sent to Shapey and Bogdonoff (Princeton).

15. 22 Oct 1985: Visit by Mike Horstman to Rutgers University

Topics: 1) Discussion of particle pathlines for 3-D sharp fin

2) Discussion of flowfield structure for 3-D sharp fin

35
3) Discussion of videotape of particle pathlines to be presented at AIAA Aerospace Sciences Meeting in Jan 1986

4) Discussion of contents of paper by Knight, Horstman, Shapey and Bogdonoff to be presented at AIAA 24th Aerospace Sciences Meeting in Jan 1986

5) Discussion of new concepts in 3-D flowfield graphics

6) Discussion of flowfield structure of 3-D swept compression corner
D. **Spoken Papers Presented at Technical Meetings**

1 October 1984 to 1 November 1985

E. **Seminars - 1 October 1984 to 1 November 1985**

Section IV. List of Personnel and Degrees Awarded

A. Personnel

Principal Investigator: Prof. Doyle Knight
Dept. of Mechanical and Aerospace Engineering

Graduate Research Assistant: Mr. Cho Ong
Dept. of Mechanical and Aerospace Engineering
Section V. References

Dolling, D., and Murphy, M. 1982 Wall Pressure Fluctuations in a Supersonic Separated Compression Ramp Flowfield, AIAA Paper No. 82-0986.

Kimmel, R. 1985 Private Communication.

Knight, D. 1983 Theoretical Investigation of Three-Dimensional Shock Wave-Turbulent Boundary Layer Interactions - Part II. Interim Report for Period 1 Oct 82 to 30 Sept 83; also Report RU-TR-160-MAE-F.

Knight, D. 1984a Theoretical Investigation of Three-Dimensional Shock Wave-Turbulent Boundary Layer Interactions - Part III. Interim Report for Period 1 Oct 83 to 30 Sept 84; also Report RU-TR-162-MAE-F.

Princeton Univ.

Fig. 1 3-D Sharp Fin

Fig. 2 3-D Swept Compression Corner
Fig. 3 Comparison of Computed and Experimental Surface Pressure for 3-D Swept Compression Corner \((\alpha, \lambda) = (24, 60)\) deg (Horstman 1984)

Fig. 4 Computational Region for 3-D Swept Compression Corner
Fig. 5a Computed Surface Pressure (Knight) for 3-D Swept Compression Corner \((\alpha, \lambda) = (24, 60)\) deg at \(z = 2.03\) cm

Fig. 5b Computed Surface Pressure (Knight) for 3-D Swept Compression Corner \((\alpha, \lambda) = (24, 60)\) deg at \(z = 4.06\) cm
CASE L J=13(Z=2.4 INCH)

CASE Z J=I3(Z=2.4 INCH)

CASE 3 J=33(Z=2.44 INCH)

Compressed Corner (α,λ) = (24,60) deg at z = 6.09 cm

--- CASE 1 J=17(Z=3.2 INCH)

CASE 2 J=17(Z=3.2 INCH)

CASE 3 J=37(Z=3.29 INCH)

Computed Surface Pressure (Knight) for 3-D Swept Compression Corner (α,λ) = (24,60) deg at z = 8.12 cm
Fig. 5e Computed Surface Pressure (Knight) for 3-D Swept Compression Corner \((\alpha, \lambda) = (24, 60)\) deg at \(z = 10.16\) cm

Fig. 6 Computed (Knight) and Experimental Surface Pressure for 3-D Swept Compression Corner at \((\alpha, \lambda) = (24, 60)\) deg
Fig. 7a Computed Surface Pressure (Knight) for 3-D Swept Compression Corner \((\alpha, \lambda) = (24, 60)\) deg in conical coordinates.

Fig. 7b Computed Surface Pressure (Horstman) for 3-D Swept Compression Corner \((\alpha, \lambda) = (24, 60)\) deg in conical coordinates.
Comparison (Horstman & Knight)

Fig. 7c Computed Surface Pressure (Knight and Horstman) for 3-D Swept Compression Corner \((\alpha, \lambda) = (24, 60)\) deg in conical coordinates
VII. Appendix I

"A Comparative Study of the Hybrid MacCormack and Implicit Beam-Warming Algorithms for a Two-Dimensional Supersonic Compression Corner"

by C. Ong and D. Knight

AIAA Paper No. 86-0204

Presented at the AIAA 24th Aerospace Sciences Meeting
January 6-9, 1986
Reno, NV
A COMPARATIVE STUDY OF THE HYBRID MACCORMACK AND IMPLICIT BEAM-WARMING ALGORITHMS FOR A TWO-DIMENSIONAL SUPERSONIC COMPRESSION CORNER

C. Ong* and D. Knight**
Department of Mechanical and Aerospace Engineering
Rutgers-The State University of New Jersey
New Brunswick, New Jersey 08903

Abstract

A comparative study is made between the MacCormack explicit-implicit predictor-corrector and the Beam-Warming fully implicit algorithms for solving compressible viscous flow. The mass-averaged two-dimensional compressible Navier-Stokes equations in strong conservation form and general curvilinear coordinates are solved numerically by marching forth in time on a body-fitted curvilinear grid for a shock wave-turbulent boundary layer interaction over a two-dimensional compression corner. Along the surface of the corner the boundary condition for the implicit part of the hybrid MacCormack algorithm is formulated using an approximation involving a lag in time of one-half time step. Turbulence is simulated by means of the Baldwin-Lomax algebraic turbulent eddy viscosity model. Computations are performed for a Mach number of 1.96 with a Reynolds number Reₘ₀₅ (based on the incoming boundary layer thickness in) of 0.25 x 10⁵, and for a Mach number of 2.83 with a Reynolds number of 1.8 x 10⁵. The primary objectives of the study are, 1) to determine the extent to which the steady state solution obtained by the hybrid MacCormack algorithm is dependent upon the size of the time step employed in marching the calculation toward the steady state solution, 2) to compare the two algorithms regarding accuracy and efficiency, and 3) to further examine the efficacy of the Baldwin-Lomax algebraic turbulent eddy viscosity model through comparison with recent experimental measurements of the Reynolds shear stress.

I. Introduction

Until the mid 1970's most numerical schemes used to solve the Navier-Stokes equations were explicit algorithms such as MacCormack's explicit method. The restriction placed on the size of the maximum allowable time step by the CFL (Courant, Lewy, and Friedrichs) condition severely limited the usefulness of explicit procedures in the solution of high Reynolds number viscous, compressible flow. By the mid 1970's this CFL restriction was removed by the fully explicit numerical schemes of Briley and McDonald, and Beam and Warming which became widely used. In particular, the Beam-Warming implicit method has been used to compute flows around afterbodies, cascades, and inside 2-D nozzles. However, these implicit methods require linearization of terms in the governing equations in order to form desirable block matrix structures. The resulting block pentadiagonal or septadiagonal matrices need to be approximately factored into block tridiagonal matrices before an efficient matrix inversion procedure can be applied. Both these approximations result in limitations to the size of the maximum allowable time step.

In 1981 MacCormack II presented an explicit-implicit predictor-corrector method which involved the simple inversion of block bidiagonal matrices in an effort to further reduce demand on computer time. Since its introduction the hybrid scheme has been used by numerous investigators to compute a large variety of compressible viscous flows. In calculating a separated shock wave-laminar boundary layer interaction over a flat plate MacCormack was able to reduce the required computer time by a factor of 17.5 relative to his fully explicit method while maintaining comparable accuracy. Shang and MacCormack evaluated the new method against its fully explicit predecessor for a Mach 8 flow over an axisymmetric body and achieved computer time reduction by a factor of 13.

Accuracy and efficiency are but two features desirable in a numerical method. Independence of the steady state solution from the size of the chosen time step is another. Before asking whether the steady state solution of a given numerical algorithm is accurate it seems logical to first inquire if it yields the same steady state solution regardless of the time step size selected. MacCormack advocated a successive reduction of the time step size near the end of the calculation of high Reynolds number flows in order to avoid any possible dependence of the steady state solution on the time step size. This concern about time step dependence was underscored by Kumar who reported finding considerable time step dependence of his steady state solution near the immediate neighborhood of a separation region induced by shock impingement upon the turbulent boundary layer in a duct whose Mach number was 5. However, no significant CFL dependence was found by Gupta, Groff, and MacCormack who computed an unseparated laminar flow over an axisymmetric at Mach number 44 with a detached bow shock.

Other investigators who used MacCormack's explicit-implicit scheme included Kordulla and MacCormack, White and Anderson, Hung and Kordulla, and Emay, Kao, McMaster, and MacCormack. Despite the indication of possible significant CFL dependence of the steady state solution by MacCormack and Kumar, few investigators have addressed this issue and some have stated without further substantiation that the implicit MacCormack method is unreliable such that the steady state solutions depend on time increments.

Nevertheless, it is obviously important to ascertain the severity of any such dependence, particularly in the presence of...
separated regions. Hence, the first objective of the present study is to determine whether the steady state solution obtained by the MacCormack explicit-implicit method depends on the time step size.

Since the Beam-Warming method has become very popular and the explicit-implicit hybrid method appears to be accurate and efficient, the question regarding their relative accuracy and efficiency is clearly a relevant and important one. Lawrence, Tannehill, and Chausee discussed this issue in the case of the Mach 2 laminar flow over a flat plate. They used both algorithms to solve the parabolized Navier-Stokes equations by marching in space rather than in time for the Beam-Warming and MacCormack hybrid methods. They observed that the computer time requirements for the Beam-Warming and MacCormack hybrid were approximately equal. Iyer and von Lavante attempted a comparison for a viscous transonic flow in turbomachinery cascades. However, a more extensive study for a time-marching solution of the full two-dimensional Navier-Stokes equations over a realistic grid appears necessary. Hence, the second objective of the present study is an accuracy and efficiency comparison between the MacCormack explicit-implicit and the Beam-Warming fully implicit algorithms.

The configuration selected for this comparative study is supersonic turbulent flow past a 2-D compression corner (Fig. 1). Related flows are common in many engineering applications including turbomachinery and high speed aircrafts. In view of the practical importance of shock wave-turbulent boundary layer interactions, it is not surprising therefore that this configuration has been extensively investigated both experimentally and theoretically. Several reviews have been published, including Green, Korkegi, and Hankey. In particular, extensive experimental measurements have been performed by Settles for the specific case of a Mach 2.83 turbulent flow past a 2-D compression corner at a series of corner angles. Settles' measurements include surface properties (pressure, skin friction and surface oil flow visualization), and boundary layer profiles of velocity, static pressure and Mach number. Viscous and thermal properties (temperature, static pressure and Mach number) were also measured. The configuration selected for this study is a region of small streamwise flow gradients. Along the outflow boundary the extrapolation was done using the Beam-Warming and MacCormack hybrid algorithm.

The inflow boundary was positioned in the undisturbed turbulent flat plate boundary layer where the computed momentum thickness matched the experimental value. In both the Beam-Warming and MacCormack computations, the flow variables on the inflow boundary were held fixed at the given values. The inflow boundary condition for the implicit step of the Hybrid MacCormack was prescribed by setting the temporal change in the solution, to zero. The outflow boundary was located far enough downstream of the corner to be in a region of small streamwise flow gradients. Along the outflow boundary the extrapolation condition was assumed. For this boundary, both the Beam-Warming and the explicit step of the Hybrid MacCormack represented a first order accurate differencing, where E is the transformed coordinate in the general streamwise direction and is the vector of dependent variables. The implicit part of MacCormack's method set the temporal change in the downstream boundary equal to its value at the adjacent constant-x line.
At the lower boundary, the velocity and normal derivative of the static pressure were set to zero. For the Mach 1.96 compression corner flow, adiabatic boundary conditions were used for both schemes, while a constant (near adiabatic) temperature was specified for the Mach 2.83 corner. The lower boundary condition for the implicit portion of MacCormack's hybrid was formulated by allowing a one-half time step lag in the value of the temporal change U. The upper boundary was placed sufficiently far from the lower so that freestream conditions prevailed all along its length. For the Beam-Warming scheme, a non-reflection condition was applied there. For the hybrid MacCormack, however, the flow variables along the upper boundary were simply held at the freestream value and U was set to zero. The shock emerges through the outflow boundary.

Numerical Procedure

The fully implicit scheme studied was the approximate factorization algorithm of Beam-Warming33, extended to 2-D general coordinates by von Lavante and Thompkins36. The algorithm is second order accurate in space and time. While marching in time the order of finite differencing in the explicit predictor and corrector steps was cycled from one step to the next while that in the implicit steps was kept as forward differencing in the predictor and backward in the corrector. At all times opposite orders of differencing were employed in the predictor and corrector. The usual fourth order damping expressed in terms of the pressure is used for the explicit part. Implicit damping was also incorporated, in the manner suggested by MacCormack32.

Both the explicit-implicit40 and fully implicit27 computer codes were carefully validated with excellent accuracy for a variety of flows, including laminar and turbulent boundary layers, and shock-laminar boundary layer interaction.

III. Results and Discussion

Courant Number Dependence of the Hybrid MacCormack

As indicated above, the first objective of the research is to examine the possible Courant number dependence of the steady state solution computed by the hybrid MacCormack algorithm. During this examination it will be convenient to also examine the accuracy of the solution in comparison with Beam-Warming results, and the experimental measurements of Dolling33 and Settles et al.28.

Mach 2.83 flow over 16 deg compression corner

The surface pressure distributions for a Mach 2.83 flow at $Re^+ = 1.6 \times 10^6$ and $a = 16$ deg are shown in Fig. 5. The computed results using the hybrid algorithm are in good agreement with the experimental measurements of Settles et al.28, who employed a relaxation length of 10^6 for their studies of the 2-D compression corner at Mach 3 for $Re^+ = 0.14 \times 10^6$.

The calculated skin friction coefficient c_f distribution for the same flow is shown in Fig. 3. The computed results using the MacCormack hybrid algorithm are again observed to have no marked dependence on the Courant number despite the fact that the two Courant numbers differ by a factor of 40. The computed results are in good agreement with the results obtained using Beam-Warming's fully implicit algorithm. The results using MacCormack's method manifest a small streamwise oscillation in c_f downstream of reattachment. The cause of this oscillation is currently under investigation.

In Fig. 4, the computed velocity parallel to the wall, normalized by the upstream freestream velocity U_m, is displayed at $X/4 = 0.16$ (downstream of the corner) for the Beam-Warming and MacCormack hybrid algorithms. In the latter case, the distance normal to the surface is denoted by x. The results indicate that the computed solution using the MacCormack hybrid algorithm is insensitive to the Courant number, and in close agreement with the results obtained using the Beam-Warming algorithm. Similar conclusions were obtained by examination of static temperature, Baldwin-Lomax outer function, static pressure and eddy viscosity40.

Mach 1.96 flow over 16 deg compression corner

The computed and measured surface pressure distributions for the Mach 1.96 compression corner are displayed in Fig. 2. The Reynolds number $Re^+ = 0.25 \times 10^6$ and $a = 16$ deg are used in this and all subsequent figures, X denotes the distance from the corner measured along the surface. Calculated profiles shown are for the MacCormack hybrid method at Courant numbers of 0.9 (fully explicit), and 45 (hybrid), and the Beam-Warming algorithm, where the Courant number is defined by Shang41. The experimental data of Dolling33 are also shown. The results clearly indicate that the steady state solution for the surface pressure using the MacCormack explicit-implicit algorithm is insensitive to the Courant number and very close to the Beam-Warming results. The computed upstream propagation of the surface pressure, measured from the corner ($X = 0$), is approximately 35% below the experimental value. Since the extent of the upstream propagation is directly related to the magnitude of the length scale employed in the relaxation model, the length scale for this calculation is set to zero. The present results at Mach 2 for $Re^+ = 0.25 \times 10^6$, together with previous results of Visbal28 at Mach 3 for $Re^+ = 0.76 \times 10^6$ to 7.7×10^6, imply that the relaxation length is a moderately function of Re$^+$ (i.e., the relaxation length increases with decreasing Re^+). This observation is consistent with the results of Shang and Hankey29, who employed a relaxation length of 10^6 for their studies of the 2-D compression corner at Mach 3 for $Re^+ = 0.14 \times 10^6$.
friction computed by the hybrid method is insensitive to the time step size. There is a slight tendency for the higher CFL case to predict a marginally lower skin friction further downstream from reattachment. The hybrid method predicts a modestly higher skin friction than the Beam-Warming method further downstream from reattachment but agrees closely with the latter practically everywhere else.

In Fig. 7, the computed and experimental horizontal velocity profiles along a vertical line are displayed at the corner. Again, the results clearly display no Courant number dependence for the MacCormack hybrid algorithm, and are in close agreement with the profile calculated using the Beam-Warming algorithm. The computed profiles are in good agreement with experiment\(^{27,28}\) except in the immediate vicinity of the surface.

Mach 2.83 flow over 20 deg compression corner

The surface pressure for the Mach 2.83 flow at \(Re_x = 1.6 \times 10^6\) and \(\alpha = 20\) deg is detailed in Fig. 8. This ramp angle is the largest studied in this investigation. The Courant numbers used for the MacCormack scheme are 30 and 70. The Beam-Warming and experimental results\(^{26}\) are also plotted. As in the previous cases, the computed surface pressure exhibits no Courant number dependence for the MacCormack algorithm. Also, the results obtained from the Beam-Warming and MacCormack hybrid algorithms are in close agreement.

In Fig. 9, the skin friction for the same flow is shown for both the MacCormack method, the Beam-Warming method, and the experiment. The results indicate that, even in the presence of such a strong adverse pressure gradient and large separation region, the computed skin friction is insensitive to time step size. The hybrid method predicts a slightly higher skin friction than the Beam-Warming scheme downstream of reattachment.

Efficiency of the Hybrid MacCormack Algorithm

In addition to Courant number dependence and accuracy, the efficiency of the hybrid MacCormack algorithm was also examined for the Mach 1.96 flow over a 16 deg ramp. Computations using the hybrid scheme were made at Courant numbers of 0.9 (fully explicit), 5, 10, 20, 40, and 45. One computation using the Beam-Warming scheme was performed which employed a maximum Courant number of 33. In order to avoid numerical instability, it was necessary to start the Beam-Warming calculation at a smaller time step and progressively increase it to a maximum consistent with numerical stability. Both numerical codes were written in FORTRAN, and executed on an NAS AS/9000 mainframe computer. A uniform set of convergence criteria was employed for all calculations. It was observed that convergence to steady state required approximately the same physical time of integration in all cases.

The computer time requirements for these computations are tabulated in Table 1. It is observed for this case that the hybrid scheme requires one-third of the computer time used by the Beam-Warming method, and up to a factor of 36 less than the fully-explicit MacCormack algorithm.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Courant Number</th>
<th>Computer Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam-Warming</td>
<td>33.0</td>
<td>8.7</td>
</tr>
<tr>
<td>MacCormack</td>
<td>45.0</td>
<td>2.9</td>
</tr>
<tr>
<td>Explicit</td>
<td>40.0</td>
<td>3.2</td>
</tr>
<tr>
<td>Implicit</td>
<td>21.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Hybrid</td>
<td>10.0</td>
<td>11.8</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>12.4</td>
</tr>
<tr>
<td></td>
<td>0.9 (explicit)</td>
<td>104.1</td>
</tr>
</tbody>
</table>

Reynolds shear stress

In the present section, the computed and experimental profiles for the Reynolds shear stress, defined as \(-\overline{u'v'}\), are displayed. The quantities \(u'\) and \(v'\) are the temporal fluctuating velocity components parallel and normal to the wall, respectively. The overbar represents the time average. The experimental Reynolds shear stress is obtained from the measurements\(^{30,32}\) of \(-\overline{u'v'}\) by employing the "Strong Reynolds Analogy" (i.e., pressure fluctuations are small compared to density or temperature fluctuations) and "Very Strong Reynolds Analogy" (i.e., fluctuations in total temperature are neglected). The uncertainties (approximately \(\pm 30\%\)) in the measurement of the Reynolds stress are discussed in Ref. 30-32. The theoretical Reynolds shear stress, modeled using the Baldwin-Lomax algebraic turbulent eddy viscosity, is \(-\overline{u'v'}\) where \(u'\) and \(v'\) denote the mass-averaged fluctuating velocity components parallel and normal to the wall, respectively. With the assumption of the Strong and Very Strong Reynolds Analogies, the theoretical Reynolds shear stress is approximately equal to \(-\overline{u'v'}\). In all plots, the experimental and theoretical Reynolds shear stress are normalized by \(0.5 \mu_{\infty}\).

Mach 2.83 flow over 8 deg compression corner

The computed and experimental Reynolds shear stress profile at \(x = -0.63 \, a_s\), located upstream of the interaction region, is displayed in Fig. 11 for the Mach 2.83 flow over an 8 degree compression corner. The computed results of MacCormack's hybrid method at Courant numbers of 95 and 0.9 are plotted together with the Beam-Warming and experimental profiles of Muck et al.\(^{30-32}\). Agreement among all three computed Reynolds stress profiles is excellent. Agreement between the computed and experimental profiles is good except in the outer portion of the boundary layer where the predicted Reynolds stress is low.

In Figs. 12 and 13, computed and experimental Reynolds stress profiles are shown at \(x/a_s = 0.78\) and 1.17. They indicate that the predicted peak value of the Reynolds stress profile is significantly too low, and that the predicted peak is located too near the wall.
Mach 2.83 flow over 16 deg compression corner

For the Mach 2.83 flow over a 16 deg compression corner, the calculated and experimental Reynolds stress profiles at stations $x/w_o = 0.49$, 2.0 and 5.4 are exhibited in Figs. 14 to 16. It is apparent that the peaks of the computed and experimental Reynolds stress profiles are comparable in magnitude. This is summarized in Fig. 17, which displays the distribution of the magnitude of the peak of the Reynolds stress profiles with distance X. It is evident, however, that the computed peak is located too close to the wall. The height of the peak Y_{peak} as a function of distance X is displayed in Fig. 18. The distance of the peak from the wall increases as the boundary layer develops downstream for both computed and experimental profiles.

Mach 2.83 flow over 20 deg compression corner

In Figs. 19 to 21, the profiles of the Reynolds shear stress at stations $x/w_o = 1.0$, 2.3 and 4.6, are shown for the Mach 2.83 flow with a 20 deg compression corner. The distribution of the peak of the Reynolds stress profile is exhibited in Fig. 22. It shows that while the experimental peak remains approximately constant the computed peak steadily diminishes. In Fig. 23, the corresponding distribution of the location of the peak Y_{peak} of the Reynolds stress profile is displayed. A pronounced underprediction of the distance of the peak from the wall is evident, similar to that observed in Fig. 18 for the 16 deg corner.

Discussion of Comparison of Reynolds Stress Profiles

In summarizing the above comparison of Reynolds shear stress, the principal discrepancy is the underprediction of the height of the peak of the Reynolds shear stress. The Baldwin-Lomax model is modestly successful in predicting the magnitude of the peak of the Reynolds shear stress, although the success is tempered for $a = 20$ deg by an apparent incorrect trend in X. Recognizing the inherent simplicity and limitations of the mixing length concept, it is interesting, nonetheless, to attempt to treat the defects of the Baldwin-Lomax model "symptomatically." It is noted in Fig. 23 that the height of the peak Y_{peak} of the computed Reynolds shear stress correlates with the magnitude of the computed outer length scale Y_{max} of the Baldwin-Lomax model for $a = 20$ deg; a similar observation applies for $a = 16$ deg. The location of the experimental peak Reynolds stress corresponds to the outer portion of the boundary layer (i.e., outside the point where the Baldwin-Lomax model switches from the inner to the outer formulation). This suggests, therefore, that the computed Reynolds shear stress may be improved by increasing Y_{max}. This approach was attempted by Visbal for $a = 16$ deg. Specifically, Y_{max} was kept constant at its upstream value; this represents an increase in Y_{max} compared to the calculations with the relaxation eddy viscosity model (Fig. 24). The effect of increasing Y_{max} is seen in Figs. 17 and 18. The magnitude of the peak Reynolds shear stress is overpredicted for $a = 24$ deg, while a slight improvement in Y_{max} is noted. The computed Reynolds shear stress profiles, display a double-peaked behavior at $x/w_o = 0.99$ and 0.98, in disagreement with experiment. It may be concluded, therefore, that overall improvement was obtained by increasing Y_{max}.

It is evident that the simple mixing-length Baldwin-Lomax model is incapable of accurately predicting the reattachment and downstream recovery of a separated 2-D compression corner flow. The model is based upon the concept of an equilibrium turbulent boundary layer exhibiting one characteristic velocity scale. Downstream of reattachment, there are two characteristic velocity scales of the turbulence, namely 1) an outer velocity scale associated with the turbulence fluctuations in the outer portion of the reattaching free shear layer, and 2) an inner velocity scale u_*, which is state solution of the MacCormack hybrid algorithm with the imposition of the no slip boundary condition downstream of reattachment, which creates an "inside layer" within the boundary layer. The failure of the "simple" extension of the Baldwin-Lomax model described above is therefore not surprising. However, to elucidate its effect on the turbulence structure and on the recovery of the boundary layer downstream of reattachment.

IV. Conclusions

A comparative study has been performed for the MacCormack hybrid and the Beam-Warming fully implicit algorithms for a shock wave-turbulent boundary layer interaction over a two-dimensional compression corner. The computations were performed using the Baldwin-Lomax algebraic eddy viscosity model. It is observed that the steady state solution of the MacCormack hybrid algorithm is remarkably insensitive to Courant number. The accuracy of the steady state solution using MacCormack's hybrid algorithm is comparable to that of the Beam-Warming method for all cases. Based on the available data, the MacCormack hybrid method is observed to reduce the computational time by a factor of up to 3 relative to the Beam-Warming method.

The computed Reynolds stress profiles are compared with the experimental data of Muck at $a = 19-22$. It is noted that the magnitude of the peak of the computed Reynolds shear stress is in approximate agreement with the measurements, although an apparent incorrect trend is evident for $a = 20$ deg. The major discrepancy is the underprediction of the location of the peak of the computed Reynolds shear stress. It is noted that a simple modification of the Baldwin-Lomax turbulence model involving an increase in the length scale Y_{max} of the outer eddy viscosity fails to demonstrate overall improvement. The Baldwin-Lomax model is based on the mixing-length concept, and is incapable of accurately predicting the recovery of...
a separated 2-D compression corner flow. It is noted that several additional physical factors, omitted from the theoretical model, also affect the recovery of the boundary layer including the history effect of the turbulence structure and the large amplitude oscillatory motion of the shock structure.

V. Acknowledgements

This research is supported by the Air Force Office of Scientific Research under Grant AFOSR 82-0040, monitored by Dr. James Wilson.

References

33. Dolling, D., Private communication, 1983.

Fig. 4 - Velocity u at $X/\delta = 16$ for Mach 1.96 flow over 16 deg ramp.

Fig. 7 - Horizontal velocity at $X/\delta = 0$ for Mach 2.83 flow over 16 deg ramp.

Fig. 5 - Surface pressure for Mach 2.83 flow over 16 deg ramp.

Fig. 8 - Surface pressure for Mach 2.83 flow over 20 deg ramp.

Fig. 6 - Skin friction for Mach 2.83 flow over 16 deg ramp.

Fig. 9 - Skin friction for Mach 2.83 flow over 20 deg ramp.
VELOCITY

Fig. 10 - Horizontal velocity at $x/\omega_x = 0$
for Mach 2.83 flow over 20 deg ramp.

Fig. 13 - Reynolds shear stress at $x/\omega_x =$ 1.17 for Mach 2.83 flow over 8 deg ramp.

Reynolds shear stress at $x/\omega_x = -0.63$ for Mach 2.83 flow over 8 deg ramp.

Fig. 14 - Reynolds shear stress at $x/\omega_x = 0.49$ for Mach 2.83 flow over 16 deg ramp.

Fig. 12 - Reynolds shear stress at $x/\omega_x = 0.78$ for Mach 2.83 flow over 8 deg ramp.

Fig. 15 - Reynolds shear stress at $x/\omega_x = 2.0$
for Mach 2.83 flow over 16 deg ramp.
Fig. 16 - Reynolds shear stress at $X/\delta = 5.4$ for Mach 2.83 flow over 16 deg ramp.

Fig. 17 - Magnitude of peak of the Reynolds stress for Mach 2.83 flow over 16 deg ramp.

Fig. 18 - Location of peak in Reynolds shear stress profile for Mach 2.83 flow over 16 deg ramp.

Fig. 19 - Reynolds shear stress at $X/\delta = 1.0$ for Mach 2.83 flow over 20 deg ramp.

Fig. 20 - Reynolds shear stress at $X/\delta = 2.1$ for Mach 2.83 flow over 20 deg ramp.

Fig. 21 - Reynolds shear stress at $X/\delta = 4.6$ for Mach 2.83 flow over 20 deg ramp.
Fig. 22 - Magnitude of peak of the Reynolds stress for Mach 2.83 flow over 20 deg ramp.

Fig. 23 - Baldwin-Lomax length scale Y_{max} and location of the peak of the Reynolds shear stress for Mach 2.83 flow over 20 deg ramp.

Fig. 24 - Baldwin-Lomax length scale Y_{max} for Mach 2.83 flow over 16 deg ramp.
VIII. Appendix II

"The Flowfield Structure of the 3-D Shock Wave-Boundary Layer Interaction Generated by a 20 deg Sharp Fin at Mach 3"

by D. Knight, C. Horstman, B. Shapey and S. Bogdonoff

AIAA Paper No. 86-0343

Presented at the AIAA 24th Aerospace Sciences Meeting
January 6-9, 1986
Reno, NV
The Flowfield Structure of the 3-D Shock Wave - Boundary Layer Interaction Generated by a 20 Deg Sharp Fin at Mach 3

Doyle D. Knight
Department of Mechanical and Aerospace Engineering
Rutgers University - The State University of New Jersey
P.O. Box 909
Piscataway, NJ 08854

C. C. Horstman
NASA Ames Research Center
Moffett Field, CA 94035

Brian Shaney and Seymour Bogdonoff
Department of Aerospace and Mechanical Engineering
Princeton University
Princeton, NJ 08540

Abstract

The 3-D shock wave-turbulent boundary layer interaction generated by a sharp fin is examined both experimentally and theoretically at Mach 3 for a fin angle \(\alpha = 20 \) deg and Reynolds number \(\text{Re}_D = 9 \times 10^5 \). This study represents an extension of previous research for the sharp fin configuration to stronger interactions. The experimental data include surface pressure profiles, surface streamline patterns, and boundary layer profiles of pitot pressure and yaw angle. Two separate theoretical approaches or "models" were employed. Both models employ the 3-D compressible Navier-Stokes equations in mass-averaged variables. The theoretical approach of Horstman employs the algebraic turbulent eddy viscosity model of Baldwin and Lomax, and the theoretical model of Horstman employs the two-equation turbulence model of Jones and Launder coupled with the wall function model of Viegas and Rubesin. The calculated surface pressure, surface streamlines, pitot pressure, and yaw angle profiles are in good agreement with the experimental data, thereby confirming the efficacy of the theoretical approaches which were previously validated for the 3-D sharp fin configuration at Mach 3 for smaller \(\alpha \) (i.e., weaker interactions). The overall flowfield is determined by a small set of parameters, namely, the upstream Mach number \(M_{0} \), the Reynolds number \(\text{Re}_D \), based upon the boundary layer thickness \(\delta \), at the streamwise station corresponding to the leading edge of the fin (where \(\delta \) is measured in the absence of the fin), the nature of the thermal boundary condition on the flat plate and fin (e.g., adiabatic or fixed temperature), and the fin angle \(\alpha \). This configuration has been the subject of several experimental and theoretical investigations. Experiments have focused principally on surface measurements, and include the studies of Stanbrook, McCabe, Law, Kubota and Stollery, Zheltovodov, Dolling, and Goodwin. In recent years, detailed boundary layer measurements have been obtained by Peake, Oskam, Vas and Bogdonoff, and McClure and Dolling. Numerical simulations using the 3-D Reynolds-averaged Navier-Stokes equations have been performed principally at Mach 3, and include the studies of Horstman and Hung, and Horstman and Knight. These computations, detailed in Table 1, have previously considered fin angles \(\alpha \) up to 10 deg. The investigations of Horstman and Hung utilized the Escudier turbulence model, while the later work of Horstman employed the Jones-Lauder model. The calculations of Knight utilize the Baldwin-Lomax turbulence model. These prior calculations have been examined in comparison with experimental data for a wide variety of flow quantities including surface interactions.
II. Description of Experiment

The experiments were performed in the supersonic high Reynolds number wind tunnel at the Princeton University Gas Dynamics Laboratory. The facility has a 20 cm x 20 cm test section, with a nominal freestream Mach number of 2.93. The settling chamber pressure and temperature were 6.8 x 10^5 Pa ±1% and 251 °F ±5%, respectively, yielding a nominal Reynolds number of 7.0 x 10^6 m^-1. The experiments were performed under near adiabatic wall conditions.

The sharp fin is 14.21 cm long and 12.7 cm high. The fin was fabricated from aluminum with a sharp unswept leading edge, and oriented at a right angle to the tunnel wall ("flat plate"). The fin was mounted in a unique variable-geometry apparatus which permitted the achievement of fin angles exceeding 20 degrees, thereby extending the range of the experiments beyond the earlier fixed-geometry configuration of 0-12°.

Surface pressure distributions were obtained along rows of orifices aligned with the x-direction. A kerosene-lamplight technique was employed to obtain surface flow angularity. The boundary layer on the tunnel wall ("flat plate") was surveyed using a computer-controlled nulling cobra probe which measured pitot pressure, yaw angle and static pressure. In general, good agreement was obtained with the experimental data.

TABLE 1. Computations of 3-D Sharp Fin Configuration at Mach 3

<table>
<thead>
<tr>
<th>θ (deg)</th>
<th>Re_{∞}</th>
<th>P_{2}/P_{∞}</th>
<th>Investigator</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.75</td>
<td>8.7 x 10^5</td>
<td>1.32</td>
<td>Horstman and Hung*</td>
</tr>
<tr>
<td>3.75</td>
<td>9.5 x 10^5</td>
<td>1.32</td>
<td>Knight</td>
</tr>
<tr>
<td>10</td>
<td>2.8 x 10^5</td>
<td>2.01</td>
<td>Knight</td>
</tr>
<tr>
<td>10</td>
<td>3.4 x 10^5</td>
<td>2.01</td>
<td>Horstman</td>
</tr>
<tr>
<td>10</td>
<td>8.7 x 10^5</td>
<td>2.01</td>
<td>Horstman and Hung*</td>
</tr>
<tr>
<td>10</td>
<td>9.3 x 10^5</td>
<td>2.01</td>
<td>Knight</td>
</tr>
<tr>
<td>20</td>
<td>8.6 x 10^5</td>
<td>3.65</td>
<td>Knight</td>
</tr>
<tr>
<td>20</td>
<td>8.6 x 10^5</td>
<td>3.65</td>
<td>Horstman*</td>
</tr>
</tbody>
</table>

*Present paper
Note: Actual Mach number is 2.94 ± .01.

There are three objectives for the present paper:

1. Examine the Accuracy of the Theoretical Models for Stronger Interactions.

As indicated in Table 1, the strongest 3-D sharp fin interaction computed previously at Mach 3 corresponded to a pressure ratio \(P_{2}/P_{∞} = 2.01 \) (\(P_{0} \) = 10 deg), where \(P_{0} \) is the upstream static pressure, and \(P_{2} \) is the theoretical downstream inviscid pressure. A critical issue is the examination of the accuracy of the theoretical models for stronger interactions. In the present study, the theoretical models are examined for the 3-D sharp fin interaction at Mach 3 and \(P_{0} = 20 \) deg, which exhibits a pressure rise of 3.7. This is the strongest interaction considered for these models at Mach 3.

2. Comparison of two different Theoretical Models.

An important objective of the present research is to examine the computed flowfields for the 3-D sharp fin interaction obtained using two different turbulence models. In this effort, Navier-Stokes calculations have been performed by Knight and Horstman using the Baldwin-Lomax and Jones-Launier turbulence models, respectively, for the 3-D sharp fin configuration. A principal issue is the determination of the sensitivity of the computed flowfield to the turbulence model employed.

3. Examine the Flowfield Structure of the 3-D Sharp Fin Interaction.

Provided the theoretical models yield good agreement with the experimental data for the Mach 3, \(P_{0} = 20 \) deg configuration, the computed flowfields can be utilized to examine and understand the flowfield structure of this 3-D sharp fin interaction. Flowfield models have been developed, for example, by Token and Kubota and Stolier, which may be examined using the computed flowfields.
The governing equations are solved by an efficient hybrid explicit-implicit numerical algorithm. The technique utilizes the second-order-accurate explicit method of MacCormack and the second-order accurate implicit method ("Box Scheme") of Keller. The implicit algorithm of Keller is employed in a thin layer (denoted the "computational sublayer") adjacent to the solid boundaries where the large flow gradients require exceptionally fine grid spacing for accurate resolution. The Box Scheme is applied to the asymptotic form of the Navier-Stokes equations in this region, whose height is restricted by

\[z_{h} = \frac{z^*}{\nu_{w}}, \quad z_{h} \]

where \(z^* \) is the local height of the computational sublayer, \(u^* \) is the local friction velocity \((u^* = (\nu/\rho)^{1/2}) \), and \(\nu_{w} \) is the kinematic molecular viscosity evaluated at the surface. This layer is typically a few percent of the local boundary layer thickness. The explicit algorithm of MacCormack is applied to the full Navier-Stokes equations in the remainder of the flowfield (denoted the "ordinary region").

The hybrid algorithm has been successfully applied to a wide range of two- and three-dimensional flows exhibiting shock-boundary layer interaction and flow separation. It is written in CYBER 200 FORTRAN, and executes on the VPS 32 at NASA Langley Research Center. The VPS 32 is a vector-processing supercomputer which is architecturally similar to the CYBER 205. The explicit portion of the algorithm is highly vectorized, with typical vector lengths of 1500, and has achieved an execution rate of approximately 100 MFlops (million floating point operations per second) on the VPS 32 using a 32-bit word length.

The finite-difference mesh was generated according to the method described in Ref. 15. A total of 32 streamwise grid planes were utilized, uniformly spaced in the x-direction with \(\Delta x = \Delta x \). The upstream boundary was located at \(5a_{w} \) upstream of the fin leading edge, and the downstream boundary at \(x = 26a_{w} \). The grid spacing within each plane was a combination of geometrically-stretched and uniformly spaced points. The number of ordinary points in the y- and z-directions are 32 and 48, respectively. The computational sublayer was resolved using 8 points in the direction normal to the surface. A separate refined grid was utilized in the sublayer region in the immediate neighborhood of the corner formed by the flat plate and the fin. The total number of grid points was 64,956. The height of the first grid point adjacent to the fin or flat plate was less than 3.0 wall units at all location (i.e., \(z^* < 3.0 \), where \(z^* = z\nu/\nu_{w} \)) and \(z^* \) is the distance of the first row of grid points adjacent to the surface). Two separate computations were performed to examine the sensitivity of the solution to the height \(z_{h} \) of the computational sublayer adjacent to the flat plate. These computations employed \(z_{h} = 0.33 \times 10^{-3} \) and \(6.72 \times 10^{-3} \) cm. The maximum grid spacing in the y-direction for these cases was \(z_{h} = 0.58a_{w} \) and \(0.59a_{w} \). The height of the computational domain was \(8a_{w} \). The width of the domain increased linearly from \(13.0a_{w} \) at \(x = 0 \) to \(32.6a_{w} \) at \(x = 26a_{w} \). The minimum grid spacing in the z-direction varied between 0.42a_{w} and 1.07a_{w} depending on the flow conditions. Using the two separate grids were found to be essentially identical.
TABLE 3. Flow Conditions for 3-D Sharp Fin at \(\alpha_g = 20 \text{ deg} \)

<table>
<thead>
<tr>
<th>Case</th>
<th>(\alpha_m) (cm)</th>
<th>(M_m)</th>
<th>(Re_m)</th>
<th>(P_{pe}) (kPa)</th>
<th>(T_{pe}) (deg K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment (Shapey)</td>
<td>1.4</td>
<td>2.93</td>
<td>9.8 \times 10^5</td>
<td>690</td>
<td>251</td>
</tr>
<tr>
<td>Theory (Knight)</td>
<td>1.3</td>
<td>2.93</td>
<td>8.8 \times 10^5</td>
<td>690</td>
<td>256</td>
</tr>
<tr>
<td>Theory (Horsman)</td>
<td>1.4</td>
<td>2.94</td>
<td>8.8 \times 10^5</td>
<td>690</td>
<td>267</td>
</tr>
</tbody>
</table>

8. Theoretical Model of Horsman

1. Governing Equations and Numerical Algorithm

The governing equations are the full mean compressible 3-D Navier-Stokes equations using mass-averaged variables. The molecular dynamic viscosity is specified using Sutherland's law. The molecular and turbulent Prandtl numbers are 0.72 and 0.90, respectively. The effects of turbulence are modelled using the two-equation eddy viscosity model of Jones and Launder[40 (JL)]. An additional element of the turbulence modelling is the incorporation of the compressible wall functions of Viegas and Rubesin[39], previously utilized in the study of the three-dimensional shock boundary layer interactions for a swept compression corner configuration[40]. The other boundary conditions employed are similar to those described previously.

The governing equations are solved by the explicit numerical algorithm of MacCormack[32]. The algorithm has been widely employed for the computation of 2-D and 3-D turbulent interactions. The numerical code was executed on the CRAY X-MP/22 at NASA Ames. The code is fully vectorized using CRAY FORTRAN and utilizes the CRAY SOLID State Disk.

2. Details of Computations

The upstream boundary layer profile was computed using a separate boundary layer code employing the two-equation Wilcox-Rubesin turbulence model[41]. The upstream flow conditions are indicated in Table 3, and are in close agreement with the experimental conditions and the upstream profile of Knight.

The numerical grid was generated algebraically using a combination of geometric stretching and uniform spacing. A total of 64 streamwise grid planes were employed, spaced uniformly with \(\Delta x = 0.394_m \). The upstream boundary was located 1.8\(\alpha_m \) upstream of the fin leading edge, and the downstream boundary was positioned at \(x = 21.9\alpha_m \). Within each streamwise grid plane, the total number of grid points in the \(y \) and \(z \)-directions was 32 and 44, respectively. The maximum grid spacing in the \(y \) and \(z \)-directions was 0.39\(\alpha_m \). The height of the computational domain in the \(y \)-direction was 7.2\(\alpha_m \) and the width (measured from the plane of symmetry or the fin surface) was 13.0\(\alpha_m \). The total number of grid points was 90,112.

IV. Results

A. Comparison with Experiment

The computed and measured pitot pressure profiles at Station 1 (not shown), located upstream of the interaction, are in close agreement. Similarly, the computed and experimental pitot pressure profiles at Station 2 (not shown), located at the line of upstream influence (as defined by the experimental surface pressure), are in close agreement, and exhibit negligible deviation from an equilibrium 2-D profile. The computed and experimental pitot pressure profiles at Stations 3 through 8, 10 and 11 are displayed in Figs. 3 to 10. The horizontal axis is the pitot pressure \(p_p \), normalized by the upstream freestream pitot pressure \(p_{pe} \). The vertical axis is the distance measured from the flat plate, normalized by the upstream boundary layer thickness \(\alpha_m \). It is noted that the upstream boundary layer thickness is not, in general, the appropriate vertical scaling parameter for this interaction. The experimental data of McClure and Dooling[13] suggest that the appropriate vertical scaling is given by \(yRe_{\alpha m}/\lambda \), where \(\lambda \) is the experimental boundary layer thickness measured immediately upstream of the shock (with the fin removed) at the specified spanwise location. The choice of \(\alpha_m \) as the vertical scaling was motivated by the desire to clearly portray the vertical extent of the interaction relative to the height of the upstream boundary layer. Similarly, the profiles are shown at selected values of \(x_\text{shock} = x - x_{\text{shock}} \), where \(x_{\text{shock}} \) is the location of the theoretical inviscid shock at the specified spanwise location. It is noted that the observations of Settles and Bogdonoff[47], Dooling and Bogdonoff[53], and Lu and Settles[44] indicate that the appropriate scaling is given by \(x_s = x_\text{shock} \alpha_m /\lambda \).

In Fig. 3, profiles of pitot pressure are shown at Station 3, which is coincident with the line of coalescence as defined by the kerosene lampblack visualization. Although displaying a slightly greater pitot pressure in the outer portion of the boundary layer, the computed results are in reasonable agreement with experiment. Similar agreement is obtained at Station 9 (not shown). In Fig. 4, the results are displayed at Station 4, located approximately one-third of the distance between the line of coalescence and the shock wave at this spanwise position. The computed and experimental profiles display a modest "overshoot" outside the boundary layer, associated with the compression system ahead of the shock wave[13,16,17]. In Fig. 5, the results are displayed at Station 5, located approximately two-thirds of the distance between the line of coalescence and the theoretical inviscid shock at this spanwise position. The experimental profile displays a slight S-shaped behavior near the wall, which is less apparent in the computed profiles. The overshoot in pitot pressure is more pronounced at this location. In both figures, the computed profiles are in reasonable agreement with the experimental data, and accurately predict the
observed overshoot in \(\rho_p \). The shock capturing nature of both numerical algorithms can be seen in the smearing of the pitot pressure profile near \(y = 1.5a_e \).

The calculated and experimental pitot pressure profiles at Station 6 are shown in Fig. 6. Due to the close proximity of this station to the shock wave, uncertainty exists in the measurement of pitot pressure and yaw angle outside the boundary layer, and the experimental data has therefore been denoted by a dotted line for \(y > 1.5a_e \). Further experimental investigation is required to resolve this issue. Within the boundary layer, reasonable agreement is obtained between the computation and measurement. The 5-shape character of the profile is again apparent, with reasonable agreement between theory and experiment. The region of high pitot pressure near the surface is associated with a local maximum in the Mach number. In Fig. 7, pitot profiles are displayed at Station 10, located immediately upstream of the shock and closer to the fan. The experimental data outside the boundary layer is again subject to uncertainty due to the proximity of the shock wave. Within the boundary layer, the agreement between the theory and experiment is good.

Pitch pressure results at Stations 7 and 11, located immediately downstream of the shock wave, are displayed in Figs. 8 and 9. Good agreement is again observed. The discrepancy in the computed pitot pressure outside the boundary layer in Fig. 8 is associated with the shock-capturing nature of the numerical algorithms, and the difference in streamwise grid spacing for the two computations, and the proximity of Station 7 to the shock. In Fig. 10, results are shown at Station 8, located furthest downstream of the shock. The comparison between computed and experimental results is good.

The calculated and experimental yaw angle profiles at Stations 1 and 2 (not shown) display negligible values (< 3 deg). The calculated and measured yaw angle profiles at Stations 3 through 8, 10 and 11 are displayed in Figs. 11 to 18. In Fig. 9, the yaw profiles are shown at Station 3 (\(x_f = -4.64a_e \), \(z = 5.81a_e \)), located at the experimental line of coalescence. It is observed that the computed profiles near the surface underpredict the observed yaw angle. This is attributable to the differences between computed and experimental lines of coalescence. In particular, the computed lines of coalescence for the Baldwin-Lomax (BL) model and Jones-Launder (JL) model are located at \(x_f = -3.0a_e \) and -2.44a_e, respectively, at \(z = 5.81a_e \). At Station 3, the calculated values of the surface yaw angle are 37 deg (BL) and 12 deg (JL), while the experimental surface yaw angle (based on kerosene lampblack visualization) is approximately 54 deg. A similar observation applies to Station 9 (not shown).

In Fig. 12, yaw angle profiles are shown at Station 4, located approximately one-third of the distance from the line of coalescence at this spanwise position. The computed yaw angles are in reasonable agreement with experiment, except in the immediate vicinity of the surface, where the computed profiles disagree by 15-20% from the experiment. In particular, the computed surface yaw angles are 53 deg (BL) and 44 deg (JL), while the experimental value is 54 deg based upon cobra probe measurements and kerosene lampblack visualization.

Yaw angle results at Station 5, located approximately two-thirds of the distance between the line of coalescence and the shock wave at this spanwise position, are displayed in Fig. 13. The agreement between the theory and experiment is good, although the Jones-Launder model overpredicts the yaw angle in the outer portion of the boundary layer. The computed surface yaw angles are 61 deg (BL) and 53 deg (JL), in reasonable agreement with the experimental value of 60 deg.

In Figs. 14 and 15, yaw angle profiles are shown at Stations 6 and 10, immediately upstream of the shock. As discussed previously, uncertainties exist in the experimental data outside the boundary layer due to the proximity of the shock wave, and the data are consequently identified by a dotted line in that region. Overall good agreement is observed between the calculated and experimental results within the boundary layer. The calculated surface yaw angles at Station 6 are 60 deg (BL) and 57 deg (JL), in reasonable agreement with the experimental value of 64 deg. At Station 10, the computed surface values are 61 deg (BL) and 58 deg (JL), in close agreement with the measured value of 58 deg.

The calculated and experimental yaw angle profiles at Stations 7 and 11, located immediately downstream of the shock, are shown in Figs. 16 and 17. The calculated results are again observed to be in close agreement with experiment, although the discrepancy between the calculated and experimental results within the boundary layer. The calculated surface yaw angles are 61 deg (BL) and 59 deg (JL) at Station 7, in close agreement with the experimental value of 64 deg. At Station 11, the calculated surface values are 59 deg (BL) and 51 deg (JL), and the measured value is 55 deg. In Fig. 18, yaw angle profiles are shown at Station 8, downstream of the shock. The calculated and experimental profiles are observed to be in excellent agreement. The predicted surface values of 52 deg (BL) and 50 deg (JL) are in close agreement with the experimental value of 48 deg.

The calculated surface pressure for both models has been compared with the data of Goodwin for the same configuration. The models accurately predict the extent of the upstream influence, and the pressure distribution from the upstream influence location to the plateau region. Downstream of the plateau region, the computed pressures moderately underpredict the data.

8. Further Comparison of Computed Flowfield

A detailed comparison of the computed flowfields of Knight and Horstman was performed to determine the extent of similarity of the two theoretical approaches. Profiles of the computed x-component velocity, yaw angle, pitch angle, and surface eddy viscosity were examined at a selected streamwise station \(x = 11a_e \) for \(z = 0.1a_e \) to 10a_e in increments of 2a_e, where \(z = 0.1a_e \). A representative sample is displayed in Figs. 19 to 22, corresponding to \(x = 11a_e \) and \(z = 0.1a_e \). The position is roughly halfway between the line of coalescence and the shock wave (as measured in the
streamwise direction) at this spanwise location. The x-component velocity, yaw angle and pitch angle profiles, shown in Figs. 19, 20 and 21, respectively, are observed to be in very close agreement. Differences in the computed yaw angle occur only within the region $y < 0.3a_x$. Note that it is difficult to define a “local” boundary layer thickness within the 3-D interaction region due to the non-uniformity of the inviscid flowfield.

In Fig. 20, however, the eddy viscosity profiles indicate a significant difference; in particular, the peak values of the turbulent eddy viscosity differ by a factor of fourteen. It is emphasized that this difference in eddy viscosity between the two models is typical of the profiles within the 3-D interaction region. Within the nominal 2-D portion of the boundary layer upstream of the interaction, the eddy viscosity profiles are in reasonably close agreement.

It is evident from Figs. 19 to 22 and the additional numerous profiles studied that the details (i.e., the velocity, pressure and temperature) of this 3-D turbulent interaction are relatively insensitive to the particular turbulence model employed, with the exception of a small fraction of the boundary layer adjacent to the surface. These differences are observed in the x-y plane. This implies, therefore, that the principal elements of the flowfield structure are rotational and inviscid, except near the wall as mentioned. This represents a significant result for 3-D interactions, and is notably different from 2-D separated shock-boundary layer interactions wherein the differences between the computed flows obtained using algebraic and two-equation turbulence models are significant.

There is no reason to expect, however, that the insensitivity to turbulence model displayed in the 3-D sharp fin interaction will necessarily apply to other 3-D turbulent interactions.

C. Flowfield Structure of 3-D Sharp Fin

On the basis of the close agreement between the computed and experimental data, the computed solutions can be utilized to examine the flow structure of the 3-D sharp fin interaction. The close similarity of the computed velocity, yaw and pitch angle profiles for the Baldwin-Lomax and Jones-Launder models implies a close agreement in the predicted mean streamlines, which was confirmed through detailed comparison of numerous particle traces.

In Figs. 23 and 24, the computed surface streamlines ("limiting streamlines") obtained using the Baldwin-Lomax and Jones-Launder models are shown. The lines of coalescence ("separation") and defined by the points where the streamlines originate immediately above the previous six, at a height of 0.0048a_x. These latter streamlines clearly rise and cross the line of separation, and appear to concentrate within a core. In Fig. 26, another series of twelve streamlines are displayed. The first six again represent limiting streamlines, and define the line of coalescence. The second six originate upstream at a height of 0.52a_x. These particles display a clear rotational motion which is counterclockwise as viewed looking downstream. In Fig. 27, the three different sets of six streamlines are shown. The streamlines display a vortical structure. Those particles originating from a higher y are swept beneath the particles originating near the surface. In Fig. 28, a final series of twelve streamlines are shown. Again, a set of six surface streamlines define the line of coalescence. A second set, originating upstream at $y = 1.14a_x$, is observed to rise in the vicinity of the line of separation, and then drop towards the surface. Unlike the particles originating at lower values of y, these particles eventually move approximately parallel to the fin surface. Additional extensive streamline patterns are consistent with the above features.

A general mean flowfield pattern, developed on the basis of the streamline patterns, is displayed in Fig. 29. As suggested by Token, the flowfield structure of the 3-D sharp fin interaction at the free stream conditions is dominated by a large vortical structure. The line of coalescence (separation) defines the origin of the 3-D separation surface (Surface No. 1). The line of divergence (attachment) represents the intersection of a second surface (Surface No. 2) with the wall. This second surface extends upstream into the undisturbed flow. The fluid contained between the wall and the second surface is entrained into the vortical structure, while the fluid above the second surface flows towards the wall and approximately parallel to the fin. Due to the resolution of the numerical grid, the detailed mean flow structure in the immediate vicinity of the fin leading edge could not be examined. A second small vortical structure was observed within the fin boundary layer and close to the corner, in agreement with the experimental observations of Kubota and Stollery. The size of the second small vortical structure is $2\pi a_x$ is equal to 1.25a_x. In the Jones-Launder model, the discrepancy, i.e.,
An experimental and theoretical study is performed for the 3-D shock wave turbulent boundary layer interaction generated by a sharp fin at Mach 3 for a fin angle \(\alpha_0 = 20 \) deg and Reynolds number \(Re = 9 \times 10^4 \). This research effort extends previous experimental and theoretical investigations of the 3-D sharp fin interaction to stronger interactions. The experimental data include surface pressure profiles, surface streamline patterns, and boundary layer profiles of pitot and yaw angle. Two separate theoretical approaches or "models" were employed, both of which utilize the 3-D compressible Navier-Stokes equations. The theoretical approach of Knight employs the algebraic turbulent eddy viscosity model of Baldwin and Lomax, and the theoretical model of Horstman employs the two-equation turbulence model of Jones and Launder coupled with the wall function model of Vitegas and Rubesin. The principal conclusions are:

1. The computed surface pressure, surface streamlines, pitot pressure and yaw angle profiles are observed in good agreement with the experimental data, thereby confirming the efficacy of the theoretical approaches which were previously validated for the 3-D sharp fin configuration at Mach 3 for smaller \(\alpha_0 \) (i.e., weaker interactions).

2. The three-dimensional velocity fields computed by both models are in close agreement, as indicated by a detailed evaluation of x-component velocity, pitch and yaw angle profiles. This result was confirmed by comparison of fluid particle pathlines for the theoretical models, which were found to be in close agreement. The turbulent eddy viscosity profiles, however, differ significantly within the 3-D interaction. This result implies that the overall structure of this 3-D sharp fin interaction is insensitive to the turbulence model, except within a small portion of the boundary layer adjacent to the surface. The principal elements of the flowfield structure are therefore rotational and inviscid, except near the wall as indicated.

3. The calculated flowfields display a prominent vortical structure associated with the shock-boundary layer interaction in agreement with the flowfield models of Token, and Kubota and Stollery. A three-dimensional surface of separation emanating from the line of coalescence (separation), and spirals into the vortical center. A second surface, emanating from upstream, intersects the wall at the line of divergence (attachment), and defines the extent of the fluid entrained into the vortical structure.

Acknowledgements

This research was sponsored by the Air Force Office of Scientific Research under AF Grant 82-0040 and Contract 150-6490, monitored by Dr. James Wilson, and the NASA Ames and NASA Langley Research Centers.

References

Fig. 1 Physical Region for 3-D Sharp Fin

Fig. 2 Location of Experimental Surveys

Fig. 3 Pitot Pressure at Station 3

Fig. 4 Pitot Pressure at Station 4

Fig. 5 Pitot Pressure at Station 5

Fig. 6 Pitot Pressure at Station 6
Fig. 7 Pitot Pressure at Station 10

Fig. 8 Pitot Pressure at Station 7

Fig. 9 Pitot Pressure at Station 11

Fig. 10 Pitot Pressure at Station 8

Fig. 11 Yaw Angle at Station 3

Fig. 12 Yaw Angle at Station 4
Fig. 13 Yaw Angle at Station 5

Fig. 14 Yaw Angle at Station 6

Fig. 15 Yaw Angle at Station 10

Fig. 16 Yaw Angle at Station 7

Fig. 17 Yaw Angle at Station 11

Fig. 18 Yaw Angle at Station 8
Fig. 19 Computed Velocity in x-direction at $x = 116_{\infty}$, $z-Z_{\text{fin}} = 66_{\infty}$

Fig. 20 Computed Yaw Angle at $x = 116_{\infty}$, $z-Z_{\text{fin}} = 66_{\infty}$

Fig. 21 Computed Pitch Angle at $x = 116_{\infty}$, $z-Z_{\text{fin}} = 66_{\infty}$

Fig. 22 Computed Turbulent Eddy Viscosity at $x = 116_{\infty}$, $z-Z_{\text{fin}} = 66_{\infty}$

Fig. 23 Computed Surface Streamlines (Baldwin-Lomax)

Fig. 24 Computed Surface Streamlines (Jones-Launder)
Fig. 25 Computed Mean Streamlines Originating Upstream at $y = 0$ and $y = 0.00486$
(Vertical Scale Enlarged by Factor of 3)

Fig. 26 Computed Mean Streamlines Originating Upstream at $y = 0$ and $y = 0.526$
(Vertical Scale Enlarged by Factor of 3)
Fig. 27 Computed Mean Streamlines Originating Upstream at $y = 0$, $0.0048d$, and $0.528d$ (Vertical Scale Enlarged by Factor of 3)

Fig. 28 Computed Mean Streamlines Originating Upstream at $y = 0$ and $y = 1.1d$ (Vertical Scale Enlarged by a Factor of 3)
Fig. 29 Mean Flowfield Structure
END

11-86

DTIC