MEASUREMENT OF SURFACE PRESSURES CAUSED BY A PROJECTILE ROTATING BAND AT SUPERSONIC SPEEDS

DANBERG, JAMES E. AND PALKO, KEITH L.*

An experiment is described in which surface pressure distributions on a cone-cylinder model have been measured with and without a simulated rotating band. Measurements cover a Mach number range from 2.25 to 3.50 at an average Reynolds number of 1.3×10^{6}. Increased resolution of the pressure distribution was achieved by using a movable band with only five orifices on the constant pressure cylindrical section of the model. The results show that the perturbation pressures caused by the band are independent of the actual band location. A second phase of the experiments concerned measuring the pressure changes caused by various band thicknesses which were produced by wrapping layers of tape around the model.

The pressure disturbance of the band is found to correlate in terms of the maximum and minimum pressure coefficients and pressure interaction lengths. The interaction length ahead of the band is found to be nearly constant and the maximum pressure coefficient is inversely...
19. Abstract (Continued)

proportional to $\theta = (M^2-1)^{1/2}$. Behind the band the interaction length increases proportional to θ whereas the minimum pressure coefficient is inversely proportional to θ^2. The tape band results enabled the correlation formulas to be extended to include the effect of band height.

Correlations of the pressure distributions on the cylinder in front of, and behind the band has lead to estimates of the drag on practical projectile configurations at supersonic Mach numbers.
ACKNOWLEDGEMENT

The authors wish to express their thanks to the staff of the Aerodynamics Research and Concepts Assistance Branch, U.S. Army Chemical Research Development and Engineering Center, Aberdeen Proving Ground, MD, for their help and cooperation in carrying out these experiments in their facility. Special recognition is due Frank G. Wrede, Jr. who set up and calibrated the instrumentation and carried out all the tests.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. EXPERIMENT</td>
<td>1</td>
</tr>
<tr>
<td>1. WIND TUNNEL MODEL</td>
<td>1</td>
</tr>
<tr>
<td>2. WIND TUNNEL</td>
<td>2</td>
</tr>
<tr>
<td>3. INSTRUMENTATION</td>
<td>2</td>
</tr>
<tr>
<td>4. DATA REDUCTION</td>
<td>3</td>
</tr>
<tr>
<td>III. RESULTS</td>
<td>5</td>
</tr>
<tr>
<td>1. PRESSURE DISTRIBUTION WITHOUT BAND</td>
<td>5</td>
</tr>
<tr>
<td>2. VALIDITY OF THE MOVABLE BAND HYPOTHESIS</td>
<td>6</td>
</tr>
<tr>
<td>3. EFFECT OF MACH NUMBER ON PRESSURE DISTRIBUTION</td>
<td>6</td>
</tr>
<tr>
<td>4. CORRELATION OF THE OVERALL PRESSURE DISTRIBUTION</td>
<td>8</td>
</tr>
<tr>
<td>5. EFFECT OF BAND HEIGHT ON MAXIMUM PRESSURE COEFFICIENTS</td>
<td>9</td>
</tr>
<tr>
<td>6. ESTIMATE OF THE DRAG COEFFICIENT</td>
<td>11</td>
</tr>
<tr>
<td>IV. CONCLUSIONS</td>
<td>13</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>31</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>33</td>
</tr>
<tr>
<td>DISTRIBUTION LIST</td>
<td>35</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wind tunnel model</td>
<td>15</td>
</tr>
<tr>
<td>2a</td>
<td>Pressure coefficient versus position (X/D) without band case, Mach Number = 2.50</td>
<td>16</td>
</tr>
<tr>
<td>2b</td>
<td>Pressure coefficient versus position (X/D) without band case, Mach Number = 3.00</td>
<td>17</td>
</tr>
<tr>
<td>2c</td>
<td>Pressure coefficient versus position (X/D) without band case, Mach Number = 3.50</td>
<td>18</td>
</tr>
<tr>
<td>3a</td>
<td>C_p versus $(X-X_A)/H$ ahead of band, $M_n = 2.50$</td>
<td>19</td>
</tr>
<tr>
<td>3b</td>
<td>C_p versus $(X-X_A)/H$ ahead of band, $M_n = 3.00$</td>
<td>20</td>
</tr>
<tr>
<td>3c</td>
<td>C_p versus $(X-X_A)/H$ ahead of band, $M_n = 3.50$</td>
<td>21</td>
</tr>
<tr>
<td>4a</td>
<td>C_p versus $(X-X_A)/H$ behind band, $M_n = 2.50$</td>
<td>22</td>
</tr>
<tr>
<td>4b</td>
<td>C_p versus $(X-X_A)/H$ behind band, $M_n = 3.00$</td>
<td>23</td>
</tr>
<tr>
<td>4c</td>
<td>C_p versus $(X-X_A)/H$ behind band, $M_n = 3.50$</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>Perturbation pressure distribution (Mach Number = 2.50)</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>Normalized perturbation pressure distribution ahead of band</td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td>Normalized perturbation pressure distribution behind band</td>
<td>27</td>
</tr>
<tr>
<td>8</td>
<td>Effect of band height - ahead of band</td>
<td>28</td>
</tr>
<tr>
<td>9</td>
<td>Effect of band height - behind band</td>
<td>29</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

The objective of this report is to describe the results from a series of supersonic wind tunnel tests designed to measure the pressure distribution in front of, as well as behind a ring protuberance (of the order of the boundary layer thickness) on an axisymmetric body. In principle, the construction of such a model is straightforward. However, there are practical limitations on the resolution of the pressure distribution which can be obtained; particularly with small models. In order to increase the detail observed, an attempt has been made here to measure the pressure distribution using a few fixed pressure orifices located in front of and behind a movable band. The band’s range of positions are all located in a nearly constant pressure region on the basic model. Therefore, it can be assumed that the boundary layer thickness varies only slightly over the region of the band positions. It was expected that the pressures induced by the protuberance would be effected only in a secondary way by the changing position of the band. Thus it is also an objective of this work to assess the validity of this assumption.

The flow over a protuberance is a fundamental and difficult problem in fluid mechanics. It involves the strong interaction of separated flow regions ahead of and behind the obstacle, as well as the viscous and inviscid flow fields. The most frequently occurring situation involves separation of a turbulent boundary layer. Therefore, data on this type of flow provides a valuable test case for turbulent flow prediction techniques. The sharp changes in pressure gradient in this case serves to test whether a turbulent flow model responds correctly to rapidly changing conditions. In addition to the fundamental problem, it is also a practical problem for missile and projectile designers where proturbances such as rotating bands of artillery projectiles are introduced for non-aerodynamic reasons.

Some of the existing information on the rotating band problem for artillery shell has been summarized in Reference 1 and 2. Young and Patterson3 have reviewed existing data on aircraft ex crescence drag. An important fundamental paper on two-dimensional separated flow is that of Chapman, et al.4 The present work extends their experimental data to that of axisymmetric geometry and concentrates on the conditions produced by proturbances which are of the same order or smaller than the boundary layer thickness.

This project was initiated as a student project by K. L. Palko and the Mach Number 2.25 data presented here are from that work.5

II. EXPERIMENT

The following section describes the details of the experimental procedure and the data reduction technique employed.

1. WIND TUNNEL MODEL

The model used in these tests was made at the University of Delaware. It consists of an aluminum cone of 13.1° half angle, followed by a brass circular cylinder as shown in Figure 1. Five pressure orifices were provided on the model located as shown in the figure. Copper tubing, 0.762mm id with 0.381mm wall thickness, were soldered to the cylinder. Plastic tubing connected the
copper tubing in the model with the scanivalve outside the wind tunnel by passing through the sting and model support.

A transition trip ring of 0.381mm diameter wire was installed on the nose 2.54cm from the tip.

A ring to simulate the effect of a rotating band was made of brass with an inside diameter which matched the outside diameter of the cylinder. The band can be positioned at any point on the cylinder from the first wall tap to the base. It is held in place by a set screw 180° around the model from the pressure orifices. In order to provide enough thickness for the threads of the set screw, a key was machined on the inside of the band which moved in a groove on the underside of the cylinder. In order to prevent disturbances originating from the key-way from disturbing the flow on the test surface, the key-way was filled with wax after setting of the band. Even with these precautions weak waves can be seen in schlieren photographs coming from the imperfect wax surface but none of these waves can be seen on the top of the cylinder where the pressures were measured.

One concern is the possibility that the high pressure ahead of the band could force air under the band and into the low pressure separated region behind. Wax was carefully worked into the cylinder-band junction either ahead or behind the band depending on whether the pressure ahead or behind was of primary interest for that run. Comparison of results with and without this procedure showed no effect of the seal.

After completion of the movable band tests, the brass band was removed and a series of tests using a metal tape band of various thicknesses was undertaken. The tape used consists of 0.127mm thickness, commercial aluminum tape with an adhesive backing. The primary series of experiments involved band widths of approximately 2.2cm, located so that the leading edge of the tape was located at the trailing edge of tap 3 and the trailing edge of the tape was at the leading edge of tap 4. By increasing the number of layers of tape, band thicknesses in the range of 0.127 to 1.143mm were achieved.

2. WIND TUNNEL

The experiments were performed in the U.S. Army Chemical Research Development and Engineering Center's supersonic wind tunnel. This is a movable block, asymmetric nozzle, blow down facility with a capability in Mach number from 1.7 to 3.5. The lower limit in Mach number for these tests of 2.25 was dictated by the model length and reflected shock waves from the tunnel walls. The test section is 15.24cm x 15.24cm in cross section and 45.72cm in length.

3. INSTRUMENTATION

The model wall static pressures and the tunnel wall pressures were measured using a diaphragm-strain gauge transducer with a range of ± 172 kPa. The reference pressure was atmospheric. A 48 port Scanivalve sampled each of the six static pressures at a rate of 0.5 seconds per point. The output of the transducer was recorded on a three channel strip chart recorder calibrated to give a linear sensitivity of 0.69 kPa per chart division. The resulting reading accuracy of the static pressures is estimated as ± 0.14 kPa.
The tunnel stagnation pressure was monitored with another strain-gauge transducer with a range of 0 to 1380 kPa gauge referenced to atmospheric pressure. The output was also recorded on a channel of the strip-chart recorder. The output of the transducer was calibrated against a standard test gauge. The recorder sensitivity was set at 27.6 kPa/division for the Mach number 3.00 and 3.50 runs where the nominal stagnation pressures were 620 and 900 kPa gauge respectively. A sensitivity of 13.8 kPa/division was used for the Mach number 2.50 case (Pt = 410 kPa gauge). The reading accuracy of the stagnation pressure was approximately ±3.5 kPa. The stagnation pressure varied continuously during each run, particularly following the start of the tunnel. Data were read only after the initial transient had decayed.

The simultaneous recording of the static pressures and stagnation pressure on the same recorder permitted determining a stagnation pressure for each static pressure measurement and these simultaneous readings were used in the data reduction.

Of considerable concern was the measurement of the rotating band position. The technique employed consisted of inserting a 0.762 mm diameter drill bit into the pressure tap of primary interest and using machinest gauge blocks between the drill and the band to set the position to within ±0.025 mm.

4. DATA REDUCTION

The data described here were obtained in a two dimensional movable block wind tunnel. The Mach number in such a facility is easily changed by translation of the lower nozzle block so as to reduce or increase the throat area. The problem with this kind of wind tunnel is that it is difficult to insure that the Mach number is exactly the same from run to run. Experience indicates that the Mach number repeatability is within approximately one to two per cent in this tunnel. This is only a particular problem when the difference of pressure coefficients are taken between different runs.

To compensate for the variation in Mach number, the tunnel wall pressure, Pws, was monitored for each run. The tunnel wall pressure port was located ahead of and in a region unaffected by the model. The wall static pressure, however, did not read the correct free-stream static pressure. The measurements showed a consistent 4 to 5 percent higher pressure. Thus the changes in wall static pressure were used to indicate the change in nominal Mach number rather than use it to determine Mach number directly.

The calibrated nozzle block positioning system was employed to set a nominal Mach number, Mn. It was assumed that the average of the ratio of wall static to stagnation pressure, \(\frac{P_{ws}}{P_t} \), from all the same nominal Mach number runs corresponds to nominal Mach number, that is, the variation in actual Mach number, \(M_n \), from run to run is random. Thus \(M_n \) for each individual run is determined from:

\[
M_n = M_n + k[\frac{P_{ws}}{P_t} - \frac{P_{ws}}{P_t}]
\]
where \(K \) is:

\[
K = 2M_0 a(P_0/P_t)
\]

(2)

and is evaluated using isentropic formulas.

The difference in \(C_p \) from two different runs can be correctly formed only if the Mach numbers of the two cases are the same. If the \(C_p \)’s are significantly different, the small variation in \(M_\infty \) produces correspondingly small scatter in the results but when the \(C_p \)’s are nearly identical (as they are at large distances from the band) the difference in \(M_\infty \) produces systematic deviations of the data from zero. To reduce this problem the \(\Delta C_p \)’s are calculated using:

\[
\Delta C_p = C_p - C_{p0} = (P_w - P_{wo})/(0.5\gamma P_0 M_\infty^2)
\]

(3)

where \(P_w, P_0, \) and \(M_\infty \) are the wall pressure, free-stream static pressure and test Mach number respectively. \(P_0 \) is evaluated from the measured stagnation pressure and \(M_\infty \) so that:

\[
\Delta C_p = \frac{P_w}{P_t} \left(1 + \frac{\gamma - 1}{2} M_\infty^2 \right)^{\gamma/(\gamma - 1)} - \frac{P_{wo}}{P_t} \left(1 + \frac{\gamma - 1}{2} M_\infty^2 \right)^{\gamma/(\gamma - 1)}.
\]

(4)

The no-band \(P_{wo}^* \) was obtained at a different Mach number \(M' \) and its value was adjusted to correspond to \(M_\infty \). This is done by assuming that the wall static pressure on the cylinder without the band is essentially the tunnel static pressure so that:

\[
\frac{P_{wo}}{P_t} = \frac{P_{wo}^*}{P_t} \left[1 + \frac{\gamma - 1}{2} \left(M' \right)^2 \right] \frac{1}{1 + \frac{\gamma - 1}{2} M_\infty^2}.
\]

(5)

Finally the \(C_p \) is calculated from the following equation:
III. RESULTS

In the following discussion of results, six aspects of the experiment will be described: A. comparison of the pressure distributions obtained without the rotating band with a Parabolized Navier-Stokes code prediction, B. the validity of the movable band hypothesis will be discussed, C. The effects of Mach number on the perturbations to the pressure distribution caused by the band are considered, D. a general correlation of the pressure distribution is evaluated, E. the effect of band height is evaluated based on the tape band tests, F. an estimate of the band drag coefficient is made.

1. PRESSURE DISTRIBUTION WITHOUT BAND

Measured and predicted pressure coefficients are shown in figures 2a-c for the three nominal Mach numbers, \(M_n = 2.50, 3.00, 3.50 \). The solid lines in these figures represent Parabolized Navier-Stokes calculations for the same flow conditions. In each case the data are in good agreement with the predictions, particularly at the higher Mach numbers. The slight discrepancy is of the order of 2% of the dynamic pressure which in the case of the \(M_n = 2.50 \) data corresponds to a maximum difference in static pressure of 9%. This departure from the predicted pressure is due to pressure waves generated by the imperfect surface of an access port in the roof of the wind tunnel. This observed deviation was repeatable below \(M_n = 3 \).

The pressure coefficients for the cases without the band, \(C_{po} \), are listed in Table 1.

<table>
<thead>
<tr>
<th>Tap No.</th>
<th>X/D</th>
<th>(M_n = 2.25)</th>
<th>2.50</th>
<th>3.00</th>
<th>3.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.895</td>
<td>-0.020</td>
<td>-0.024</td>
<td>-0.020</td>
<td>-0.014</td>
</tr>
<tr>
<td>2</td>
<td>4.398</td>
<td>-0.014</td>
<td>-0.010</td>
<td>-0.014</td>
<td>-0.009</td>
</tr>
<tr>
<td>3</td>
<td>4.702</td>
<td>-0.012</td>
<td>-0.006</td>
<td>-0.012</td>
<td>-0.007</td>
</tr>
<tr>
<td>4</td>
<td>5.598</td>
<td>-0.001</td>
<td>-0.009</td>
<td>-0.002</td>
<td>-0.007</td>
</tr>
<tr>
<td>5</td>
<td>5.899</td>
<td>-0.009</td>
<td>-0.004</td>
<td>-0.002</td>
<td>-0.010</td>
</tr>
</tbody>
</table>

The Navier-Stokes code employed is based on the implicit, space marching finite difference algorithm developed by Schiff and Steger. The thin layer equations are in approximate factorization form and use a block tridiagonal technique to obtain the solution. A turbulent boundary layer is calculated...
using the Baldwin-Lomax7 algebraic eddy viscosity model. Because of its space marching formulation it can not be used to predict separated flows. It is one of the objectives of this experiment to provide data with which to validate time dependent Navier-Stokes computations of separated regions currently under development.

2. VALIDITY OF THE MOVABLE BAND HYPOTHESIS

The basic assumption of these experiments is that the pressure change induced by the band depends primarily on the position of the band relative to the pressure tap. On the cylindrical part of the model, where the pressure gradients are small and the boundary layer growth rate is small, the band is expected to cause the same change in pressure, independent of band location. The validity of this idea is shown in Figure 3 and 4 where, for each Mach number tested, the change in pressure coefficient, ΔC_P, is plotted versus the relative band position $(X-X_a)/H$.

Each figure contains data obtained from pressure taps 1 through 4. Some of the experiments were performed by locating the leading edge of the band at various distances behind either tap 1, 2 or 3. These data are shown in Figures 3a-c. Similarly the band trailing edge was set at various distances ahead of taps 3 and 4 to obtain the results shown in Figures 4a-c. The hypothesis is considered valid within the accuracy of the present measuring techniques because all the results at each Mach number accurately form a single curve independent of the tap location used to obtain the data.

3. EFFECT OF MACH NUMBER ON PRESSURE DISTRIBUTION

Figure 5 shows an example of the change in pressure coefficient data obtained from the current experiment at a Mach number of 2.50 plotted against nondimensional position of each tap relative to the leading edge of the band. The maximum ΔC_P at the leading edge of the band, X_a, is an estimated point based on extrapolation of the distribution data.

A single observation of the pressures on top of the band is shown in Figure 5 which was actually obtained from the tape band phase of the experiment. The pressure distributions were obtained with the movable metal band of $H/D = 0.040$. No provisions were made for measurement of the pressure on the band itself in these tests. A special single experiment was performed using the tape band ($H/D = 0.0358$) in which the tape covered tap number 2. A hole, punctured through the tape, permitted tap 2 to detect the pressures at one point, $(X-X_a)/H = 0.69$ behind the band leading edge. In each Mach number case, the C_P on top of the band had returned to essentially the C_P obtained without the band. It is concluded that the band width (more than 12 band heights) is so large that the pressure distribution ahead of and behind the band are unaffected by conditions behind and ahead of the band respectively. Although a single observation can not provide conclusive evidence, it suggests that the effects of the expansion from the high pressure on the front face of the band is confined to a very short region on the top of the band near its leading edge.

Of considerable interest is the effect of Mach number on the maximum and minimum ΔC_P and the overall size of the interaction region. The maximum and minimum pressures were not measured directly because the pressure orifice
dimensions could not be made arbitrarily small compared to the size of the band. It has been assumed that the measurements represent average pressures over the tap opening. The pressures are plotted in all figures at an X location corresponding to the center of the tap. The highest pressures measured were obtained with the tap half covered by the band (determined by inserting a 0.381mm drill bit into the 0.762mm tap opening and setting the band against the drill bit). The center of the orifice, in this case, is considered to be 0.191mm from the band. The pressure distribution has been extrapolated to X = Xa to obtain \(\Delta C_{p \text{max}} \) and \(X - X_b \) for \(\Delta C_{p \text{min}} \).

Table 2 contains the values of \(\Delta C_{p \text{max}} \) and \(\Delta C_{p \text{min}} \) determined from the data obtained from these tests and those of Reference 5. Also contained in Table 2 are the interaction length \(L_a \) ahead of the band and \(L_b \) behind, normalized with respect to the band height, \(H \). \(L_a \) is determined as the distance ahead of the band where the \(\Delta C_p \) is 0.01. i.e., the pressure increase relative to the no band case is one per cent of the dynamic pressure. It is observed that \(L_a/H \) is approximately constant over the Mach number range tested. The average is:

\[
L_a/H = 4.8 \pm 3\% \tag{7}
\]

although there seems to be a small but consistent trend toward a decreasing \(L_a \) with increasing Mach number.

The downstream pressure-interaction region is considerably larger and is seen to vary significantly with Mach number. The interaction length \(L_b \) is defined in a somewhat different way because of the extremely gradual pressure recovery. The determination of \(L_b \) based on a percentage change in \(\Delta C_p \) would be uncertain because of the small slope of the curves and the scatter in the data. A representative length has been evaluated by drawing straight lines through the data as shown in Figures 4a-c and noting their intersection with the \(\Delta C_p = 0 \) line. The results can be correlated as:

\[
L_b/H = 5.4 \times \beta \pm 4\% \tag{8}
\]

where:

\[
\beta = (M^2 - 1)^{0.5} \tag{9}
\]

Linearized supersonic flow theory predicts that:

\[
\Delta C_p = 2(dy/dx)e/\beta \tag{10}
\]

where \((dy/dx)e\) is the effective surface slope. This formula can be used to correlate the present data. An effective body is imagined to replace the recirculation region of the separated flow and any displacement effects of the viscous boundary layer. In the case of the interaction region ahead of the band, \((dy/dx)e\) is assumed to be proportional to \(H/L_a\), so that:
\[\Delta C_{p \text{max}} \times \beta = 0.63 \pm 2\% . \]
(11)

Behind the band the effective slope is found to be proportional to \(H/L_b \), which in this case is inversely proportional to \(\beta \). Thus:

\[\Delta C_{p \text{min}} \times \beta^2 = -0.76 \pm 4\% . \]
(12)

TABLE 2. Pressure Distribution Parameters.

<table>
<thead>
<tr>
<th>Mn</th>
<th>2.25</th>
<th>2.50</th>
<th>3.00</th>
<th>3.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta C_{p \text{max}})</td>
<td>0.312</td>
<td>0.280</td>
<td>0.220</td>
<td>0.188</td>
</tr>
<tr>
<td>(\Delta C_{p \text{min}})</td>
<td>-0.194</td>
<td>-0.143</td>
<td>-0.095</td>
<td>-0.066</td>
</tr>
<tr>
<td>(L_a/H)</td>
<td>4.96</td>
<td>4.87</td>
<td>4.81</td>
<td>4.67</td>
</tr>
<tr>
<td>(L_b/(H+S))</td>
<td>5.1</td>
<td>5.5</td>
<td>5.3</td>
<td>5.5</td>
</tr>
<tr>
<td>(\Delta C_{p \text{max}} \times \beta)</td>
<td>0.629</td>
<td>0.641</td>
<td>0.622</td>
<td>0.631</td>
</tr>
<tr>
<td>(\Delta C_{p \text{min}} \times \beta^2)</td>
<td>-0.788</td>
<td>-0.751</td>
<td>-0.760</td>
<td>-0.743</td>
</tr>
<tr>
<td>(\beta)</td>
<td>2.016</td>
<td>2.291</td>
<td>2.828</td>
<td>3.354</td>
</tr>
<tr>
<td>(Re \times 10^{-6})</td>
<td>1.02</td>
<td>1.23</td>
<td>1.33</td>
<td>1.42</td>
</tr>
</tbody>
</table>

4. CORRELATION OF THE OVERALL PRESSURE DISTRIBUTION

The maximum change in pressure coefficient, \(\Delta C_{p \text{max}} \), and interaction length, \(L_a/H \), for the interaction region ahead of the step have been correlated in terms of Mach number and it is of interest to investigate how well the entire interaction pressure distribution is correlated. Figure 6 shows all the present data plotted in terms of \(\Delta C_p/\Delta C_{p \text{max}} \) versus \((X-X_a)/L_a\). This indicates that the shape of the dividing streamline (an equivalent body for the separated region) is approximately the same for the range of conditions investigated here. Attempts have been made to use the equivalent body concept as a means of estimating projectile pressure distributions and overall aerodynamic characteristics.\(^{1,2}\)

Behind the band the situation is more complicated and the data plotted in terms of \(\Delta C_p/\Delta C_{p \text{min}} \) versus \((X-X_b)/L_b\) in Figure 7 provides a successful but slightly poorer correlation. The flow field can be pictured as consisting of a recirculating flow region immediately behind the band, followed by reattachment and then a gradual recovery to a zero pressure gradient boundary layer. The length scale of the entire interaction region is sensitive to Mach number as has already been described. The minimum pressure coefficient appears to be related to \(L_b \). The reattachment distance characterized by the most significant part of the pressure recovery is also correlated by the much larger overall length scale \(L_b \).
5. EFFECT OF BAND HEIGHT ON MAXIMUM AND MINIMUM PRESSURE COEFFICIENTS

In an attempt to investigate the effect of different band heights on the surface pressures, various layers of adhesive-backed, aluminum tape were wrapped around the model. Tape was placed on the cylindrical section so that pressure tap 3 was at the leading edge of the tape and tap 4 at the trailing edge. The size of the pressure orifices lead to a difficulty in interpreting these results. For example, with a 0.005 inch tape thickness, the centerline of tap 3 was located 0.381mm ahead of the band or 3 band heights. Examination of Figure 6 shows that $\Delta C_{p_{\text{max}}}$ is 57% larger than the value measured at $(X-Xa)/H = 3$. Since each band height represents a result at a different relative distance in front of the band, it is difficult to compare one data point with another. The data have been adjusted using Figure 6 to give an estimate of $\Delta C_{p_{\text{max}}}$ corresponding to $(X-Xa) = 0$. No correction has been applied to the data behind the band except for the 0.241mm band because, for the larger bands, ΔC_p is essentially constant for $(X-Xb)/H < 2$.

As has already been described, $\Delta C_{p_{\text{max}}} \alpha$ and $\Delta C_{p_{\text{min}}} \alpha^2$ are independent of Mach number. By plotting the data in that form it is possible to emphasize the effect of band height alone.

A correlation for the present results can be based on linearized supersonic theory. The slope of the equivalent body can be written as follows:

$$(dy/dx)e = (dy/dx)ds_1 + d\delta*/dx$$

where $(dy/dx)ds_1$ is the slope of the dividing streamline between the recirculating separated flow and the detached boundary layer. $(d\delta*/dx)$ is the displacement thickness effect of the detached boundary layer. It is assumed that:

$$(dy/dx)ds_1 = C_{\text{s}}(H/La)$$

and:

$$(d\delta*/dx) = C_{\text{s}}(D/La).$$

Thus:

$$\Delta C_{p_{\text{max}}} \times \alpha = 2(H/La)[C_{\text{s}} + C_{\text{s}}(D/H)].$$

For the present data which are essentially at constant Reynolds number, C_{s} and C_{s} are taken to be constants, although it is expected that they may be functions of Reynolds number and D/H. The D/H factor in the second term on the right hand side accounts for the main effects of height on the $\Delta C_{p_{\text{max}}}$. This formulation is presumed valid for conditions where La/H is constant which can be expected to fail if the band becomes very small or very large with respect to the undisturbed boundary layer.
Except for the smallest band height, the data for small values of D/H are well represented by the formula:

\[\Delta C_{p_{\text{max}}} \times \beta = 2(H/La)[1.94 - 0.0097(D/H)]. \] (17)

As D/H becomes large, i.e., H goes to zero, the disturbance caused by the band should disappear. Therefore it appears that the linear variation with D/H should be modified so that \(\Delta C_{p_{\text{max}}} \) goes to zero in a more asymptotic manner. Since the range of conditions of primary interest in ballistics is for H/D > .01, a simple second order term is added to the second term on the right hand side which can be justified by the present data. The correlation equation can be written:

\[\Delta C_{p_{\text{max}}} \times \beta = 2(H/La)[1.94 - 0.0097(1 - 0.002[D/H])(D/H)]. \] (18)

Figure 8 shows the results when the above correlation equation is applied to the present data ahead of the band.

A discrepancy has been found between the metal and the tape band maximum pressures. The tape band results interpolated to D/H = 25.0 case are about 11% higher than the \(\Delta C_{p_{\text{max}}} \) values obtained using the movable band. It is not clear what caused this difference. It was observed that the forward face of the tape band was considerably rougher than that of the machined band. In building up 8 to 10 layers of tape, it was impossible to maintain each leading edge exactly over the underlying one. It is possible that this roughened surface influenced the location of the stagnation point and the pressure distribution on the front face of the band. The rear edge of the tape band was as equally rough as the front but \(\Delta C_{p_{\text{min}}} \) was found to be only 6% higher than the metal band. In terms of the difference in pressure ahead of, minus the pressure behind the band, the tape band data are only 5% higher. In the following correlation formulas, the higher tape band data are used to evaluate the unknown constants.

Another set of experimental data on rotating band height effects at supersonic speed is that of Gorney, et al.\(^8\) In his experiment two band height were tested (1.016 and 2.032mm in height on a 57.15mm diameter model) at Mach number 3.02. The Reynolds number in this test was \(5.5 \times 10^6 \). Gorney's data are included in figure 8 and provide conditions for estimating Reynolds number effects on the \(\Delta C_{p_{\text{max}}} \) and \(\Delta C_{p_{\text{min}}} \). Gorney's model is not the same configuration as the present cone-cylinder. His model was a secant-ogive-cylinder but the band had the same shape and was located on the cylinder several calibers from the ogive nose. There was only one pressure tap in the interaction region ahead of the band and one in the interaction region behind the band. The current data on the variation of pressure with distance from the band was used to adjust the measured pressure to that at \(X_a \). Assuming that \(C_{1} \) and \(C_{2} \) are functions of Reynolds number raised to some power, the following final form of the correlation equation is obtained as:

\[\Delta C_{p_{\text{max}}} \times \beta = 2(H/La)[1.8R^{0.17} - 0.009(D/H) - 0.0022(D/H)^2]R^{0.55} \] (19)
where $R = \text{Reynolds number based on diameter times } 10^{-6}$. Note that this equation assumes $La/H = 4.8$ independent of Mach number and Reynolds number, although the first function, R^x, may reflect a dependency of La on Reynolds number.

The data behind the band were analyzed in the same fashion as that of the data in front and the results are shown in Figure 9. In this case dy/dx is taken proportional to H/Lb. The formula obtained, based on fitting the present and Gorney's data, is:

$$\Delta C_{p_{\text{min}}} = b^2 = -2(H/Lb)[2.4 - 0.01(D/H - 0.002(D/H)^2)R^{0.3}] \quad (20)$$

This equation is remarkably similar to that obtained ahead of the band except for the missing Re dependence of the first term on the right hand side. No adjustment was made in Gorney's $\Delta C_{p_{\text{min}}}$ to account for the fact that one of the pressure orifices was 3 band heights downstream of the band.

6. ESTIMATE OF THE DRAG COEFFICIENT

The drag on a small annular ring around a body at zero angle of attack can be written as:

$$D_b = wDH(Pva - Pvb) \quad (21)$$

where Pva and Pvb are the average pressures on the front and back faces of the band respectively. In coefficient form, this equation becomes:

$$\Delta C_{D_b} = 4(H/D)(C_{p_{va}} - C_{p_{vb}}) \quad (22)$$

which is sometimes written as:

$$\Delta C_{D_b}/(d-1) = 2(C_{p_{va}} - C_{p_{vb}}) \quad (23)$$

where d is the maximum diameter of the ring in calibers, $d = (1+2H/D)$. In the present experiment, only the pressures on the cylinder ahead of and behind the band were measured so that just an estimate can be made of ΔC_{D_b} based on an assumed relationship between the cylindrical surface pressures and those on the faces of the band.

The pressures on the front face of the band are expected to be higher than the maximum pressure on the cylinder. The situation may be pictured in terms of the dividing streamline separating from the cylinder with nearly zero fluid velocity. Viscous forces produced by the outer flow accelerate the fluid on the dividing streamline until the presence of the band is felt. The dividing streamline then reattaches to the front face of the ring, forming a
stagnation region near the top of the band. The pressure decreases down the band and in the upstream direction along the cylinder. This negative gradient provides the driving force for the recirculating flow. Using this assumed picture of the flow, it is concluded that the maximum pressure on the cylinder is a lower bound for the pressures on the ring. Thus, the drag calculated based on using this pressure as the average on the front of the band is a minimum estimate of the contribution from the front of the ring.

Behind the band the dividing streamline separates from the top corner of the band and reattaches on the cylinder several band heights downstream. The reattachment on the cylinder can be seen as a region of rapid increase in pressure coefficient. A relatively small increase in pressure on the rear face of the band drives the flow as it approaches the separation point on the top of the band. Evidence for this is the relatively constant pressure coefficient immediately behind the band. Thus it is concluded that the minimum pressure on the cylinder is probably a good estimate of the average pressure on the rear face of the band.

The minimum estimate of the band drag coefficient has been calculated based on the above assumptions and using the correlation equations for the maximum and minimum pressure coefficients. The results, as a function of Mach number, for a typical artillery shell at sea level conditions are shown in Table 3.

<table>
<thead>
<tr>
<th>M</th>
<th>R</th>
<th>ΔC_{Db}/(d-1)</th>
<th>ΔC_{Db}</th>
<th>ΔC_{Db}/C_D (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>5.15</td>
<td>2.63</td>
<td>0.068</td>
<td>23</td>
</tr>
<tr>
<td>2.0</td>
<td>6.88</td>
<td>1.37</td>
<td>0.036</td>
<td>14.</td>
</tr>
<tr>
<td>2.5</td>
<td>8.59</td>
<td>0.88</td>
<td>0.023</td>
<td>10.</td>
</tr>
<tr>
<td>3.0</td>
<td>10.31</td>
<td>0.61</td>
<td>0.016</td>
<td>7.6</td>
</tr>
<tr>
<td>3.5</td>
<td>12.03</td>
<td>0.43</td>
<td>0.011</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Band height = 0.013 cal.
Sea level atmospheric conditions
C_D Based on Reference 9

It is apparent that the contribution from the band increases significantly as the Mach number decreases. However, it should be noted that the present correlation equations are based on linearized supersonic theory which predicts that the pressures approach infinity as beta goes to zero. At transonic speeds this Mach number dependence will over predict the drag. Another aspect of the correlation equations which should be considered when evaluating projectile drag is that the results are sensitive to Reynolds number. The Reynolds number dependence has been determined from very sparse data at low Reynolds number compared to the full scale 155mm case. More data are needed to firmly establish the variation with Reynolds number.
An example which better matches the Reynolds number conditions of the equations is that of a 20mm projectile. The calculated results are shown in Table 4.

TABLE 4. Band Drag Coefficient 20mm Projectile.

<table>
<thead>
<tr>
<th>M</th>
<th>R</th>
<th>ΔC<sub>D</sub>b/(d-1)</th>
<th>ΔC<sub>D</sub>b</th>
<th>ΔC<sub>D</sub>b/C<sub>D</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>0.66</td>
<td>3.32</td>
<td>0.086</td>
<td>16.5</td>
</tr>
<tr>
<td>2.0</td>
<td>0.89</td>
<td>1.89</td>
<td>0.049</td>
<td>10.6</td>
</tr>
<tr>
<td>2.5</td>
<td>1.10</td>
<td>1.34</td>
<td>0.035</td>
<td>8.8</td>
</tr>
<tr>
<td>3.0</td>
<td>1.33</td>
<td>1.05</td>
<td>0.027</td>
<td>7.6</td>
</tr>
<tr>
<td>3.5</td>
<td>1.555</td>
<td>0.86</td>
<td>0.022</td>
<td>7.0</td>
</tr>
</tbody>
</table>

Band height = 0.013 cal.
Sea level atmospheric conditions
C_D data based on Reference 10

IV. CONCLUSIONS

An experiment has been described in which the surface static pressure distribution on a cone-cylinder model with and without a simulated rotating band have been measured. The measurements were obtained at three Mach numbers (2.5, 3.0, 3.5) and at a Reynolds number of (1.3±1)x10⁶. Some results from an earlier test at M = 2.25 have also been included.

In order to increase the resolution of the pressure distribution a movable band was used with just five pressure orifices. It has been shown in these tests that essentially the same ΔC_p is obtained at corresponding (X-Xa)/H positions independent of the actual location of the band. Measurement of perturbation effects were made on the cylindrical section of the model where boundary layer growth and pressure gradient effects were small.

The pressure disturbance caused by the band has been found to be correlated in terms of the maximum pressure coefficient, ΔC_pmax, and a length scale, L_a, ahead of the band and a corresponding set of parameters, ΔC_pmin and L_b, behind the band. Under these supersonic conditions, linearized supersonic theory is shown to apply ahead of the band; in that ΔC_pmax is inversely proportional to θ (where θ = (M²-1)^{1/2}. The length scale ahead of the band is found to be L_a/H = 4.8 independent of Mach number. Behind the band, L_b/H is a function of beta such that L_b/H = 5.7 x θ. Given this result, linearized theory predicts and the experiment confirms that ΔC_pmin is inversely proportional to θ².

A second phase of the experiment concerned measurement of the pressure changes caused by various band thicknesses which were created by wrapping layers of adhesive backed metal tape to the model. The correlations developed...
in the first phase of the tests were used to estimate the maximum and minimum pressure coefficients from the tape band results. These data can be correlated to show that:

\[\Delta C_{p_{\text{max}}} = 2(H/La)(C_{a1} - C_{a2} f(D/H)) \]

\[\Delta C_{p_{\text{min}}} = 2(HxH/Lb)(C_{b1} - C_{b2} f(D/H)) \]

where for \(D/H < 100 \)

\[f(D/H) = (D/H) - 0.002(D/H)^2 \]

The additional quantities \(C_{a1}, C_{a2}, C_{b1} \) and \(C_{b2} \) were evaluated using the present data and data from a higher Reynolds number test of Reference 7 at \(M = 3.02 \) and \(Re_D = 5.5 \times 10^6 \). It has been found that the constants are functions of Reynolds number. Accurate determination of the Reynolds number dependancy requires additional information covering a wider range of data.

An argument is advanced that \(\Delta C_{p_{\text{max}}} \) determined on the cylinder ahead of the band under predicts the pressure on the forward face of the band but that \(\Delta C_{p_{\text{min}}} \) is a reasonable estimate for the pressures on the rear face. Thus a drag calculated on the basis of the above correlations is likely to represent a lower bound to the band drag. Such estimates of drag coefficients for the 155mm and 20mm projectiles have been carried out and the results show that in the Mach number range from 2.0 to 3.5, the drag due to a 1.3 per cent thick band varies from 14 to 5.5\% for the 155mm shell and from 11 to 7\% for the smaller projectile.
ALL DIMENSIONS IN CALIBERS
DIAMETER, D = 2.54 cm

Figure 1. Wind tunnel model.
Figure 2a: Pressure coefficient versus position (x/D) without bend case.

Mach No. = 2.50

- PNS Computation
- Experiment
Figure 2b. Pressure coefficient versus position (X/D) without hard case, Mach Number = 3.00.
Figure 2c. Pressure coefficient versus position \((X/D)\) without bend case, Mach Number = 3.50.
Figure 3a. C_p versus $(X-X_A)/H$ ahead of band, $M_n = 2.50$.
Figure 3c. \(C_p \) versus \((X-X_A)/H \) ahead of band, \(Ma = 3.50 \).
Figure 4a. C_p versus $\frac{(X-X_0)}{H}$ behind bound, $Ma = 2.50$.
\(\Delta C_p \)

\[\frac{(X-X_a)}{H} \]

Figure 4b. \(C_p \) versus \(\frac{(X-X_a)}{H} \) behind band, \(Mn = 3.90 \).
Figure 5. Perturbation pressure distribution (Mach Number = 2.50).
Figure 6. Normalized perturbation pressure distribution ahead of bend.
Figure 7. Normalized perturbation pressure distribution behind band.
Figure 8. Effect of band height - ahead of band.
Figure 9. Effect of band height behind band.
REFERENCES

LIST OF SYMBOLS

Cal, Ca2 = Coefficients in equation (16)
Cb1, Cb2 = Coefficients in equation (20)
Cp = Pressure Coefficient = \(\frac{P - P_\infty}{0.5pU^2} \)
Cpo = Pressure Coefficient without the band
D = Diameter of the projectile
Db = Diameter of the band = D+2H
d = Diameter of the band in calibers = 1+2H/D
(dy/dx)ds1 = Slope of dividing streamline
(dy/dx)e = Slope of equivalent body
H = Height of band
K = Factor in equation (2)
La = Pressure interaction length ahead of the band
Lb = Pressure interaction length behind band
M = Mach number
P = Pressure
R = Re\times10^{-6} \text{ (see equation (19))}
Re = Reynolds number based on projectile diameter
U = Free-stream velocity
X = Position on projectile measured from the tip
Xa = Position of the leading edge of the band
Xb = Position of the trailing edge of the band

Greek Symbols

\beta = \text{ Mach number parameter} = (M^2-1)^{1/2}
\delta = \text{ Boundary layer displacement thickness}
\Delta Cp = \text{ Perturbation pressure coefficient} = Cp - Cpo
LIST OF SYMBOLS (Continued)

\(\Delta C_{p_{\text{max}}} \) = Maximum \(C_p \) ahead of the band
\(\Delta C_{p_{\text{min}}} \) = Minimum \(C_p \) behind band
\(\Delta C_{D_b} \) = Drag coefficient due to the band
\(\gamma \) = Ratio of specific heats
\(\rho \) = Free-stream density

Subscripts
a = Ahead of band
b = Behind band
n = Nominal wind tunnel conditions
o = Without KBband
t = Wind tunnel stagnation conditions
va = Average, front face of band
vb = Average, rear face of band
w = Model wall conditions
wo = Model wall conditions without band
ws = Wind tunnel wall conditions Free-stream
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Administrator, Defense Technical Info Center</td>
<td>1</td>
<td>Commander, US Army Aviation Research and Development Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: DITC-DDA, Cameron Station, Alexandria, VA 22304-6145</td>
<td></td>
<td>ATTN: AMSAV-E, 4300 Goodfellow Blvd, St. Louis, MO 63120</td>
</tr>
<tr>
<td>1</td>
<td>HODA, DAMA-ART-M, Washington, DC 20310</td>
<td>1</td>
<td>Director, US Army Air Mobility Research and Development Command</td>
</tr>
<tr>
<td>8</td>
<td>Commander, Armament RD&E Center, US Army AMCOM, ATTN: SMCAR-TDC, SMCAR-TSS, SMCAR-LCA-F, Mr. D. Mertz, Mr. E. Falkowski, Mr. A. Loeb, Mr. R. Kline, Mr. S. Kahn, Mr. H. Hudson, Dover, NJ 07801-5001</td>
<td>1</td>
<td>Commander, ERADCOM Technical Library, ATTN: DELSD-L (Reports Section), Fort Monmouth, NJ 07703-5301</td>
</tr>
<tr>
<td>1</td>
<td>Commander, US Army Armament, Munitions and Chemical Command, ATTN: AMSMC-LF-L, Rock Island, IL 61299</td>
<td>1</td>
<td>Director, US Army Missle & Space Intelligence Center, ATTN: AIAMS-YDL, Redstone Arsenal, AL 35898-5000</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Commander US Army Research Office</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. O. Box 12211</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Research Triangle Park, NC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27709</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Commander US Army Infantry School</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: ATSH-CD-CSO-OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fort Benning, GA 31905</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Commander US Naval Air Systems Command</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: AIR-604</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Commander US Naval Air Systems Command</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: AIR-604</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Commander David W. Taylor Naval Ship Research and Development Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: Dr. S. de los Santos</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mr. Stanley Gottlieb</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bethesda, Maryland 20884</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Commander US Naval Surface Weapons Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: Dr. T. Clare, Code DK20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. F. Moore</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dahlgren, VA 22448-5000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Commander US Naval Surface Weapons Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: Dr. U. Jettmar</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silver Spring, MD 20902-5000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Commander US Naval Weapons Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: Code 3431, Tech Lib</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>China Lake, CA 93555</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Commander US Army Development and Employment Agency</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: MODE-TED-SAB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fort Lewis, WA 98433</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Director NASA Langley Research Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: NS-185, Tech Lib</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Langley Station, Hampton, VA 23365</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

36
DISTRIBUTION LIST

Central Intelligence Agency
Office of Central Reference
Dissemination Branch
Room GE-47 HQS
Washington, DC 20502

Aberdeen Proving Ground

Dir, USAMSA
ATTN: AMXSY-D
AMXSY-MP, H. Cohen

Cdr, USATECOM
ATTN: AMSTE-TO-F

Cdr, CRDC, AMCCOM,
ATTN: SMCCR-RSP-A
SMCCR-MJ
SMCCR-SPS-IL
USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.

1. **BRL Report Number** __________________________ Date of Report __________________________

2. Date Report Received __________________________

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be used.) __

4. How specifically, is the report being used? (Information source, design data, procedure, source of ideas, etc.) __

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided or efficiencies achieved, etc? If so, please elaborate. __

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.) __

 Name __
 CURRENT Organization __________________________
 Address __
 City, State, Zip __________________________

7. If indicating a Change of Address or Address Correction, please provide the New or Correct Address in Block 6 above and the Old or Incorrect address below.

 Name __
 OLD Organization __________________________
 Address __
 City, State, Zip __________________________

(Remove this sheet along the perforation, fold as indicated, staple or tape closed, and mail.)
END
DATE
FILMED
9 - 86