IMMUNE RESPONSES IN PARASITIC DISEASES
ANNUAL REPORT - SEPT. 1982
(JULY 1974 - JUNE 1975)
IMMUNE RESPONSES IN PARASITIC DISEASES

Annual Report

Daniel J. Stechschulte, M.D.
Herbert B. Lindsley, M.D.

September 1982
(July 1974 - June 1975)

Supported by

U. S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND
Fort Detrick, Frederick, Maryland 21701

Contract No. DAMD 17-74-C-4136

University of Kansas Medical Center
College of Health Sciences and Hospital
Kansas City, KS 66103

DOD DISTRIBUTION
Approved for public release; distribution unlimited

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other documents.
Acquired resistance to infection and the development of sterile immunity is dependent upon specific immune responses. The responses include the proliferation of thymic or T and bursal-equivalent or B lymphocytes and their production of lymphocyte mediators and immunoglobulins respectively. Although recent evidence indicates that T and B cell cooperation modulates the total immune response and that both lymphocyte populations produce selected lymphocyte mediators, an investigation of the immune response to infection can still be approached by exploring the cellular and (Con't on reverse side)
Item #20 - Continued:

humoral systems independently. Monospecific reagents will be developed for the rat immunoglobulins in order to specifically measure the antibody response to *Trypanosoma rhodesiense* infection.
IMMUNE RESPONSES IN PARASITIC DISEASES

Annual Report

Daniel J. Stechschulte, M.D.
Herbert B. Lindsley, M.D.

September 1982
(July 1974 - June 1975)

Supported by
U. S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND
Fort Detrick, Frederick, Maryland 21701

Contract No. DAMD 17-74-C-4136
University of Kansas Medical Center
College of Health Sciences and Hospital
Kansas City, KS 66103

DOD DISTRIBUTION
Approved for public release; distribution unlimited

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other documents.
Summary

Acquired resistance to infection and the development of sterile immunity is dependent upon specific immune responses. The responses include the proliferation of thymic or T and bursal-equivalent or B lymphocytes and their production of lymphocyte mediators and immunoglobulins respectively. Although recent evidence indicates that T and B cell cooperation modulates the total immune response and that both lymphocyte populations produce selected lymphocyte mediators, an investigation of the immune response to infection can still be approached by exploring the cellular and humoral systems independently. Monospecific reagents will be developed for the rat immunoglobulins in order to specifically measure the antibody response to Trypanosoma rhodesiense infection.
Foreword

The research studies conducted at the University of Kansas Medical Center between July, 1974 and June, 1975 under a contractual arrangement with U.S. Army Research and Development Command were designed to further understand the immunopathogenic mechanism in rats infected with *Trypanosoma rhodesiense*. In conducting the research described in this report, the investigator(s) adhered to the "Guide for Laboratory Animal Facilities and Care," as promulgated by the Committee on the Guide for Laboratory Animal, Resources, National Academy of Sciences—National Research Council.
Acquired resistance to infection and the development of sterile immunity is dependent upon specific immune responses. The responses include the proliferation of thymic or T and bursal-equivalent or B lymphocytes and their production of lymphocyte mediators and immunoglobulins respectively. Although recent evidence indicates that T and B cell cooperation modulates the total immune response and that both lymphocyte populations produce selected lymphocyte mediators, an investigation of the immune response to infection can still be approached by exploring the cellular and humoral systems independently.

The host immune response of any species to an infection with African trypanosomiasis is not completely understood. The rat was initially selected as a model in which to study *Trypanosoma rhodesiense* infections, because of: (1) the availability of monospecific reagents to the recognized rat immunoglobulins and therefore the antibodies within each class; (2) the demonstrated histocompatibility of inbred rat strains permitting adoptive cell transfer studies, and (3) the probability that this host-parasite relationship can be studied as a chronic infection, better suited for a detailed kinetic analysis of the immune response. When the trypanosomal antigens are characterized, the humoral immune response to infection will be analyzed by standard *in vitro* techniques, and these antigens will also be evaluated for their ability to stimulate lymphocyte proliferation. A notable feature of African trypanosomiasis is the dramatic rise in IgM levels which return to normal with successful
treatment of the infection. Characterization of this IgM response in the rat may provide a useful insight into the effectiveness of IgM antibodies as a mechanism of protection against *T. rhodesiense* infection. Rats demonstrating resistance to infection presumably have acquired protective antibody and/or a lymphocyte population that specifically recognizes the parasite at a vulnerable stage in its life cycle. The effects of passive transfer of antibody and adoptive transfer of educated lymphocytes into syngeneic rats prior to the initial infection will test this presumption. Protective antibody, defined by its ability to confer a delay in patency, a suppressed parasitemia, or a decrease mortality to rats experience a primary infection, will be defined in terms of immunoglobulin class and *in vitro* antibody titer. The recent development of techniques such as affinity column chromatography, which allows quantitative recovery of virtually pure populations of T and B lymphocytes, should permit an evaluation in syngeneic rats of the effects of each cell type on subsequent infections.

These studies have demonstrated that the predominate humoral immune response in rhodent *T. rhodesiense* infection is in the IgM and IgG 1 classes. What role these antibodies play in host defense mechanisms and tissue injury are undetermined.
END

DTIC

9-86