Ada® BIBLIOGRAPHY
VOLUME III
May 1984 - February 1986

Prepared for:
Ada Joint Program Office
1211 South Fern Street
Room C-107
Arlington, VA 22202

Prepared by:
IIT Research Institute
4550 Forbes Boulevard
Suite 300
Lanham, MD 20706

This document was produced under contract MDA903-83-C-0306 for the Ada Joint Program Office.

Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited
<table>
<thead>
<tr>
<th>Report Number</th>
<th>UNCLASSIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Title and Number</td>
<td>Ada Bibliography</td>
</tr>
<tr>
<td>Volume III, May 1984 - February 1986</td>
<td></td>
</tr>
<tr>
<td>2. Type of Report & Period Covered</td>
<td>May 1984 - February 1986</td>
</tr>
<tr>
<td>3. Author(s)</td>
<td>IIT Research Institute</td>
</tr>
<tr>
<td>4. Contract or Grant Number(s)</td>
<td>MDA 903-83-C-0306</td>
</tr>
<tr>
<td>5. Performing Organization Name and Address</td>
<td>IIT Research Institute</td>
</tr>
<tr>
<td>6. Controlling Office Name and Address</td>
<td>Ada Joint Program Office</td>
</tr>
<tr>
<td>7. Monitoring Agency Name & Address</td>
<td>IIT Research Institute</td>
</tr>
<tr>
<td>8. Program Element Project Task Area & Work Unit Numbers</td>
<td></td>
</tr>
<tr>
<td>9. Report Date</td>
<td></td>
</tr>
<tr>
<td>10. Number of Pages</td>
<td>258</td>
</tr>
<tr>
<td>11. Security Class. (of this report)</td>
<td>UNCLASSIFIED</td>
</tr>
<tr>
<td>12. Distribution Statement (of this Report)</td>
<td>Approved for public release; distribution unlimited</td>
</tr>
<tr>
<td>13. Distribution Statement (of the abstract entered in Block 20, if different from Report)</td>
<td>UNCLASSIFIED</td>
</tr>
<tr>
<td>14. Supplementary Notes</td>
<td></td>
</tr>
<tr>
<td>15. Key Words (Continue on reverse side if necessary and identify by block number)</td>
<td>Reliability, Data Abstraction, Modifiability, Language Design, Language Structure, Configuration Management, Ada tool environment, Software life cycle, Validation, Ada tool environment, Software Tools, portability, Compilers, Concurrent Programming</td>
</tr>
<tr>
<td>16. Abstract (Continue on reverse side if necessary and identify by block number)</td>
<td>This bibliography contains citations for documents pertaining to the history, development, progress and use of the Ada programming language. It also contains comprehensive author and subject indices which provide a cross reference to the appropriate document citation. The citations in this volume represent all documents added to the Ada Bibliographic Database since the publication of Volume II in May 1984.</td>
</tr>
</tbody>
</table>

Ada is a registered trademark of the U.S. Government (Ada Joint Program Office)
The Ada Joint Program Office (AJPO) manages DoDs effort to provide life-cycle support for Ada, DoDs common high-order language for computer systems, by: (1) coordinating the development and introduction of Ada; Ada Program Support Environments (APSE) and policies and methodologies regarding their use, (2) ensuring the maintenance of the language as a consistent, standard; (3) providing education and training in the use of Ada for DoD and other Government agency personnel to support the Ada program and (4) encouraging the use of Ada by the software development community.

The Ada Information Clearinghouse (AdaIC) is a function of the AJPO which coordinates the collection integration and dissemination of information on all aspects of Ada, and associated aspects of DoDs Software Initiative. As part of this effort, the AdaIC has prepared this, the third volume of the Ada Bibliography.
Table of Contents

1. INTRODUCTION 1
2. DOCUMENT CITATIONS 7
3. AUTHOR INDEX 131
4. INDEX TERM (SUBJECT) INDEX 231
1. INTRODUCTION
The Ada Joint Program Office (AJPO) manages DoD's effort to provide life-cycle support for Ada, DoD's common high-order language for computer systems, by: (1) coordinating the development and introduction of Ada, Ada Program Support Environments (APSE), and policies and methodologies regarding their use, (2) ensuring the maintenance of the language as a consistent, unambiguous standard, (3) providing education and training in the use of Ada for DoD and other Government agency personnel so that adequate human resources will exist to support the Ada program and (4) encouraging the use of Ada by the software development community.

The Ada Information Clearinghouse (AdaIC) is a function of the AJPO which coordinates the collection, integration and dissemination of information on all aspects of Ada, and associated aspects of DoD's Software Initiative. As part of this effort, the AdaIC has prepared this, the third volume of the Ada Bibliography.

The bibliography contains citations for documents pertaining to the history, development, progress and use of the Ada language. It also contains comprehensive author and subject indices which provide a cross reference to the appropriate document citation. The citations in this volume represent all documents added to the Ada Bibliographic Database since the publication of Volume II in May 1984.
This paper discusses the emergence of Ada® and presents an overview of the language. The paper highlights the capabilities that do not exist in most major languages and briefly discusses the development of the Ada Programming Support Environment (APSE). (*Ada is a trademark of the U.S. Government (Ada Joint Program Office).)

INDEX TERMS

DATA TYPES

AVAILABLE FROM: THE AUTHOR
ORDER NUMBER: A - 1
REPORT NUMBER: 1234 - ABC

SPONSORS: U.S. DEPARTMENT OF DEFENSE

EXAMPLE AUTHOR INDEX CITATION

DOE. JOHN, AFFILIATED RESEARCH CORPORATION, CITYTOWN, USA
8123-02 ADA LANGUAGE PROGRAMMING

EXAMPLE SUBJECT INDEX CITATION

DATA TYPES

2492-01 2661-01 2916-01 3251-01 3264-01 3271-01 3273-01 3299-01 3301-01 3302-01
3304-01 3307-01 3316-01 3321-01 3364-01 3461-01 3613-01 3771-01 3964-01 4077-02
4344-01 3435-01 4430-02 4431-02 4653-02 4670-02 8123-02
<table>
<thead>
<tr>
<th>DATA ITEM</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Document Number</td>
<td>An internal identification number assigned by IIIT Research Institute.</td>
</tr>
<tr>
<td>2. Document Date</td>
<td>The date the report was produced.</td>
</tr>
<tr>
<td>3. Type</td>
<td>The type of document.</td>
</tr>
<tr>
<td>4. Title</td>
<td>The complete title of the document.</td>
</tr>
<tr>
<td>5. Author</td>
<td>The author(s) of the document.</td>
</tr>
<tr>
<td>6. Journal</td>
<td>The title of the journal in which the article appeared.</td>
</tr>
<tr>
<td>7. Volume</td>
<td>The volume number of the journal in which the article appeared.</td>
</tr>
<tr>
<td>8. Issue Number</td>
<td>The issue number of the document.</td>
</tr>
<tr>
<td>9. Page(s)</td>
<td>If the document is self-contained, pagination is shown as a single number and denotes the length of the document. If an article is part of a larger document, pagination is shown as a range, indicating the starting and ending page.</td>
</tr>
<tr>
<td>10. Issue Date</td>
<td>The month, day, and year of publication.</td>
</tr>
<tr>
<td>11. Publisher</td>
<td>The name of the publisher.</td>
</tr>
<tr>
<td>12. City and State</td>
<td>The city and state where the publisher is located.</td>
</tr>
<tr>
<td>13. Copyright</td>
<td>The year the document was copyrighted.</td>
</tr>
<tr>
<td>15. Index Terms</td>
<td>The terms used to categorize the document.</td>
</tr>
<tr>
<td>16. Available From</td>
<td>The organization that distributes the document.</td>
</tr>
<tr>
<td>17. Order Number</td>
<td>The number assigned by the distributing organization.</td>
</tr>
<tr>
<td>18. Report Number</td>
<td>A number assigned by the organization that produced the document.</td>
</tr>
<tr>
<td>19. Sponsor(s)</td>
<td>The organization sponsoring the research contract or grant for which the document was produced.</td>
</tr>
<tr>
<td>20. Organization</td>
<td>The author's affiliation at the time the document was written.</td>
</tr>
</tbody>
</table>

Please note that the journal name, volume number, issue number, and date issued are printed only if the article appeared as part of a larger document. In addition, not all of these items are available for every journal. The publisher information appears if the document is a textbook.
2. DOCUMENT CITATIONS
The TeleSoft Compiler (TeleSoft Ada), version 2.0a2, for the Callan Unistar 300, using System V Version 4.1a, was tested with version 1.3 of the Ada Compiler Validation Capability (ACVC) validation tests. Version 1.3 of the test suite contained 1989 tests, of which 1668 were applicable to this implementation. Of the applicable tests, 61 were withdrawn due to errors in the tests. All of the remaining 1607 applicable correct tests were passed. (author)

INDEX TERMS

COMPILERS VALIDATION

AVAILABLE FROM: THE AUTHOR

SPONSORS: U.S.A.F. ASD, WRIGHT-PATTERSON AFB, OH

ADA INTEGRATED ENVIRONMENT III COMPUTER PROGRAM DEVELOPMENT SPECIFICATION - VOLUME II

STAFF AUTHOR, TEXAS INSTRUMENTS, INC., LEWISVILLE, TX

This specification establishes the requirements for performance, design, test, and acceptance of a computer program configuration item identified as the Ada Database Subsystem for the Ada Integrated Environment (AIE). The specification describes the functions of the Database Subsystem and describes the interfaces between the Database Subsystem and other components of the AIE. The database dictionary and the program library are also examined. One section reviews the quality assurance provisions of the Ada Database Subsystem.

INDEX TERMS

DATA DICTIONARY QUALITY ASSURANCE
DEVELOPMENT SUPPORT LIBRARIAN SOFTWARE TOOL SYSTEMS

AVAILABLE FROM: NATL. TECHNCL INF. SVC. 5285 PORT ROYAL RD, SPRINGFIELD, VA
ORDER NUMBER: AD A109 977
REPORT NUMBER: 81-360

SPONSORS: ROME AIR DEVELOPMENT CENTER, GAFB, ROME, NY 13441
THE IMPACT OF ADA ON SOFTWARE DEVELOPMENT

LEBLANC, RICHARD J.; GODA, JOHN J.

DOCUMENT NUMBER: 4103 TYPE: JOURNAL ARTICLE

CONFERENCE PROCEEDINGS IEEE SOUTHEASTCON 81, PP. 215-219

This paper will describe some specific features of Ada and discuss how their use should have a significant impact on software development and maintenance costs in a wide variety of application areas. The examples presented in this paper illustrate some of the important features in Ada which will have a significant impact on software design. Foremost of these features is the package, which provides crucial linguistic support for program modularization. The separation of package specification and body makes information hiding possible, thus providing a means to strictly limit the interactions between program modules and programmers. This separation also provides a natural means of individual compilation which retains all of the benefits of complete type and interface checking. The generic parameterization feature adds to the power of the package concept by allowing packages to be as general as possible. (author)

INDEX TERMS

LIFE CYCLE COSTS MAINTENANCE COSTS DEVELOPMENT CYCLE

ADA PROGRAMMING LANGUAGE STANDARDIZATION

COHEN, PAUL M.

DOCUMENT NUMBER: 4287 TYPE: JOURNAL ARTICLE

JOURNAL OF SYSTEMS AND SOFTWARE, VOL 2, ISSUE 4, PP. 351-355

The need for software management and standardization of programming languages used in military systems was first identified by DoD in 1975. DoD at that time supported many limited use languages for what are now called embedded computer applications. This diversity of languages contributed to high software costs. In November 1976, DoD first established seven approved HOLS, FORTRAN, COBOL, JOVIAL-J3, JOVIAL J73, TACPOL, CMS-2, SPL-1. Eventually the number of approved DoD languages may be reduced to three, Ada, FORTRAN, and COBOL. Ada was established as Military Standard 1815, on 10 December 1980. The ANSI standardization process for Ada is in progress. The Ada concept places restrictions on what may be called an Ada compiler. Compilers may not be called Ada compilers until they have passed validation tests. Up to 80% of software costs are incurred after the software has been put into service. Ada can promote a programming style that leads to maintainable software. It is in the program maintenance phase of the software life cycle where large savings will be achieved through the use of Ada. (author)
This article presents a current status report on Ada, the DoD sponsored higher level programming language. The article lists the computers on which Ada compilers exist and lists the operating systems under which the Ada compilers run. A history of the Ada development is presented. In addition the development of an Ada Programming Support Environment (APSE) is discussed. The article also discusses the role that Ada will have in the larger DoD effort to improve software technology - Software Technology for Adaptable Software (STARS).

INDEX TERMS

ADA TOOL ENVIRONMENT

KEN BOWLES TALKS ABOUT ADA PART II

HOFKIN, MARY K.

DOCUMENT NUMBER: 4451 TYPE: JOURNAL ARTICLE

JOURNAL OF PASCAL AND ADA, PP. 40-42

This article is the conclusion of an interview of Ken Bowles by Mary Hofkin which was presented in the September/October 1983 issue of the Journal of Pascal and Ada (see DAN 5689).

INDEX TERMS

HISTORY TECHNOLOGY TRANSFER TECHNOLOGY FORECAST
REPORT ON A BRIEFING SESSION FOR CONTRACTORS OF THE US-DOD-HIGH-ORDER-LANGUAGE PROJECT

ELZER, PETER F.

DOCUMENT NUMBER: 4488 TYPE: TECHNICAL REPORT

This report contains the minutes of meetings held July 26 and 27, 1977 at the Institute for Defense Analysis (IDA) and Defense Advanced Research Projects Agency (DARPA) for contraction of the US-DoD-High-Order-language project. Included in this report are copies of the transparencies presented at the meetings. These meetings were part of the inception of establishing Ada as the DoD-high-order-language.

INDEX TERMS

PROGRAMMING LANGUAGE HISTORY
AVAILABLE FROM: THE AUTHOR
REPORT NUMBER: LTPL-E/ PE 770729

REPORT OF ANALYSIS OF THE PRELIMINARY DESIGNS FOR A COMMON PROGRAMMING LANGUAGE

ELZER, PETER F.; MARIVEL; HEGER; MINEL; TIMMESFELD, K. H.; WAND, IAN C.

DOCUMENT NUMBER: 4507 DOCUMENT DATE: 03/13/78 TYPE: TECHNICAL REPORT

This report is an evaluation of the US-DoD-HOL-phase 1 by a LTPL-E-subgroup which was completed March 13, 1978. It contains an analysis of the preliminary designs for Green, Blue, Red and Yellow common programming language. This report was phase one in establishing Ada as the DoD-high-order-language.

INDEX TERMS

PROGRAMMING LANGUAGE HISTORY
AVAILABLE FROM: THE AUTHOR
REPORT NUMBER: LTPL-E/PE780313

SOME COMMENTS ON TINMAN

BARNES, J.G.P.

DOCUMENT NUMBER: 4521 DOCUMENT DATE: 01/10/76 TYPE: MONOGRAPH

This paper contains a series of comments on TINMAN. (TINMAN is a document that contains the requirements specification for Ada.) Because the author continuously references TINMAN, the report is not understandable to the reader without a reference copy of TINMAN.
A PORTABLE VIRTUAL MACHINE FOR ADA

IBSEN, LEIF

SOFTWARE - PRACTICE AND EXPERIENCE, VOL 14, ISSUE 1, PP. 17-29

A portable compiler can be constructed by letting it generate code for a virtual machine, which is then implemented on the real target machines. The design of a virtual machine, which is especially suitable as a target machine for compiled Ada programs, is described. The main design goals, implementability on mini-computers and portability, are discussed and the resulting design is described in some detail. Some implementation strategies for the machine are proposed and the feasibility of the virtual machine approach is discussed.

INDEX TERMS

PORTABILITY DESIGN VIRTUAL MACHINES

XADA: AN EXECUTABLE ADA DESIGN LANGUAGE METHODOLOGY

HARBAUGH, SAM

ACM ADA LETTERS, VOL IV, ISSUE 6, PP. 27-31

A methodology for using Ada as an executable design language is presented. The methodology follows Booch's admonition to "Design a little--Code a little" to achieve a progressive demonstration of design correctness. Resource consuming, evolutionary stubs are used to execute the software design as the design progresses, in order to demonstrate design self-consistency and proper loading on resources such as CPU operations and disk I/O. The methodology continues through implementation if the programming language is Ada.

INDEX TERMS

DESIGN METHODOLOGIES
WEAPONS THAT THINK

SCHULTZ, JAMES B.

DOCUMENT NUMBER: 4642 TYPE: JOURNAL ARTICLE

DEFENSE ELECTRONICS, PP. 74-78

Pentagon and intelligence analysts are studying the field of Artificial Intelligence (AI) to determine if it holds the keys to solving a broad range of weapons systems challenges from Command, Control, Communications, and Intelligence (C3I) to missile guidance. The military applications of weapons equipped with AI features is discussed in this report. Current AI research projects are reviewed, Defense Advance Research Projects Agency (DARPA) interests are examined, and the application of Ada to AI is discussed in this report.

INDEX TERMS

ARTIFICIAL INTELLIGENCE COMMAND, CONTROL, & COMMUNICATION WEAPONS SYSTEMS APPLICATIONS NATURAL LANGUAGE PROCESSING KNOWLEDGE BASED SYSTEMS LISP

ENGINEERING SOFTWARE

SCHINDLER, MAX (EDITOR)

DOCUMENT NUMBER: 4678 TYPE: JOURNAL ARTICLE

ELECTRONIC DESIGN, VOL 32, ISSUE 1, PP. 160-170

This article discusses the development of operating systems for the year 1984. Also mentioned in this article are the Ada developments that are scheduled for completion during 1984.

INDEX TERMS

ADA TOOL ENVIRONMENT COMPILERS OPERATING SYSTEM DESIGN
Three notations for concurrent programming are compared, namely CSP, Ada, and monitors. CSP is an experimental language for exploring structuring concepts in concurrent programming. Ada is a general-purpose language with concurrent programming facilities. Monitors are a construct for managing access by concurrent processes to shared resources. This paper starts by comparing "lower-level" communication, synchronization, and nondeterminism in CSP and Ada and then examines "higher-level" module interface properties of Ada tasks and monitors. Similarities and differences between CSP and Ada are described. Monitors and tasks are two different mechanisms for achieving serial access to shared resources by concurrently callable procedures. Both rely on queues to achieve serialization, but calls on monitor procedures are scheduled on a single monitor queue, and task entry calls are scheduled on separate queues associated with each entry name. Monitors are passive modules which are activated by being called, but tasks are active modules that execute independently of their callers. Monitor procedures represent multiple threads of control each of which may be suspended and later resumed, but tasks have just a single thread of control. The attempt to map a monitor version of a shortest job scheduler into Ada yields interesting insights into the limitations of Ada mechanisms for synchronization, and suggests that Ada packages may be more appropriate than tasks as a user interface for concurrent computation. (author)

INDEX TERMS
CONCURRENT PROGRAMMING MONITORS PARALLEL PROCESSING

SPONSORS: OFFICE OF NAVAL RESEARCH, 715 BROADWAY-5TH FL. NY, NY;
NASA GRADUATE STUDENTS RESEARCHERS FELLOWSHIP

SAFETY CRITICAL FAST-REAL-TIME SYSTEMS

GUSMANN, B.; NIELSEN, O.F.; HANSEN, R.

DOCUMENT NUMBER: 4818 TYPE: PAPER

AGARD CONFERENCE PREPRINT, PP. 90-95

This paper discusses four languages: FORTRAN, PEARL, C, and Pascal for use in the CCV III system and CSTS. C was chosen to implement both systems with very satisfactory results. A comment is given with respect to the conversion of C-programmed systems to Ada in the future.
It is the aim of software development environments to increase the efficiency with which software is produced. One such environment is the Ada Programming Support Environment (APSE) initiated by the U.S. Department of Defense. These environments are a great benefit to programmers, making some of their tasks much easier. They also offer great opportunities to monitor and control software development. This in turn will affect the way that projects are organized and run, and it will affect project personnel's jobs to varying extents. The way that projects will be affected by the adoption of an APSE is explored in this paper by considering the way that Configuration Management can be implemented in an APSE.

INDEX TERMS

CONFIGURATION MANAGEMENT ADA TOOL ENVIRONMENT

IMPLEMENTING HIGH QUALITY SOFTWARE

High quality software is essential in applications such as avionics. Each stage of development (specification, design, etc.) must be validated, but this paper concentrates on the implementation process. Various factors affecting implementation are discussed and some solutions are considered, in particular the range of tools that is available and the way they can be applied. A set of tools that has been developed within Ferranti Computer Systems Limited, and the method they are designed to support are described. The traditional debug program is shown to be only one part of the whole tool set. Finally, the advantages and
problems of Ada and its environment (APSE) are discussed. (author)

INDEX TERMS

QUALITY ASSURANCE AVIONICS APPLICATIONS SOFTWARE TOOL SYSTEMS

ADA TOOL ENVIRONMENT

AVAILABLE FROM: NATL.TECHNCL INF.SVC.5285 PORT ROYAL RD,SPRINGFIELD,VA

ORDER NUMBER: AD A127131

PORTABILITY AND STYLE IN ADA

NISSEN, JOHN; WALLIS, PETER J. L.

DOCUMENT NUMBER: 4844 TYPE: TEXT

This book contains two guides, one on the portability of Ada programs and one on Ada programming style. The guides are the result of work by the Ada- Europe Portability Working Group and represent the combined expertise of some of the leading authorities on Ada. In the design of Ada, compromises were made between portability and freedom of the compiler implementor; also there are features in Ada that allow the programmer access to machine representations. The portability guide discusses the necessary restrictions on the use of Ada so that truly portable programs can be written. Although Ada is a significant step forward in the encouragement of good programming practice, it is a large language, and so guidance is needed on how best to use the many features. The style guide is concerned with how Ada should be used to contribute towards legibility, maintainability, and correctness of programs. To facilitate use of the guides, the chapters and section numbers correspond to those in the Reference Manual for the Ada Programming Language (ANSI/MIL-STD 1815A, 1983). (author)

INDEX TERMS

PORTABILITY PROGRAMMING TECHNIQUES/METHODOLOGIES

AVAILABLE FROM: CAMBRIDGE U. PRESS 510 NORTH AVE. NEW ROCHELLE, NY

DESIGN EVALUATION REPORT FOR THE ADA INTEGRATED ENVIRONMENT

STAFF AUTHOR, COMPUTER SCIENCES CORP., ARLINGTON BLVD, FALLS CHURCH, VA;
STAFF AUTHOR, SOFTWARE ENGINEERING ASSOCIATES

DOCUMENT NUMBER: 4845 DOCUMENT DATE: 05/11/81 TYPE: TECHNICAL REPORT

This document presents the Computer Sciences Corporation/Software Engineering Associates (CSC/SEA) evaluation of the three competitive Ada Integrated Environment (AIE) designs performed for Rome Air Development Center (RADC). The purpose of these designs is to provide a baseline for the development of an Ada Programming Support Environment (APSE) in the spirit of STONEMAN (Requirements for Ada Programming Support Environments, February 1980). This involves the design of a Kernel APSE (KAPSE) surrounded by a set of program development and
support tools to form a Minimal APSE (MAPSE). Section 2 provides a discussion of advantages and disadvantages of each of the designs organized into major functional areas. Section 3 presents the rating of the designs in terms of the STONEMAN guidelines. Section 4 provides the evaluation in terms of SOW requirements. Section 5 discusses the Phase II evaluation criteria. The basic conclusion of our evaluation team is given in Section 6. Appendix A provides the result of our evaluation of the System Specification against the SOW and content requirements of MIL-STD-483 and MIL-STD-490. (author)

INDEX TERMS

ADA TOOL ENVIRONMENT DESIGN METHODOLOGIES
AVAILABLE FROM: THE AUTHOR

THE HARDEST THING TO LEARN (THOUGHTS ON ADA)

LAMB, DAVID A.

DOCUMENT NUMBER: 4975 TYPE: JOURNAL ARTICLE

ACM ADA LETTERS, VOL II, ISSUE 1, PP. 28-29

A discussion on Ada packages is provided in this article. One of the points discussed is what has to be done about packages now and in the future. Another point commented on is how can existing libraries be used effectively.

INDEX TERMS

PROGRAMMER TRAINING

ADA COMPILER IS AIMED AT DEC VAX

JONES, KEITH (EDITOR)

DOCUMENT NUMBER: 5059 TYPE: JOURNAL ARTICLE

MINI-MICRO SYSTEMS, VOL 15, ISSUE 11, PP. 138

This article describes a forthcoming Ada language compiler that can be hosted by the Berkeley 3 and 4 versions of UNIX and UNIX 32V, and is targeted for Digital Equipment Corporation's VAX minicomputers.

INDEX TERMS

COMPILERS
ADA VALIDATION SUMMARY REPORT

FED. S/W TESTING CNTR

DOCUMENT NUMBER: 6107 DOCUMENT DATE: 05/18/84 TYPE: TECHNICAL REPORT

This report describes the results of the validation effort for the Data General Corporation Compiler ADE Ada, version 5.234, for the Eclipse MV/10000, MV/4000, MV/6000, MV/8000C, MV8000II, and Rolm MSE/800, using AOS/VS 3.12. The compiler was tested with the version 1.3 of the ACVC validation tests. Version 1.3 of the test suite contained 1714 tests, of which 1652 were applicable to this implementation. Of the applicable tests, 61 were withdrawn due to errors in the tests. Of the remaining applicable correct tests 1652 passed, and one anomaly was discovered. The purpose of this report is to document the results of the testing performed on the compiler. (author)

INDEX TERMS

VALIDATION
COMPILERS

AVAILABLE FROM: THE AUTHOR

A COMMENT ON "OPERATOR IDENTIFICATION IN ADA"

GANZINGER, HARALD; RIPKEN, KNUT

DOCUMENT NUMBER: 5132 TYPE: JOURNAL ARTICLE

ACM SIGPLAN NOTICES, VOL 15, ISSUE 9, PP. 39-43

In this article, the author presents an alternate version of an algorithm for traversing expression trees. The article is in response to an article by H. Ganzinger and K. Ripken on the impacts of the Ada overloading rule for the problem of operator identification.

INDEX TERMS

OVERLOADING

SSAGS: A SYNTAX AND SEMANTICS ANALYSIS AND GENERATION SYSTEM

PAYTON, TERI F.; KELLER, S.; PERKINS, J.; ROWAN, S.; MARDINLY, S.

DOCUMENT NUMBER: 5204 TYPE: PAPER

COMPSAC 82. PROCEEDINGS, PP. 424-432
This paper describes a system of automated tools for program generation called a Syntax and Semantics Analysis and Generation System (SSAGS). A functional overview is provided for the Semantics Specification Language (SSL), which is a restricted set of the Ada programming language. An overview is also provided for the program generation tools that make up the SSAGS. Examples are presented depicting the usage of these compiler generation techniques to develop software outside the language translator domain.

INDEX TERMS

AUTOMATIC PROGRAMMING SPECIFICATION LANGUAGES DATA STRUCTURES
SPECIFICATIONS SOFTWARE TOOL SYSTEMS EMBEDDED LANGUAGES

AVAILABLE FROM: IEEE SERVICE CENTER, 445 HOES LA, PISCATAWAY, NJ 08854
ORDER NUMBER: 82CH1810-1

PROGRAMMING LANGUAGES AND THE PROGRAMMING PROCESS

LEVY, MICHAEL R.

DOCUMENT NUMBER: 5207 TYPE: PAPER

COMPSAC 82, PROCEEDINGS, PP. 482-485

This paper shows how it is possible, with the aid of a simple programming environment, to achieve abstraction and encapsulation using a subset of the programming language Pascal. The resulting system is compared with Ada and CLU.

INDEX TERMS

CLU SOFTWARE TOOL SYSTEMS DATA STRUCTURES
MODULARIZATION PASCAL

AVAILABLE FROM: IEEE SERVICE CENTER, 445 HOES LA, PISCATAWAY, NJ 08854
ORDER NUMBER: 82CH1810-1

SPONSORS: NATURAL SCIENCES & ENG RESEARCH COUNCIL OF CANADA

A SURVEY OF COMPUTER RESOURCE UTILIZATION IN ESD WEAPON SYSTEM ACQUISITIONS

CLAPP, JUDITH A.

DOCUMENT NUMBER: 5228 DOCUMENT DATE: 07/82 TYPE: TECHNICAL REPORT

As a part of Air Force System Commands (AFSC's) High Level Standardization Plan, in June 1981 MITRE conducted a survey of embedded computer system acquisitions at Electronic Systems Division (ESD). The purpose of the survey was to determine the impact on ESD programs of proposed military standards for computer Instruction Set Architectures and standards for programming languages. The survey shows a proliferation of computer types among ESD programs but uniformity
in choice of high order programming language. Other data about the practices in procurement of computer resources are also presented. (author)

INDEX TERMS

STANDARDS

RESOURCE MANAGEMENT

PROGRAMMING LANGUAGE

NEBULA

AVAILABLE FROM: MITRE CORP., BOX 208, BEDFORD, MA 01731

REPORT NUMBER: ESD-TR-82-406

SPONSORS: U.S. AIR FORCE

PROCEEDINGS PAPERS OF THE SECOND AFSC AVIONICS STANDARDIZATION CONFERENCE

PORUBCANSKY, CYNTHIA A.

DOCUMENT NUMBER: 5270 TYPE: PROCEEDINGS

PROCEEDINGS 2ND AFSC STANDARDIZATION CONFERENCE, VOL III, 330 P.

This document is a collection of papers presented at the Second AFSC Avionics Standardization Conference held 30 November to 2 December 1984 in Dayton, OH. The scope of the Conference included the complete range of DoD approved embedded computer hardware/software and related interface standards, as well as standard subsystems used within the Tri-Service community and NATO. The theme of the conference was "Rational Standardization." Lessons learned, as well as the pros and cons of standardization, are highlighted. (author)

INDEX TERMS

COMPILERS EMBEDDED COMPUTER SYSTEMS

STANDARDIZATION AVIONICS APPLICATIONS JOVIAL

NEBULA

AVAILABLE FROM: NATL. TECHNICAL INFO. SVC. 5285 PORT ROYAL RD, SPRINGFIELD, VA

REPORT NUMBER: ASB(ENA)-TR-B2-5031

PORTABLE ADA PROGRAMMING SYSTEM COMPILER PROJECT OVERVIEW

MOLICH, ROLF; OEST, OLE N.; BJORNER, DINES

DOCUMENT NUMBER: 5363 DOCUMENT DATE: 03/81 TYPE: TECHNICAL REPORT

This document contains a summary of the Ada Compiler Development Project which is being carried out by a consortium. Chapter 2 contains a brief outline of the total project while the remaining chapters focus on the Ada compiler development project. Chapter 3 contains a technical survey of the compiler project while chapter 4 gives a more detailed technical presentation. A list of references is provided after Chapter 4.
INDEX TERMS

COMPILERS PORTABILITY DEVELOPMENT

AVAILABLE FROM: DANSK DATAMATIK CTR LUNDTOFTEVEJ, DK-2800, LYNBY, DENMARK
REPORT NUMBER: DDC 02/1981-03-27/B

THE DDC ADA COMPILER PROJECT DEVELOPMENT PLAN.
PART 0: DEVELOPMENT METHODOLOGY.

BJORNER, DINES; OEST, OLE N.

DOCUMENT NUMBER: 5364 DOCUMENT DATE: 04/12/80 TYPE: TECHNICAL REPORT

This report is the first of four documents which constitute the four parts of a Development Plan for a mutually beneficial, joint university-industry full Ada compiler construction project. This document contains the Compiler Development Methodology (Part 0). Outlined in this document is the method which will be adhered to and the various components of the project (the formal definition, the compiler, the compiler environment and the run time environment support).

INDEX TERMS

COMPILERS ADA TOOL ENVIRONMENT
DEVELOPMENTAL METHODOLOGIES SOFTWARE ENGINEERING
QUALITY ASSURANCE PROGRAMMING TECHNIQUES/METHODOLOGIES
AUTOMATED DOCUMENTATION

AVAILABLE FROM: DANSK DATAMATIK CTR LUNDTOFTEVEJ, DK-2800, LYNBY, DENMARK
REPORT NUMBER: DDC 80/2 (E2)

ADA DOCUMENTATION AND PROGRAMMING GUIDELINES

WINTERSTEIN, GEORG; PERSCH, GUIDO; DROSSOPOULOU, SOPHIA; DAUSMANN, MANFRED

DOCUMENT NUMBER: 5365 DOCUMENT DATE: 04/24/81 TYPE: TECHNICAL REPORT

This report comprises three papers on the development, implementation and documentation of Ada projects. They summarize the experience gained during the development of a compiler front end for Ada and related work. The three papers described are: Software Documentation Guidelines, Ada Programming Guide, and Documentation Frames of the Ada Implementation Group.

INDEX TERMS

COMPILERS SOFTWARE LIFE CYCLE DOCUMENTATION

REPORT NUMBER: DOC-09

SPONSORS: BUNDESAMT FUR WEHRTECHNIK UND BESCHAFFUNG, KOBLENZ, GER.
BABBAGE: THE LANGUAGE OF THE FUTURE

KARP, TONY

DOCUMENT NUMBER: 5368 TYPE: JOURNAL ARTICLE

DATAMATION, VOL 27, ISSUE 11, PP. 242-247

This article is a satire on the Ada language. Ada is compared to a fictional language called Babbage. As described in this article Babbage is just the opposite of Ada. For example, Ada stresses the concept of software portability while Babbage encourages hardware portability. A number of new conditional statements introduced by Babbage are also presented in this article.

INDEX TERMS

PROGRAMMING LANGUAGE

ADA MULTI-TASKING SUPPORT FOR MICROPROCESSOR SYSTEMS

PETTUS, ROBERT O.; TRASK, MICHAEL J.; LAREAU, NEIL W.

DOCUMENT NUMBER: 5370 TYPE: JOURNAL ARTICLE

CONFERENCE PROCEEDINGS IEEE SOUTHEASTCON '82, PP. 239-242

The purpose of the work described in this paper is to investigate the services which must be provided if Ada is to be supported by a microprocessor which is not specifically designed for this purpose. The topics discussed in this paper are design philosophy of Ada, Ada support requirements, Ada Task Manager (ATM), Task Structure and ATM commands.

INDEX TERMS

MICROPROCESSORS SCHEDULING

REVISIONS TO THE COMPILER VALIDATION IMPLEMENTORS GUIDE

STAFF AUTHOR, ADA JT. PROG. OFF., ARLINGTON, VA 22209

DOCUMENT NUMBER: 5371 DOCUMENT DATE: 02/84 TYPE: TECHNICAL REPORT

This document is a hard copy of the revised chapters of the Compiler Validation Implementor's Guide to comply with the February 1983 ANSI/MIL-STD-1815A version of the Ada language. It was previously only accessible on-line on ECLB. This
This report describes the results of the validation effort for the following Ada translator: Host Machine - DEC VAX 11/780 at New York University; Operating System - VMS 3.1; Target Machine - DEC VAX 11/780; Operating System - VMS 3.1; Language Version - ANSI/MIL-STD-1815A Ada; Translator Name - NYU Ada/ED; Translator Version - 19.7 (March 21, 1983); Validator Version - 1.1 (March 4, 1983). Testing was completed March 31, 1983, in accordance with policies and procedures described in the AVO Policies and Procedures. This report contains test analysis which provides the test procedures and results for each test performed. Also described in detail is how the validation was conducted. (author)

INDEX TERMS

COMPILERS VALIDATION

SPONSORS: ADA JT. PROG. OFF., ARLINGTON, VA 22209

ADA COMPILER VALIDATION SUMMARY REPORT: WESTERN DIGITAL STC-ADA COMPILER, VERSION C1.0M V-004

STAFF AUTHOR, SOFTECH, INC. TOTTEN POND RD, WALTHAM, MA 02154

DOCUMENT NUMBER: 5373 DOCUMENT DATE: 07/28/83 TYPE: TECHNICAL REPORT

This report describes the results of the validation effort for the following Ada translator: Host Machine - Western Digital WD1600 Series Micro engine; Operating System - STC Ada Operating System 2.9; Host Disk System - 10 megabyte Winchester; Target Machine - Western Digital WD1600 Series MicroEngine; Operating System - STC Ada Operating System 2.9; Language Version - ANSI/MIL-STD-1815A Ada; Translator Name - STC-Ada; Translator Version - C1.0m;
This report describes the results of the validation effort for the following Ada translator: Host Machine - ROLM MSE/800, Data General MV/4000, MV/6000, MV/8000, and MV/10000; Operating System - AOS/VS-Ada 2.03; Host Disk System - 2 96 megabyte drives; Target machine - ROLM MSE/800 Data General MV/4000, MV/6000, MV/8000, and MV/10000; Operating System - AOS/VS-Ada 2.03; Language Version - ANSI/MIL-STD-1815A Ada; Translator Version - 4.52; Validator Version - 1.1 (March 4, 1983). Testing was conducted from June 1, 1983 through June 3, 1983 at the ROLM Corporation, San Jose, CA, and from June 2, 1983 through June 4, 1983 at Data General, Westborough, MA, in accordance with AVO policies and procedures. This report contains test analysis which provides the test procedures and results for each test performance. It describes in detail how the validation was conducted. Also included in this report is a complete list of the ACVC test files used in the validation attempt. (author)

INDEX TERMS

COMPILERS SYSTEM VALIDATION
AVAILABLE FROM: DATA & ANALYSIS CENTER FOR SOFTWARE (DACS)

SPONSORS: ADA JT. PROG. OFF., ARLINGTON, VA 22209

ADA COMPILER VALIDATION SUMMARY REPORT: ROLM ADA COMPILER, VERSION 4.52 V-003

STAFF AUTHOR, SOFTECH, INC. TOTTEN POND RD, WALTHAM, MA 02154

DOCUMENT NUMBER: 5374 DOCUMENT DATE: 06/03/83 TYPE: TECHNICAL REPORT

This report describes the results of the validation effort for the following Ada translator: Host Machine - ROLM MSE/800, Data General MV/4000, MV/6000, MV/8000, and MV/10000; Operating System - AOS/VS-Ada 2.03; Host Disk System - 2 96 megabyte drives; Target machine - ROLM MSE/800 Data General MV/4000, MV/6000, MV/8000, and MV/10000; Operating System - AOS/VS-Ada 2.03; Language Version - ANSI/MIL-STD-1815A Ada; Translator Version - 4.52; Validator Version - 1.1 (March 4, 1983). Testing was conducted from June 1, 1983 through June 3, 1983 at the ROLM Corporation, San Jose, CA, and from June 2, 1983 through June 4, 1983 at Data General, Westborough, MA, in accordance with AVO policies and procedures. This report contains test analysis which provides the test procedures and results for each test performance. It describes in detail how the validation was conducted. Also included in this report is a complete list of the ACVC test files used in the validation attempt for the MV/8000, MSE/800, MV/4000, MV/6000, and MV/10000. (author)

INDEX TERMS

COMPILERS SYSTEM VALIDATION
AVAILABLE FROM: DATA & ANALYSIS CENTER FOR SOFTWARE (DACS)

SPONSORS: ADA JT. PROG. OFF., ARLINGTON, VA 22209

ADA COMPILER VALIDATION SUMMARY REPORT: ROLM ADA COMPILER, VERSION 4.42 V-002

STAFF AUTHOR, SOFTECH, INC. TOTTEN POND RD, WALTHAM, MA 02154

DOCUMENT NUMBER: t375 DOCUMENT DATE: 05/12/83 TYPE: TECHNICAL REPORT

This report describes the results of the validation effort for the following Ada translator: Host Machine - ROLM MSE/800, Data General MV/4000, MV/6000,
MV/8000, and MV/10000; Operating System - AOS/VS-Ada 2.03; Host Disk System - 2 96 megabyte drives; Target machine - ROLM MSE/800 Data General MV/4000, MV/6000, MV/8000, and MV/10000; Operating System - AOS/VS-Ada 2.03; Language Version - ANSI/MIL-STD-1815A Ada; Translator Version - 4.42; Validator Version - 1.1 (March 4, 1983). Testing was conducted from May 9, 1983 through May 12, 1983 at the ROLM Corporation, San Jose, CA, in accordance with AVO policies and procedures. This report contains test analysis which provides the test procedures and results for each test performed. It describes in detail how the validation was conducted. This report also furnishes a list of compiler nonconformances. (author)

INDEX TERMS

COMPILEDERS SYSTEM VALIDATION

SPONSORS: ADA JT. PROG. OFF., ARLINGTON, VA 22209

THE CURRENT PROGRAMMING LANGUAGE STANDARDS SCENE VIII A: ADA

MCGETTRICK, ANDREW D.

DOCUMENT NUMBER: 5390 TYPE: JOURNAL ARTICLE

COMPUTERS & STANDARDS, VOL 2, ISSUE 2, PP. 107-113

This article summarizes the developments in the standardization of the Ada Programming language from January 1980 to May 1983.

INDEX TERMS

STANDARDIZATION

THOUGHTS ON ADA (SUBSETS)

LAMB, DAVID A.

DOCUMENT NUMBER: 5399 TYPE: JOURNAL ARTICLE

ACM ADA LETTERS, VOL II, ISSUE 3, PP. 14-15

This article includes discussions on Ada subsetting. A rule on subsets is established in this article, then differences are presented on this rule. A list of reasons for defining subsets is also discussed in the critique.

INDEX TERMS

COMPILEDERS
ADA TEAMS UP WITH 32-BIT CHIP TO FORM EFFICIENT OEM SYSTEM

SCHINDLER, MAX

DOCUMENT NUMBER: 5400 TYPE: JOURNAL ARTICLE

ELECTRONIC DESIGN, VOL 29, ISSUE 4, PP. 38-38

This article discusses the design of the 32-bit iAPX 432 microprocessor chip sets hardware together with its software, an operating system called iMAX, which is written in the Ada programming language. Extensions to the Ada language along with results of these extensions are also discussed.

INDEX TERMS

OPERATING SYSTEMS MICROPROCESSORS DISTRIBUTED PROCESSING

ARCHITECTURE

PROGRAMMING EMBEDDED SYSTEMS WITH ADA

DOWNES, V.A.; GOLDSACK, STEPHEN J.

DOCUMENT NUMBER: 5401 TYPE: TEXT

This book is not intended for the beginning Ada programmer. This is a book on how to use Ada in the embedded systems environment. The examples in this book were tested using the NYU compiler, and a full listing of a hospital patient monitoring system is given in the last chapter. The book centers on the monitor system as the main example. Some of the topics covered are special problems of embedded systems. Ada solutions to the problems of software building for large scale embedded systems, modeling the problem domain, building data structures and low level and real time features.

INDEX TERMS

SPECIFICATION TOOLS AND TECHNIQUES DATA STRUCTURES

CONCURRENT PROGRAMMING EMBEDDED COMPUTER SYSTEMS

AVAILABLE FROM: PRENTICE-HALL, 200 OLD TAPPAN RD, OLD TAPPAN, NJ 07645

ADA AN ADVANCED INTRODUCTION

GEHANI, NARAIN H.

DOCUMENT NUMBER: 5402 TYPE: TEXT

This book is written especially for readers who have a good knowledge of at
least one procedural programming language such as Pascal, C, PL/I, Algol 60, Simula 67, Algol 68 or FORTRAN. The book focuses primarily on the novel aspects of Ada, which are illustrated by many fairly difficult and concrete examples which are written out in full. Interesting differences between Ada and other programming languages are noted. The example programs are developed using stepwise refinement to assist the reader in understanding their design and development. The first chapter is an introduction to the features of Ada that are rather common, such as those found in programming languages like Pascal, C, PL/I or FORTRAN. Elaborate details about each feature are not provided. The remaining chapters focus on the novel aspects of Ada devoting a chapter to each of the following topics: treatment of types, packages, concurrency or tasking, exception handling generic facilities, program structure and separate compilation, and representation clauses and implementation dependent features.

INDEX TERMS

CONCURRENT PROGRAMMING PROGRAM COMPLEXITY STEPWISE REFINEMENT

AVAILABLE FROM: PRENTICE-HALL, 200 OLD TAPPAN RD, OLD TAPPAN, NJ 07645

CAN ADA LOWER THE COST OF SOFTWARE IN C3I SYSTEMS?

SCHMITZ, H. GREGORY DR.

DOCUMENT NUMBER: 5403 TYPE: JOURNAL ARTICLE

SIGNAL - JOURNAL OF AFCEA, VOL 37, ISSUE 12, PP. 76-77

This paper discusses what initiated the Ada program, the development process that was used, the current status of Ada, and most importantly, how Ada can help lower the cost of software for C3I systems in the future. (author)

INDEX TERMS

COMMAND, CONTROL, & COMMUNICATION COST
STANDARDS PACKAGING STRONG TYPING

ADA FOR PROGRAMMERS

OLSEN, ERIC W.; WHITEHILL, STEPHEN B.

DOCUMENT NUMBER: 5404 TYPE: TEXT

The Reference Manual for Ada Programming Language (LRM) is not intended for use by anyone not already familiar with Ada. This book presents an overview of the Ada programming language. The Ada topics covered in this book are predefined types and operations, expressions, object declarations, basic Ada statements, subprograms, packages, user-defined types, derived types, real types, array
types, record types and access types, operator overloading, overloading enumeration literals, generics, tasking, exceptions, program structure and separate compilation.

INDEX TERMS

STRUCTURED PROGRAMMING CONCURRENT PROGRAMMING
AVAILABLE FROM: PRENTICE-HALL, 200 OLD TAPPAN RD, OLD TAPPAN, NJ 07645

ADA FOR EXPERIENCED PROGRAMMERS

HABERMANN, A. NICO; PERRY, DEWAYNE E.

DOCUMENT NUMBER: 5405 TYPE: TEXT

The goal of this book is a presentation of the major features of the Ada programming language and their relevance to software engineering. Since concepts such as data abstraction, exception handling and concurrency are of fundamental importance to the design and maintenance of software systems, the book explains in detail how Ada's facilities support such concepts. The book consists of three parts: an introductory chapter, nine chapters dealing with sequential language features and six chapters and an appendix dealing with concurrent language features. The introductory chapter presents a brief look at the development of programming languages, discusses the similarities and major differences between Pascal and Ada, and covers the traditional language constructs of declarations, control statements and expressions. In the sequential part, the central themes discussed are the concepts of data types in Pascal and of data abstraction in Ada. Starting with the open types and the limited abstraction in Pascal, the discussion proceeds to the various degrees of information hiding and abstraction available in Ada. In addition, it shows the generalization of the static objects in Pascal into the flexible, dynamic objects in Ada. In the third part, discussed are the traditional problems of concurrent processes such as synchronization, mutual exclusion and communication. (author)

INDEX TERMS

PROGRAMMING LANGUAGE CONCURRENT PROGRAMMING DATA STRUCTURES
AVAILABLE FROM: ADDISON-WESLEY PUBLISHING CO., READING, MA 01867

PROBLEM SOLVING WITH ADA

MAYOH, BRIAN

DOCUMENT NUMBER: 5406 TYPE: TEXT

Chapter one of this book looks at how one can specify problems precisely and introduces the divide-and-conquer approach to problem solving. Chapter two describes the notions of algorithms, variables and parameters and tells how to convert algorithms into Ada programs and run them on a computer. Chapter three discusses several powerful ways of combining solutions of small problems into
solutions of large problems: choice, repetition, recursion, exceptions and parallelism. Chapter four presents several useful environments to illustrate the slogan: "Careful design of environments is the key to solving large problems in Ada." Chapter five explains the Ada type mechanism for finding conceptual errors in problem solutions. Chapter six contains various ways of structuring data. Chapter seven illustrates the Ada concepts of generic problem solutions by treating the important practical problem of sorting and searching. Chapter eight contains a history of computer revolution and a discussion of the real dangers that accompany this revolution.

INDEX TERMS

DATA STRUCTURES STEPWISE REFINEMENT

AVAILABLE FROM: JOHN WILEY & SONS, 605 3RD AVE., NY, NY 10016

ADA: A PROGRAMMER'S CONVERSION COURSE

STRATFORD-COLLINS M.J.

DOCUMENT NUMBER: 5407 TYPE: TEXT

This book is aimed at providing the professional programmer with an easy means to learn the basics of Ada. It therefore assumes that the reader has knowledge of at least one other high-level programming language. It is not intended to be a primer on programming, nor a reference manual for the language. It concentrates instead on those features which will be used most often by most programmers. The first five chapters are designed to cover the basic language elements which are common to most modern procedural languages. Chapter 1 is an introduction. Chapter 2 is concerned with control over program flow. Chapters 3 and 4 with data types and data structures and Chapter 5 with procedures and functions. Chapters 6, 7, 8 and 9 cover the package concept, the generic concept, support for exception handling and language constructs for tasking support, respectively. Chapter 10 is devoted to a discussion of the issues of program structure, and name scope and visibility, and the book closes with a chapter covering the Input and Output facilities provided by Ada. For reference purposes, Appendix A provides a syntax definition of the language while Appendix B contains a list of Ada's reserved words. (author)

INDEX TERMS

MODERN PROGRAMMING PRACTICES
PROGRAMMING TECHNIQUES/METHODOLOGIES

AVAILABLE FROM: JOHN WILEY & SONS, 605 3RD AVE., NY, NY 10016

AN INTRODUCTION TO ADA

YOUNG, STEPHEN J., PH.D.

DOCUMENT NUMBER: 5408 TYPE: TEXT
This book is aimed at students and experienced programmers. It provides a complete introduction to programming in Ada. All Ada language features are carefully explained and wherever possible are illustrated by examples. A key feature of the book is the inclusion of an extended example at the end of each chapter. These are intended to give further clarification of the points covered in that chapter, but more importantly they are used to illustrate how programs should be designed in Ada. In particular, strong emphasis is placed on the use of the package in supporting data abstraction. Finally, exercises are provided with each chapter, and solutions to a selection of these are given at the end of the book. (author)

INDEX TERMS

PROGRAM UNDERSTANDING MODERN PROGRAMMING PRACTICES
PROGRAMMING TECHNIQUES/METHODOLOGIES

AVAILABLE FROM: JOHN WILEY & SONS, 605 3RD AVE., NY, NY 10016

PROGRAMMING IN ADA

WIENER, RICHARD S.; SINCOVEC, RICHARD F.

DOCUMENT NUMBER: 5409 TYPE: TEXT

The book's organization is straightforward and logical. The first eight chapters deal with the basic control and data structures associated with Ada. This material is easily accessible to anyone with a knowledge of another high-level language. The second part of the book (chapters 9-16) is devoted to the powerful and advanced features that set Ada apart from other programming languages. Concepts associated with advanced programming and large-scale development and maintenance of software are discussed in detail. Convenient summaries at the end of each chapter reinforce the subject matter. The authors make extensive use of applications programs in data structures, numerical analysis, and algorithm design to support their explanations of Ada constructs and features. As new Ada features are presented, some programs that were introduced earlier in the text are updated to demonstrate how these new features improve program design. All examples reflect proper programming style, and most of the programs have been checked and run to ensure their validity. (author)

INDEX TERMS

DATA STRUCTURES CONCURRENT PROGRAMMING RECURSION

AVAILABLE FROM: JOHN WILEY & SONS, 605 3RD AVE., NY, NY 10016

PROGRAMMING CONCEPTS WITH THE ADA LANGUAGE

FREEDMAN, ROY S.

DOCUMENT NUMBER: 5410 TYPE: TEXT

This book is designed to help the reader understand the concepts discussed in
the Ada Language Reference Manual. The reader will be able to more effectively design an Ada program by using this book in conjunction with the Language Reference Manual and the more formal and rigorous Ada literature. Many examples used in this book are not strictly confined to traditional programming because of the many unique characteristics of the Ada language. Features of Ada which illustrate its use as a design aid are emphasized in this book. Some of the topics covered are programming structures, data structures, tasks and system design with Ada. The appendix discusses the following important language characteristics: use of the apostrophe, exceptions, pragmas, input-output and special characters in Ada.

INDEX TERMS

PROGRAMMING LANGUAGE EMBEDDED LANGUAGES
PROGRAM CONTROL LANGUAGE (PDL)

AVAILABLE FROM: PETROCELLI BOOKS, 1101 STATE RD, PRINCETON, NJ 08540

INVITATION TO ADA & ADA REFERENCE MANUAL (JULY 1980)

KATZAN, HARRY JR.

DOCUMENT NUMBER: 5411 TYPE: TEXT

There are two parts to this book. Part One is an invitation to scientists, engineers, analysts, and students to learn the Ada programming language. Part Two contains the Reference Manual of the Ada Programming Language Proposed Standard Document, dated July 1980. A basic understanding of computers is necessary to use this text effectively, and no previous knowledge of any higher-level programming language is required. This text emphasizes classical programming and leaves many of the esoteric features in Ada for advanced books on the subject. The textual material attempts to encourage good programming practices.

INDEX TERMS

EMBEDDED LANGUAGES PROGRAMMING LANGUAGE

AVAILABLE FROM: PETROCELLI BOOKS, 1101 STATE RD, PRINCETON, NJ 08540

KERNEL ADA PROGRAMMING SUPPORT ENVIRONMENT (KAPSE) INTERFACE TEAM: PUBLIC REPORT VOL. III

KAPSE INTERFACE TEAM

DOCUMENT NUMBER: 5414 DOCUMENT DATE: 10/25/83 TYPE: TECHNICAL REPORT

This report is the third in a series that is being published by the KAPSE Interface Team (KIT). This series of reports serves to record the activities which have taken place to date and submits for public review the products that have resulted. The reports are issued approximately every six months. They should be viewed as snapshots of the progress of the KIT and its companion team.
the KAPSE Interface Team from Industry and Academia (KITIA); everything that is ready for public review at a given time is included. These reports represent evolving ideas, so the contents should not be taken as fixed or final. (author)

INDEX TERMS

ADA TOOL ENVIRONMENT
AVAILABLE FROM: DATA & ANALYSIS CENTER FOR SOFTWARE (DACS)
ORDER NUMBER: AD-A141576
REPORT NUMBER: TD 552

SPONSORS: ADA JT. PROG. OFF., ARLINGTON, VA 22209

A PROGRAMMER'S VIEW OF THE INTEL 432 SYSTEM

ORGANICK, DR. ELLIOTT I.

DOCUMENT NUMBER: 5421 TYPE: TEXT

The principle theme in this book is the effective implementation of the concepts of multiprocessing, object-based design, and object filing systems as exhibited by the i432. This book provides the user with a new dimension for expressive power and productivity for both system software and applications programs, and at new levels of simplicity and efficiency. Some of the areas discussed include structure and use of Ada packages and tasks; hardware and system software support for interprocess communication and for process (task) dispatching and scheduling; architectural and Ada language support for object structures; emphasizing type management and access control; the supporting operating system iMAX; several of its important "user-interfaces"; the importance of input-output peripheral sub-systems and their relationship with the central object-based architecture of i432; and iMAX provided implementations of process management, memory management, and object filing and user interfaces to these facilities. This book contains three sets of appendices providing lists of i432-based literature references; a group of compiled Ada program units comprising versions of an investment management system; and user interfaces to iMAX that help confirm and expand understanding of the functionality, scope, and flexibility of iMAX. (author)

INDEX TERMS

MICROPROCESSORS DISTRIBUTED PROCESSING STRUCTURED PROGRAMMING
MEMORY MANAGEMENT CONCURRENT PROGRAMMING
INTERPROCESS COMMUNICATION

AVAILABLE FROM: MCGRaw-HILL BOOK CO. 1221 AV OF AMERICAS, NY, NY 10020
ADVANCED COMPUTER INFORMATION PROCESSING
CAPABILITY

MARCINIAK, JOHN J. COL

DOCUMENT NUMBER: 5423 TYPE: JOURNAL ARTICLE

SIGNAL - JOURNAL OF AFCEA, VOL 37, ISSUE 12, PP. 50-51

This article discusses advanced computer technology which can support military command, control, communication and intelligence (C3I) systems. The technology includes requirement and design language, standardized instruction set computers, and standard high order language compilers (Ada). The need for successful technology transitions in the development of C3I system is also discussed.

INDEX TERMS

COMMAND, CONTROL, & COMMUNICATION
DECISION SUPPORT SYSTEMS

TECHNOLOGY TRANSFER

INTEGRATION TESTING OF SOFTWARE

LEATHRUM, JAMES F.

DOCUMENT NUMBER: 5428 TYPE: PROCEEDINGS

NATIONAL CONFERENCE ON SOFTWARE TEST & EVALUATION, PP. C1-C4

The technology of integration testing for software is considered in the context of similar problems arising in other disciplines. The impact of Ada and the Ada program support environments upon integration testing is developed in terms of the reduction of risk associated with strong typing of user-defined types. The case for shared testing technology is established in relationship to other technologies which have not openly shared details of successes or failures. (author)

INDEX TERMS

TESTING

ADA TOOL ENVIRONMENT
This paper presents a variety of ideas and opinions on increasing the productivity and reliability of software. Interface technology and knowledge engineering are suggested as primary themes for research and development in the 1980's and 1990's. The impact of programming environments and powerful personal computers on testing and management technology is considered. The evolution of programming languages and the relation of Ada to its predecessors is reviewed. The notion of "capital" and "capital-intensive" are defined in terms of reusability of resources, and the contribution of Ada to the development of capital-intensive software technology is examined. The relation between maintainability, enhancement, and evolution of systems is discussed. The relation between knowledge engineering and software technology is explored. Coordinated approaches to making software technology more capital-intensive, such as the Japanese fifth-generation computer proposal and the DoD software initiative are examined in the conclusion. (author)

INDEX TERMS

PRODUCTIVITY RELIABILITY--DIFFERENCES OF OPINION
SOFTWARE ENGINEERING KNOWLEDGE BASED SYSTEMS TECHNOLOGY FORECAST

SPONSORS: OFFICE OF NAVAL RESEARCH

ADA SYSTEM SPECIFICATION FOR ADA INTEGRATED ENVIRONMENT TYPE A

STAFF AUTHOR, INTERMETRICS, INC., CAMBRIDGE, MA 02138

DOCUMENT NUMBER: 5444 DOCUMENT DATE: 07/12/82 TYPE: TECHNICAL REPORT

This specification establishes the performance, design, development and test requirements for the Ada Integrated Environment (AIE). The following topics are discussed: (1) Applicable documents, (2) Requirements, (3) Quality Assurance Provisions, and (4) Preparation for Delivery.

INDEX TERMS

QUALITY ASSURANCE DESIGN TOOLS AND TECHNIQUES
TEST METHODOLOGIES ADA TOOL ENVIRONMENT
AVAILABLE FROM: THE AUTHOR
REPORT NUMBER: IR-676-1

SPONSORS: ROME AIR DEVELOPMENT CENTER, GAFB, ROME, NY 13441
PROGRAM VERIFICATION USING ADA

MCGETTRICK, ANDREW D.

DOCUMENT NUMBER: 6452 TYPE: TEXT

The main concern of this book is program verification. The discussions are not confined to proving correctness but are more generally concerned with proving properties of programs. The book begins with simple programs and progresses gradually to programs involving the use of conditionals, loops, arrays, complex data structures, and procedures (possibly recursive). The programming language used for expressing these programs is Ada. In the final chapter some brief remarks are made concerning the provision of automatic aids for program verification.

INDEX TERMS

VERIFICATION TOOLS AND TECHNIQUES
CORRECTNESS PROOFS
AUTOMATED VERIFICATION TOOLS
PARALLEL PROCESSING
LANGUAGE DESIGN
AVAILABLE FROM: CAMBRIDGE U. PRESS 510 NORTH AVE. NEW ROCHELLE, NY

TOWARD ADA: THE CONTINUING DEVELOPMENT OF AN ADA COMPILER

WERNER, PATRICK R.

DOCUMENT NUMBER: 5454 DOCUMENT DATE: 12/81 TYPE: DISSERTATION

This thesis involves the continuing development of an Ada compiler, the AFIT-Ada compiler. Basic concepts of the compilation process are reviewed. The design and structure of the AFIT-Ada compiler are examined. Tests from the Ada Compiler Validation Capability system are modified for the subset of the Ada language currently implemented by the AFIT-Ada compiler. Those modified tests are run against the compiler to assure compliance with the Ada Reference Manual. Deviations from the language were corrected. Sections of the existing compiler were rewritten into a more structured manner. Recommendations were made for further development. This continuing development of the AFIT-Ada compiler was performed on the DEC-10 system of the Air Force Avionics Laboratory at Wright-Patterson AFB, Ohio.

INDEX TERMS

COMPILERS
VALIDATION
AVAILABLE FROM: DEFENSE TECH INFO CNTR, CAMERON STN, ALEXANDRIA VA 22314
ORDER NUMBER: AD-A115479
REPORT NUMBER: AFIT/GCS/MA/B1D-7

SPONSORS: U.S.A.F. AVIONICS LAB, W-PAFB, OH 45433
ENGINEERING ADA

BERARD, EDWARD V.

DOCUMENT NUMBER: 5456 TYPE: JOURNAL ARTICLE.

ACM ADA LETTERS. VOL 3, ISSUE 3, PP. 33-44

This article discusses utilizing Ada in software engineering. In particular, the author discusses software metrics and Ada. He focuses on Maurice H. Halstead's software metrics by providing a brief introduction to the topic, a sample calculation using the metrics, limitations in the metrics, and a brief bibliography.

INDEX TERMS

SOFTWARE SCIENCE COMPLEXITY MEASUREMENT HALSTEAD'S LAW

DRAFT SPECIFICATION OF THE COMMON APSE INTERFACE SET (CAIS) VERSION 1.1

KIT/KITIA CAIS WKG GROUP

DOCUMENT NUMBER: 5471 DOCUMENT DATE: 09/30/83 TYPE: TECHNICAL REPORT

This document provides specifications for a set of Ada packages which together form a Common APSE Interface Set (CAIS) for Ada Programming Support Environments (APSEs). This interface set is designed to promote the source-level portability of Ada programs, particularly Ada software development tools. The initial phase of this effort is directed toward the interfaces of the Ada Integrated Environment (AIE) and the Ada Language System (ALS). This document is version 1.1 of the CAIS which is intended to provide the basis for evolution of the CAIS as APSEs are implemented, as tools are transported, and as tools interoperability issues are encountered. The scope of the CAIS includes interfaces to those services traditionally provided by an operating system that affect tool transportability. Ideally, all APSE tools would be implementable using only the Ada language and the CAIS. This version of the CAIS is intended to provide most interfaces required by common tools. This version of the CAIS includes six interface areas: node models, structured nodes, file nodes, process nodes, device nodes, and utilities. (author)

INDEX TERMS

ADA TOOL ENVIRONMENT

AVAILABLE FROM: DATA & ANALYSIS CENTER FOR SOFTWARE (DACS)
The aim of this book is not to teach how to write Ada programs. It discusses the style of Ada programs and proper usage of advanced Ada constructs. It also contains a discussion of abstraction in programming languages. This book is organized into two parts. The first part traces the important ideas of modern languages to their roots in the languages of the past decade and shows how modern languages respond to contemporary problems in software development. The second part examines five problems to be programmed using Ada. For each problem a complete Ada program is given, followed by a discussion of how the Ada language affected various design decisions. These problems were selected to be as practical as possible rather than to illustrate any particular set of language features.

INDEX TERMS

PROGRAMMING TECHNIQUES/METHODOLOGIES
MODERN PROGRAMMING PRACTICES
DISTRIBUTED PROCESSING

AVAILABLE FROM: SPRINGER-VERLAG, INC., NEW YORK NY 10010

SPONSORS: NATIONAL SCIENCE FOUNDATION;
U.S.A.F. AVIONICS LAB, W-PAFB, OH 45433;
DEFENSE ADVANCED RESEARCH PROJECTS AGENCY, ARLINGTON, VA

A COMPARISON OF PASCAL AND ADA

WINCHMANN, B.A.

DOCUMENT NUMBER: 5474 TYPE: TEXT

This paper presents a high-level comparison of Pascal and Ada. It shows how similar concepts are expressed in the two languages and points out that there are many facilities in Ada that have no counterparts in Pascal (e.g. concurrent programming, exception handling, and packages.) Thus, some of the seeming simplicity of Pascal and complexity of Ada is actually a result of the completeness of the Ada language definition.

INDEX TERMS

PASCAL
AVAILABLE FROM: PRENTICE-HALL, 200 OLD TAPPAN RD, OLD TAPPAN, NJ 07645
A COMPARISON OF PROGRAMMING LANGUAGES: ADA, PASCAL, C

EVANS, ARTHUR JR.

DOCUMENT NUMBER: 5475 TYPE: TEXT

This paper reviews each of the languages Ada, Pascal, and C for their suitability for systems programming. The author begins by listing characteristics of systems programs and then compares the languages on a feature by feature basis. Although he is especially critical of C, he criticizes the other two languages as well.

INDEX TERMS

C LANGUAGE PASCAL PROGRAMMING

SYSTEM DESIGN REQUIREMENTS

AVAILABLE FROM: PRENTICE-HALL, 200 OLD TAPPAN RD, OLD TAPPAN, NJ 07645

AN EARLY ASSESSMENT OF THE ADA PROGRAMMING LANGUAGE

GEHANI, NARAIN H.

DOCUMENT NUMBER: 5477 TYPE: TEXT

This paper is based on extensive study of and experimentation with the Ada language. The author expresses his opinion that despite its problems, Ada represents a considerable advance over existing languages, since it incorporates many of the results of programming language research from the 1970s. He claims that Ada is weakest in its facilities that implement the most recent research results, especially the derived type mechanism and the facilities for concurrent programming.

INDEX TERMS

CONCURRENT PROGRAMMING

AVAILABLE FROM: PRENTICE-HALL, 200 OLD TAPPAN RD, OLD TAPPAN, NJ 07645

ADA METHODOLOGY QUESTIONNAIRE SUMMARY

PORCELLA, MARIA; FREEMAN, PETER; WASSERMAN, ANTHONY I.

DOCUMENT NUMBER: 5484 DOCUMENT DATE: 11/82 TYPE: TECHNICAL REPORT

In Spring, 1982, a questionnaire was developed on software development methodologies. Identified 48 methodologies to be surveyed, and sent the survey to the developers of these methodologies. The intent of the survey was to gather conceptual, technical, and usage data of a general nature and, more
specifically, to relate the data to potential methodology usage in an Ada development environment, wherever possible. The intent was not to describe any particular methodology in detail. The results of the survey are presented here in a form that captures the factual results and suggests a first level of generalization of the state of the art in software development methodology. A questionnaire was chosen as the instrument for conducting the survey because resource constraints prohibited a more thorough survey method, such as interviewing. The questionnaire contained a combination of free-form and multiple-choice questions. This allowed respondents to describe the methodology of free-form and multiple-choice questions. This allowed respondents to describe the methodology in their own terms, as well as in standardized terms. (author).

INDEX TERMS

- DESIGN METHODOLOGIES
- DEVELOPMENTAL METHODOLOGIES

AVAILABLE FROM: THE AUTHOR

IMPLEMENTING AN ADA KERNEL ON NEBULA

INGARGIOLA, GIORGIO P.

DOCUMENT NUMBER: 5485 DOCUMENT DATE: 08/83 TYPE: TECHNICAL REPORT

This report reviews the concurrency features of Ada, examines the aspects of the NEBULA architecture that are more significant for the implementation of concurrent programs, suggests a method for reducing the tasking mechanisms of Ada to a few simple kernel operations, and evaluates the NEBULA architecture in terms of this method and these operations.

INDEX TERMS

- MICROPROCESSORS
- SYSTEM ARCHITECTURE
- NEBULA
- MEMORY MANAGEMENT
- REAL-TIME SYSTEMS
- MINicomputers
- MICRO COMPUTERS
- CONCURRENT PROGRAMMING

AVAILABLE FROM: DEFENSE TECH INFO CNTR, CAMERON STN, ALEXANDRIA VA 22314
ORDER NUMBER: AD-A132-745
REPORT NUMBER: 18023.I-EL-R

SPONSORS: U.S. ARMY RESEARCH OFFICE

AN APPROACH FOR IMPLEMENTING A MICROCOMPUTER BASED REPORT ORIGINATION SYSTEM IN THE ADA PROGRAMMING LANGUAGE

CRITZ, MICHAEL RICHARD

DOCUMENT NUMBER: 5488 DOCUMENT DATE: 03/83 TYPE: DISSERTATION

This thesis examines the use of an inexpensive commercial microcomputer for the preparation of Naval Reporting Structure Operational Reports. These highly
formatted reports provide critical unit information used by the National Command Authority and Joint Chiefs of Staff in assessing the nation's defense posture. Since these reports are processed by computer, correct formatting and data entry are essential to preserve the timeliness and accuracy of the information. The requirements of a Report Origination System are investigated from the perspective of the system operator, the message drafter, and the message releasing authority. Interfaces are developed which provide for system application to different hardware configuration. A subset of the Ada language is used to allow structured programming and data abstraction techniques. Elements of the Unit Status and Identify Report (UNITREP) are implemented using this method. (author)

INDEX TERMS

TEXT-PROCESSING APPLICATIONS MICRO COMPUTERS
COMMAND, CONTROL, & COMMUNICATION
AVAILABLE FROM: DEFENSE TECH INFO CNTR, CAMERON STN, ALEXANDRIA VA 22314
ORDER NUMBER: ADA12802B

SPONSORS: NAVAL POSTGRADUATE SCHOOL, MONTEREY, CA 93940

LIFE CYCLE SUPPORT IN THE ADA ENVIRONMENT

MCDERMID, JOHN A.; RIPKEN, KNUT

DOCUMENT NUMBER: 5496 TYPE: TEXT

This book tackles the requirements for, and the choice of, methods and tools for a full APSE (Ada Programming Support Environment). It concentrates on the combination of methods for software development, integration, maintenance, and configuration control with those for project management to produce a coherent software development and maintenance methodology. Once a coherent methodology has been produced it is possible to see how the methods can be supported by tools to form an APSE giving coherent support for the whole software life-cycle. The work reported on in this book was performed by System Designers Ltd., and TECST-Software with the support of the Commission of the European Communities. It presents a detailed life-cycle model, discusses a management philosophy compatible with that model, and gives an experimental assessment of individual methods. (author)

INDEX TERMS

ADA TOOL ENVIRONMENT SOFTWARE LIFE CYCLE DEVELOPMENT CYCLE
DEVELOPMENTAL METHODOLOGIES REQUIREMENTS TOOLS & TECHNIQUES
AVAILABLE FROM: CAMBRIDGE U. PRESS 510 NORTH AVE. NEW ROCHELLE, NY
This report describes the results of the validation effort for an Ada translator. The purpose of the report is to document the results of the testing performed on the translator. The New York University Compiler (NYU Ada/Ed), version 1.4, for the VAX 11/780, using VMS 3.5, was tested with version 1.4 of the Ada Compiler Validation Capability (ACVC) validation tests. Version 1.4 of the test suite contained 2185 tests, of which 1857 were applicable to this implementation. Of the applicable tests, 10 were withdrawn due to errors in the tests. All of the remaining 1847 applicable correct tests were passed.

INDEX TERMS

COMPILERS VALIDATION

AVAILABLE FROM: THE AUTHOR

SPONSORS: U.S.A.F. ASD, WRIGHT-PATTERSON AFB, OH

CPM PLUS BOOTSTRAP LOADER IN JANUS/ADA

MANN, STEPHEN E.

DOCUMENT NUMBER: 5513 TYPE: JOURNAL ARTICLE

JOURNAL OF PASCAL AND ADA, PP. 36-40

This article presents an example of a JANUS/Ada program. The example program is a portion of a CP/M Plus bootstrap sequence: CPMLDR (bootstrap loader) is executed before the operating system is loaded. The author concludes that even though JANUS/Ada is not a full Ada implementation, it is suited to systems programming and developing embedded systems for microcomputers.

INDEX TERMS

SYSTEM DESIGN MICRO COMPUTERS
EMBEDDED COMPUTER SYSTEMS
This article discusses the value of the Ada facilities for defining floating point and fixed point types. The author examines the difference between delta numbers and digit numbers, explains some reasons why both methods of representing real numbers are provided, and where they might be used.

INDEX TERMS

DATA TYPES NUMERICAL MANIPULATION

ABSTRACT DATA TYPES IN ADA

Abstract data types are a type encapsulation concept for designing modular, well-structured software. Ada has a package construct for statically encapsulating groups of related declarations, and provides for abstract data type declarations using limited private types within packages. Other systems programming languages, such as CLU, provide a distinct class encapsulation construct for implementing abstract data types. This paper compares the mechanism adopted by Ada with a distinct class construct. The Ada mechanism has a number of disadvantages for Ada language users and implementors. The restrictions upon the use of abstract data types imposed by Ada may result in inefficient or insecure systems. (author)

INDEX TERMS

ABSTRACT DATA TYPES LANGUAGE STRUCTURE SECURITY EFFICIENCY CLU DATA ABSTRACTION
This article discusses Modula-to-Ada type translation. The author compares Ada and Modula in order to identify the features and limitations of both languages with respect to data types. Enumeration, subrange, pointer, record, procedure, opaque and private types are examined in the comparison.

INDEX TERMS
- ABSTRACT DATA TYPES
- MODULA

SPONSORS: BURROUGHS CORPORATION;
U. OF UTAH, SALT LAKE CITY, UTAH 84112

THE ARMY ADA EDUCATION PROGRAM

TURNER, DENNIS J.

This paper provides an overview of the Army's Ada education and training program and summarizes the products and materials which are being produced under contracts with Softech, Inc., New York University, and Jersey City State College.

INDEX TERMS
- PROGRAMMER TRAINING

THE U.S. ARMY MODEL ADA TRAINING CURRICULUM

TEXEL, PUTNAM

This paper describes the U.S. Army Model Ada Training Curriculum, developed by Softech, Inc. for the U.S. Army, Ft. Monmouth, N.J. The curriculum consists of
individual modules which can be grouped together to form the courses and training plans that best satisfy the needs of specific organizations. The paper describes the modules in terms of content, prerequisites, and status, as of the date of this conference. Finally the paper addresses how a manager might go about using this curriculum to satisfy the training needs of his organization.

INDEX TERMS

PROGRAMMER TRAINING CURRICULA
AVAILABLE FROM: THE AUTHOR

CONFIGURATION MANAGEMENT WITH THE ADA LANGUAGE SYSTEM

THALL, RICHARD M.

DOCUMENT NUMBER: 5520 TYPE: PAPER

PROCEED. OF THE 2ND ANNUAL CONF. ON ADA TECHNOLOGY, PP. 11-24

Three characteristics of large software projects and five basic configuration management capabilities are identified. The design of the Ada Language System (ALS) is then described in terms of these basic capabilities. The ALS is a computer programming support environment for Ada.

INDEX TERMS

CONFIGURATION MANAGEMENT ADA TOOL ENVIRONMENT
AVAILABLE FROM: THE AUTHOR

SPONSORS: U.S.ARMY COMM-ELECTRONICS CMD(CECOM), FT. MONMOUTH, NJ

LEARNING THE ADA INTEGRATED ENVIRONMENT

SNYDER, GEORGE

DOCUMENT NUMBER: 5521 TYPE: PAPER

PROCEED. OF THE 2ND ANNUAL CONF. ON ADA TECHNOLOGY, PP. 25-30

The Ada Integrated Environment (AIE) is designed to be easy to learn and easy to use. It will be powerful, efficient, and friendly. This paper describes how these goals are addressed in the design of the Ada compiler, the MAPSE Command Language, and the Program Integration Facility. Plans for future tools are also described.
TEACHING ADA AT THE US MILITARY ACADEMY

COGAN, KEVIN J.

DOCUMENT NUMBER: 5522 TYPE: PAPER

PROCEED. OF THE 2ND ANNUAL CONF. ON ADA TECHNOLOGY. PP. 31-34

This article describes the U.S. Military Academy's Ada education program. It gives a five-year history of teaching Ada with the NYU Ada/Ed translator which has evolved into an effective methodology for teaching top-down engineering design simultaneously with a bottom-up presentation of the Ada grammar. With emphasis on embedded hardware systems, students are confronted with successively more difficult design problems which must be written and executed on a VAX-11/780. Exposed to the Ada features of packages, concurrency, generics, and exception handling, students design, write and execute an extensive term project simulating a real-time embedded system using Ada. Projects approach the 1000 lines of source code limitation of the translator. Reusability of code is stressed by importing a previous year's package when feasible.

INDEX TERMS
CURRICULA PROGRAMMER TRAINING
AVAILABLE FROM: THE AUTHOR

EXPERIENCES IN TEACHING ADA

CAVERLY, PHILIP; DROCEA, CHARLES; GOLDSMITH, PHILIP; YEE, DONALD

DOCUMENT NUMBER: 5523 TYPE: PAPER

PROCEED. OF THE 2ND ANNUAL CONF. ON ADA TECHNOLOGY. PP. 35-37

This paper reviews the experiences of several Ada courses given at the Jersey City State College. These Ada courses were structured so that students could start writing complete programs almost immediately. (The courses discussed in this paper using the Ada programming language are: training courses for Fort Monmouth, a one year undergraduate Ada language course, software engineering, a systems programming course, and a visiting faculty course.)
This paper contains a description of an introductory course in Ada. It includes suggestions for a syllabus and for programming assignments, along with various comments and notes. The course described is a one-semester course (approximately 35 contact hours) intended for college students who have already learned at least one high-level language.

INDEX TERMS
- CURRICULA
- PROGRAMMER TRAINING

AVAILABLE FROM: THE AUTHOR

THE CECOM SUMMER FACULTY RESEARCH PROGRAM

This paper describes the U.S. Army sponsored Faculty Research and Enhancement program. The Center for Tactical Computer Systems (CENTACS) located at Fort Monmouth, NJ, in support of its goal of fostering Ada expertise within the Historically Black College community, annually provides intensive Ada training for professors of these colleges. This training provides the professors with the necessary expertise to include Ada within their computer science curriculum, as well as broadening the Department of Defense research community. This paper describes the program and presents some educational issues and interesting Ada errors encountered during the course.

INDEX TERMS
- CURRICULA
- PROGRAMMER TRAINING

AVAILABLE FROM: THE AUTHOR
TEACH ADA AS THE STUDENT'S FIRST PROGRAMMING LANGUAGE?

RICHMAN, SUSAN M.

DOCUMENT NUMBER: 5526 TYPE: PAPER

PROCEED. OF THE 20TH ANNUAL CONF. ON ADA TECHNOLOGY, PP. 50-54

This paper discusses designing an Ada programming course for colleges and universities. The main issue is what level of expertise should be set as a prerequisite to the course. Ada being a complex language, should a student have experience with other high order languages? This paper contends that programming in Ada can be taught to the beginning programmer and there are decided advantages inherent in learning Ada as a first language. Some suggestions are offered for coping with the size and complexity of Ada.

INDEX TERMS

CURRICULA
AVAILABLE FROM: THE AUTHOR

AN ADA NETWORK: A REAL-TIME DISTRIBUTED COMPUTER SYSTEM

LANE, DEBRA S.; Huling, George; Bardin, Bryce M.

DOCUMENT NUMBER: 5527 TYPE: PAPER

PROCEED. OF THE 2ND ANNUAL CONF. ON ADA TECHNOLOGY, PP. 55-61

This paper reports on a prototype real-time distributed computer system which will be implemented in Ada. The goals of the Ada network are to support transparent distribution of application software and incremental growth, and to provide fault-tolerant capabilities. Some of the motivations and methods for distributing software in a local network of communicating processors are discussed, in addition to the hardware configuration and software development facilities. The model of distributed Ada programs is then described. After the prototype software is implemented, the project will focus on assessing the performance characteristics of the network, specifically on distribution, executive software, and Ada language overheads.

INDEX TERMS

FAULT TOLERANCE DISTRIBUTED PROCESSING PROTOTYPES
TOP-DOWN IMPLEMENTATION EMBEDDED COMPUTER SYSTEMS
REAL-TIME SYSTEMS
AVAILABLE FROM: THE AUTHOR
DCP-EXPERIENCE IN BOOTSTRAPPING AN ADA ENVIRONMENT

PARISH, STEVE; RUDMIK, ANDRES

DOCUMENT NUMBER: 5528 TYPE: PAPER

PROCEED. OF THE 2ND ANNUAL CONF. ON ADA TECHNOLOGY, PP. 62-69

This paper describes experiences in developing a Distributed Software Engineering Control Process (DCP). The DCP is a portable distributed Ada programming support environment that provides centralized project management and control facilities integrated with an off-the-shelf Ada compiler and associated development tools. A goal of the DCP is to support the reuse of Ada programs and packages. This capability is supported in part by the DCP database which maintains descriptions of Ada packages and can be used to locate packages for reuse. An Ada PDL and methodology is being developed to support the development of reusable programs and packages as well as a methodology for building programs from existing packages. The goal of DCP portability is addressed by building virtual interfaces to the user, the database, and the host environment. The development methodology supported by the DCP is being used to develop the DCP, thereby bootstrapping itself. The methodology is currently supported by manual controls and procedures, but as the DCP capabilities are realized, they will be replaced by automated controls and procedures.

INDEX TERMS

COMPILERS ADA TOOL ENVIRONMENT
DEVELOPMENTAL METHODOLOGIES DISTRIBUTED PROCESSING
DEVELOPMENTAL TOOLS AND TECHNIQUES SYSTEM ARCHITECTURE
PORTABILITY

AVAILABLE FROM: THE AUTHOR

ADA FOR BUSINESS & OTHER NON-DOD APPLICATIONS

CRAFTS, RALPH E.

DOCUMENT NUMBER: 5529 TYPE: PAPER

PROCEED. OF THE 2ND ANNUAL CONF. ON ADA TECHNOLOGY, PP. 70-73

A primary motivation for the U.S. Department of Defense in sponsoring Ada was to provide a common portable computer language for real-time military embedded computer systems. Ada incorporates many features and characteristics that are also appropriate for commercial, non-DoD applications. This paper will discuss some field-proven Ada business applications, ongoing commercial Ada efforts, the benefits derived from using Ada in this environment, and the potential for future commercial and business-oriented Ada applications.
INDEX TERMS

PORTABILITY BUSINESS AND FINANCIAL APPLICATIONS

AVAILABLE FROM: THE AUTHOR

EXPERIENCE WITH ADA FOR THE GRAPHICAL KERNEL SYSTEM

GILROY, KATHLEEN

DOCUMENT NUMBER: 5530 TYPE: PAPER

PROCEED. OF THE 2ND ANNUAL CONF. ON ADA TECHNOLOGY, PP. 74-86

This paper describes the effort to produce an Ada language binding to the Graphical Kernel System (GKS) and to implement a subset of the GKS functionality in Ada. It presents an overview of the GKS/Ada project, discusses some of the issues raised during development of the GKS software, describes the results of a post-coding analysis comparing the binding and prototype code, and comments on the lessons drawn from this experience.

INDEX TERMS

DEVELOPMENTAL TOOLS AND TECHNIQUES GRAPHICS APPLICATIONS

PROTOTYPES

AVAILABLE FROM: THE AUTHOR

MILITARY COMPUTER FAMILY OPERATING SYSTEM: AN ADA APPLICATION

WUEBKER, FREDERICK E.

DOCUMENT NUMBER: 5531 TYPE: PAPER

PROCEED. OF THE 2ND ANNUAL CONF. ON ADA TECHNOLOGY, PP. 86-88

The Military Computer Family Operating System (MCFOS) Program is an interesting Ada application effort. Not only will the operating system be one of the early Ada applications, but it is also an Ada operating system for a new family of machines and is designed to support fielded, real-time Ada applications programs. Finally, the operating system will be the first Ada program designed to be a formally verified, multilevel, secure system. This ambitious, but completely feasible program will certainly stretch the state of the art of Ada programming, if not actually advance it. This paper explores some of the Ada issues that have a major impact on the MCFOS program.
As part of the Military Computer Family Operating System (MCFOS) project, extensions to the Ada Language System (ALS) are being constructed which allow software for the MCF computers to be developed and tested in a host/target environment. These extensions are collectively known as the ALSE. ALS facilities are used for editing, compiling, linking, and exporting Ada programs, while ALSE facilities are used to download the software into a connected MCF computer and execute the software on the MCF. Thus providing state-of-the-art high level debugging and performance monitoring facilities in an embedded target environment. This paper describes the components of the ALSE from a user's viewpoint, concentrating on how an applications programmer would use MCFOS and the Extended Ada Language System to develop software.

INDEX TERMS

SOFTWARE TOOL SYSTEMS DEVELOPMENTAL TOOLS AND TECHNIQUES EMBEDDED COMPUTER SYSTEMS

AVAILABLE FROM: THE AUTHOR

MATHEMATICAL SUBROUTINE PACKAGES FOR ADA

MARTIN, BENJAMIN J.; BOZEMAN, ROBERT E.

DOCUMENT NUMBER: 5533 TYPE: PAPER

PROCEED. OF THE 2ND ANNUAL CONF. ON ADA TECHNOLOGY, PP. 102-103

The authors of this paper demonstrate the feasibility of converting the Linpack routines for analyzing and solving systems of linear equations from FORTRAN to Ada. This is done with minimal alteration of the original program structure, thus requiring very little re-orientation by current users of LINPACK.

INDEX TERMS

CONVERSIONS NUMERICAL MANIPULATION
ADA TASKING IN NUMERICAL ANALYSIS

BUONI, JOHN J.

DOCUMENT NUMBER: 5534 TYPE: PAPER

PROCEED. OF THE 2ND ANNUAL CONF. ON ADA TECHNOLOGY, PP. 104-108

Recently the interests in the use of iterative methods for the solution of Partial Differential Equations has been revived. Also, the advent of multiprocessor computer systems will lead many to reformulate much of the existing theory of numerical analysis. It is felt that Ada's portability and rich resources will play an important role in this re-kindled interest. The purpose of this paper is to discuss three different implementations of classical iterative methods for the solution of a numerical problem using several Ada tasks.

INDEX TERMS

IMPLEMENTATION MICROPROCESSORS NUMERICAL MANIPULATION

CONCURRENT PROGRAMMING

AVAILABLE FROM: THE AUTHOR

ADA AND STATISTICS

JONES, ARTHUR M.

DOCUMENT NUMBER: 5535 TYPE: PAPER

PROCEED. OF THE 2ND ANNUAL CONF. ON ADA TECHNOLOGY, PP. 109-110

This paper demonstrates a method by which a small college computer science department can introduce Ada into the curriculum without the burden of costly additions to its faculty. It is suggested that such a department should enlist the support of non-computer science departments as conveyors of Ada in the Problem domain. The example cited here illustrates Ada as a vehicle to describe a statistical problem in data analysis.

INDEX TERMS

CURRICULA

AVAILABLE FROM: THE AUTHOR
ADA AS A PROGRAM DESIGN LANGUAGE - HAVE THE MAJOR ISSUES BEEN ADDRESSED AND ANSWERED?

BLASEWITZ, ROBERT M.

DOCUMENT NUMBER: 5536 TYPE: PAPER

PROCEED. OF THE 2ND ANNUAL CONF. ON ADA TECHNOLOGY, PP. 111-114

In this paper various reasons are given for the use of program design language (PDL). Also discussed is the Ada Programming Language as a PDL. The objectives of the Ada language are summarized in this paper to illustrate the common thread of interest between the rationale for the Ada language and a common program design language based on Ada. An overview is also given that illustrates how some features that make Ada so desirable as a language also enforce its choice as a design language.

INDEX TERMS

PROGRAM CONTROL LANGUAGE (PDL)

AVAILABLE FROM: THE AUTHOR

ADA DESIGN LANGUAGE CONCERNS

GRAU, KAYE J.; COMER, EDWARD R.

DOCUMENT NUMBER: 5537 TYPE: PAPER

PROCEED. OF THE 2ND ANNUAL CONF. ON ADA TECHNOLOGY, PP. 115-124

This paper examines key language concerns regarding Ada Design Languages (DL's) in regard to: life cycle applicability, the information expressed by an Ada DL, relationship of an Ada DL to the Ada language, extension of the Ada language through structured commentary and annotation, and the relationship between methodology and Ada Design Language. An assessment is made of the relative maturity of Ada DL's and of the obstacles to successful development of an Ada DL standard.

INDEX TERMS

PROGRAM CONTROL LANGUAGE (PDL) SPECIFICATION LANGUAGES
REQUIREMENTS LANGUAGE SOFTWARE LIFE CYCLE

AVAILABLE FROM: THE AUTHOR
SEEDING THE ADA SOFTWARE COMPONENTS INDUSTRY

BOWLES, DR. KENNETH L.

DOCUMENT NUMBER: 5538 TYPE: PAPER

PROCEED. OF THE 2ND ANNUAL CONF. ON ADA TECHNOLOGY, PP. 125-128

The principle aim of the Ada effort is economic - particularly the enhancement of designer/programmer productivity in all parts of the software life-cycle. A shift in system design practice to widespread use of off-the-shelf large scale Ada software components would result in productivity gains exceeding a factor of ten - far more than likely to result from use of productivity enhancing software tools. To achieve widespread use of off-the-shelf Ada components requires establishment of a software components industry, and a shift in attitudes about education of system designers to use Ada. This paper reviews progress to date.

INDEX TERMS

REUSABILITY
AVAILABLE FROM: THE AUTHOR

ECONOMIC, SOCIAL, AND LEGAL ASPECT OF SOFTWARE IN THE FUTURE

FELDMAN, IRV

DOCUMENT NUMBER: 5539 TYPE: PAPER

PROCEED. OF THE 2ND ANNUAL CONF. ON ADA TECHNOLOGY, PP. 129-131

This paper discusses the ways in which our economic, social and legal systems have been and will continue to be affected. In some cases restructuring of those systems will be required, thereby creating dislocation. There are many problems to be solved and most do not have easy solutions. Ada and the techniques it uses, will definitely play a part in helping to find these solutions.

INDEX TERMS

SOCIAL ISSUES LEGAL ISSUES ECONOMIC ISSUES
AVAILABLE FROM: THE AUTHOR
OPERATING SYSTEM INTERFACE FOR ADA INSTRUCTORS

FUHR, DONALD C.

DOCUMENT NUMBER: 5540 TYPE: PAPER

PROCEED. OF THE 2ND ANNUAL CONF. ON ADA TECHNOLOGY. PP. 132-138

This paper is intended to assist Ada instructors using the Digital VAX/VMS operating system. It gives a brief discussion of some features of the VAX/VMS operating system that do not appear in the Primer, but which someone doing extensive work on a VAX might find useful. It was not intended to be an exhaustive treatment, but to provide pointers to potentially useful functions and aid in understanding some of the performance-determining actions of the system. Syntax of the commands and other options not discussed here can be found in the Help library or in the complete system documentation. Broad knowledge of these topics help any user to work more efficiently and participate effectively in the overall management of the system for the benefit of all users.

INDEX TERMS

VMS

AVAILABLE FROM: THE AUTHOR

DESIGN AND IMPLEMENTATION OF PROGRAMMING LANGUAGESS, VOL. 54 LECTURE NOTES IN COMPUTER SCIENCE

U.S. DEPT. OF DEFENSE

DOCUMENT NUMBER: 5542 TYPE: TEXT

This report contains the proceedings of the DoD Sponsored Workshop "Design and Implementation of Programming Language" held on September 30 and October 1, 1976 at Cornell University in Ithaca, New York. The articles in this proceedings were part of the initial development of Ada as a single common programming language for military applications. The report is organized into five sections. The first is a brief review by David Fisher of the DoD's common programming language effort. Section II is a transcript of the discussion of data types. Section III is the discussion of parallel processing, machine dependence and program verification. Section IV is the discussion of specifications, optimization and run support systems. The papers throughout the transcripts of the discussions have been collected and appear in Section V. (author)

INDEX TERMS

IMPLEMENTATION TECHNOLOGY TRANSFER EMBEDDED LANGUAGES

AVAILABLE FROM: SPRINGER-VERLAG, INC., NEW YORK NY 10010
A NOTE ON "POINTERS"

EARNEST, C.P.

DOCUMENT NUMBER: 5543 TYPE: PAPER

PROCEED OF A DOD SPONSORED WORKSHOP ITHACA, OCT. 76, PP. 86-101

One of the key issues in data structural models, and therefore in programming language design, is the way in which parts of dynamically constructed structures are interconnected. In programming languages, some sort of "pointer" mechanism is normally used for the purpose. No two languages have the same mechanisms, and the TINMAN D6 requirement calls for one not in any existing language. The issue is closely related to a number of others -- for example, the way in which a variable is connected to its value, a structure to its components, a formal parameter to an actual parameter. The issue is also related to the structural models used in database management systems, but these are mentioned only briefly in this paper. All the above aspects should be treated within a single general framework, and a possible one is outlined later in the paper. First, the problems to be solved are described, and a brief discussion is given of leading current mechanisms, and of the TINMAN requirement. This article was part of the initial development of Ada as a single common programming language for military applications. (author)

INDEX TERMS

POINTERS
STRUCTURED DESIGN

SOME ISSUES IN DATA TYPES AND TYPE CHECKING

BROSGOL, BENJAMIN M.

DOCUMENT NUMBER: 5544 TYPE: PAPER

PROCEED OF A DOD SPONSORED WORKSHOP ITHACA, OCT. 76, PP. 102-130

This paper presents a survey of issues which arise in contemporary High Order Languages in conjunction with the implementation of data types and type checking. Attention is paid to alternatives and tradeoffs in language features which realize various desirable goals regarding data types. Interactions between features are pointed out, and implementation techniques are discussed. This article was part of the initial development of Ada as a single common programming language for military applications. (author)

INDEX TERMS

IMPLEMENTATION
DATA TYPES
PROGRAMMING LANGUAGE
MODELS OF DATA OBJECTS AND DATA TYPES

NESTOR, JOHN R.

DOCUMENT NUMBER: 5545 TYPE: PAPER

PROCEED OF A DOD SPONSORED WORKSHOP ITHACA, OCT. 76, PP. 131-170

Several models for data objects and for data type relationships are discussed and compared. The models for objects discussed are: (1) Representational models in which representations are visible; (2) Behavioral models in which representations are hidden; and (3) Operational models in which multiple hidden representations are permitted. For each model the handling of shared information as aggregates is discussed. Several kinds of type relationships are considered: mixed type operations, generic operations, polymorphic operations, representational relationships and component relationships. Two programming language models that permit objects having any of several types to be used in a single context are discussed: (1) Conversion models in which conversion functions are used; and (2) Lattice models in which bi-directional mappings are used. Finally some possible research directions for developing improved models are suggested. This article was part of the initial development of Ada as a single common programming language for military applications. (author)

INDEX TERMS

RELATIONAL DATA MODEL DATA TYPES MODELS

SPONSORS: U.S. NAVY, ELECTRONICS LAB'TORY CNTR, SAN DIEGO, CA 92152

ENCAPSULATED DATA TYPES AND GENERIC PROCEDURES

DEMERS, ALAN J.; DONAHUE, JAMES E.; TEITELBAUM, RAY T.; WILLIAMS, JOHN H.

DOCUMENT NUMBER: 5546 TYPE: PAPER

PROCEED OF A DOD SPONSORED WORKSHOP ITHACA, OCT. 76, PP. 171-214

In this paper two programming language capabilities, encapsulated data types and polymorphic procedures, and their mutual dependence and effect on each other are considered. The paper is organized as follows: In section 1 the motivation behind studying these capabilities is given and some general questions are addressed on the research performed; In section 2, considered carefully is the meaning of such notions as data types, type checking and parameterized types; Section 3 presents an overview of various encapsulation mechanisms, and compares and contrasts their relative advantages and limitations. Finally, section 4 explores polymorphic constructs in general and generic procedures in particular. This article was part of the initial development of Ada as a single common
RUN-TIME CHECKING OF DATA ACCESS IN PASCAL-LIKE LANGUAGES

FISCHER, CHARLES N.; LEBLANC, RICHARD J.

DOCUMENT NUMBER: 5547 TYPE: PAPER

PROCEED OF A DOD SPONSORED WORKSHOP ITHACA, OCT. 76, PP. 215-230

The techniques for run-time checking discussed in this paper were developed in the course of designing a PASCAL compiler for the UNIVAC 1110. The design of these techniques follows three basic principles: (1) Any existing language restriction should be checkable, either during compilation or at run-time; (2) Run-time checks should be efficient, limited to a few in-line instructions, if possible; and (3) If a particular language feature requires run-time checking, only usage of this feature should bear the extra overhead. Two features of PASCAL that require run-time checking will be considered: discriminated union (DU) types (records with variants) and pointer types. This article was part of the initial development of Ada as a single common programming language for military applications. (author)

INDEX TERMS

PASCAL OPTIMIZATION

A LANGUAGE DESIGN FOR STRUCTURED CONCURRENCY

DENNIS, JACK B.

DOCUMENT NUMBER: 5548 TYPE: PAPER

PROCEED OF A DOD SPONSORED WORKSHOP ITHACA, OCT. 76, PP. 231-242

This article considers a limited context for the design of a programming language that includes support for representing concurrency of computation. The context is one that appears to be of great significance in forthcoming years: interconnected microcomputers. The language LSC (Language for Structured Concurrency) is formulated to include a kind of program unit called a system which is an interconnection of simpler units by links over which data values are passed. Thus, the units comprising a system may be readily assigned to different
microcomputers to distribute processing activities over system components in a balanced way. This article was part of the initial development of Ada as a single common programming language for military applications. (author)

INDEX TERMS

CONCURRENT PROGRAMMING MICRO COMPUTERS PROGRAMMING LANGUAGE

SPONSORS: NATIONAL SCIENCE FOUNDATION

LANGUAGE FEATURES FOR PARALLEL PROCESSING AND RESOURCE CONTROL

ANDREWS, GREGORY R.; MCGRAW, JAMES R.

DOCUMENT NUMBER: 5549 TYPE: PAPER

PROCEED OF A DOD SPONSORED WORKSHOP ITHACA, OCT. 76, PP. 243-287

This paper presents a set of language features for describing processes and process interaction, gives examples of their use, and briefly discusses their relation to the goals. Two constructs, resources and protected variables, are introduced as the mechanisms for describing interaction. Resources are extensions of the monitor concept of Hoare: protected variables are global variables which can only be accessed by one process at a time. Two types of access control are introduced: restrictions on scope rules for static access, and capabilities for dynamic access. Examples include the interface to machine devices, files and virtual devices, device scheduling, device reservation, and buffer allocation. This article was part of the initial development of Ada as a single common programming language for military applications. (author)

INDEX TERMS

PARALLEL PROCESSING ACCESS-CONTROL MECHANISMS

SPONSORS: NATIONAL SCIENCE FOUNDATION;
NATIONAL SCIENCE FOUNDATION

SEPARATE DEFINITION AND COMPILATION IN LIS AND ITS IMPLEMENTATION

ICHBIAH, JEAN D.; FERRAN, GUY

DOCUMENT NUMBER: 5550 TYPE: PAPER

PROCEED OF A DOD SPONSORED WORKSHOP ITHACA, OCT. 76, PP. 288-297

This paper presents the language entities introduced in the LIS language for separate definition and compilation. Instantiation and visibility rules are then
described. Finally, the main functions of the separate compilation system which manages the compilation units are reviewed. Separate compilation in LIS is an evolution from the earlier proposal in the SUE language. The main differences are in terms of the facilities offered for modularization-partitions, and in the explicit designation of the compilation units. This article was part of the initial development of Ada as a single common programming language for military applications. (author)

INDEX TERMS

LIS IMPLEMENTATION

REQUIREMENTS FOR REAL-TIME LANGUAGES

DREISBACH, TIMOTHY A.; WEISSMAN, LARRY

DOCUMENT NUMBER: 5551 TYPE: PAPER

PROCEED OF A DOD SPONSORED WORKSHOP ITHACA, OCT. 76, PP. 298-312

"Real-time systems" is an all-encompassing term that includes systems from many diverse application areas. A common property of these systems is that they contain processing that must be completed under critical time constraints. The language requirements for real-time systems differ more in degree than in nature from the requirements for other systems. This paper discusses five categories of requirements at a fairly general level and describes specific requirements in each of the areas. The five categories are reliability, maintainability, power, efficiency, and portability. Requirements which differ significantly in degree for real-time systems, and language capabilities and features to meet those requirements are discussed. The paper does not propose specific features for the "ideal" real-time language, but points out the areas of concern. This article was part of the initial development of Ada as a single common programming language for military applications. (author)

INDEX TERMS

REAL-TIME SYSTEMS REQUIREMENTS LANGUAGE RELIABILITY
MAINTENANCE PORTABILITY EFFICIENCY

SPONSORS: ELECTRONIC SYSTEMS DIV., AFSC

REMARKS ON THE IMPACT OF PROGRAM VERIFICATION ON LANGUAGE DESIGN

LONDON, RALPH L.

DOCUMENT NUMBER: 5552 TYPE: PAPER

PROCEED OF A DOD SPONSORED WORKSHOP ITHACA, OCT. 76, PP. 313-320
This paper discusses the impact of program verification on language design. Two programming language examples, Euclid and Alphard, are presented to show how their designs have been influenced by verification concerns. This article was part of the initial development of Ada as a single common programming language for military applications. (author)

INDEX TERMS

VERIFICATION LANGUAGE DESIGN EUCLID ALPHARD

SPONSORS: DEFENSE ADVANCED RESEARCH PROJECTS AGENCY, ARLINGTON, VA

TARGET COMPUTER INDEPENDENT OPTIMIZATION PROCEDURES FOR METACOMPILERS

COHEN, PAUL M.

DOCUMENT NUMBER: 5553 TYPE: PAPER

PROCEED OF A DOD SPONSORED WORKSHOP ITHACA, OCT. 76, PP. 321-334

Efficient use, by several computers, of a common high order language may be accomplished with cross-compiling techniques and a metacompiler which permits the development of the several compilers from a single computer program. This article describes the generic optimization which has been demonstrated on an experimental metacompiler called FLAG (Flexible Language Generator). A set of examples to illustrate the target computer's independent optimization are also provided in this paper. This article was part of the initial development of Ada as a single common programming language for military applications. (author)

INDEX TERMS

OPTIMIZATION COMPILER-COMPILERS

THE NEED FOR OPTIMIZATION STANDARDS

GOODENOUGH, JOHN B.

DOCUMENT NUMBER: 5554 TYPE: PAPER

PROCEED OF A DOD SPONSORED WORKSHOP ITHACA, OCT. 76, PP. 335-344

The premise of this paper is that in writing programs for military systems, programming style is often strongly affected by a compiler's optimization behavior. The paper includes some examples supporting this conclusion by
illustrating the style of optimization standards that should be applied to the DoD Common Language; a discussion on the interaction between language design decisions and optimization standards; some possible effects of optimization standards on compiler procurement procedures; and concludes with a brief analysis of the impact of these ideas on Common Language requirements as expressed in the TINMAN document. This article was part of the initial development of Ada as a single common programming language for military applications. (author)

INDEX TERMS

OPTIMIZATION
STANDARDS
LANGUAGE DESIGN

SPONSORS: U.S. ARMY

A REMINDER FOR LANGUAGE DESIGNERS

RICHARD, FREDERIC; LEDGARD, HENRY F.

DOCUMENT NUMBER: 5555 TYPE: PAPER

PROCEED OF A DOD SPONSORED WORKSHOP ITHACA, OCT. 76, P. 345-389

Current programming languages offer limited support in the development and maintenance of programs. These languages do not always account for the human limitations of their users. Notably, few languages really promote ease of readability. This paper suggests nine design principles for the development of readable high level languages. Each principle is backed up by a discussion and several examples. Among the issues discussed are the limitation of the overall complexity, the design of function and procedure facilities, the design of data type facilities, and the correspondence between syntax and semantics. This article was part of the initial development of Ada as a single common programming language for military applications. (author)

INDEX TERMS

LANGUAGE DESIGN
DESIGN METHODOLOGIES
PROGRAMMING LANGUAGE

SPONSORS: U.S. ARMY RESEARCH OFFICE

PROGRAMMING LANGUAGE DESIGN ISSUES

CHEATHAM, T. E., JR.

DOCUMENT NUMBER: 5557 TYPE: PAPER

PROCEED OF A DOD SPONSORED WORKSHOP ITHACA, OCT. 76, P. 399-435

This paper looks at several issues in the design of a language like the DoD
Common Programming Language. In particular, focus is made on those issues which arise in considering tools to aid in the process of program development validation, and maintenance. This article was part of the initial development of Ada as a single common programming language for military applications. (author)

INDEX TERMS

LANGUAGE DESIGN DEVELOPMENT SOFTWARE TOOLS
PROGRAM VALIDATION PROGRAM MAINTENANCE

PARALLEL PROCESSING AND MODULAR SOFTWARE CONSTRUCTION

JACKSON, K.

DOCUMENT NUMBER: 5558 TYPE: PAPER

PROCEED OF A DOD SPONSORED WORKSHOP ITHACA, OCT. 76, PP. 436-443

The one common denominator in the software for all real time computer systems is that it consists of a set of co-operating parallel processes. This is true whether the parallelism is achieved by having many hardware processors or by multiplexing a single processor among many competing processes (pseudo-parallelism); it is also independent of the way the pseudo-parallelism is achieved, eg. interrupts, scheduler etc. It is therefore regrettable that in the TINMAN document this topic receives only scant treatment. In fact only two sub-sections of the document are devoted to this topic. This paper stresses the importance of considering co-operating parallel processes early in the software design of a programming language. Starting from the parallel processing common denominator, the advantages of bringing this out into the open at as early as possible a stage in the software design are considered. The consequences of this approach are that the concept of 'the program' disappears and is replaced by a network of parallel processes and data areas. This enables a different and more flexible approach to software construction to be adopted. The language implications of this approach are quite minor but the advantages in terms of software quality and true modularity are very significant as also are the consequences on ease of management. This article was part of the initial development of Ada as a single common programming language for military applications. (author)

INDEX TERMS

PARALLEL PROCESSING MODULAR PROGRAMMING REAL-TIME SYSTEMS
THE TINMAN NEEDED CHARACTERISTICS

U.S. DEPT. OF DEFENSE

DOCUMENT NUMBER: 5559 TYPE: PAPER

PROCEED OF A DOD SPONSORED WORKSHOP ITHACA, OCT. 76, PP. 445-496

This appendix provides a set of characteristics that an existing, modified or new language should have to satisfy the Department of Defense requirements for a Common High Order Computer Programming Language. The characteristics represent a synthesis of the requirements submitted by the Military Departments and are intended to be self-consistent and achievable with existing computer software and hardware technology. This article was part of the initial development of Ada as a single common programming language for military applications. (author)

INDEX TERMS

LANGUAGES LANGUAGE DESIGN LANGUAGE EVALUATION

ADA-EUROPE/ADATEC JOINT SYMPOSIUM AND TUTORIAL ON ADA

PAYTON, TERI F.

DOCUMENT NUMBER: 5562 TYPE: JOURNAL ARTICLE

ACM ADA LETTERS, VOL III, ISSUE 2, PP. 35-45

This paper briefly discusses the papers presented at the Ada-Europe/AdaTEC symposium and tutorial on Ada which was sponsored by the Commission of the European Communities at the Borschette Conference Center in Brussels on March 14-17, 1983.

INDEX TERMS

TECHNOLOGY TRANSFER
CONSISTENCY CHECKING IN ADA AND ANNA: A TRANSFORMATIONAL APPROACH
BRUCKNER, BERNO-KRIEG

DOCUMENT NUMBER: 5563 TYPE: JOURNAL ARTICLE

ACM ADA LETTERS, VOL III, ISSUE 2, PP. 46-54

The author of this article discusses verification tools and techniques for statically checking consistency with respect to constraints. He then discusses the generalized constraint concepts of ANNA--a language developed at Stanford University for augmenting Ada programs with formal comments. He described the transformation of Ada constraints into ANNA annotations and then into basic Annita assertions to facilitate verification of Ada programs. (author)

INDEX TERMS
STATIC ANALYSIS TRANSFORMATION ASSERTIONS

A DISTRIBUTED KAPSE ARCHITECTURE
INVERARDI, P.; LEVI, G.; MONTANARI, U.; VALLARIO, G.N.

DOCUMENT NUMBER: 5564 TYPE: JOURNAL ARTICLE

ACM ADA LETTERS, VOL III, ISSUE 2, PP. 54-61

U. Montanari of the University of Pisa discussed a distributed KAPSE architecture that is part of the Campus Net project funded by the Italian National Research Council and some Italian industries. The university, Olivetti and STET are collaborating on this local area network project. The project utilizes an intermediate distributed virtual machine (X-coded) with Ada as the high-level system language. Montanari stressed the need for dynamic reconfiguration in a distributed embedded application. The KAPSE is implemented with Ada plus a capability for dynamic reconfiguration. (author)

INDEX TERMS
EMBEDDED COMPUTER SYSTEMS DISTRIBUTED PROCESSING ADA TOOL ENVIRONMENT
IMPLEMENTATION IMPLICATIONS OF ADA GENERICS

BRAY, GARY

DOCUMENT NUMBER: 5565 TYPE: JOURNAL ARTICLE

ACM ADA LETTERS, VOL III, ISSUE 2, PP. 62-71

Generic program units as defined in Ada pose several important design issues for compilers, both in semantic analysis and in runtime implementation. Chief among these issues are separate compilation of generic bodies and the sharing of code among several instantiations of a generic. An implementation is described that allows separate compilation of generic bodies with full semantic checking and that automatically shares instance bodies based on the characteristics of the actual parameters. A single instance body is generated for each "instance class". Instance classes are formed by actual parameters with the same representation attributes. (author)

INDEX TERMS

COMPILERS IMPLEMENTATION DATA SEMANTICS

SPONSORS: U.S.AIR FORCE

ADA COMPILER QUALITY ASSURANCE

MOLICH, ROLF

DOCUMENT NUMBER: 5566 TYPE: JOURNAL ARTICLE

ACM ADA LETTERS, VOL III, ISSUE 2, PP. 72-75

As part of the European Economic Community Portable Ada Programming System project, Dansk Datamatik Center (DDC) is presently developing a full Ada compiler for mini-computers. Rolf Molich of the Dansk Datamatik Center discussed quality assurance for the PAPS test compiler. The QA program is divided into: (a) preventive QA to design quality into the product via standards reviews and reporting, and (b) verification which tests that the resulting product meets certain measurable criteria. Rolf believes that in their situation it was beneficial to review documents but not to review code. Code reviews would lead to resistance by the software staff. (author)

INDEX TERMS

QUALITY ASSURANCE COMPILERS
SOME COMMENTS ON "EXPERIENCES WITH MATRIX MULTIPLICATION USING ADA TASKS"

HEKER, WOLF-DIETER

DOCUMENT NUMBER: 5567 TYPE: JOURNAL ARTICLE

ACM ADA LETTERS, VOL III, ISSUE 2, 1 P.

This article discusses some errors and misunderstandings published in a paper by Fernandez et al in Ada Letters Volume 2, 5/83.

INDEX TERMS

TECHNOLOGY TRANSFER NUMERICAL MANIPULATION

MINIMAL HOST FOR THE KAPSE

WILDER, WILLIAM L.

DOCUMENT NUMBER: 5568 TYPE: JOURNAL ARTICLE

ACM ADA LETTERS, VOL III, ISSUE 2, PP. 77-88

The concept of a minimal host for the Kernal Ada Programming Support Environment (KAPSE) is explored and several criteria for categorizing the minimal KAPSE host are collected. This criteria includes the users' view of the environment that the KAPSE has to support, the Instruction Set Architecture of the host, the host's hardware configuration, and the host machine's operating system. Some recommendations as to the actual requirements for the minimal KAPSE host are given and several interesting conclusions about the minimal host for the KAPSE are drawn. (author)

INDEX TERMS

ADA TOOL ENVIRONMENT ARCHITECTURE OPERATING SYSTEMS

ADA-EXTENDED STRUCTURE CHARTS

BECKER, LEE A.

DOCUMENT NUMBER: 5569 TYPE: JOURNAL ARTICLE

ACM ADA LETTERS, VOL III, ISSUE 2, PP. 93-97
This paper discusses the motivation for the development of an Ada-based program design language (PDL). This article also discusses structure charts as an algorithm design tool. Finally, structure chart figures sufficient to represent Ada control structures are presented and exemplified in this paper.

INDEX TERMS

PROGRAM CONTROL LANGUAGE (PDL) STRUCTURED PROGRAMMING
DESIGN TOOLS AND TECHNIQUES

ABOUT A PURE FORMAL PROBLEM IN ADA

KOHLER, CHRISTIAN

DOCUMENT NUMBER: 5570 TYPE: JOURNAL ARTICLE

ACM SIGPLAN NOTICES, VOL 16, ISSUE 10, 2 P.

This short article consists of two examples that illustrate what the author asserts is a flaw in Ada. These examples are concerned with the relationship of a derived type to the operations of its parent type, especially when units are separately compiled.

INDEX TERMS

INFORMATION HIDING

SOFTWARE ENGINEERING WITH MODULA-2 AND ADA

WIENER, RICHARD S.; SINCOVEC, RICHARD F.

DOCUMENT NUMBER: 5607 TYPE: TEXT

This is a book on modern software engineering. The book is designed to be used by undergraduate students as well as practicing computer science and software development professionals. It is assumed that the reader has developed software in at least one high level language, preferably Pascal. Each stage of the software engineering process is examined in this book.

INDEX TERMS

MODULA SOFTWARE ENGINEERING BOTTOM-UP TESTING
TOP DOWN TESTING SOFTWARE LIFE CYCLE
PROGRAMMING TECHNIQUES/METHODOLOGIES MODULAR PROGRAMMING
DESIGN METHODOLOGIES SOFTWARE TOOLS
AVAILABLE FROM: JOHN WILEY & SONS, 605 3RD AVE., N.Y. NY 10016
PARALLEL PROGRAMMING IN ANSI STANDARD ADA

CHERRY, GEORGE W.

DOCUMENT NUMBER: 5633 TYPE: TEXT

This book is about parallel programming; its notation is ANSI standard Ada. It was written with nearly equal interest in parallel programming and in Ada. The topics discussed in this book are Petri-net graphs, parallel, independent processes, Ada rendezvous, and exception handling in parallel programs.

INDEX TERMS

PETRI NETS CONCURRENT PROGRAMMING DISTRIBUTED PROCESSING

FAULT TOLERANCE

AVAILABLE FROM: PRENTICE-HALL, 200 OLD TAPPAN RD, OLD TAPPAN, NJ 07645

THE PROGRAMMING LANGUAGES: PASCAL, MODULA, CHILL, AND ADA

SMEDEMA, C.H.; MEDEMA, P.; BOASSON, M.

DOCUMENT NUMBER: 5634 TYPE: TEXT

"The Programming Languages: Pascal, Modula, Chill and Ada" takes four modern languages and details their evolution and relation to one another. Introduced in historical order, emphasis is put on the concepts of each language that are novel or different from the language that precedes it. Precise and informal, the book looks at and compares the facilities provided by the four languages with the help of many examples; it does not teach the languages themselves. New concepts are explained within the context of the relevant language.

INDEX TERMS

PASCAL MODULA CHILL

PROGRAMMING LANGUAGE

AVAILABLE FROM: PRENTICE-HALL, 200 OLD TAPPAN RD, OLD TAPPAN, NJ 07645

ADA, COUNTESS OF LOVELACE, AND HER CONTRIBUTION TO COMPUTING

HUSKEY, VELMA R.; HUSKEY, HARRY D.

DOCUMENT NUMBER: 5636 TYPE: JOURNAL ARTICLE

ABACUS, VOL 1, ISSUE 2, PP. 22-29
The first part of this article describes how Charles Babbage's analytical engine talk was translated and how Lady Lovelace's notes of Babbage's planned machine were published. The second part gives a brief biography of Lady Ada Augusta, the Countess of Lovelace, with emphasis on the scientific aspects of her short and varied life. The final section deals with an evaluation of her contribution to the field of computing.

INDEX TERMS

HISTORY

CONCURRENT COMMUNICATION AND SYNCHRONIZATION MECHANISMS

WILLIAMSON, RONALD; HORIZON, ELLIS

DOCUMENT NUMBER: 5641 TYPE: JOURNAL ARTICLE

SOFTWARE - PRACTICE AND EXPERIENCE, VOL 14, ISSUE 2, PP. 135-152

The concepts of process and guarded command have become the basic building blocks in concurrent programming language design. In this paper, the authors deal with many of the proposed communication and synchronization primitives, and they compare them from the perspective of their implementability. The authors' evaluation treats four basic criteria: the length of synchronization, process termination, deadlock, and protocol complexity. Finally, in this article the authors mention the Ada programming language in parts of the discussion.

INDEX TERMS

IMPLEMENTATION DISTRIBUTED PROCESSING PARALLEL PROCESSING
CONCURRENT PROGRAMMING LANGUAGE DESIGN LANGUAGE EVALUATION

JOINT-SERVICE ACQUISITION MANAGEMENT INITIATIVES

BABE, PHILIP S.

DOCUMENT NUMBER: 5653 TYPE: PAPER

WASHINGTON ADA SYMPOSIUM, '84 MARCH, PP. 15-18

Motivated by the high cost of mission-critical software development, one of the specific objectives of the STARS (Software Technology for Adaptable, Reliable Systems) program is to significantly increase software productivity through more effective use of existing techniques. One estimate suggests the DoD can improve software productivity by a factor of four by 1990 by using these existing techniques. The STARS program also has as its goal improving the quality, integrity, and adaptability of mission-critical software. One of these is the
area of Acquisition Management. Acquisition Management is the activity performed by the government organization chartered to acquire a defense system. This article provides an overview of activities to improve the area of Acquisition Management. This paper was presented at the 1st Annual Washington Ada Symposium.

INDEX TERMS

SOFTWARE TOOLS ACQUISITION MANAGEMENT

ADA FOUNDATION FOR WIS

GREENE, JOSEPH S. JR.; WHITAKER, LT. COL. WM. A

DOCUMENT NUMBER: 5654 TYPE: PAPER

WASHINGTON ADA SYMPOSIUM, '84 MARCH, PP. 19-25

The World-Wide Military Command and Control System (WWMCCS) Information System (WIS) is presently under development as a Joint Program. The software for this system is being developed using many advanced techniques: Ada, a "software first" strategy, a heavy investment in software tools, and a large emphasis on standardization, are among the many components of WIS. This article provides an overview of these features of the development effort.

INDEX TERMS

SOFTWARE TOOLS SOFTWARE ENGINEERING STANDARDS

GREAT EXPECTATIONS: ADA SOFTWARE ACQUISITION

BENDER, JAMES

DOCUMENT NUMBER: 5655 TYPE: PAPER

WASHINGTON ADA SYMPOSIUM, '84 MARCH, PP. 27-29

Ada is a powerful programming language developed to solve the problems of increased software development costs and failing quality; however, Ada's size, power, and complexity pose new problems and challenges for programmers and managers. The problems created by the advent of Ada can be categorized in three general areas: scarcity of well qualified, Ada-trained programmers and managers; lack of a mature Ada programming methodology; and lack of validated Ada compilers for most computers. The solutions to these problems require training for both programmers and managers, designing in Ada software development methodology, and disseminating information regarding the problems and solutions involved with developing Ada compilers. In time, these problems will be solved, but the solutions are taking longer than the architects of Ada originally
envisioned. The challenge is to solve the problems with using Ada before Ada is made obsolete by new technologies. (author)

INDEX TERMS

EDUCATION COMPILERS DESIGN METHODOLOGIES
REQUIREMENTS ENGINEERING METHODOLOGIES ACQUISITION MANAGEMENT

THE DISTRIBUTED SOFTWARE ENGINEERING CONTROL PROCESS: AN ADA DEVELOPMENT ENVIRONMENT

DEMPSEY, JAMES B.

DOCUMENT NUMBER: 5656 TYPE: PAPER

WASHINGTON ADA SYMPOSIUM, '84 MARCH, PP. 31-37

The Distributed Software Engineering Control Process (DCP) is a WIS-JPMO, Technology Directorate prototype program. The database at each site holds fundamental information on software designs, code units, data elements and documentation for application systems. Any DCP user has the global ability to view and access the DCP data at all sites. An Encyclopedia-function allows all users to view the databases collectively as a common pool of potentially reusable objects. The Control Process standards for capturing and disseminating useful information about other Ada implementations fosters Ada program reuse among dispersed developers. The categories and content of information captured supports software life cycle management and large scale system development. (author)

INDEX TERMS

SOFTWARE TOOLS RELATIONAL DATA MODEL APPLICATIONS
REUSABILITY

SPONSORS: WIS JOINT PROGRAM OFFICE, WASHINGTON, DC

THE FUTURE GOVERNMENT AND INDUSTRY SOFTWARE TOOLS TOOLS MARKETPLACE

REDWINE, SAMUEL T., JR.

DOCUMENT NUMBER: 5657 TYPE: PAPER

WASHINGTON ADA SYMPOSIUM, '84 MARCH, PP. 41-45

This paper examines how a market in software tools might be structured in order to encourage its quick development. In particular, the author thinks segmentation by means of standard interfaces will promote such development. CAIS (Common Ada Programming Support Environment Interface Set) and MIL-STD-SDS are
cited as examples of moving in this direction toward standardizing interfaces. Distribution/pricing mechanisms are also discussed briefly.

INDEX TERMS

ECONOMIC ISSUES SOFTWARE TOOLS

ADA AND THE MILITARY COMPUTER FAMILY (MCF)

FONASH, PETER M.

DOCUMENT NUMBER: 5658 TYPE: PAPER

WASHINGTON ADA SYMPOSIUM, '84 MARCH, PP. 47-51

The use of computers in every facet of life has introduced an almost overwhelming number of computer hardware and software combinations. This variety provides computer users with the ability to select a computer hardware/software configuration which is tailored to their particular needs, however, this diversity has a price. Each configuration is to some degree incompatible with any of the other different hardware/software configurations. This article briefly outlines some of the costs of this diversity and some of the programs that address this problem. This article was presented at the First Annual Washington Ada Symposium.

INDEX TERMS

SOFTWARE ISSUES SOFTWARE TOOLS STANDARDS
MILITARY COMPUTER FAMILY MANAGEMENT

THE NEED FOR NEW PROCUREMENT STRATEGIES FOR NEW SOFTWARE TECHNOLOGY

PROBERT, DR. THOMAS H.; SLUSARCZUK, MARKO M.G.

DOCUMENT NUMBER: 5659 TYPE: PAPER

WASHINGTON ADA SYMPOSIUM, '84 MARCH, PP. 55-58

The frequent cost overruns, schedule slippages, and poor performance often occurring in DoD (and other) software-based systems is almost always laid upon the doorstep of either the contractor, the DoD program management, or the applicable acquisition and procurement regulations. Sometimes one or more of these doorsteps is appropriate. In addition, the quality of the delivered system is often less at delivery time than a comparable system delivered with a strictly commercial orientation. The authors contend, however, that such simplistic fingerpointing may not always be justified. The resource problems associated with software development have been noted since the 1960's with notions of a "software crisis." The problem has been much studied since that
This paper describes an experimental comparison of two approaches to teaching the Ada language. The goal was to discover an effective way to teach students the use of the language as a vehicle to apply information hiding and data abstraction to software development. The fifty-four participants in the study were enrolled in an advanced undergraduate Ada class at the University of Maryland. Baseline data was gathered on every student, including programming aptitude scores. The class was then randomly divided into two sections. One section was taught the language features first, approximately in the order that they are presented in the language manual, and then shown how packages can be used to encapsulate objects, resources, and types when a system is first designed. The other section was taught these principles of encapsulation first by learning to use the Ada package to express designs before the lower-level language features were presented. The same set of lectures was eventually presented to both sections. (author)

INDEX TERMS

PROGRAMMER TRAINING SOFTWARE ENGINEERING DATA ABSTRACTION

HOW TO BUY A COMPILER FROM A SMALL BUSINESS

EDWARDS, J.A.; MOWDAY, B.L.

DOCUMENT NUMBER: 5661 TYPE: PAPER

WASHINGTON ADA SYMPOSIUM, '84 MARCH, PP. 77-84

In 1981 General Dynamics undertook an avionics development program that focused on the application of military standards to processors, software, and communications protocols. An evaluation of existing Jovial J73 compiler toolsets...
showed that none were capable of meeting the needs of the aggressive program. Consequently, a decision was made to acquire a support software system as part of the avionics project. This decision afforded both opportunities and risks. The acquisition process could address many deficiencies of special-created software for non-production environments. By not using existing software, though, General Dynamics assumed the risk of developing the compiler in parallel with the development of application programs. This last fact, as will be detailed later, has affected many of the decisions made regarding the avionics development and meant that constant pressure kept the compiler development in pace with the applications software needs. Implications for Ada are indicated. (author)

INDEX TERMS

COMPILERS ACQUISITION MANAGEMENT JOVIAL

CONSIDERATIONS IN ACQUIRING ADA COMPILERS

ZEIGLER, DR. STEPHEN F.

DOCUMENT NUMBER: 5662 TYPE: PAPER

WASHINGTON ADA SYMPOSIUM, '84 MARCH, PP. 85-90

In the near future Ada users may be faced with a new kind of decision: which Ada compiler to use for a given host/target combination. The selection of an Ada compiler is not entirely like the selection of a compiler for an older language, say FORTRAN. Ada represents something of a new philosophy, putting new pressures on its compilers and support environment. The authors discuss the Ada philosophy, the resulting compilation problems, and what to look for in a compiler in order to avoid these potential problems. Their intent is to expose the unusual aspects of Ada use, rather than to present traditional compiler evaluation criteria. (author)

INDEX TERMS

COMPILERS ACQUISITION MANAGEMENT

EXPERIENCE IN USING ADA TO IMPLEMENT A COMPILER

RYER, MICHAEL J.

DOCUMENT NUMBER: 5663 TYPE: PAPER

WASHINGTON ADA SYMPOSIUM, '84 MARCH, PP. 93-97

The author is the project manager of a large software development which uses Ada as both the design language and the implementation language. The paper
reports observations, warnings, and conclusions from the first two years of implementation, running from functional design through component testing. Areas discussed include coding conventions, the use of Ada for both design and coding, and compiler requirements. The Ada program library is seen as one key issue. The ability to accomplish work is as much affected by the program library facilities as it is by the raw throughput of the compiler. Program library facilities are tightly coupled to project configuration management as well. The paper touches briefly on optimization, and concludes that Ada is an effective language when supported by appropriate tools and planning. (author)

INDEX TERMS

COMPILERS CONFIGURATION MANAGEMENT DESIGN OPTIMIZATION PROGRAM LIBRARY SYSTEMS

INSURING THAT ADA COMPILER SYSTEMS SATISFY USER NEEDS

RODRIGUES, JORGE E.

DOCUMENT NUMBER: 5664 TYPE: PAPER

WASHINGTON ADA SYMPOSIUM, '84 MARCH, PP. 99-100

The Ada Programming Language definition establishes requirements for the Compiler System that interact heavily with functions heretofore provided by the development environment and by the underlying runtime operating system. Two broad categories of requirements can be distinguished: Program Development requirements and Runtime requirements. Program Development requirements are those that impact the efficiency of the creation and maintenance of software written in the Ada programming language. Runtime requirements are those that impact the size and efficiency of the resulting translated programs. It is up to the Ada Compiler System implementors to address the issues raised by the language requirements. (author)

INDEX TERMS

COMPILERS

DESIGN METRICS AND ADA

SZULEWSKI, PAUL A.; SODANO, NANCY M.

DOCUMENT NUMBER: 5665 TYPE: PAPER

WASHINGTON ADA SYMPOSIUM, '84 MARCH, PP. 105-114

This paper reports on work done in investigating the use of Ada as a Program Design Language (PDL) and the evaluation of Ada designs with a design metric.
The first section provides background and describes the context for the work. The second section defines the Halstead metrics and discusses their application during the design phase. The third section discusses using Ada as a Program Design Language. The fourth section presents an example which illustrates the usefulness of the design metrics on the Ada PDL design medium. Finally, the conclusions of this work are presented. (author)

INDEX TERMS

PROGRAM CONTROL LANGUAGE (PDL) OBJECT-ORIENTED DESIGN
DESIGN TOOLS AND TECHNIQUES SOFTWARE SCIENCE
COMPLEXITY MEASUREMENT QUALITY ATTRIBUTES

CAN ADA BE USED FOR THE PROGRAM MANAGER'S SUPPORT SYSTEM (PMSS)?

SCHUTT, HAROLD J.

DOCUMENT NUMBER: 5666 TYPE: PAPER

WASHINGTON ADA SYMPOSIUM, '84 MARCH, PP. 115-117

A research project was initiated in 1982 by the Defense System Management College (DSMC) to see if Decision Support Systems (DSS) techniques can be applied in the defense program management arena to help fill this void. This project is called the Program Manager's Support System (PMSS). The research underway concerns the usefulness and application of DSS in DoD-wide defense systems acquisition and will have implications for all levels of decision-making in the DoD from the Secretary of Defense to the program or functional manager. The architecture development contractors evaluated the languages that could be used to develop the PMSS. This article reports on the comments and recommendations of the architecture contractors concerning the use of Ada for the PMSS. (author)

INDEX TERMS

MANAGEMENT TOOLS AND TECHNIQUES

VIEW-3 AND ADA: TOOLS FOR BUILDING SYSTEMS WITH MANY TASKS

KRATZER, ANN; SHERMAN, MARK S.

DOCUMENT NUMBER: 5667 TYPE: PAPER

WASHINGTON ADA SYMPOSIUM, '84 MARCH, PP. 121-127

This paper discusses some useful features for tools that are intended to be used for developing systems with multiple tasks. The authors include a description of
one tool that has been built, View-3. The authors also describe some problems that might be encountered when trying to fit this kind of tool into an APSE (Ada Programming Support Environment). This implementation of View-3 runs on a Vax/UNIX system and is written in C. (author)

INDEX TERMS

ADA TOOL ENVIRONMENT DISTRIBUTED PROCESSING PROCESS QUEUES
UNIX PARALLEL PROCESSING C LANGUAGE

USING ADA WITH A DATA FLOW LANGUAGE

VARNEY, R.C.; GROUNDWATER, N.P.; MURRAY, D.W.

DOCUMENT NUMBER: 5668 TYPE: PAPER

WASHINGTON ADA SYMPOSIUM, '84 MARCH. PP. 129-141

In this paper, the authors discuss the combined use of both procedural and data flow languages. In particular the authors describe some aspects of an ongoing project where they have examined the programmer needs from a problem orientation and wherein Ada's use is considered in two parts of the design.

INDEX TERMS

DATAFLOW MACHINES

EXPERIMENTAL IMPLEMENTATION OF AN ADA TASKING RUN-TIME SYSTEM ON THE MULTIPROCESSOR COMPUTER CM

ARDO, ANDERS

DOCUMENT NUMBER: 5669 TYPE: PAPER

WASHINGTON ADA SYMPOSIUM, '84 MARCH. PP. 145-153

In this paper an experimental implementation of an Ada tasking run-time system is reported. The implementation was done on the multiprocessor computer. The run-time system implements almost full Ada tasking, thus demonstrating the feasibility of using Ada on a true multiprocessor. The paper further analyzes the tasking concept of Ada and gives a machine independent algorithmic specification of a tasking run-time system. The algorithmic specification defines a "standard" multiprocessor run-time system with a set of low-level run-time mechanisms supporting Ada tasking. The implementation of the mechanisms will then be the only machine-dependent parts of the run-time system. (author)
INDEX TERMS

DISTRIBUTED PROCESSING MULTIPROGRAMMING

IMPLEMENTING A RADAR DISPLAY WITH ADA ON A MICROCOMPUTER

HANHAM, S.D.; LEAVITT, R.P.

DOCUMENT NUMBER: 6670 TYPE: PAPER

WASHINGTON ADA SYMPOSIUM, '84 MARCH, PP. 155-163

This paper reports on the use of Ada to program an IBM-PC for the display of military radar data. Two compilers were used and compared: the Telesoft Ada Development Kit, and Janus Ada by R&R Software. Neither of these compilers is a full implementation of Ada. As yet, a validated Ada compiler for the IBM Personal Computer does not exist. This paper describes the problems and successes which were encountered during the course of the software development. In particular, the portability of the software from one development environment to the other is reviewed. Conclusions are drawn on the suitability of developing Ada code on a microcomputer and on the importance of compiler validation for software portability. (author)

INDEX TERMS

RADAR APPLICATIONS MICROPROCESSORS PORTABILITY

DEPARTMENT OF DEFENSE COMPUTER TECHNOLOGY (STUDY ANNEX)

U.S. DEPT. OF DEFENSE

DOCUMENT NUMBER: 5674 DOCUMENT DATE: 01/84 TYPE: TECHNICAL REPORT

This report consists of an overview of the plans for satisfying the Department of Defense's computing needs. Various Ada topics are discussed including the use of Ada in design, interface and Ada Program Support Environment issues, and transportability issues. The Software Technology for Adaptable, Reliable Systems (STARS) program is examined with emphasis on the Automated "Software Factory" concept, i.e. a library of tools. Mention is made of the next generation of computers as well as the effort to standardize computer architectures.

INDEX TERMS

SOFTWARE ENGINEERING ADA TOOL ENVIRONMENT MILITARY COMPUTER FAMILY

EMBEDDED COMPUTER SYSTEMS FIFTH GENERATION COMPUTING SOFTWARE FACTORY
The authors describe their experience in transforming an Ada program unit to silicon and verifying its behavior in an Ada environment. They describe the history of their experiment and discuss their rationale for selecting Ada as a system modeling language. The experiment was intended to further the development of design methodologies and procedures for building systems that are truly heterogeneous (i.e., implementing systems following different choices of data abstraction realized in a variety of logic and circuit technologies).

INDEX TERMS

ARCHITECTURE DESIGN METHODOLOGIES SOFTWARE ENGINEERING

SPONSORS: DEFENSE ADVANCED RESEARCH PROJECTS AGENCY, ARLINGTON, VA

This article addresses the problem of programming distributed systems within the framework of the Ada language (Ada80, Ada82, & Brosol, 82). The work is part of a large project (C-Net) sponsored by CNR, the Italian Research Council which involves several universities, research institutions, and corporations. The goal of the project is to provide tools and methodologies for designing locally distributed systems composed of heterogeneous physical nodes. A prototype implementation will be a campus net which supports both secretarial work and interactive programming environments. In this article, an outline of some basic assumptions concerning the nature of the distributed application systems to be programmed in Ada is given. Then, an approach for defining and programming a distributed application, based upon the Ada package, is described. In particular, the internode communication of the network is provided by primitives defined in a generic ad-hoc package, which are lower level than the Ada
rendezvous. Finally, a complete example of programming a simple distributed application is given. (author)

INDEX TERMS

DISTRIBUTED PROCESSING SOFTWARE ENGINEERING TOOLS AND TECHNIQUES

THE FIRST ADA COMPILER FAIR

HOFKIN, MARY K.

DOCUMENT NUMBER: 5687 TYPE: JOURNAL ARTICLE

JOURNAL OF PASCAL AND ADA, VOL 2, ISSUE 5, PP. 30-31

This article gives an overview of the first annual Ada Compiler Fair. It also presents a comparison of six different compilers.

INDEX TERMS

COMPILERS TECHNOLOGY TRANSFER TECHNOLOGY FORECAST

ADATEC REPORT

COLBORN, BONNIE

DOCUMENT NUMBER: 5688 TYPE: JOURNAL ARTICLE

JOURNAL OF PASCAL AND ADA, VOL 2, ISSUE 5, P. 32

This article gives an overview of the topics discussed at the national Ada TEC meeting held in Cherry Hill, New Jersey from June 13-15, 1983.

INDEX TERMS

TECHNOLOGY TRANSFER TECHNOLOGY FORECAST

KEN BOWLES TALKS ABOUT ADA PART I

HOFKIN, MARY K.

DOCUMENT NUMBER: 5689 TYPE: JOURNAL ARTICLE

JOURNAL OF PASCAL AND ADA, VOL 2, ISSUE 6, PP. 33-34
This article is an interview of Ken Bowles by Mary Hofkin in which Ken Bowles speaks of how he came to oversee the UCSD Pascal Project and how he became an Ada implementor. The conclusion to this article is presented in the November/December 1983 issue of the Journal of Pascal and Ada (see DAN 4451).

INDEX TERMS

HISTORY TECHNOLOGY TRANSFER TECHNOLOGY FORECAST

MODULAR SOFTWARE CONSTRUCTION AND OBJECT-ORIENTED DESIGN USING ADA

SINCOVEC, RICHARD F.; WIENER, RICHARD S.

DOCUMENT NUMBER: 5692 TYPE: JOURNAL ARTICLE

JOURNAL OF PASCAL, ADA AND MODULA TWO, VOL 3, ISSUE 2, PP. 29-34

This paper describes a software development methodology which is referred to as modular software construction and object-oriented design. This powerful and modern approach to software development has recently gained tremendous currency with the advent of software engineering languages such as Ada and Modula-2. In this paper focus is made on the use of Ada in conjunction with this methodology. (author)

INDEX TERMS

MODULAR PROGRAMMING DESIGN METHODOLOGIES DEVELOPMENTAL METHODOLOGIES OBJECT-ORIENTED DESIGN

A REVERSE POLISH CALCULATOR IN ADA

NORRIS, DAVID C.

DOCUMENT NUMBER: 5693 TYPE: JOURNAL ARTICLE

JOURNAL OF PASCAL, ADA AND MODULA TWO, VOL 3, ISSUE 2, PP. 36-37

This article demonstrates a Reverse Polish Notation (RPN) calculator program, which is distributed as a demo program with the SuperSoft/Maranathu "A" (Ada subset) compiler. CALCULATOR compiles under version 3.00 of the compiler. (author)
INDEX TERMS

COMPILERS

A MESSENGER SERVICE IN ADA

RUBIN, SYLVAN; LEE, LISA

DOCUMENT NUMBER: 5697 TYPE: JOURNAL ARTICLE

JOURNAL OF PASCAL, ADA AND MODULA TWO, VOL 3, ISSUE 3, 4 P.

One of the oldest methods of communication is the use of messengers to carry messages. This paper describes an application of this ancient paradigm to task intercommunication in a real-time Ada program. (author)

INDEX TERMS

REAL-TIME SYSTEMS CONCURRENT PROGRAMMING

TEACHING SOFTWARE ENGINEERING WITH ADA?

CORLISS, DR. GEORGE F.

DOCUMENT NUMBER: 5698 TYPE: JOURNAL ARTICLE

JOURNAL OF PASCAL, ADA AND MODULA TWO, VOL 3, ISSUE 3, 3 P.

This paper reports on two formal panels and many informal discussions on the teaching of software engineering and the teaching of Ada at the Association for Computing Machinery Special Interest Group on Computer Science Education (ACM SIGCSE) Fifteenth Technical Symposium held in Philadelphia on February 16-17, 1984. The two panels were organized by Norman Cohen of Softech, Inc., and Don Booker of Pace University. The contributions to the discussions made by Robert Mathis (AJPO) and Jean Sammit (IBM) are especially acknowledged. This report is directed toward computer science educators who were not able to attend that symposium in order to spread the issues and results to a wider audience. (author)

INDEX TERMS

TECHNOLOGY TRANSFER
AN EXAMPLE OF ADA TASKING
LONGO, STEPHEN A.

DOCUMENT NUMBER: 5699 TYPE: JOURNAL ARTICLE

JOURNAL OF PASCAL, ADA AND MODULA TWO, VOL 3, ISSUE 3, 2 P.

This article gives three ways that Ada tasking can be used to calculate mathematical expressions when the terms can be treated independently.

INDEX TERMS
MATHMATICAL METHODOLOGIES

CONCURRENT PROGRAMMING IN THE ADA LANGUAGE: THE POLLING BIAS

GEHANI, NARAIN H.; CARGILL, T.A.

DOCUMENT NUMBER: 5731 TYPE: JOURNAL ARTICLE

SOFTWARE - PRACTICE AND EXPERIENCE, VOL 14, ISSUE 5, PP. 413-427

The rendezvous is an important concept in concurrent programming - two processes need to synchronize, i.e. rendezvous, to exchange information. The Ada programming language is the first programming language to use the rendezvous as the basis of its concurrent programming facilities. The authors' experience with rendezvous facilities in the Ada language shows that these facilities lead to and encourage the design of programs that poll. Polling is generally, but not always, undesirable because it is wasteful of system resources. Illustrated and examined in this article are the reasons for polling bias in the Ada language. This article gives suggestions on how to avoid polling programs, and suggests changes to the rendezvous facilities to eliminate the polling bias. The ramifications of these changes to the implementation of the Ada language are also discussed. Although the focus is on the rendezvous facilities in the Ada language, the analysis is also applicable to other languages. A polling bias can occur in any concurrent programming language based on the rendezvous mechanism if it does not provide appropriate facilities. (author)

INDEX TERMS
CONCURRENT PROGRAMMING SYNCHRONIZATION
This paper presents a static approach to exception handling. The static approach is proposed as a consequence of an examination of existing language constructs for exception handling in which several trouble spots have been revealed. The static approach consists basically of one concept, namely the Sequel Concept. Although the Sequel Concept is sufficient to specify exception handling within a program, one additional concept is introduced, namely the derived definition concept that is introduced as a generalization of the derived type and generic concepts from Ada. The main advantages of the static approach are: first, that it is truly static as opposed to the existing language constructs in which dynamic association is used in some way or another; and, second, the language constructs for exception handling are simple, easy to implement and based on familiar concepts. (author)

INDEX TERMS

EXCEPTION HANDLING STRUCTURED PROGRAMMING CLU
CHILL PL/I LANGUAGE DESIGN
CONTROL STRUCTURES

The programming language Ada defines a separate compilation mechanism which must enforce the language rules in the same manner when compiling a program either in several units or as one compilation unit. Two implementations of the Ada program library required by this mechanism are described. Each has an associated compiler manager program which is the user's interface to the library. The first maintains a central map file containing the library structure. The second uses the UNIX tool make to maintain the library and permits more flexibility in the UNIX operating system environment. Higher level tools could use the second manager as a component part. (author)

INDEX TERMS

UNIX IMPLEMENTATION PROGRAM LIBRARY SYSTEMS
ADA TOOL ENVIRONMENT
SYNTAX DIRECTED EDITOR ENVIRONMENT

KOSLOW, J.R.

DOCUMENT NUMBER: 5839 DOCUMENT DATE: 12/83 TYPE: DISSERTATION

This document describes the implementation and modification of a software development environment for a medium-sized computer based on a syntax directed editor. Although it was developed for use with the Ada programming language, most of the environment is driven by a language syntax description, and can therefore process virtually any current or future programming language. This environment is an extension of a prototype developed previously at the Air Force Institute of Technology. (author)

INDEX TERMS

SOFTWARE DEVELOPMENT ENVIRONMENTS EDITORS

AVAILABLE FROM: DEFENSE TECH INFO CNTR, CAMERON STN, ALEXANDRIA VA 22314
ORDER NUMBER: AD-A138009/6

ADA 1: AN ADA SUBSET COMPILER FOR THE AFIT SYNTAX DIRECTED PROGRAMMING ENVIRONMENT

MCCracken, M.L.

DOCUMENT NUMBER: 5841 DOCUMENT DATE: 12/83 TYPE: DISSERTATION

This document describes the effort involved in moving the Ada compiler and interpreter developed as part of the AFIT syntax directed editor environment from a microcomputer to the VAX 11/780. As part of this effort, the compiler and interpreter were expanded to accept a larger subset of Ada. The compiler and interpreter work with an abstract syntax representation of a computer program produced by the syntax directed editor. This abstract representation, which is guaranteed to be syntactically correct, makes the compiler easier to write and understand. The compiler is a top-down compiler, but no backtracking is needed since the program is known to be syntactically correct. The interpreter is able to use the abstract representation to give the user an interactive display of the program during execution. Designs to allow overloading of names and operators, and passing parameters to subprograms are also presented. (author)

INDEX TERMS

COMPILERS SYNTAX GRAPHS ADA TOOL ENVIRONMENT

AVAILABLE FROM: NATL. TECHNCL INF. SVC. 5285 PORT ROYAL RD, SPRINGFIELD, VA
ORDER NUMBER: AD-A138027/8
UNIVERSAL ARITHMETIC PACKAGES

FISHER, GERALD A., JR.

DOCUMENT NUMBER: 5977 TYPE: JOURNAL ARTICLE

ACM ADA LETTERS, VOL III, ISSUE 6, PP. 30-47

This article presents two Ada packages. The packages UNIVERSAL-INTEGER-ARITHMETIC and UNIVERSAL-REAL-ARITHMETIC, implement the arithmetic operation for the Ada universal-integer and universal-real types. Unlimited precision arithmetic is used for the universal-integer type and rational arithmetic for the universal-real type. The implementation is based on the universal arithmetic package written in SETL for the NYU Ada/ED compiler. The implementation presented here is not the most efficient. It is, however, quite general and requires no low level facilities. With some tuning these packages could be used within an Ada compiler to evaluate static expressions. They also provide an example of the use of Ada packages to support an abstract data type.

(author)

INDEX TERMS

NUMERICAL MANIPULATION SETL

MORE ON BLOCK STRUCTURE: USING ADA

WINKLER, JURGEN F. H.

DOCUMENT NUMBER: 5978 TYPE: JOURNAL ARTICLE

ACM ADA LETTERS, VOL III, ISSUE 6, PP. 48-56

This paper discusses the arrangement of blocks in programs and continues a discussion initiated in two papers by Hanson and Tennent. In addition to the nesting of blocks which was treated by Hanson and Tennent, the author discusses two more principles for the arrangement of blocks: the ordering of parallel subprograms and the use of subunits. The three principles together yield a conceptual framework in which program structures can be characterized in a qualitative manner. The programming language Ada is used to formulate different variants of the examples already used by Hanson and Tennent. It is shown that Ada allows the formulation of the program structures recommended by Hanson as well as those recommended by Tennent.

(author)

INDEX TERMS

MODULAR PROGRAMMING
USING ADA AND APSE TO SUPPORT DISTRIBUTED MULTIMICROPROCESSOR TARGETS

DOCUMENT NUMBER: 5979 TYPE: JOURNAL ARTICLE

ACM ADA LETTERS, VOL III, ISSUE 6. PP. 57-65

This article provides a detailed criticism of Ada and APSEs for distributed targets. A solution is sought that minimizes the restrictions on the use of the language and does not require any language change. Several changes to current APSE designs are suggested to describe the target hardware such that if the software is split into "virtual nodes" then these virtual nodes can be mapped onto physical nodes.

INDEX TERMS

ADA TOOL ENVIRONMENT DISTRIBUTED PROCESSING MICROPROCESSORS

WHEN TO USE PRIVATE TYPES

GARDNER, MICHAEL R.

DOCUMENT NUMBER: 5980 TYPE: JOURNAL ARTICLE

ACM ADA LETTERS, VOL III, ISSUE 6. PP. 66-78

This article discusses the use of private or limited private types when programming in Ada. A short introduction is followed by a discussion of abstractions, information hiding, the mathematical theory of isomorphisms, and finally conclusions. The author concludes that a type should be private when the implementation is expected to change or if operations could be performed upon it which do not correspond to any operations on the objects the type is intended to model.

INDEX TERMS

PROGRAMMING DATA TYPES DATA STRUCTURES

INFORMATION HIDING
GUIDELINES FOR THE DESIGN OF LARGE MODULAR SCIENTIFIC LIBRARIES IN ADA

SYMM. G.T.; WICHMANN, BRIAN A.; KOK, J.; WINTER, D.T.

DOCUMENT NUMBER: 5848 DOCUMENT DATE: 08/83 TYPE: TECHNICAL REPORT

This report is a second interim technical report on a project, entitled "Guidelines for the Design of Large Scientific Libraries in Ada", which is being pursued jointly by the Division of Information Technology and Computing, NPL, in the UK, and the Mathematisch Centrum, Amsterdam, in the Netherlands, with support from the Commission of the European Communities. A final report, entitled "Guidelines for the Design of Large Modular Scientific Libraries in Ada", will be produced around the end of 1983. (author)

INDEX TERMS

SYSTEM DESIGN SYSTEM DESIGN REQUIREMENTS
NUMERICAL MANIPULATION

AVAILABLE FROM: NATL.TECHNCL INF.SVC.5285 PORT ROYAL RD,SPRINGFIELD,VA
ORDER NUMBER: N84-16840/0

A LIS COMPILER FOR GCOS-7

HENIN, BERNARD; COUPRIE, DANIEL; DOUSPIS, PIERRE

DOCUMENT NUMBER: 5902 TYPE: JOURNAL ARTICLE

SOFTWARE - PRACTICE AND EXPERIENCE, VOL 14, ISSUE 3, PP. 253-261

This paper describes the implementation of a LIS compiler for GCOS-7. LIS is a high level system implementation language developed at CII-Honeywell Bull during the middle 1970s, and experience with the language and its implementation have largely influenced the design of Ada. The design of the compiler was particularly aimed at efficient code generation. Design decisions concerning the run-time organization in relation to procedure call and separate compilation are discussed. The structure of the compiler is described. The articulation between the different phases of the code generator is emphasized. Experience with the bootstrap is related. (author)

INDEX TERMS

COMPILEDERS OPTIMIZERS
UNDERSTANDING ADA

SHUMATE, KENNETH A.

DOCUMENT NUMBER: 5972 TYPE: TEXT

The objective of this book is to provide a basic understanding of major Ada language features. It is intended to be a first book on Ada. Understanding Ada provides a simple introduction to Ada by first presenting the Pascal-like parts of Ada, then discussing improvements to Pascal, and finally introducing Ada's advanced features for encapsulation, error handling, and concurrent processing. Virtually the entire language is presented; however, the discussion is at an introductory level and avoids complex issues and subtle interactions. The material and style of presentation are based on Ada seminars taught by the author since 1981. The manuscript has been used both for Ada overview and for hands-on programming courses. The book is suitable for programmers beginning their study of Ada, or for technical managers who wish to understand major language issues. Each chapter contains an exercise for the reader. The exercises are intended to be easy. Each exercise is followed immediately by a solution and a discussion of the solution that addresses issues raised by the exercise. Each of the solutions is presented as a complete Ada program. The programs have been compiled and executed on Government validated versions of the NYU ANSI-Ada/Ed translator and the ROLM/Data General Ada compiler. (author)

INDEX TERMS

EDUCATION

AVAILABLE FROM: HARPER & ROW PUBLISHERS INC.

ADA TARGET MACHINE OPERATING SYSTEM (ATMOS) REVIEW

ASHANY, RON; SEGALL, ZARY; SIEWIOREK, DAN

DOCUMENT NUMBER: 5973 DOCUMENT DATE: 06/84 TYPE: TECHNICAL REPORT

This study reports on the status of the Ada Target Machine Operating System (ATMOS). Concerns of coordinating a tri-service program such as this as well as the overlap with the STARS and MCFOS programs expressed. The author of this report wants to promote R & D programs with the services to promote ATMOS' goals. The ATMOS program also exploits research fallout from APSE studies.

INDEX TERMS

ADA TOOL ENVIRONMENT ARCHITECTURE OPERATING SYSTEMS

AVAILABLE FROM: AIRMICS, CALCULATOR BLDG, GA INST. TECHNOLOGY, ATLANTA, GA

SPONSORS: U.S. ARMY, AIRMICS, 313 CALCULATOR BLDG, ATLANTA, GA
ADA PROGRAMMING STANDARDS AND GUIDELINES

DAILY, PAULAN D.; FOREMAN, JOHN T.

DOCUMENT NUMBER: 5981 TYPE: JOURNAL ARTICLE

ACM ADA LETTERS, VOL III, ISSUE 6, PP. 79-94

This document describes coding practices used on an Ada project. The coding practices are specified as either "standards" (mandatory on this project) or "guidelines" (preferred, but not required). Naming conventions, declarations usage, and coding conventions are discussed.

INDEX TERMS
STANDARDS MODERN PROGRAMMING PRACTICES

SPONSORS: NAVAL OCEAN SYSTEMS CENTER

PARALLEL PROGRAMMING: A BIBLIOGRAPHY

DOCUMENT NUMBER: 5986 TYPE: TEXT

This book presents a bibliography of parallel programming source materials. Entries are limited to articles from the major journals and publications judged to be easily accessible to the computing community. Entries are not included from conference proceedings, research reports, books, or publications of special interest groups. The papers are classified under their major topic. The topics include: semaphores, message passing, locks, illustrative applications and algorithms, etc.

INDEX TERMS
CONCURRENT PROGRAMMING ALGOL MODULA
PL/I PASCAL EDISON

AVAILABLE FROM: JOHN WILEY & SONS, 605 3RD AVE., NY, NY 10016

PROBLEM-SOLVING PRINCIPLES FOR ADA PROGRAMMERS
APPLIED LOGIC, PSYCHOLOGY, AND GRIT

LEWIS, WILLIAM E.

DOCUMENT NUMBER: 5990 TYPE: TEXT
This text is based upon the Reference Manual for the Ada Programming Language (Proposed Standard Document) that was printed by the United States Department of Defense in July 1980. Its aim is to provide a problem-solving background and alternative solution paths from among which the reader may choose. Chapter 1 introduces the basic building blocks of problem solving and provides some insights into the psychological influences involved. Chapter 2 consists of a set of independent "Prescriptions" in problem solving. Chapter 3 consists of a set of advanced "Prescriptions" in problem solving to augment the basic prescriptions in Chapter 2. Chapter 4 presents approaches for attacking more complicated problems for which the prescriptions of Chapters 2 and 3 may not provide an appropriate panacea. The concept of top-down programming is the main theme. A programming problem using the top-down approach is illustrated in six different programming languages. A second and more complex problem is also analyzed. Chapter 5 applies many of the problem-solving techniques discussed in previous chapters for the purpose of eliminating errors, or debugging a program. A set of debugging prescriptions is presented in the fashion of chapters 2 and 3. The programming examples are given in Ada but the terminology should be clear even to those without a detailed knowledge of this language. (author)

INDEX TERMS

PROBLEM REPORT ANALYSIS DEBUGGING
PROGRAMMING TECHNIQUES/METHODOLOGIES
AVAILABLE FROM: HAYDEN BOOK CO. 10 MULHOLLAND DR. HASBROUCK HGTS. NJ

A LALR (1) GRAMMAR FOR ANSI ADA

FISHER, GERALD A., JR.; CHARLES, PHILIPPE

DOCUMENT NUMBER: 5991 TYPE: PAPER

ACM ADA LETTERS, VOL III, ISSUE 4, PP. 37-50

This paper presents an Ada grammar suitable for input to a LALR parser generator. The grammar is organized in the same order as the syntax summary in appendix E of the ANSI ADA REFERENCE MANUAL. The grammar has been processed by the New York University Parser Generator and tested against version 1.3 of the ACVC Test Suite.

INDEX TERMS

LANGUAGE STRUCTURE
A COMMAND INTERPRETER FOR ADA

WHEELER, THOMAS J.

DOCUMENT NUMBER: 5992 TYPE: PAPER

ACM ADA LETTERS, VOL III, ISSUE 4, PP. 51-61

A command interpreter interfaces to the user, accepts commands, and calls a procedure which performs the command. If one would like to add a procedure without recompiling the command interpreter, then the command interpreter must be able to call a procedure without knowing its name at compile-time. This article describes an Ada program that functions as such a command interpreter.

INDEX TERMS

OPERATING SYSTEM DESIGN

ADA DESIGN, JOVIAL IMPLEMENTATION

BEIN, EDWARD

DOCUMENT NUMBER: 5993 TYPE: PAPER

ACM ADA LETTERS, VOL III, ISSUE 4, PP. 62-69

This paper presents a style guide for designing a system in Ada which it will implement in Jovial (J73) and assembly language. The purpose of the guide is to promote the creation of system designs in Ada that will have straightforward Jovial implementations. The paper describes the rationale for the constraints presented and basic strategies for implementing Ada facilities in Jovial.

INDEX TERMS

PROGRAM CONTROL LANGUAGE (PDL)

JOVIAL PROGRAMMING

ADA PACKAGES AND THE USER'S CONCEPTUAL MODEL

MAC AN AIRCHINNIGN, MIKE

DOCUMENT NUMBER: 5994 TYPE: PAPER

ACM ADA LETTERS, VOL III, ISSUE 4, PP. 70-77
In Ada packages that are correct implementations of abstract data types, the only operations available on the data types are precisely those made externally available to the user in the visible part of the package specification. A formal specification and classification of the user of such Ada packages is proposed in this article. Associated with each user is an UCM (User's Conceptual Model). In an Ada Programming Support Environment (APSE) it is envisaged that one of the key tools will be an UIMS (User Interface Management System) which will function for Ada programmers much as Data Base Management Systems (DBMS) currently function for data base users. A complex number Ada package is used as an example.

INDEX TERMS

ADA TOOL ENVIRONMENT

A COMPARATIVE STUDY OF CHILL AND ADA ON THE BASIS OF DENOTATIONAL DESCRIPTIONS

MEILING, ERIK; PALM, STEEN U.

DOCUMENT NUMBER: 5995 TYPE: JOURNAL ARTICLE

ACM ADA LETTERS, VOL III, ISSUE 4, PP. 78-91

This article describes an investigation into the feasibility of including support for the language CHILL in an Ada Programming Support Environment (APSE). For instance, CHILL and Ada compilers might share common backends. The investigation proceeded by comparing formal definitions of the CHILL and Ada programming languages.

INDEX TERMS

CHILL ADA TOOL ENVIRONMENT

SPONSORS: COMMISSION OF THE EUROPEAN COMMUNITIES

PROJECT SPERBER BACKGROUND, STATUS, FUTURE PLANS

PLOEDEREDER, ERHARD PH.D

DOCUMENT NUMBER: 5996 TYPE: JOURNAL ARTICLE

ACM ADA LETTERS, VOL III, ISSUE 4, PP. 92-98

Project SPERBER is concerned with the development of a high-quality software environment facilitating the development of software written in Ada or Basic Pearl. It is to be used for the design, implementation, maintenance and enhancement of embedded system software. This presentation elaborates on the background that led to project SPERBER, presents its current status, and outlines future plans. It also provides an overview of the system structure from
This paper discusses executive software requirements peculiar to real time embedded systems, such as spacecraft, missile and avionics, and the role of Ada in meeting those requirements. In these applications, the cyclical executive has traditionally played a large role because of its ability to work efficiently with resource and frequency constraints. The Ada pragma provides a way to implement this type of executive in a way that can be efficient and easy to use. Pragmas of this type could become a standard for the avionics community.

INDEX TERMS

AVIONICS APPLICATIONS COMMAND, CONTROL, & COMMUNICATION
REAL-TIME SYSTEMS EMBEDDED COMPUTER SYSTEMS

A PROBLEM WITH ADA AND RESOURCE ALLOCATION

Ada has been described as being suitable for the implementation of resource management algorithms. The authors explore four possible solutions to the problem of allocating a number of resources from a pool. They conclude that no ready method presents itself which avoids race conditions and is robust in the face of the failure of requesting tasks.

INDEX TERMS

CONCURRENT PROGRAMMING DISTRIBUTED PROCESSING
This article was produced by the Ada -Europe Portability Working Group. It is intended to provide guidelines for potential Ada compiler customers. There is a commonly held view that to specify a compiler one only needs to state the language to be accepted, the target on which compiled programs are to run, and the host on which the compiler is to run. This view may be reinforced by having the language standardized, and by validation of the compiler. This guide intends to show how much more may need to be specified, for example the programming support environment. (author)

INDEX TERMS

COMPILERS ADA TOOL ENVIRONMENT

A PACKAGE FOR SPECIFYING ADA PROGRAMS

PYLE, I.C.

DOCUMENT NUMBER: 6000 TYPE: PAPER

ACM ADA LETTERS, VOL III, ISSUE 5, PP. 63-68

This paper describes one of the several methods currently being investigated for incorporating specifications into an Ada program. The underlying principle of this method is that a sequence of statements (as in a procedure body) can be semantically specified in three parts: a precondition (describing the relations between relevant variables on starting to execute the sequence of statements), a postcondition (describing the relations between relevant variables on completing execution of the sequence of statements) and an effect (describing the relations between these two states). Each of these three relations can be expressed in an Ada-like notation, by declaring appropriate subprograms in the declarative part preceding the sequence of statements. (author)

INDEX TERMS

PROGRAM CORRECTNESS VERIFICATION
A SIMPLE ADA COMPILER INVALIDATION TEST
ARDO, ANDERS; PHILIPSON, LARS
DOCUMENT NUMBER: 6001 TYPE: PAPER
ACM ADA LETTERS, VOL III, ISSUE 5, PP. 69-74

This paper describes a program which tests a number of the advanced features of Ada. Among the things tested are separate compilation, overloading, generics, aggregates, tasking and various real time facilities. The program can be used to get a quick assessment of the completeness of a non-validated Ada compiler. Also included is a revision that corrects two errors in the original program.

INDEX TERMS
COMPILERS VALIDATION

PECULIARITIES OF ADA
BENGEL, G.G.
DOCUMENT NUMBER: 6002 TYPE: PAPER
ACM ADA LETTERS, VOL III, ISSUE 5, PP. 75-81

Ada is a powerful and complex programming language. Through the size and complexity of the language there are some peculiarities and inconsistencies in Ada which confuse a beginner to the language. These peculiarities thus act as a barrier to the user who really wants a simple solution to a simple problem. A list of these peculiarities helps a non-experienced Ada programmer to master the complexity of Ada. In this work the inconsistencies of Ada are listed and the different meanings and concepts of reserved words in various contexts are explained.

INDEX TERMS
LANGUAGE STRUCTURE

FUNDAMENTALS OF PROGRAMMING LANGUAGES
HOROWITZ, ELLIS
DOCUMENT NUMBER: 6004 TYPE: TEXT

This book takes a fundamentally different point of view from traditional books
on programming languages. The best possible way to study and understand today's programming languages is by focusing on a few essential concepts. These concepts form the outline for this book and include such topics as variables, expressions, statements, typing scope, procedures, data types, exception handling, and concurrency. By understanding what these concepts are and how they are realized in different programming languages, one arrives at a level of comprehension far greater than one gets by writing some programs in a few languages. Moreover, knowledge of these concepts provides a framework for understanding future language designs. Numerous examples from Ada, Pascal, LISP, and other programming languages are included. This book is a study of the complexities of programming languages. (author)

INDEX TERMS

PASCAL
LISP
PROGRAMMING TECHNIQUES/METHODOLOGIES
FUNCTIONAL PROGRAMMING
OBJECT-ORIENTED DESIGN
SNOBOL (AND SNOBOL EXTENSIONS)
CONCURRENT PROGRAMMING
DATA FLOWGRAPHS

AVAILABLE FROM: COMPUTER SCIENCE PRESS, 11 TAFT COURT ROCKVILLE, MD 208

INTEL 432/670 ADA BENCHMARK PERFORMANCE EVALUATION IN THE MULTIPROCESSOR/MULTIPROCESS ENVIRONMENT

ROGERS, THEODORE F. JR.; KARADIMITROPOULOS, I.A.

DOCUMENT NUMBER: 6005 DOCUMENT DATE: 06/83 TYPE: DISSERTATION

The INTEL 432/670 microcomputer system contains the IAPX 432 microprocessor which executes compiled Ada programs. This thesis contains performance evaluation of the INTEL 432/670 system in a multiprocessor/multiprocess environment. Benchmark programs from the Computer Family Architecture study are encoded in the Ada Programming Language and compiled on a host VAX 11/780 before being downloaded to INTEL MDS 800 for further transfer to the intel 432/670 system for execution. The historical development of computer architectures as well as a systematic description of the INTEL 432/670 system are included. (author)

INDEX TERMS

PERFORMANCE EVALUATION DISTRIBUTED PROCESSING ARCHITECTURAL FAMILIES

AVAILABLE FROM: DEFENSE TECH INFO CNTR, CAMERON STN, ALEXANDRIA VA 22314
ORDER NUMBER: AD-A132774
AN EFFICIENT IMPLEMENTATION OF VISIBILITY IN ADA

BLOWER, M.I.

DOCUMENT NUMBER: 6006 TYPE: PAPER

INTERMETRIC'S ADA UPDATE, VOL 11, 11 P.

This paper discusses the efficient implementation of Ada's visibility requirements. A scope stack and an unstructured name space are used to facilitate separate compilation and ensure that each Ada declaration takes a constant unit of time. Visibility issues affect practically every aspect of semantic analysis in Ada: declarations, statements, expressions, and separate compilation. The design of the symbol table package is, thus, a critical one. This paper discusses the design goals of the symbol table for the Ada Integrated Environment (AIE) bootstrap compiler front end, and how they were influenced by the Ada language. Since the compiler is being heavily used by the AIE project, ample data is available with which to measure symbol table performance. (author)

INDEX TERMS

ADA TOOL ENVIRONMENT DESIGN TOOLS AND TECHNIQUES IMPLEMENTATION

ADAM: AN ADA-BASED LANGUAGE FOR MULTIPROCESSING

LUCKHAM, DAVID C.; VON HENKE, F.W.; LARSEN, H.J.; STEVENSON, D.R.

DOCUMENT NUMBER: 6017 TYPE: JOURNAL ARTICLE

SOFTWARE - PRACTICE AND EXPERIENCE, VOL 14, ISSUE 7, PP. 605-642:

Adam is a high-level language for parallel processing. It is intended for programming resource scheduling applications, in particular supervisory packages for run-time scheduling of multiprocessing systems. An important design goal was to provide support for implementation of Ada and its run-time environment. Adam has been used to implement Ada task supervision and also as a high-level target language for compilation of Ada tasking. This paper gives an overview of Adam and examples of its use. Emphasis is placed on the differences from Ada. Experience using Adam to build the experimental Ada system is evaluated. Design of a run-time supervisor in Adam is discussed in detail. (author)

INDEX TERMS

IMPLEMENTATION IMPLEMENTATION IMPLEMENTATION

SPONSORS: ADVANCED RESEARCH PROJECTS AGENCY, ARLINGTON, VA:
USING ADA FOR DISCRETE EVENT SIMULATION

BRUNO, GIORGIO

DOCUMENT NUMBER: 6018 TYPE: JOURNAL ARTICLE

SOFTWARE - PRACTICE AND EXPERIENCE, VOL 14, ISSUE 7, PP. 685-695:

The process interaction approach is proposed for developing a discrete simulation environment in Ada. The introduction of simulation facilities in Ada not only concerns the classical aspect of model building, but allows a new class of problems to be tackled, that is the testing of correctness of programs intended for real-time applications. In this paper attention is focused on the presentation of the process scheduling in the simulation context and on the definition of standard forms of interactions among processes. Simulation facilities are organized by making use of Ada's structuring concepts. (author)

INDEX TERMS

IMPLEMENTATION

SPONSORS: ITALIAN NATIONAL RESEARCH COUNCIL

COMPARING SOFTWARE DEVELOPMENT METHODOLOGIES FOR ADA: A STUDY PLAN

FREEMAN, PETER; WASSERMAN, ANTHONY I.; HOUGHTON, RAYMOND C., JR

DOCUMENT NUMBER: 6029 TYPE: JOURNAL ARTICLE

SOFTWARE ENGINEERING NOTES (ACM SIGSOFT), VOL 9, ISSUE 4, PP. 22-55

This paper outlines a study that was proposed as one of the early activities in the Support Systems Task area of the DoD STARS (Software Technology for Adaptable, Reliable Systems) Program. The study's key objective is to determine how well various software development methodologies help structure systems built in Ada as measured by the ease of maintenance of the resulting system. A comparative study is described (modeled after the typical DoD software procurement) and a rationale for some aspects of the study is presented. (author)

INDEX TERMS

DEVELOPMENTAL METHODOLOGIES MAINTAINABILITY
SOFTWARE ENGINEERING TOOLS AND TECHNIQUES VALIDATION
VERIFICATION DATA COLLECTION
CAPITAL-INTENSIVE SOFTWARE TECHNOLOGY

WEGNER, PETER

DOCUMENT NUMBER: 6031 TYPE: JOURNAL ARTICLE

IEEE SOFTWARE, VOL 1, ISSUE 3, PP. 7-45

Capital is a commodity which can be used time and again to produce other commodities, reusability being the key element in this definition. The author examines recent trends as a movement towards capital-intensive software technology. He considers (1) software components, (2) models of programming (such as the life-cycle model, prototyping, etc.), (3) knowledge engineering, and (4) Ada as a case study of a capital-insensitive technology.

INDEX TERMS

CONCURRENT PROGRAMMING ECONOMIC ISSUES SOFTWARE TOOLS
PROGRAMMING LANGUAGE DATA STRUCTURES SOFTWARE LIFE CYCLE
MODIFIABILITY EFFICIENCY DESIGN
REUSABILITY SOFTWARE DEVELOPMENT ENVIRONMENTS
PRODUCTIVITY MAINTENANCE ARTIFICIAL INTELLIGENCE

SPONSORS: DEFENSE ADVANCED RESEARCH PROJECTS AGENCY, ARLINGTON, VA; IBM, TJ WATSON RESEARCH CTR, YORKTOWN HEIGHTS, NY 10598

OBJECT ORIENTED DESIGN VS STRUCTURED DESIGN -- A STUDENT'S PERSPECTIVE

JAMSA, KRIS A.

DOCUMENT NUMBER: 6043 TYPE: PAPER

SOFTWARE ENGINEERING NOTES (ACM SIGSOFT), VOL 9, ISSUE 1, PP. 43-49

This paper discusses the advantages that structured design has over object-oriented design. The author favors structured design and presents a hierarchically organized collection of processes in order to emphasize the advantages of a graphic approach to design. The steps involved in object-oriented design, as well as an illustration of Ada packages, are presented. The author suggests that object oriented design places a burden on the designer at the interface stage due to its graphic shortcomings.
INDEX TERMS

DESIGN METHODOLOGIES OBJECT-ORIENTED DESIGN STRUCTURED DESIGN

PROFILE: ALSYS, INC.

JOURNAL STAFF

DOCUMENT NUMBER: 6044 TYPE: JOURNAL ARTICLE

JOURNAL OF PASCAL, ADA AND MODULA TWO, VOL 3, ISSUE 4, PP. 22-26

This article presents a brief overview of ALSYS, Inc., an offshoot of ALSYS, S.A. which was founded by Jean Ichbiah, Ada's principle designer. ALSYS produces products for three major Ada markets: educational material, compilers (both machine-independent compiler-development kits needing backends for specific machines and full Ada compilers for standard processors), and software components.

INDEX TERMS

COMPILERS EDUCATION

AN ADA PRETTY-PRINTER

NORRIS, DAVID C.

DOCUMENT NUMBER: 6045 TYPE: JOURNAL ARTICLE

JOURNAL OF PASCAL, ADA AND MODULA TWO, VOL 3, ISSUE 4, PP. 29-33

A pretty-printer is a program which takes as input an otherwise poorly formatted program and outputs the same program. The "new" program is formatted to adhere to standardized language conventions and is not altered either syntactically or semantically. This article describes an Ada pretty-printer. The pretty-printer follows the conventions set forth in the MIL-STD-1815A. Source code for the program is included in the article. (author)

INDEX TERMS

SOFTWARE TOOLS
CALCULATING FUNCTIONS USING ADA

LONGO, STEPHEN A.

DOCUMENT NUMBER: 6046 TYPE: JOURNAL ARTICLE

JOURNAL OF PASCAL, ADA AND MODULA TWO, VOL 3, ISSUE 4, PP. 34-36

This article presents Ada source code for approximating trigonometric, logarithmic, and exponential functions. The approximation is calculated by using the first few terms of Taylor series representations of these functions.

INDEX TERMS

NUMERICAL MANIPULATION

MODULA-2 & ADA: A COMPARISON OF FOUR FEATURES

MCALHANY, ELIZABETH B.: CAMPBELL, MARK D.

DOCUMENT NUMBER: 6047 TYPE: JOURNAL ARTICLE

JOURNAL OF PASCAL, ADA AND MODULA TWO, VOL 3, ISSUE 4, PP. 37-48

This article compares Ada and Modula-2 language constructs with respect to compilation units, exception handling, input/output, and concurrency concerns. Ada and Modula-2 are similar in their treatment of separately compilable modules: Modula-2 relies on the operating system to handle exceptions while Ada allows the programmer to explicitly specify how exceptions should be handled. Both languages provide standard I/O capabilities, however, Modula-2 seems to possess more powerful I/O resources. Both languages offer multi-tasking facilities, but Ada provides more powerful constructs than the classical tools provided by Modula-2.

INDEX TERMS

MODULA MODULAR PROGRAMMING MODULARITY
EXCEPTION HANDLING PARALLEL PROCESSING CONCURRENT PROGRAMMING

INTERIM ADA-TO-PASCAL TRANSLATION TOOL:
LANGUAGE REFERENCE MANUAL

CRONSBERRY, SID

DOCUMENT NUMBER: 6055 DOCUMENT DATE: 05/82 TYPE: INSTRUCTION
This manual describes the subset of the programming language Ada supported by the Interim Ada-to-Pascal Translation Tool. The manual follows the format of chapters 1 through 14 of the Reference Manual for the Ada Programming Language dated July 1980 (Ada Reference Manual). This manual references the Ada Reference Manual for the features that the Translation Tool does support, and details any restrictions put on these features. The Backus-Naur Form notation in this document describes the legal Ada language features supported by the translation tool. It is suggested that the user compare the supported language features with the full Ada features before using them. (author)

INDEX TERMS

PASCAL LANGUAGE STRUCTURE TRANSLATORS

AVAILABLE FROM: SOFTECH, INC., 460 TOTTEN POND RD, WALTHAM, MA 02154

ADA BIBLIOGRAPHY

NORRIS, DAVID C.

DOCUMENT NUMBER: 6083 TYPE: JOURNAL ARTICLE

JOURNAL OF PASCAL, ADA AND MODULA TWO, VOL 3, ISSUE 5, PP. 15-16

This article contains seven reviews of Ada texts. Texts on software engineering that limit their discussion about Ada to illustrative examples, books on very specialized subjects such as DIANA and concurrent programming, and introductory texts are included in this bibliography. Each of the texts were written after the MIL-STD-1815A was introduced. The reviewer provides recommendations for selecting the appropriate text.

INDEX TERMS

EDUCATION PROGRAMMING CONCURRENT PROGRAMMING
SOFTWARE ENGINEERING SYSTEM DESIGN MODULA

A SPECIFICATION TECHNIQUE FOR THE COMMON APSE INTERFACE SET

LINDQUIST, DR. TIMOTHY E; FACEMIRE, JEFFREY L.; KAFURA, DENNIS G.

DOCUMENT NUMBER: 6084 TYPE: JOURNAL ARTICLE

JOURNAL OF PASCAL, ADA AND MODULA TWO, VOL 3, ISSUE 5, PP. 25-52

This report demonstrates an approach to specifying kernel Ada support environment interface components. The objectives are to provide a mechanism which allows the building of an understandable and complete specification for
validation that is relatively easy to construct. In meeting these objectives, an
Abstract Machine approach has been modified and applied to a functional
description of kernel operations. After explaining the approach and their
motivation for choosing it, the author discusses its utility. Interactions among
kernel operations and pragmatic implementation limits are also discussed.
(author)

INDEX TERMS

ADA TOOL ENVIRONMENT SPECIFICATION TOOLS AND TECHNIQUES

SPONSORS: OFFICE OF NAVAL RESEARCH, QUINCY ST., ARLINGTON, VA 22217

ADA ORIENTATION FOR MANAGERS · L101 TEACHER’S GUIDE

STAFF AUTHOR, SOFTECH, INC. TOTTEN POND RD, WALTHAM, MA 02154

DOCUMENT NUMBER: 6098 DOCUMENT DATE: 05/84 TYPE: TECHNICAL REPORT

This report is one in a series of teaching modules of slides and instructor
notes. The module contains material to conduct an introduction to Ada for a
management-oriented class. The module is intended to take one day to present. In
addition to providing an overview of the Ada language, the material is intended
to provide an appreciation of and information related to the entire Ada effort.

INDEX TERMS

EDUCATION CURRICULA
AVAILABLE FROM: NATL. TECHNICAL SVC. 5285 PORT ROYAL RD, SPRINGFIELD, VA
ORDER NUMBER: AD-A141846/6

SPONSORS: U.S. ARMY COMM-ELECTRONICS CMD (CECOM), FT. MONMOUTH, NJ

INTRODUCTION TO ADA, A HIGHER ORDER LANGUAGE L103
TEACHER’S GUIDE

STAFF AUTHOR, SOFTECH, INC. TOTTEN POND RD, WALTHAM, MA 02154

DOCUMENT NUMBER: 6099 DOCUMENT DATE: 05/84 TYPE: TECHNICAL REPORT

This report is one in a series of teachers' modules. This module is designed for
a course intended to introduce Higher Order Languages (HOLS) to Assembly
language programmers. Ada is used as an example HOL and much of the syntax of
Ada is taught here. The report consists of a series of viewgraphs and teacher
notes.

INDEX TERMS

EDUCATION ASSEMBLY LANGUAGE
AVAILABLE FROM: NATL. TECHNICAL SVC. 5285 PORT ROYAL RD, SPRINGFIELD, VA
ADA TECHNICAL OVERVIEW - L102 TEACHER'S GUIDE

STAFF AUTHOR. SOFTECH, INC. TOTTEN POND RD, WALTHAM, MA 02154

DOCUMENT NUMBER: 6100 DOCUMENT DATE: 05/84 TYPE: TECHNICAL REPORT

This report is a module for teachers. A course based on this material will provide students with a reading knowledge of Ada and a good foundation for continued learning. The approach is learning about Ada through Ada examples. Syntax is not stressed or even covered. Rather, concepts and an intuitive feel for the language are provided. The report consists of viewgraphs and explanatory material for the teacher.

INDEX TERMS

EDUCATION

AVAILABLE FROM: NATL. TECHNCL INF. SVC. 5285 PORT ROYAL RD, SPRINGFIELD, VA
ORDER NUMBER: AD-A141862/3

SPONSORS: U.S. ARMY COMM-ELECTRONICS CMD(CECOM), FT. MONMOUTH, NJ

ADA PRIMER

STAFF AUTHOR. SOFTECH, INC. TOTTEN POND RD, WALTHAM, MA 02154

DOCUMENT NUMBER: 6102 DOCUMENT DATE: 01/84 TYPE: TECHNICAL REPORT

This workbook is one of a series of reports that provide material for a suggested Ada curriculum. This workbook could be used for a course on the syntax and semantics of the "Pascal Subset" of Ada. This report is organized as a series of tutorial sections alternating with exercises.

INDEX TERMS

EDUCATION PROGRAMMING

AVAILABLE FROM: NATL. TECHNCL INF. SVC. 5285 PORT ROYAL RD, SPRINGFIELD, VA
ORDER NUMBER: AD-A140660/2

SPONSORS: U.S. ARMY, CENTACS, ECOM, FT. MONMOUTH, NJ 07703

ADA CASE STUDIES II

STAFF AUTHOR. SOFTECH, INC. TOTTEN POND RD, WALTHAM, MA 02154

DOCUMENT NUMBER: 6105 DOCUMENT DATE: 01/84 TYPE: TECHNICAL REPORT

This report presents case studies on different aspects of the Ada language.
These aspects include naming conventions, types, coding paradigms, exceptions, and program structure. The objectives of this work are to explore Ada issues and to gain insight into the characteristics of a life cycle design methodology that would promote effective use of Ada.

INDEX TERMS

EDUCATION SOFTWARE ENGINEERING STANDARDS MODERN PROGRAMMING PRACTICES AVAILABLE FROM: NATL.TECHNCL INF.SVC.5285 PORT ROYAL RD,SPRINGFIELD,VA ORDER NUMBER: AD-A140818/6

EXPERIENCES PORTING PASCAL SOURCE FROM A MICRO COMPUTER TO A VAX

MAYER, HERBERT

DOCUMENT NUMBER: 6114 TYPE: JOURNAL ARTICLE

ACM SIGPLAN NOTICES, VOL 19, ISSUE 9, PP. 16-20

This paper presents the problems encountered when rehosting a Pascal project from an Intel 8086-based micro computer to a VAX 11/780. The paper also presents expected problems that the rehost successfully handled due to some surprising characteristics of the target computer. The Pascal project is a compiler for a subset of Ada.

INDEX TERMS

PASCAL PORTABILITY

PRACTICAL EXPERIENCES WITH AUTOMATIC REPAIR OF SYNTACTICAL ERRORS OR SYNTACTICAL ERROR REPAIR IN THE DAS COMPILER

KATWIJK, J. VAN

DOCUMENT NUMBER: 6115 TYPE: JOURNAL ARTICLE

ACM SIGPLAN NOTICES, VOL 19, ISSUE 9, PP. 37-48

This article discusses some practical experiences with error-repair methods. In this context, an error repair method is a means by which a compiler can correct certain errors in the code it parses. Two methods were investigated for use in a compiler for an Ada subset, the DAS (Delft Ada subset) compiler. The method finally used is the natural synthesis of those two methods.
A REVISED STONEMAN FOR DISTRIBUTED ADA SUPPORT ENVIRONMENTS

GOODWIN, JEREMY P.

DOCUMENT NUMBER: 6119 DOCUMENT DATE: 01/84 TYPE: TECHNICAL REPORT

This paper extends the conceptual model of the "STONEMAN" document to more completely model the interfaces and protocols that exist in the Ada Programming Support Environment (APSE). A previous extensions to the STONEMAN are reviewed, and an updated model is proposed. The new model is shown to meet the guidelines set forth in STONEMAN, and to include subsequent ideas as well. The new model is then applied to the problem of user communication with an APSE, and it is shown how the new model extends to include distributed APSEs as well as single host APSEs. The issue of security enforcement, as a necessary subset of dynamic verification, is also included in the new model. (author)

INDEX TERMS

INDEX TERMS PROGRAMMING LANGUAGE ADA TOOL ENVIRONMENT AVAILABLE FROM: NATL.TECHNCL INF.SVC.5285 PORT ROYAL RD,SPRINGFIELD,VA ORDER NUMBER: AD-A137940 REPORT NUMBER: CS830010 SPONSORS: OFFICE OF NAVAL RESEARCH,QUINCY ST.,ARLINGTON,VA 22217

ABSTRACT TYPES, ADA PACKAGES, AND THE TEACHING OF DATA STRUCTURES

FELDMAN, MICHAEL B.

DOCUMENT NUMBER: 6134 TYPE: JOURNAL ARTICLE

ACM SIGCSE BULLETIN, VOL 16, ISSUE 1, PP. 183-189

This paper describes a course in Data Structures offered to upper-division undergraduates and beginning graduate students. In addition to the usual data-structures topics, the course places a strong emphasis on software engineering principles, especially the implementation of abstract data types using Ada packages. Two programming project series are presented; documentation requirements are described in some detail. Attention is paid to the problem of translating high-level design concepts, as embodied in Ada, into the more limited data structures and modularization features of earlier languages. (author)
MIL-STD-SDS REVIEW ISSUES: ADA AND DESIGN METHODOLOGIES

FISCHER, HERMAN

DOCUMENT NUMBER: 6135 TYPE: PAPER

ACM ADA LETTERS, VOL 4, ISSUE 1, PP. 7-16

A number of industry reviewers met at the October 1983 AdaTEC meeting to review the "Proposed Military Standard, Defense System Software Development (DoD-STD-SDS)." The standard was reviewed for compatibility with Ada. In addition, reviewers provided comments on sections of the standard which related to design methodologies. This article is a report on the AdaTEC review. The author distilled the recommendations relating to two (of the 44) issues, #7--Ada, and #13--Design Methodologies. Comments were reported as a statement of the problem, discussion, and a recommendation.

INDEX TERMS

STANDARDIZATION PROGRAM DESIGN METHODOLOGIES
DESIGN TOOLS AND TECHNIQUES
DEVELOPMENTAL METHODOLOGIES

AVAILABLE FROM: ACM, INC., 1133 AVE. OF AMERICAS, NY, NY 10036

MONITORING AN ADA SOFTWARE DEVELOPMENT

BASILI, VICTOR R.; CHANG, SHIH; GANNON, JOHN; KATZ, ELIZABETH;
PANLILIO-YAP, MONINA N.; RAMSEY, CONNIE LOGGIA; ZELKOWITZ, MARVIN V.;
BAILEY, JOHN; KRUESI, ELIZABETH; SHEPPARD, SYLVIA

DOCUMENT NUMBER: 6136 TYPE: PAPER

ACM ADA LETTERS, VOL 4, ISSUE 1, PP. 32-39

This paper describes an experiment in training and applying Ada to a real world (and previously developed) software project. The experiment consisted of training a group of programmers (having different levels of experience) in the use of Ada. After training, they were to design, code and test a software project. Since this project had previously been developed in FORTRAN, the new Ada program could be compared with the previous version and inferences made.
Some interesting results include that training is a crucial factor in this process; and it is not enough to use Ada as a programming language if the basic software design continues (implicitly) to be a FORTRAN-oriented design. (author)

INDEX TERMS
EDUCATION
SOFTWARE ENGINEERING
DATA ANALYSIS
DATA COLLECTION
PERSONNEL MANAGEMENT
DATA ABSTRACTION
FORTRAN

AVAILABLE FROM: ACM, INC., 1133 AVE. OF AMERICAS, NY, NY 10036

SPONSORS: OFFICE OF NAVAL RESEARCH, QUINCY ST., ARLINGTON, VA 22217

A PERFECT HASH FUNCTION FOR ADA RESERVED WORDS

WOLVERTON, DAVID ALAN

DOCUMENT NUMBER: 6137 TYPE: PAPER

ACM ADA LETTERS, VOL 4, ISSUE 1, PP. 40-44

A fast perfect hash function is presented which allows the 63 Ada reserved words to be differentiated quickly from other Ada identifiers. Such functions are potentially useful in improving the performance of software that processes the text of Ada programs.

INDEX TERMS
SOFTWARE TOOLS

AVAILABLE FROM: ACM, INC., 1133 AVE. OF AMERICAS, NY, NY 10036

SPONSORS: DEFENSE ADVANCED RESEARCH PROJECTS AGENCY, ARLINGTON, VA

ADA EDUCATION IS A MOVING TARGET

BERARD, EDWARD V.

DOCUMENT NUMBER: 6138 TYPE: PAPER

ACM ADA LETTERS, VOL 4, ISSUE 1, PP. 45-49

The author describes the "line-by-line" style of programming which he asserts is common among FORTRAN, COBOL, and Assembly language programmers. The developing shortage of programmers will make such a style inappropriate in the coming decades. Instead the author advocates a "tools to build tools" approach. Ada was designed with this philosophy in mind. Thus, Ada education must not merely concentrate on syntax, but must convey this philosophy and the advanced software engineering techniques needed to implement it.
ON UNLIMITED TYPES AND RELIABILITY OF ADA PROGRAMS

LLAMOSI, ALBERT; BOTELLA, PERE; OREJAS, FERNANDO

DOCUMENT NUMBER: 6139 TYPE: PAPER

ACM ADA LETTERS, VOL 4, ISSUE 1, PP. 50-60

The decision to mix two such different concepts as assignment and test for equality in the same feature of Ada language is submitted to criticism. Its consequences on reliability and modifiability of programs are considered and some methodological conclusions are drawn out in this article. The authors conclude putting together equality test and assignment into the limited/unlimited declaration was a truly wrong design decision. (author)

INDEX TERMS

RELIABILITY MODIFIABILITY LANGUAGE DESIGN DATA ABSTRACTION MODULES

ANSI STANDARD ADA - QUICK REFERENCE SHEET

SMITH, DAVID A.

DOCUMENT NUMBER: 6140 TYPE: PAPER

ACM ADA LETTERS, VOL 4, ISSUE 1, PP. 61-66

The Ada grammar is represented here in syntax graph notation. This grammar also incorporates a few rules considered semantic. The package specifications for the predefined packages Standard, System, and Text-IO have also been included. Information about the predefined attributes and pragmas has also been highly condensed. (author)

INDEX TERMS

LANGUAGE STRUCTURE
This paper is based on the author's experience in using SDDL, Software Design and Documentation Language. It shows how the use of Ada as a PDL would have affected a specific project and identifies issues which must be addressed when using any PDL. In all previous tasks, an initial problem with instituting the use of a PDL was that sufficient training was not available to overcome the inertia associated with the transfer of a new technology into practice. Learning the capabilities of tools rarely provides enough information to allow the creative use of the tools within specific project environments and constraints. The tools appear either too rigorously structured to be applied creatively, or are too flexible to easily identify a converging path to an application methodology.

INDEX TERMS

PROGRAM CONTROL LANGUAGE (PDL) TECHNOLOGY TRANSFER
FORTRAN MANAGEMENT
AVAILABLE FROM: ACM.INC., 1133 AVE. OF AMERICAS, NY, NY 10036

In this thesis, the author develops criteria useful for evaluating the ability of tools in Ada environments to support configuration management. In trying to define configuration management, the author approaches the problem from both management and designers' viewpoints. In addition, the author examines the traditional definition of the software life cycle with respect to its inadequacy for describing incremental development and rapid prototyping. From this background, the author is able to develop requirements and evaluation criteria for configuration management which are used to evaluate the Army's Ada Programming Support Environment, the Ada Language System (ALS).

INDEX TERMS

CONFIGURATION MANAGEMENT ADA TOOL ENVIRONMENT SOFTWARE LIFE CYCLE
PROTOTYPES VERIFICATION VALIDATION
AVAILABLE FROM: NATL.TECHNCL INF.SVC.5285 PORT ROYAL RD, SPRINGFIELD, VA
ORDER NUMBER: AD-A140982/0
This paper reviews the issues raised by the drafting of a general requirements analysis specification for Ada compilers by the Portability Working Group of Ada Europe. Issues reviewed include: language related issues, machine-specific features, portability, user interfaces and facilities, performance and capacity, compiler and run-time interfaces, rehosting and retargeting issues. Although the work reported in this paper was intended primarily to keep European supplies and users of Ada compilers, the results should be of value to the worldwide Ada market.

INDEX TERMS

SPECIFICATIONS REQUIREMENTS COMPILERS

SPONSORS: COMMISSION OF THE EUROPEAN COMMUNITIES

This article records an interview with Jean Ichbiah, the principal designer of Ada. Ichbiah discusses the evolution of Ada, evaluates its success so far, and speculates on its future. Some of the questions asked are: "How did the DoD come to sponsor a new computer language?"; "Who defined Ada's requirements?"; "Is the DoD using Ada right now?"; "Will Ada substantially reduce programming cost?"

INDEX TERMS

LANGUAGE EVALUATION LANGUAGE DESIGN LANGUAGE STRUCTURE
TECHNOLOGY FORECAST PORTABILITY DESIGN
FORTRAN PL/I ALGOL
PASCAL C LANGUAGE
DHRYSTONE: A SYNTHETIC SYSTEMS PROGRAMMING BENCHMARK

WEICKER, REINHOLD P.

DOCUMENT NUMBER: 6172 TYPE: JOURNAL ARTICLE

COMMUNICATIONS OF THE ACM, VOL 27, ISSUE 10, PP. 1013-030

This paper describes a synthetic programming benchmark program called DHRYSTONE. This benchmark can be used to check whether a computer architecture can efficiently execute those features of a programming language that are most frequently used in programs written to perform systems programming applications. Data used to build the benchmark is summarized and compared in the paper. The author has written an Ada version of the benchmark, which appears in the appendix. He states that the Ada program is designed in a way that should make it possible to develop versions for several different programming languages.

INDEX TERMS

AUTOMATED PROGRAM ANALYSIS PROGRAM TESTING LANGUAGE EVALUATION
DATA COLLECTION DATA TYPES ARCHITECTURE
STATISTICAL SOFTWARE STATISTICAL SOFTWARE DATA STRUCTURES

TIMING STUDIES USING A SYNTHETIC WHETSTONE BENCHMARK

HARBAUGH, SAM; FORAKIS, JOHN A.

DOCUMENT NUMBER: 6174 TYPE: JOURNAL ARTICLE

ACM ADA LETTERS, VOL 4, ISSUE 2, PP. 23-34

This article describes a project which performed timing studies comparing the compile and execution times of the synthetic Whetstone benchmark program written in different languages and compiled and run in different environments. The languages used were FORTRAN 77, PASCAL and Ada. The environments used were the VAX-11/780, the Data General MV/4000 and MV/10000, and their respective software. (author)

INDEX TERMS

FORTRAN EFFICIENCY PASCAL LANGUAGE EVALUATION
INTERFACING WITH REAL ENVIRONMENTS FROM ADA PROGRAMS

FANTECHI, A.

DOCUMENT NUMBER: 6175 TYPE: JOURNAL ARTICLE

ACM ADA LETTERS. VOL 4, ISSUE 2, PP. 35-43

The features provided by the Ada language to interface objects belonging to non-AOA real environments are summarized and discussed in this paper. Some suggestions are given towards the proper use of these features in real environments. (author)

INDEX TERMS

REAL-TIME SYSTEMS ADA TOOL ENVIRONMENT ARCHITECTURE

WRITING DIAGNOSTIC SOFTWARE IN ADA

VAN DER LINDEN, PETER

DOCUMENT NUMBER: 6176 TYPE: JOURNAL ARTICLE

ACM ADA LETTERS. VOL 4, ISSUE 2, PP. 44-53

This paper describes the VERIFY 432 package, which was written in Ada, and which evaluates the hardware status of an HIS 432 board system or an integrated MULTIBOX computer. Some observations are made on the possibility of building a knowledge base into this software, to upgrade to an expert system. A hardware diagnostic package would usually be written in a low-level language, perhaps even utilizing special-purpose microcode functions. However, the authors' experience demonstrated that Ada is suitable for implementing this kind of testing suite, and has many features which especially facilitate more general systems programming. Some of the particular advantages of using Ada are pointed out, as well as areas in which the language could have provided more assistance than it did. (author)

INDEX TERMS

ARCHITECTURE EXPERT SYSTEMS VERIFICATION TOOLS AND TECHNIQUES TESTING
EXPERIENCE WITH ADA FOR THE GRAPHICAL KERNEL SYSTEM

GILROY, KATHLEEN

DOCUMENT NUMBER: 6177 TYPE: JOURNAL ARTICLE

ACM ADA LETTERS, VOL 4, ISSUE 2, PP. 54-64

This paper describes the effort to produce an Ada language binding to the Graphical Kernel System (GKS) and to implement a subset of the GKS functionality in Ada. It presents an overview of the GKS/Ada project, discusses some of the issues raised during development of the GKS software, describes the results of a post-coding analysis comparing the binding and prototype code, and comments on the lessons drawn from this experience. (author)

INDEX TERMS

GRAPHICS APPLICATIONS STANDARDS

SPONSORS: WIS JOINT PROGRAM OFFICE, WASHINGTON, DC

ADA LANGUAGE MAINTENANCE, A LOOK AT WHAT IS GOING ON

DEWAR, ROBERT B.K.

DOCUMENT NUMBER: 6176 TYPE: JOURNAL ARTICLE

ACM ADA LETTERS, VOL 4, ISSUE 2, PP. 65-76

With any computer language, the process of language design is not complete with the issue of a formal standard. The production of new revised Ada standards is only one aspect of language maintenance. The other aspect, which is perhaps even more important, is the maintenance of the current standard, involving such tasks as: (1) Clarifying points where the standard is clear, but the wording could be regarded as misleading. (2) In cases where the standard fails to specify which of two possible interpretations is valid, deciding whether to specify one or the other, or to explicitly allow either. (3) In cases where the manual is inconsistent, deciding which of two possible interpretations is required. (4) In cases where the manual is clear but says something very different from what was intended, or something which has unforeseen intolerable consequences, making it clear what is intended. This article describes the organizational structure for performing, and examples of, this second aspect of maintenance of the Ada language. (author)

INDEX TERMS

STANDARDS
This article is a cumulative list of reports, articles, and textbooks on Ada which have been accumulated since the May/June 1983 issue of Ada Letters. 21 categories are listed and include: "Ada" and other languages, and Software Engineering, Environments, Tasking Facilities, and as a Design Language. (author)

INDEX TERMS
EDUCATION PROGRAMMING LANGUAGE SOFTWARE ENGINEERING
COMPILERS DESIGN ADA TOOL ENVIRONMENT

THE ADA RUNTIME KIT (ARK)
LOMUTO, NICO; RAJEEV, S.; GROVER, V.

DOCUMENT NUMBER: 6187 TYPE: PAPER

REAL-TIME SYSTEMS NEWSLETTER, VOL 2, ISSUE 2, PP. 27-33

This article summarizes the research performed to date by Softech, Inc. to develop a set of options ("kit") a user may choose to form his own Ada run-time environment. The presence in Ada of high-level concurrent programming constructs (called tasks) requires that, at least for embedded systems running on a bare machine, operating system functions be provided by the language implementation, as part of the run-time system. The research is based on Softech's work on Ada Language System (ALS). The rational being followed is that the real-time user should not have to be concerned with details of the "executive." It would be desirable to standardize the underlying operating system (or run-time support system) so that the user may concentrate on the application at hand. (author)

INDEX TERMS
MEMORY MANAGEMENT VIRTUALIZATION FAULT TOLERANCE
APPLICATION-ORIENTED LANGUAGES
REAL-TIME OPERATING SYSTEM EXPERIENCE

COLE, OLIVER; NORTH, STEVEN

DOCUMENT NUMBER: 6192 TYPE: PAPER

REAL-TIME SYSTEMS NEWSLETTER, VOL 2, ISSUE 2, PP. 58-62

The first half of this paper is a case study of SPL/I, high-order real-time language developed at the Naval Research Laboratories, Washington, DC in 1973. It was originally designed as a demonstration to prove that a high-order language could be used for the development of a real-time system. The second half of the paper discusses how the experiences with SPL/I are used to support the design of a real-time system using Ada.

INDEX TERMS

OPERATING SYSTEMS REAL-TIME SYSTEMS DISTRIBUTED PROCESSING
RELIABILITY FAULT TOLERANCE

ADA AS A REAL-TIME OPERATIONS SYSTEM

EMERY, DAVID E.

DOCUMENT NUMBER: 6198 TYPE: PAPER

REAL-TIME SYSTEMS NEWSLETTER, VOL 2, ISSUE 1, PP. 29-33

Ada contains many constructs which are usually found in Real-Time Operating Systems. For this reason, it can be considered a real-time operating system in its own right. To perform these real-time services, Ada requires a complex runtime support library, which resembles the kernel of a real-time operating system. This paper discusses Ada's use as a language for real-time programming.

(author)

INDEX TERMS

REAL-TIME SYSTEMS

ADA COMPILER VALIDATION SUMMARY REPORT: TELESOFT

ADA COMPILER, VERSION 2.0A2 FOR SUN 120 MOTOROLA M68010 USING 4.2 BSD UNIX-SUN VER 1.1

SOFTech, INC.

DOCUMENT NUMBER: 6207 DOCUMENT DATE: 08/10/84 TYPE: TECHNICAL REPORT

The TeleSoft Compiler (TeleSoft Ada), version 2.0a2, for the Sun 120 Motorola
M68010, using 4.2 BSD UNIX - Sun Version 1.1, was tested with version 1.3 of the Ada Compiler validation Capability (ACVC) validation tests. Version 1.3 of the test suite contained 1989 tests, of which 1668 were applicable to this implementation. Of the applicable tests, 61 were withdrawn due to errors in the tests. All of the remaining 1607 applicable correct tests were passed. (author)

INDEX TERMS

COMPILERS
VALIDATION
AVAILABLE FROM: THE AUTHOR

SPONSORS: U.S.A.F. ASD, WRIGHT-PATTERSON AFB, OH

AN ADA LANGUAGE PRIMER, PART I

SAIB, SABINA H.

DOCUMENT NUMBER: 6214 TYPE: JOURNAL ARTICLE

BYTE, VOL 9, ISSUE 6, PP. 131-135

This article is the first of a two-part introduction to Ada. Very basic examples are shown that illustrate the manner in which packages and procedures fit together. The reader will gain some understanding of the Ada program structure from this article. A brief survey of partial Ada compilers available for microcomputers is also included.

INDEX TERMS

EDUCATION MICRO COMPUTERS

AN ADA LANGUAGE PRIMER, PART II

SAIB, SABINA H.

DOCUMENT NUMBER: 6215 TYPE: JOURNAL ARTICLE

BYTE, VOL 9, ISSUE 6, 14 P.

This article is the second of a two-part introduction to Ada. More complicated examples than those in the first part are presented. These examples illustrate Ada’s notion of types, flow of control constructs, and provide a simple interface with the user. One of the partial Ada compilers for microprocessors, Janus Ada, is reviewed.

INDEX TERMS

EDUCATION MICRO COMPUTERS COMPILERS
TRANSITIONS TO ADA: AN INCREMENTAL APPROACH

BROWN, D.H.J.

DOCUMENT NUMBER: 6216 TYPE: PAPER

COMPUTER JOURNAL, THE, VOL 27, ISSUE 1, PP. 37-41

Software producers currently use a wide variety of programming tools and management aids for software systems development. The High Order Language Working Group of the US Department of Defense has placed as much emphasis on the provision of a co-ordinated Ada Programming Support Environment (APSE) as on the language design itself. A technique for ensuring programmer productivity during the transition period to APSE usage is outlined. The technique involves incremental replacement of functional components of the extant environment with those of the APSE. (author)

INDEX TERMS

ADA TOOL ENVIRONMENT PRODUCTIVITY

SPONSORS: ROYAL RADAR AND SIGNALS ESTABLISHMENT

PROGRAMMING IN ADA (SECOND EDITION)

BARNES, J.G.P.

DOCUMENT NUMBER: 6217 TYPE: TEXT

This book covers all aspects of Ada but does not explore every pathological situation. Its purpose is to teach the reader the effect of and intended use of the features of Ada. In a few areas the discussion is incomplete; these are fixed point arithmetic, machine dependent programming, and input-output. Most sections contain exercises. Solutions to all the exercises are found at the end of the book. Chapters on the following topics are included: history and technical background, various Ada concepts, lexical style, types, control structures, exceptions, generics, and tasking.

INDEX TERMS

EDUCATION EMBEDDED COMPUTER SYSTEMS
PROGRAMMING EXCEPTION HANDLING DESIGN
SYNTAX GRAPHS

AVAILABLE FROM: ADDISON-WESLEY PUBLISHING CO., READING, MA 01867
ABSTRACTION TECHNIQUES IN MODERN PROGRAMMING LANGUAGES

SHAW, MARY

DOCUMENT NUMBER: 6218 TYPE: JOURNAL ARTICLE

IEEE SOFTWARE, VOL 1, ISSUE 4, PP. 10-26

This article begins by reviewing the ideas about program development and analysis that have heavily influenced the development of current programming language techniques. Many of these ideas are currently interesting as well as historically important. The authors then survey the ideas from recent research projects that are influencing modern software practice. The changes in program organization that have been stimulated by these ideas are illustrated by developing a small example in three different languages - FORTRAN, Pascal, and Ada. Finally, we assess the status and the potential of current abstraction techniques. (author)

INDEX TERMS

STRUCTURED DESIGN TOP-DOWN PROGRAMMING MODULAR PROGRAMMING
ABSTRACT DATA TYPES DATA ABSTRACTION PASCAL
FORTRAN

SPONSORS: NATIONAL SCIENCE FOUNDATION; U.S.A.F. AVIONICS LAB.W-PAFB, OH 45433; DEFENSE ADVANCED RESEARCH PROJECTS AGENCY, ARLINGTON, VA

SOFTWARE PROTOTYPING USING THE SETL PROGRAMMING LANGUAGE

KRUCHTEN, PHILIPPE; SCHONBERG, EDMOND; SCHWARTZ, JACOB

DOCUMENT NUMBER: 6220 TYPE: JOURNAL ARTICLE

IEEE SOFTWARE, VOL 1, ISSUE 4, PP. 66-75

This article describes the use of SETL, a prototyping language, in construction of the New York University Ada /Ed interpreter. SETL is as language that takes much of its philosophy and appearance from set theory.

INDEX TERMS

PROTOTYPES PROGRAMMING LANGUAGE INTERPRETERS
TRANSLATORS

SPONSORS: US ARMY CENTACS/CORADCNT FT. MONMOUTH, NJ; OFFICE OF NAVAL RESEARCH, QUINCY ST., ARLINGTON, VA 22217; ADA JT. PROG. OFF., ARLINGTON, VA 22209;
In Ada, the identification, i.e., the determination of the corresponding defining occurrence for each applied occurrence turns out to be one of the most delicate problems of compilation. In Ada the concept of packages together with the use clause alters visibility rules. Overloading has been extended to any subprogram including enumeration literals. In addition, the identification is further complicated by derivation, i.e., by the introduction of derived subprograms. This article explains that the visibility rules in Ada are not well defined and orthogonal. This is partly due to some concepts which introduce totally different visibility and/or overloading resolution rules sometimes leading to contradictions. (author)

INDEX TERMS
LANGUAGE STRUCTURE
COMPILERS

This article begins by looking at the general problem of tolerating hardware failure. In section II the authors present some motivation for considering distributed systems where hardware failure must be tolerated, and define in detail the failures the authors will consider. In section III the authors look at the general problem of providing service after processor failure; the facilities needed are described in section IV. In the remainder of the paper the authors turn our attention from the general problem to the problem of building fault-tolerant systems using Ada. The considerable difficulties that arise when such systems are programmed in Ada are discussed in section V. The authors show in sections VI and VII that these difficulties can be overcome by careful programming and by making extensive additions to a normal execution time support system for Ada. These additions make no changes to the language syntax and their use in Ada is discussed in section VIII. (author)
This bibliography contains citations for documents pertaining to the history, development, progress and use of the Ada language. It also contains comprehensive author and subject indices which provide a cross reference to the appropriate document citation. The citations in this volume represent all documents added to the Ada Bibliographic Database since the publication of Volume I (DAN 4610) in May 1983. (author)

INDEX TERMS
SOFTWARE TOOL SYSTEMS DEVELOPMENT HISTORY

AVAILABLE FROM: DATA & ANALYSIS CENTER FOR SOFTWARE (DACS)

SPONSORS: ADA JT. PROG. OFF., ARLINGTON, VA 22209

DYNAMIC STRING FUNCTIONS IN ADA
RUBIN, SYLVAN

DOCUMENT NUMBER: 6242 TYPE: JOURNAL ARTICLE

JOURNAL OF PASCAL, ADA AND MODULA TWO, VOL 3, ISSUE 6, 4 P.

Ada provides a built-in string data type. It is a one-dimensional array of characters, and (like all array type declarations in Ada) its size must be defined before any string variables can be instantiated by an Ada program. Experience with text processing applications, such as editing or database software, shows that a dynamic string data type is often advantageous in the implementation of such programs, because the maximum lengths of text elements in some applications is not predictable. A dynamic string variable, as provided in some languages, may accept a string value of any length, limited only by the system's physical resources. The authors of this article have developed a string package for Ada, including a dynamic string data type and a basic set of string functions to operate on dynamic string variables. (author)
LEARN TO THINK IN ADA

JONES, DO-WHILE

DOCUMENT NUMBER: 6264 TYPE: JOURNAL ARTICLE

COMPUTER LANGUAGE, VOL 1, ISSUE 3, PP. 47-49

This article displays three solutions to a sample problem. One is in Basic and the last two are in Ada. By comparing the two Ada solutions, one of which is merely a translation of the Basic solution, the author discusses Ada programming style. He argues that Ada style will contribute more maintainable and readable programs and is different from the habitual style of those who program in older languages. The author concludes that Ada is a language that makes it easy to write good programs if the programmer can break away from the programming style acquired through using older languages.

INDEX TERMS

MAINTAINABILITY SELF-DESCRIPTIVENESS PROGRAMMING

YEARLY REPORT FOR PROGRAMMING PRODUCTIVITY ENHANCEMENT BY THE USE OF APPLICATION GENERATORS

HOROWITZ, ELLIS

DOCUMENT NUMBER: 6325 DOCUMENT DATE: 08/84 TYPE: TECHNICAL REPORT

This document, a yearly report, provides a broad overview of a project using Ada to develop an office automation program. Relational database features were added in an extension to Ada. Man/machine interactions were a main concern of the investigators. They were especially interested in providing non-procedural capabilities to specify forms/screens for interacting with the user.

INDEX TERMS

HUMAN ENGINEERING RELATIONAL DATA MODEL

AVAILABLE FROM: NATL.TECHNCL INFO.SVC.5285 PORT ROYAL RD, SPRINGFIELD, VA
ORDER NUMBER: AD-A145623/6
REPORT NUMBER: AFOSR-TR-84-0813
This is the User's Guide for the NYU Ada/Ed Translator, Version 1.41, which was validated by the Ada Validation Facility during July 1984. The design goal of the NYU Ada/Ed has been to produce a complete language Ada System which is faithful in all respects to the language definition and that can serve as an operational definition of Ada, to be perused by language designer, implementors, and users. The design and implementation of Ada/Ed was initiated at a point when the language was not completely defined or understood, and has culminated on the first fully validated ANSI-Ada translator.

INDEX TERMS

ADA TOOL ENVIRONMENT PROGRAMMING AIDS SOFTWARE FACTORY
USABILITY
AVAILABLE FROM: NATL.TECHNCL INF.SVC.5285 PORT ROYAL RD.SPRINGFIELD,VA
ORDER NUMBER: AD-A146759/6
REPORT NUMBER: DOD/DF-85/002A

SPONSORS: U.S.ARMY COMM-ELECTRONICS CMD(CECOM), FT. MONMOUTH, NJ

AUTOMATING SOFTWARE DESIGN METRICS

SZULEWSKI, PAUL A.; SODANO, NANCY M.; ROSNER, A.J.; DEWOLF, J.B.

The Rome Air Development Center has developed the Software Quality Framework as a means to specify software quality goals and measure software quality. Much of the work to date has focused on metrics applicable to software code. This report describes an effort undertaken to measure the quality of software products earlier in the software development life cycle, during the design phase, and to automate the capture of metric data from design media. Metrics of software quality, primarily those related to the criterion simplicity (or conversely, complexity), were reviewed. This review includes those metrics previously developed in the Software Quality Framework. Two metrics, Halstead's Software Science and McCabe's Cyclomatic Complexity were chosen for their amenability to measurement during design and their potential for automation. Two design media were used: Design Aids for Real-Time Systems (DARTS), an experimental automated design tool developed at the Charles Stark Draper Laboratory; and Ada as a program design language (PDL). (author)
This report forms the first part of a survey of real-time programming languages for process control. It starts out by briefly outlining the features required for process control and for real-time programming languages. Then follows with a brief look at the types of programming languages currently used in process control applications. The major part of the report consists of summaries of the features/facilities available in a number of general purpose real-time programming languages. A glossary of programming terms is included to help those readers with little or no programming experience. Terms appearing in this glossary are marked with in the text when they are first used in the report.

(No information provided for this section.)

ADA TRAINING CURRICULUM: PROGRAMMING METHODOLOGY - M203 TEACHER'S GUIDE

This is a teacher's manual for M303 (Programming Methodology), where M303 is a course in Softech's Ada training curriculum. The course contains five distinct sections. They are: the introduction, structured programming, coding style, ensuring reliability, and the review.
The report contains a proposal for a standard basic mathematical functions package for scientific computation in Ada. The package is transportable to machines with different floating-point types and its availability will enhance the portability of numerical software. (author)

INDEX TERMS

PROGRAM LIBRARY SYSTEMS

The Ada language provides the capability to use non-Ada object code in an Ada program by the use of pragma INTERFACE. Programs have been run to test and verify this implementation for two languages, FORTRAN 77 and ROLM/DG ECLIPSE(1) assembly language. This paper discusses the capabilities and limitations of language interfacing within the ADE(2). It specifies the Ada constructs necessary to use non-Ada code in an Ada unit. It identifies the types which are directly compatible, other types which are totally incompatible or require special handling, such as the mechanisms needed to pass arrays between Ada and FORTRAN 77. A list of general practices which allow an Ada program to use the non-Ada code and still keep to good Ada programming techniques (strong typing, exception handling, etc.) is also discussed. Several examples of code which use language interfaces are discussed and sample code segments are included in the appendices. (author) (1)ECLIPSE is a U.S. registered trademark of Data General Corporation. (2)ADE is a trademark of ROLM Corporation.
In 1975 the Department of Defense (DoD) began the process of standardizing the high order languages used to write software for embedded computers. The first step was to form a High Order Language (HOL) working group to identify the DoD's requirements for computer programming languages to evaluate the existing languages, and to recommend the implementation and control of a "minimal set." Although an interim set of languages was established, none were considered to be a long-term solution to the DoD's programming needs. Therefore, an international request for proposals was issued for a new common language. The final requirements document, STEELMAN, served as the standard for the selection of the new DoD HOL. In 1979, this new language developed by CII-Honeywell Bull, was named Ada in honor of Augusta Ada Byron, the Countess of Lovelace. On 12 December 1980, the Under Secretary of Defense for Research and Engineering established the Ada Joint Program Office (AJPO) to manage the DoD's effort to implement, introduce and provide lifecycle support for Ada. This paper outlines past, present, and future objectives of the AJPO. (author)
definition, translation and execution, are detailed in the appendices followed by examples. Minutiae important to the design of a complementary sequential definition are detailed.

INDEX TERMS

EXCEPTION HANDLING DISTRIBUTED PROCESSING
AVAILABLE FROM: NATL.TECHNCL INF.SVC.5285 PORT ROYAL RD,SPRINGFIELD,VA
ORDER NUMBER: AD-A151618
REPORT NUMBER: AFIT/C1/NR-85-28T
In 1975 the Department of Defense (DoD) began the process of standardizing the high order languages used to write software for embedded computers. The first step was to form a High Order Language (HOL) working group to identify the DoD's requirements for computer programming languages to evaluate the existing languages, and to recommend the implementation and control of a "minimal set." Although an interim set of languages was established, none were considered to be a long-term solution to the DoD's programming needs. Therefore, an international request for proposals was issued for a new common language. The final requirements document, STEELMAN, served as the standard for the selection of the new DoD HOL. In 1979, this new language developed by CII-Honeywell Bull, was named Ada in honor of Augusta Ada Byron, the Countess of Lovelace. On 12 December 1980, the Under Secretary of Defense for Research and Engineering established the Ada Joint Program Office (AJPO) to manage the DoD's effort to implement, introduce and provide lifecycle support for Ada. This paper outlines past, present, and future objectives of the AJPO. (author)

INDEX TERMS

DEVELOPMENT CYCLE SOFTWARE ENGINEERING METHODOLOGIES SOFTWARE ENGINEERING ENVIRONMENTS RELIABILITY PORTABILITY ADAPTABILITY

AVAILABLE FROM: NATL.TECHNCL INF.SVC.5285 PORT ROYAL RD,SPRINGFIELD,VA

ORDER NUMBER: AD-A149436/8

SPONSORS: ADA JT. PROG. OFF., ARLINGTON, VA 22209

ADA TASKING AND EXCEPTIONS: A FORMAL DEFINITION

GONZALEZ, CAPT. DEAN W.

DOCUMENT NUMBER: 6898 DOCUMENT DATE: 1985 TYPE: DISSERTATION

The formal language definition method used by Niklaus Wirth to describe the Euler programming language is applied to the Ada tasking and exception mechanisms. Packages are also included to the extent that they interact with tasks. A brief overview of each mechanism is given, accompanied by a detailed explanation of salient portions of the Euler method. The two phases of the
definition, translation and execution, are detailed in the appendices followed by examples. Minutiae important to the design of a complementary sequential definition are detailed.

INDEX TERMS

EXCEPTION HANDLING DISTRIBUTED PROCESSING
AVAILABLE FROM: NATL.TECHNCL INF.SVC.5285 PORT ROYAL RD,SPRINGFIELD,VA
ORDER NUMBER: AD-A151618
REPORT NUMBER: AFIT/C1/NR-85-28T
3. AUTHOR INDEX
ABBOTT, RUSSELL J., CALIF. STATE U. AT NORTH RIDGE, NORTH RIDGE, CA
3337 -02 A STYLE GUIDE AND DOCUMENTATION STANDARD FOR THE PROGRAMMING
LANGUAGE ADA
4629 -02 REPORT ON TEACHING ADA

ADA DESIGN TEAM, HONEYWELL SYSTEMS & RESEARCH CNTR,
MINNEAPOLIS, MN
3993 -02 FORMAL DEFINITION OF THE ADA PROGRAMMING LANGUAGE

ADA NEWSLETTER EDITOR, U.S.DEPT. DEFENSE, ADVANCED RESEARCH PROJECTS
AGENCY
3389 -01 ADA NEWSLETTER: NUMBER TWO

ADAMS, STEVE E., INTERMETRICS, INC. DAYTON, OH 45377
4143 -01 ARCHITECTURAL AND CONTROL CONSIDERATIONS FOR A HIGH SPEED SIGNAL
PROCESSOR IMPLEMENTED WITH AN ADA EXECUTIVE

ADELSBERGER, HEIMO H., INSTITUT FUER STATIS AUGASSE 2-6 A-1090 VIENNA
AUSTRIA
4401 -02 ASSE - ADA SIMULATION SUPPORT ENVIRONMENT
5277 -02 INTERACTIVE MODELING AND SIMULATION OF TRANSACTION FLOW OR
NETWORK MODELS USING THE ADA SIMULATION SUPPORT ENVIRONMENT
5278 -02 A STRUCTURED AND MODULAR APPROACH TO TRANSACTION FLOW MODELS
5279 -02 MODELING AND SIMULATION IN ADA

ALBRECHT, PAUL F., U. OF CALIFORNIA AT BERKELEY, BERKELEY, CA
94720
3313 -01 SOURCE-TO-SOURCE TRANSLATION: ADA TO PASCAL AND PASCAL TO ADA

ALLEGRE, NICOLE, INTEL CORP., 3200 LAKESIDE DR., SANTA CLARA, CA
95051
3254 -01 ADA FOR THE INTEL 432 MICROCOMPUTER

ALMES, GUY T., CARNegie-MELLON U., PITTSBURGH, PA 15213
0822 -01 A COMPARISON OF PROGRAMMING LANGUAGES FOR SOFTWARE ENGINEERING

ALSTAD, JAMES P., HUGES AIRCRAFT CO., EL SEGUNDO, CA 90245
4530 -02 PROBLEMS WITH ADA AS A PROGRAM DESIGN LANGUAGE: A POSITION PAPER

AMOROSO, DR. SERAFINO, U.S.ARMY, CENTACS, ECOM, FT.MONMOUTH, NJ 07703
2498 -01 REPORT TO THE HIGH ORDER LANGUAGE WORKING GROUP (HOLWG)
4631 -02 REPORT TO THE HOLWG
AMOROSO, DR. SERAFINO, U.S. ARMY, COMMUNICATIONS R & D COMND, FT. MONMOUTH, NJ
1181 -01 THE DEPARTMENT OF DEFENSE COMMON PROGRAMMING LANGUAGE PROJECT

ANDERSON, PETER G., ROCHESTER INST. OF TECH MEMORIAL DR. ROCHESTER, NY 14623
4169 -01 A DESIGN LANGUAGE BASED ON ADA
4275 -01 A COMPARISON OF NEBULA AND ALTERNATIVE COMPUTER ARCHITECTURES VIA SELECTED ADA PROGRAMS

ANDRE, EDOUARD, CII-HONEYWELL BULL-RESEARCH CTR, GRENOBLE, CEDEX, FRANCE
2548 -01 ADA, ABSTRACT DATA TYPES AND DISTRIBUTED DATABASES TRANSACTIONS

ANDREWS, GREGORY R., U. OF ARIZONA, TUCSON, AZ 85721
4792 -02 CONCEPTS AND NOTATIONS FOR CONCURRENT PROGRAMMING

ANDREWS, GREGORY R., CORNELL U., ITHACA, NY 14853
5549 -03 LANGUAGE FEATURES FOR PARALLEL PROCESSING AND RESOURCE CONTROL

ANTONY, CHARLES, OXFORD U., ENGLAND
3373 -01 THE EMPEROR'S OLD CLOTHES

APPELBE, WILLIAM F., U. OF CALIF. AT SAN DIEGO, LA JOLLA, CA 92037
4197 -01 AN OPERATIONAL DEFINITION OF INTERMEDIATE CODE FOR IMPLEMENTING A PORTABLE ADA COMPILER
5515 -03 ABSTRACT DATA TYPES IN ADA

ARBLASTER, ANDREW, LOGICA LTD., 64 NEWMAN ST., LONDON W1A 4SE
4529 -02 PROGRAM DEVELOPMENT AND RUNNING ON HOST/TARGET SYSTEMS

ARCHER, JAMES E. JR., CORNELL U., ITHACA, NY 14853
4269 -01 ADA/CS AN INSTRUCTIONAL SUBSET OF THE PROGRAMMING LANGUAGE ADA

ARDO, ANDERS, LUND INSTITUTE OF TECHNOLOGY, S-220 07 LUND 7, SWEDEN
5669 -03 EXPERIMENTAL IMPLEMENTATION OF AN ADA TASKING RUN-TIME SYSTEM ON THE MULTIPROCESSOR COMPUTER CM
6001 -03 A SIMPLE ADA COMPILER INVALIDATION TEST
ARDO, ANDERS, CARNEGIE-MELLON U., PITTSBURGH, PA 15213
4192 -01 COMPARATIVE EFFICIENCY OF DIFFERENT IMPLEMENTATIONS OF THE ADA RENDEZVOUS

ARNOLD, ROGER, TELESOFTE 10639 ROSELLE ST. SAN DIEGO, CA. 92121
4191 -01 LINKAGE OF ADA COMPONENTS - THEME & VARIATIONS

ASHANY, RON, POLYTECHNIC INSTITUTE OF NY, JAY ST, BROOKLYN, NY 11201
5973 -03 ADA TARGET MACHINE OPERATING SYSTEM (ATMOS) REVIEW

ASHKENAZI, DAVID, NATIONAL SEMICONDUCTOR CORP., SANTA CLARA, CA 95052
3611 -01 HARDWARE COMES TO THE AID OF MODULAR HIGH-LEVEL LANGUAGES

BABEL, PHILIP S., U.S.A.F. ASD, WRIGHT-PATTERSON AFB, OH 5653 -03 JOINT-SERVICE ACQUISITION MANAGEMENT INITIATIVES

BABICH, WAYNE A., SOFTECH, INC. 218 N. LEE, ALEXANDRIA, VA 23314
4748 -02 PRODUCTIVITY ISSUES IN THE ADA LANGUAGE SYSTEM

BABICH, WAYNE A., SOFTECH, INC. TOTTEN POND RD, WALTHAM, MA 02154
2953 -01 DESIGN CONSIDERATIONS IN LANGUAGE PROCESSING TOOLS FOR ADA
3253 -01 THE ADA LANGUAGE SYSTEM

BACH, IVAN, HUNGARIAN ACADEMY OF SCIENCES, BUDAPEST, HUNGARY
4102 -01 ON THE TYPE CONCEPT OF ADA
6224 -03 UNORTHOGONALITIES IN THE IDENTIFICATION RULES IN ADA

BACON, GLENN, IBM SANTA TERESA LABS, BAILEY AVE, SAN JOSE, CA 95150
3268 -01 SOFTWARE

BAILEY, JOHN, GENERAL ELECTRIC CO.
6136 -03 MONITORING AN ADA SOFTWARE DEVELOPMENT

BAILEY, JOHN, GENERAL ELECTRIC CO., SOFTWARE MGMT RES., ARLINGTON, VA
3280 -01 MONITORING AN ADA SOFTWARE DEVELOPMENT PROJECT
<table>
<thead>
<tr>
<th>Author</th>
<th>Affiliation</th>
<th>Paper Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bailey, John</td>
<td>Software Metrics, Inc.</td>
<td>Teaching ADA: A Comparison of Two Approaches</td>
</tr>
<tr>
<td>Baker, F. Terry</td>
<td>IBM Federal Systems Division, Bethesda, MD</td>
<td>A Concurrent Module in ADA</td>
</tr>
<tr>
<td>Baker, L.</td>
<td>TRW Defense & Space Systems Group, Huntsville, AL</td>
<td>Specification Tools Environment Study</td>
</tr>
<tr>
<td>Baker, T. P.</td>
<td>Florida State University, Tallahassee, FL</td>
<td>A One-Pass Algorithm for Overload Resolution in ADA</td>
</tr>
<tr>
<td>Baker, T. P.</td>
<td></td>
<td>A Single-Pass Syntax-Directed Front End for ADA</td>
</tr>
<tr>
<td>Balzer, Bob</td>
<td>Information Sciences, Inc., Montvale, NJ</td>
<td>Program Development Systems - An Overview</td>
</tr>
<tr>
<td>Bannister, J.A.</td>
<td>Research Triangle Inst Po 12194, Research Triangle Pk, NC</td>
<td>A Preliminary Testability Analysis of the MIL-STD-1862 Architecture</td>
</tr>
<tr>
<td>Bardin, Bryce M.</td>
<td>Hughes Aircraft Co., Fullerton, CA</td>
<td>An ADA Network: A Real-Time Distributed Computer System</td>
</tr>
<tr>
<td>Barnes, J.G.P.</td>
<td></td>
<td>Rationale for the Design of the ADA Programming Language</td>
</tr>
<tr>
<td>Barnes, J.G.P.</td>
<td>Imperial Chemical Industries, Cheshire SK9 1QB, UK</td>
<td>Some Comments on Tinman</td>
</tr>
<tr>
<td>Barnes, J.G.P.</td>
<td>SPL Intnatl Res Ctr, Abingdon, Oxfordshire OX14 3UE, UK</td>
<td>An Overview of ADA</td>
</tr>
<tr>
<td>Barnes, J.G.P.</td>
<td></td>
<td>Programming in ADA (Second Edition)</td>
</tr>
<tr>
<td>Barringer, H.</td>
<td>U. of Manchester, Manchester M13 9PL, U.K.</td>
<td>Axioms and Proof Rules for ADA Tasks</td>
</tr>
</tbody>
</table>
BARTEE, T.C., INSTITUTE FOR DEFENSE ANALYSES, ALEXANDRIA, VA 22311
3422 -01 C3I DATA BASE AND NETWORKING ANALYSIS

BASILI, VICTOR R., U. OF MARYLAND, COLLEGE PARK, MD 20742
3280 -01 MONITORING AN ADA SOFTWARE DEVELOPMENT PROJECT
6136 -03 MONITORING AN ADA SOFTWARE DEVELOPMENT

BAUNER, JOHN-LOLOF, ROYAL INST. OF TECH., S-100 44 STOCKHOLM, SWEDEN
3397 -01 AN IMPLEMENTATION AND EMPIRICAL EVALUATION OF THE TASKING FACILITIES IN ADA

BEALE, N.C.L., BEALE ELECTRONIC SYS LTD., WAYSBURY, BERKS, ENGLAND
3967 -02 AN ADA COMPATIBLE SPECIFICATION LANGUAGE

BECKER, LEE A., U. OF TULANE, NEW ORLEANS, LA 70118
5569 -03 ADA-EXTENDED STRUCTURE CHARMS

BECKER, LOUISE GIOVANE, CONGRESSIONAL RESEARCH SERVICE OF THE LIB OF CONGRESS
4252 -02 MILITARY COMPUTERS IN TRANSITION: STANDARDS AND STRATEGY

BEIN, EDWARD, FORD AEROSPACE AND COMMUNICATIONS CORP., PALO ALTO, CA
5993 -03 ADA DESIGN, JOVIAL IMPLEMENTATION

BELCREDI, D., CISE RESEARCH CENTER
5979 -03 USING ADA AND APSE TO SUPPORT DISTRIBUTED MULTIMICROPROCESSOR TARGETS

BELL, D.H., SHEFFIELD CITY POLYTECH. COMPUTER STUDIES,
POND ST. 1W
5986 -03 PARALLEL PROGRAMMING- A BIBLIOGRAPHY

BELMONT, PETER A., INTERMETRICS, INC., CAMBRIDGE, MA 02138
3299 -01 TYPE RESOLUTION IN ADA: AN IMPLEMENTATION REPORT
4181 -01 ON THE ACCESS-BEFORE-ELABORATION PROBLEM IN ADA
4680 -02 MAINTENANCE/DESIGN DOCUMENTATION FOR THE INTERMETRICS ADA/TOPS-20 COMPILER
138 AUTHOR INDEX

4683 -02 FINAL TECHNICAL REPORT ON THE INTERMETRICS ADA DECSYSTEM-20 PROTOTYPE COMPILER MAINTENANCE PROJECT

BELZ, F.C., TRW DEFENSE & SPACE SYST DIV. REDONDO BEACH, CA 90278
3314 -01 A MULTI-PROCESSING IMPLEMENTATION-ORIENTED FORMAL DEFINITION OF ADA IN SEMANOL

BEN-ARI, MORDECHAI, TEL AVIV UNIVERSITY, RAMAT AVIV, ISRAEL
4101 -01 THE CASE FOR FULL ADA
5143 -02 A METHODOLOGY FOR MODULAR USE OF ADA

BENDER, JAMES. BDM CORP., 7915 JONES BRANCH DR., MCLEAN, VA 22101
5655 -03 GREAT EXPECTATIONS: ADA SOFTWARE ACQUISITION

BENGEL, G.G., BROWN, BOVERI & CIE AG 6800 MANHEIM, W. GERMANY
6002 -03 PECULIARITIES OF ADA

BERARD, EDWARD V., EVB CONSULTING, INC. ROCKVILLE, MD 20850
4359 -03 ADA STEPS OUT
5456 -03 ENGINEERING ADA
6138 -03 ADA EDUCATION IS A MOVING TARGET

BERGLASS, GILBERT R., MITRE CORP., 1820 DOLLEY MADISON BLVD., MCLEAN, VA 22102
2893 -01 CANDIDATE R&D THRUSTS FOR THE SOFTWARE TECHNOLOGY INITIATIVE

BERNING, PAUL T., TRW DEFENSE & SPACE SYST DIV. REDONDO BEACH, CA 90278
2428 -01 FORMAL SEMANOL SPECIFICATION OF ADA

BEVER, M., U. KARLSRUHE, POSTFACH 6380, KARLSRUHE, GERMANY
4185 -01 THE INTEGRATION OF EXISTING DATABASE SYSTEMS IN AN ADA ENVIRONMENT

BISHOP, ANA
4611 -02 ADA COMPUTER ON FIVE BOARDS SET TO BOW

BISHOP, JUDY M., U. OF WITWATERSRAND, JOHANNESBURG 2001, SOUTH AFRICA
3317 -01 EFFECTIVE MACHINE DESCRIPTORS FOR ADA
BJORNER, DINES, TECHNICAL U. OF DENMARK, DK-2800
LYNGBY, DENMARK
3315 -01 ON A FORMAL MODEL OF THE TASKING CONCEPT IN ADA

4618 -02 THE DDC ADA COMPILER DEVELOPMENT METHOD

4787 -02 TOWARDS A FORMAL DESCRIPTION OF ADA

5363 -03 PORTABLE ADA PROGRAMMING SYSTEM COMPILER PROJECT OVERVIEW

5364 -03 THE DDC ADA COMPILER PROJECT DEVELOPMENT PLAN. PART 0: DEVELOPMENT METHODOLOGY.

BLASEWITZ, ROBERT M., RCA GOV'T SYSTEMS DIV., MOORESTOWN, NJ
4122 -01 ADA AS A PROGRAM DESIGN LANGUAGE A RATIONAL APPROACH TO TRANSITIONING INDUSTRY TO THE WORLD OF ADA THROUGH A PROGRAM DESIGN LANGUAGE CRITERIA

5536 -03 ADA AS A PROGRAM DESIGN LANGUAGE - HAVE THE MAJOR ISSUES BEEN ADDRESSED AND ANSWERED?

BLOWER, M.I., INTERMETRICS, INC., CAMBRIDGE, MA 02138
6006 -03 AN EFFICIENT IMPLEMENTATION OF VISIBILITY IN ADA

BLUM, E.K., U. OF SOUTHERN CALIFORNIA AT MARINA DEL REY, CA
3314 -01 A MULTI-PROCESSING IMPLEMENTATION-ORIENTED FORMAL DEFINITION OF ADA IN SEMANOL

BOASSON, M., PHILIPS RESEARCH LAB., EINDHOVEN, THE NETHERLANDS
5634 -03 THE PROGRAMMING LANGUAGES: PASCAL, MODULA, CHILL, ADA

BOGO, GILLES, CII-HONEYWELL BULL-RESEARCH CTR, GRENOBLE, CEDEX, FRANCE
2548 -01 ADA, ABSTRACT DATA TYPES AND DISTRIBUTED DATABASES TRANSACTIONS

BOND, RODNEY M., NONAFFILIATED
6141 -03 ADA AS A PROGRAM DESCRIPTION LANGUAGE (PDL): A PROJECT SOFTWARE MANAGEMENT PERSPECTIVE

BONET, RAFAEL, TECXI-SOFTWARE, 29 RUE DES PYRAMIDES, F-75001 PARIS
4298 -01 ADA SYNTAX DIAGRAMS FOR TOP-DOWN ANALYSIS

BOOC, GRADY, U.S. AIR FORCE
4415 -02 SOFTWARE ENGINEERING WITH ADA
BOOCH, GRADY, U.S.A.F. ACADEMY, COLORADO
3359 -01 SOLVE PROCESS-CONTROL PROBLEMS WITH ADA'S SPECIAL CAPABILITIES
3418 -01 ADA PROMOTES SOFTWARE RELIABILITY WITH PASCAL-LIKE SIMPLICITY
4300 -01 DESCRIBING SOFTWARE DESIGN IN ADA
4690 -02 OBJECT-ORIENTED DESIGN

BORKAN, MARTHA S., INTERMETRICS, INC., CAMBRIDGE, MA 02138
3300 -01 A FLEXIBLE SEMANTIC ANALYZER FOR ADA

BORKAN, MARTHA S., CARNEGIE-MELLON U., PITTSBURGH, PA 15213
4369 -02 THE CHARRETTE ADA COMPILER

BOSSI, A., UNIVERSITA DI PADova, ITALY
4531 -02 MODULAR DECOMPOSITION OF ADA INTO A HIERARCHY OF SUBLANGUAGES

BOTELLA, PERE, UNIVERSITAT POLETecnICA DE CATALUNYA
6139 -03 ON UNLIMITED TYPES AND RELIABILITY OF ADA PROGRAMS

BOUTE, RAYMOND T., BELL TELEPHONE FRANCIS WELL 1 B-2000 ANTWERPEN BELGIUM
4422 -02 SIMPLIFYING ADA BY REMOVING LIMITATIONS

BOWLES, DR. KENNETH L., TELESOFT 10639 ROSELLE ST. SAN DIEGO, CA. 92121
3370 -01 BUILDING BLOCK APPROACH REDUCES SOFTWARE COSTS
3603 -01 LINKED ADA MODULES SHAPE SOFTWARE SYSTEMS
5538 -03 SEEDING THE ADA SOFTWARE COMPONENTS INDUSTRY

BOZEMAN, ROBERT E., MOREHOUSE COLLEGE, ATLANTA, GA 30314
5533 -03 MATHEMATICAL SUBROUTINE PACKAGES FOR ADA

BRABSTON, DONALD C., TRW DEFENSE & SPACE SYST DIV, REDONDO BEACH, CA 90278
4502 -02 VHSIC PHASE III SOFTWARE ARCHITECTURE STUDY. PART II. SYSTEM SPECIFICATION FOR THE VHSIC SUPPORT SOFTWARE SYSTEM (TYPE A)
4503 -02 VHSIC PHASE III SOFTWARE ARCHITECTURE STUDY. PART I. FINAL REPORT

BRAUN, CHRISTINE L., SOFTECH, INC. TOTTEN POND RD, WALTHAM, MA 02154
3249 -01 ADA: PROGRAMMING IN THE 80'S - GUEST EDITOR'S INTRODUCTION
4127 -01 ADA TRAINING CONSIDERATIONS
4162 -01 USING HIGH ORDER LANGUAGES EASES SOFTWARE DEVELOPMENT

BRAY, GARY, INTERMETRICS INC., 4733 BETHESDA, BETHESDA, MD 20814
4104 -01 AIE SUPPORT FOR MANAGEMENT OF EMBEDDED COMPUTER PROJECTS

BRAY, GARY, INTERMETRICS, INC., CAMBRIDGE, MA 02138
5565 -03 IMPLEMENTATION IMPLICATIONS OF ADA GENERICS

BRENDER, RONALD F., DIGITAL EQUIPMENT CORP.
3251 -01 WHAT IS ADA?
4294 -01 THE CASE AGAINST ADA AS AN APSE COMMAND LANGUAGE

BRIGGS, J.S., U. OF YORK, HESLINGTON, YORK Y01 5DD, U.K.
4614 -02 ADA WORKBENCH COMPILER PROJECT 1981
5736 -03 TWO IMPLEMENTATIONS OF THE ADA PROGRAM LIBRARY

BRINTZENHOFF, ALTON L., SYSTEMS CONSULTANTS, INC., SAN DIEGO, CALIF.
4632 -02 EVALUATION OF ADA AS A COMMUNICATIONS PROGRAMMING LANGUAGE

BROAD, WILLIAM J., NONAFFILIATED
4665 -02 PENTAGON ORDERS END TO COMPUTER BABEL

BROSGOL, BENJAMIN M., INTERMETRICS, INC., CAMBRIDGE, MA 02138
3304 -01 TCOL-ADA AND THE "MIDDLE END" OF THE PQCC ADA COMPILER
3377 -01 TCOL-ADA: REVISED REPORT ON AN INTERMEDIATE REPRESENTATION FOR THE PRELIMINARY ADA LANGUAGE
4344 -01 RED LANGUAGE DESIGN RATIONALE
4657 -02 SUMMARY OF ADA LANGUAGE CHANGES
5544 -03 SOME ISSUES IN DATA TYPES AND TYPE CHECKING

BROWN, CHRIS, COMPUTER DESIGN
4279 -01 COMPUTER DESIGN TODAY - SOFTWARE TECHNOLOGY

BROWN, D.H.J., LOGICA LTD., 64 NEWMAN ST., LONDON W1A 4SE
6216 -03 TRANSITIONS TO ADA: AN INCREMENTAL APPROACH

BROZOVIC, RICHARD L., U.S.A.F. INSTITUTE OF TECHNOLOGY
3221 -01 JOVIAL (J73) TO ADA TRANSLATOR SYSTEM
BRUBAKER, NILS, INTELLIMAC, INC., 6001 MONTROSE RD, ROCKVILLE, MD20852
4323 -01 ADA PROGRAMMING STYLE

BRUCKNER, BERNO-KRIEG, UNIVERSITAT BREMEN, POSTFACH 330440 D-2800 BREMEN 33
5563 -03 CONSISTENCY CHECKING IN ADA AND ANNA: A TRANSFORMATIONAL APPROACH

BRUNO, GIORGIO, INSTITUTO DI ELETTROTECNICA, TORINO, ITALY
4186 -01 AN ADA PACKAGE FOR DISCRETE EVENT SIMULATION

BRUNO, GIORGIO, POLITECNICO DI TORINO 10120 TORINO, ITALY
6018 -03 USING ADA FOR DISCRETE EVENT SIMULATION

BRYANT, RAYMOND M., U. OF WISCONSIN AT MADISON, MADISON, WI 53706
4402 -02 A TUTORIAL ON DISCRETE-SYSTEM SIMULATION IN ADA

BRYANT, STEPHEN, NEW YORK U., NY, NY
2546 -01 THE NYU ADA TRANSLATOR AND INTERPRETER

BUCK, R.D., IBM FEDERAL SYSTEMS DIV, 9500 GODWIN DR., MANASSAS, VA
3004 -01 SOFTWARE QUALITY IN THE 80'S

BULMAN, DAVID M., PRAGMATICS, INC., P.O. BOX 639, HONOKAA, HAWAII 96727
5514 -03 ADA INTERFACE

BULMAN, DAVID M., PRAGMATICS, INC.
3917 -01 IS ADA THE ANSWER?
3919 -01 IS ADA THE ANSWER - PART II

BUNDGAARD, JORGEN, DANSK DATAMATIK CTR, LUNDTOFEVEJ 2800 LYNGBY, DENMARK
4619 -02 A DENOTATIONAL (STATIC) SEMANTICS METHOD FOR DEFINING ADA CONTEXT CONDITIONS

BUNEMAN, O.P., INSTITUTE FOR DEFENSE ANALYSES, ALEXANDRIA, VA 22311
3422 -01 C3I DATA BASE AND NETWORKING ANALYSIS

BUNEMAN, PETER, U. OF PENNSYLVANIA
2916 -01 A CODASYL INTERFACE FOR PASCAL AND ADA
BUONI, JOHN J., YOUNGSTOWN STATE U., YOUNGSTOWN, OH 44555
6534 -03 ADA TASKING IN NUMERICAL ANALYSIS

BURGEY, JOHN, NONAFFILIATED
4332 -01 DOD COMMON HIGH ORDER LANGUAGE ENVIRONMENT WORKSHOP

BURKE, MICHAEL, NEW YORK U., NY, NY
2546 -01 THE NYU ADA TRANSLATOR AND INTERPRETER

BURNS, GREGORY, STANDARD TELECOMMUNICATIONS LABS., LTD.,
HARLOW, ENG.
3254 -01 ADA FOR THE INTEL 432 MICROCOMPUTER

BUTLER, KENNETH J., TARTAN LAB'S INC. 477 MELWOOD AVE PITTSBURGH,
PA 15213
4789 -02 A DIANA-DRIVEN PRETTY-PRINTER FOR ADA

BUTLER, THOMAS R., MAGNAVOX
4143 -01 ARCHITECTURAL AND CONTROL CONSIDERATIONS FOR A HIGH SPEED SIGNAL
PROCESSOR IMPLEMENTED WITH AN ADA EXECUTIVE

BUXTON, JOHN N., HARVARD U., CAMBRIDGE, MA 02138
2547 -01 REQUIREMENTS FOR AN ADA PROGRAMMING SUPPORT ENVIRONMENT:
RATIONALE FOR STONEMAN

BUXTON, JOHN N., U. OF WARWICK, COVENTRY, ENG.
3984 -02 RECOLLECTIONS ON THE HISTORY OF ADA ENVIRONMENTS

CAMPBELL, MARK D., INDUSTRIAL MICROSYSTEMS INC. COLUMBIA, SC
29210
6047 -03 MODULA-2 & ADA: A COMPARISON OF FOUR FEATURES

CARGILL, TA., BELL LABORATORIES, MURRAY HILL, NJ 07974
5731 -03 CONCURRENT PROGRAMMING IN THE ADA LANGUAGE: THE POLLING BIAS

CARGILL, TA., U. OF WATERLOO, ONTARIO, CAN.
3837 -02 A ROBUST DISTRIBUTED SOLUTION TO THE DINING PHILOSOPHERS PROBLEM

CARLISLE, HOMER, TEXAS A&M U., COLLEGE STATION, TEXAS 77843
4670 -02 EXPERIENCES WITH MATRIX MULTIPLICATION USING ADA TASKS

CARLSON, WILLIAM E.
3275 -01 INTRODUCING ADA
CARLSON, WILLIAM E., DEFENSE ADVANCED RESEARCH PROJECTS
AGENCY, ARLINGTON, VA
2463 -01 ADA: A STANDARD PROGRAMMING LANGUAGE FOR DEFENSE SYSTEMS

CARLSON, WILLIAM E., WESTERN DIGITAL CORP., NEWPORT BEACH, CA
3250 -01 ADA: A PROMISING BEGINNING

CARLSON, WILLIAM E., WESTERN DIGITAL CORP., IRVINE, CA
4096 -01 FIRST COMPLETE ADA COMPILER RUNS ON A MICRO

CARTER, T. M., U. OF UTAH, SALT LAKE CITY, UTAH 84112
3455 -01 TRANSFORMATION OF ADA PROGRAMS INTO SILICON
4638 -02 TRANSFORMATION OF ADA PROGRAMS INTO SILICON
5681 -03 TRANSFORMING AN ADA PROGRAM UNIT TO SILICON AND VERIFYING ITS BEHAVIOR IN AN ADA ENVIRONMENT: A FIRST EXPERIMENT

CASHIN, P. M., BELL-NORTHERN RESEARCH, BX 3511, ST‘N C, OTTAWA, CANADA
2156 -01 EXPERIENCE WITH A MODULAR TYPED LANGUAGE: PROTEL

CASTELLOW, C. A., BOEING COMMERCIAL AIRPLANE CO, BX 3707, SEATTLE, WA
1619 -01 A TECHNIQUE FOR ASSESSING AVIONIC PROGRAMMING LANGUAGE REQUIREMENTS

CAVERLY, PHILIP, JERSEY CITY STATE COLLEGE, JERSEY CITY, NJ 07305
5523 -03 EXPERIENCES IN TEACHING ADA

CHAN, ARVOLA, COMPUTER CORP OF AMER., TECHNOLOGY SQ, CAMBRIDGE, MA
4411 -02 THE DESIGN OF AN ADA COMPATIBLE LOCAL DATABASE MANAGER (LDM)
4586 -02 OVERVIEW OF AN ADA COMPATIBLE DISTRIBUTED DATABASE MANAGER
4752 -02 DDM: AN ADA COMPATIBLE DISTRIBUTED DATABASE MANAGER

CHANG, SHIH, U. OF MARYLAND, COLLEGE PARK, MD 20742
6136 -03 MONITORING AN ADA SOFTWARE DEVELOPMENT

CHARLES, PHILIPPE, NEW YORK U., NY, NY
3911 -01 A LALR(1) GRAMMAR FOR '82 ADA
5991 -03 A LALR (1) GRAMMAR FOR ANSI ADA
CHASE, ANNA L., RAYTHEON CO., SUBMARINE SIGNAL DIV., PORTSMOUTH, RI 02871
4166 -01 THE CASE FOR FULL ADA AS A DESIGN LANGUAGE

CHEATHAM, T. E., JR., HARVARD U., CAMBRIDGE, MA 02138
4334 -01 PROGRAM DEVELOPMENT SYSTEMS - AN OVERVIEW
5557 -03 PROGRAMMING LANGUAGE DESIGN ISSUES

CHERRY, GEORGE W., GEORGE WASHINGTON U., WASHINGTON, DC 20052
5633 -03 PARALLEL PROGRAMMING IN ANSI STANDARD ADA

CHRISTENSEN, STEVEN W., SYSTEMS CONSULTANTS, INC., SAN DIEGO, CALIF.
4632 -02 EVALUATION OF ADA AS A COMMUNICATIONS PROGRAMMING LANGUAGE

CLAPP, JUDITH A., MITRE CORP., BOX 208, BEDFORD, MA 01730
3354 -01 A COST/BENEFIT ANALYSIS OF HIGHER ORDER LANGUAGE STANDARDIZATION
5228 -03 A SURVEY OF COMPUTER RESOURCE UTILIZATION IN ESD WEAPON SYSTEM ACQUISITIONS

CLARKE, EDMUND M., HARVARD U., CAMBRIDGE, MA 02138
2921 -01 TASK MANAGEMENT IN ADA - A CRITICAL EVALUATION FOR REAL-TIME MULTIPROCESSORS

CLARKE, LORI A., U. OF MASSACHUSETTS, AMHERST, MA 01003
3308 -01 NESTING IN ADA PROGRAMS IS FOR THE BIRDS

CLEMMENSEN, GEERT B., DANSK DATAMATIK CTR, LUNDTOFTEVEJ 2800 LYNGBY, DENMARK
4193 -01 A FORMAL MODEL OF DISTRIBUTED ADA TASKING

COCCO, N., UNIVERSITA DI PADOVA, ITALY
4531 -02 MODULAR DECOMPOSITION OF ADA INTO A HIERARCHY OF SUBLANGUAGES

COGAN, KEVIN J., U.S. MILITARY ACADEMY, WEST POINT, NY
5522 -03 TEACHING ADA AT THE US MILITARY ACADEMY

COHEN, NORMAN H., SPERRY UNIVAC SOFTWARE RESEARCH, BLUE BELL, PA.
3915 -01 PARALLEL QUICKSORT: AN EXPLORATION OF CONCURRENT PROGRAMMING IN ADA

COHEN, PAUL M., ADA JT. PROG. OFF., ARLINGTON, VA 22209
3985 -02 FROM HOLWG TO AJPO - ADA IN TRANSITION
COHEN, PAUL M., DEFENSE COMMUNICATIONS ENGINEERING CENTER
4287 -03 ADA PROGRAMMING LANGUAGE STANDARDIZATION
5553 -03 TARGET COMPUTER INDEPENDENT OPTIMIZATION PROCEDURES FOR METACOMPILERS

COLBERT, EDWARD, TRW DEFENSE & SPACE SYST DIV, REDONDO BEACH, CA 90278
4170 -01 A CASE FOR A SIMPLE ADA PDL

COLBORN, BONNIE
5688 -03 ADATEC REPORT

COLE, OLIVER, SOFTECH INC., 5201 LEESBURG PIKE, FALLS CHURCH, VA 2204
6192 -03 REAL-TIME OPERATING SYSTEM EXPERIENCE

COLE, STEPHEN N., STEPHEN N. COLE, INC., ATLANTA, GA 30327
3410 -01 ADA SYNTAX CROSS REFERENCE

COLLINS, BRIAN, SCICON CONSULTANCY INTERNAT'L, LTD., LONDON, W1P 4AO GB
3416 -01 SOFTWARE STRATEGY FOR MULTIPROCESSORS

COMER, EDWARD R., HARRIS CORP., GOV'T INFO SYST DIV, MELBOURNE, FL 32901
5537 -03 ADA DESIGN LANGUAGE CONCERNS

COOK, ROBERT P., U. OF WISCONSIN AT MADISON, MADISON, WI 53706
3554 -01 MOD - A LANGUAGE FOR DISTRIBUTED PROGRAMMING
4199 -02 A SYMBOL TABLE ABSTRACTION TO IMPLEMENT LANGUAGES WITH EXPLICIT SCOPE CONTROL

CORLISS, DR. GEORGE F., MARQUETTE UNIVERSITY, MILWAUKEE, WI 53233
5698 -03 TEACHING SOFTWARE ENGINEERING WITH ADA?

CORMACK, G.V., U. OF MANITOBA, WINNIPEG, MANITOBA, CANADA
3398 -01 AN ALGORITHM FOR THE SELECTION OF OVERLOADED FUNCTIONS IN ADA

CORNHILL, DENNIS, HONEYWELL, INC.
3581 -01 HOST ARCHITECTURE AS A KAPSE INTERFACE ISSUE
CORNHILL, DENNIS, HONEYWELL SYSTEMS & RESEARCH CNTR, MINNEAPOLIS, MN
3369 -01 ADA - THE LATEST WORDS IN PROCESS CONTROL

COSTLOW, TERRY, NONAFFILIATED
4660 -02 ADA ACQUIRES TWO BROAD SUPPORT TOOLS

COUPIE, DANIEL, CENTRE DI RECHERCHES EN INFORMATIQUE DE NANCY, FRANCE
5902 -03 A LIS COMPILER FOR GCOS-7

COX, FRED, GEORGIA INSTITUTE OF TECHNOLOGY, ATLANTA, GA
30332
3582 -01 PORTABLE WHAT?

COX, M.G., NAT'L PHYSICAL LAB., TEDDINGTON, MIDDLESEX, ENGLAND
2915 -01 EVALUATION OF THE LANGUAGE ADA FOR USE IN NUMERICAL COMPUTATIONS

COYNE, ROBERT A., JR., IBM FEDERAL SYSTEMS DIV., HOUSTON, TEXAS
3006 -01 THE UH/CLC NETWORK

CRAFTS, RALPH E., INTELLIMAC. INC., 6001 MONTROSE RD, ROCKVILLE, MD20852
5529 -03 ADA FOR BUSINESS & OTHER NON-DOD APPLICATIONS

CRESPI-REGHIZZI, S., TXT MILANO, ITALY
5979 -03 USING ADA AND APSE TO SUPPORT DISTRIBUTED MULTIMICROPROCESSOR TARGETS

CRITZ, MICHAEL RICHARD, NAVAL POSTGRADUATE SCHOOL, MONTEREY, CA 93940
5488 -03 AN APPROACH FOR IMPLEMENTING A MICROCOMPUTER BASED REPORT ORIGINATION SYSTEM IN THE ADA PROGRAMMING LANGUAGE

CROCKER, STEPHEN D., U. OF SOUTHERN CAL, INFOR.SCI.INST., MARINA DEL RAY, CA
4153 -02 TRANSLATION OF CMS-2 PROGRAMS TO ADA

CRONSBERG, SID, SOFTECH, INC. TOTTEN POND RD, WALTHAM, MA 02154
6065 -03 INTERIM ADA-TO-PASCAL TRANSLATION TOOL: LANGUAGE REFERENCE MANUAL

CROSS, DR. JOSEPH, SPERRY UNIVAC DEFENSE SYSTEMS, ST. PAUL, MN.
4125 -01 THE ADA RUN-TIME ENVIRONMENT
CURRIE, I.F., MINISTRY OF DEFENSE, RSRE MALVERN, WORCS
4426 -02 MODULAR COMPILATION SYSTEMS FOR HIGH LEVEL PROGRAMMING LANGUAGES

DAHLKE, CARL, INTELLIMAC, INC., 6001 MONTROSE RD, ROCKVILLE,
MD20852
4323 -01 ADA PROGRAMMING STYLE

DAILY, PAULAN D., NONAFFILIATED
5981 -03 ADA PROGRAMMING STANDARDS AND GUIDELINES

DAPRA, A., TXT MILANO, ITALY
5979 -03 USING ADA AND APSE TO SUPPORT DISTRIBUTED MULTIMICROPROCESSOR TARGETS

DAUSMANN, G., U. OF KARLSRUHE,KARLSRUHE,FED.REP. OF GERMANY
4318 -01 AN ATTRIBUTE GRAMMAR FOR ADA

DAUSMANN, MANFRED, INSTITUT FUER INFORMATIK II UNIVERSITAET,
KARLSRUHE
4786 -02 AN ATTRIBUTE GRAMMAR FOR THE SEMANTIC ANALYSIS OF ADA

DAUSMANN, MANFRED, U. OF KARLSRUHE,KARLSRUHE,FED.REP. OF GERMANY
3298 -01 OVERLOADING IN PRELIMINARY ADA

3412 -01 AN LALR(1) GRAMMAR FOR (REVISED) ADA

4419 -02 AIDA - AN INTERMEDIATE REPRESENTATION OF ADA PROGRAMS

4420 -02 NOTES ON TCOL

4541 -02 THE ADA COMPILER DEVELOPMENT PROJECT - OVERVIEW

4650 -02 EARLY EXPERIENCE WITH THE PROGRAMMING LANGUAGE ADA

DAUSMANN, MANFRED, U. KARLSRUHE,POSTFACH 6380,KARLSRUHE,GERMANY
4185 -01 THE INTEGRATION OF EXISTING DATABASE SYSTEMS IN AN ADA ENVIRONMENT

5365 -03 ADA DOCUMENTATION AND PROGRAMMING GUIDELINES

DAVIS, A., U. OF UTAH, SALT LAKE CITY, UTAH 84112
5681 -03 TRANSFORMING AN ADA PROGRAM UNIT TO SILICON AND VERIFYING ITS BEHAVIOR IN AN ADA ENVIRONMENT: A FIRST EXPERIMENT

DAVIS, DR. MARK, INTERMETRICS,INC.,CAMBRIDGE,MA 02138
4344 -01 RED LANGUAGE DESIGN RATIONALE
4582 -02 NEBULA AS A TARGET FOR ADA

5258 -02 CLASSICAL OPTIMIZATIONS IN ADA

DAVIS, MAJ. JOHN S., U.S.ARMY, AIRMICS, 115 O'KEEFE BLDG, ATLANTA, GA 30332
2010 -01 ADA - A SUITABLE REPLACEMENT FOR COBOL?

DAYAL, UMESHWAR, COMPUTER CORP OF AMER., TECHNOLOGY SQ, CAMBRIDGE, MA
4586 -02 OVERVIEW OF AN ADA COMPATIBLE DISTRIBUTED DATABASE MANAGER
4752 -02 DDM: AN ADA COMPATIBLE DISTRIBUTED DATABASE MANAGER

DEAN, JEFFREY S., ADV INF & DECIS SYS 201 SAN ANTONIO CIR, MTN VIEW, CA
4615 -02 ADVANCED TOOLS FOR SOFTWARE MAINTENANCE

DEBEST, X., SESA-DEUTSCHLAND GMBH, GESCHAFTSSTELLE, FRANKFURT
4354 -01 A USER-FRIENDLY I/O SYSTEM FOR ADA

DEMERS, ALAN J., CORNELL U., ITHACA, NY 14853
5546 -03 ENCAPSULATED DATA TYPES AND GENERIC PROCEDURES

DEMPSEY, JAMES B., GTE AUTOMATIC ELECTRIC LAB. PHOENIX, AZ
5656 -03 THE DISTRIBUTED SOFTWARE ENGINEERING CONTROL PROCESS: AN ADA DEVELOPMENT ENVIRONMENT

DENNIS, JACK B., MASSACHUSETTS INSTITUTE OF TECH., CAMBRIDGE, MA 02139
5548 -03 A LANGUAGE DESIGN FOR STRUCTURED CONCURRENCY

DEREMER, FRANK, U. OF CALIF. AT SANTA CRUZ, SANTA CRUZ, CA 95064
3270 -01 A SYNTAX DIAGRAM FOR (PRELIMINARY) ADA
3274 -01 A SIMPLIFIED OPERATOR IDENTIFICATION SCHEME FOR ADA
4250 -02 EFFICIENT COMPUTATION OF LALR(1) LOOK-AHEAD SETS
4301 -01 ADA SYNTAX CHART

DEROEVER, WILLEM P., U. OF UTRECHT, THE NETHERLANDS 4183 -01 RENDEVOUS WITH ADA - A PROOF THEORETICAL VIEW
DEUTSCH, RICK, INTEL'S SOFTWARE DISTRIBUTION AND SUPPORT OPERATION
3396 -01 JOVIAL: THE AIR FORCE SOFTWARE SOLUTION IN THE YEARS BEFORE ADA

DEVINE, TERENCE E., SOFTWARE ENGINEERING ASSOCIATES
4110 -01 OBJECT CODE OPTIMIZATION IN A STANDARD COMPILER
4637 -02 JOVIAL/ADA MICROPROCESSOR STUDY

DEWAR, ROBERT B.K., COURANT INST. NEW YORK UNIV., 251 MERCER ST., NY, NY 10012
6178 -03 ADA LANGUAGE MAINTENANCE, A LOOK AT WHAT IS GOING ON

DEWAR, ROBERT B.K., NEW YORK U., NY, NY
2546 -01 THE NYU ADA TRANSLATOR AND INTERPRETER

DEWOLF, J.B., C.S.DRAPER LAB, INC., TECHNOLOGY SQ., CAMBRIDGE, MA 02142
6458 -03 AUTOMATING SOFTWARE DESIGN METRICS

DIBBLE, R., FERRANTI COMPUTER SYS GWENT NP44 7XX UNITED KINGDOM
4817 -02 SOFTWARE DESIGN AND DEVELOPMENT USING MASCOT

DIJKSTRA, EDGSER W., BURROUGHS, 5671 AL NUENEN, THE NETHERLANDS
3387 -01 ON THE BLUE LANGUAGE SUBMITTED TO THE DOD
3388 -01 ON THE GREEN LANGUAGE SUBMITTED TO THE DOD
3391 -01 DOD-I: THE SUMMING UP
3413 -01 ON THE YELLOW LANGUAGE SUBMITTED TO THE DOD
3414 -01 ON THE RED LANGUAGE SUBMITTED TO THE DOD

DISMUKES, GARY, TELESOFT 10639 ROSELLE ST, SAN DIEGO, CA.
92121
4197 -01 AN OPERATIONAL DEFINITION OF INTERMEDIATE CODE FOR IMPLEMENTING A PORTABLE ADA COMPILER

DOBINS, J.A., IBM FEDERAL SYSTEMS DIV, 9500 GODWIN DR., MANASSAS, VA
3004 -01 SOFTWARE QUALITY IN THE 80'S

DOBBS, PAUL, GENERAL DYNAMICS DATA SYSTEMS SERVICES, FORT WORTH, TX
4532 -02 ADA EXPERIENCE ON THE ADA CAPABILITY STUDY
DOMMERGAARD, OLE, DANSK DATAMATIK CTR, LUNDTOFTEVEJ 2800
LYNGBY, DENMARK
4617 -02 THE DESIGN OF A VIRTUAL MACHINE FOR ADA

DONAHUE, JAMES E., CORNELL U., ITHACA, NY 14853
5546 -03 ENCAPSULATED DATA TYPES AND GENERIC PROCEDURES

DOUSPIS, PIERRE, CENTRE DI RECHERCHES EN INFORMATIQUE DE NANCY,
FRANCE
5902 -03 A LIS COMPILER FOR GCOS-7

DOWLING, E.J., FERRANTI COMPUTER SYS GWENT NP44 7XX UNITED
KINGDOM
4825 -03 IMPLEMENTING HIGH QUALITY SOFTWARE

DOWLING, TED, ADA-EUROPE
4646 -02 ADA-EUROPE GUIDELINES FOR ADA COMPILER SPECIFICATION AND
SELECTION

DOWNES, V.A., IMPERIAL COLLEGE OF SCIENCE AND
TECHNOLOGY, LONDON, ENG.
5401 -03 PROGRAMMING EMBEDDED SYSTEMS WITH ADA

DOWSON, MARK, SCICON CONSULTANCY INTERNAT'L, LTD. LONDON, W1P
4AO GB
3416 -01 SOFTWARE STRATEGY FOR MULTIPROCESSORS

DREISBACH, TIMOTHY A., INTERMETRICS, INC., CAMBRIDGE, MA 02138
5551 -03 REQUIREMENTS FOR REAL-TIME LANGUAGES

DROCEA, CHARLES, JERSEY CITY STATE COLLEGE, JERSEY CITY, NJ 07305
5523 -03 EXPERIENCES IN TEACHING ADA

DROSSOPOULOU, SOPHIA, INSTITUT FUER INFORMATIK II UNIVERSITAET,
KARLSRUHE
4786 -02 AN ATTRIBUTE GRAMMAR FOR THE SEMANTIC ANALYSIS OF ADA

DROSSOPOULOU, SOPHIA, U. OF KARLSRUHE, KARLSRUHE, FED. REP. OF GERMANY
3290 -01 OVERLOADING IN PRELIMINARY ADA

3412 -01 AN LALR(1) GRAMMAR FOR (REVISED) ADA

4318 -01 AN ATTRIBUTE GRAMMAR FOR ADA

4541 -02 THE ADA COMPILER DEVELOPMENT PROJECT - OVERVIEW
DROSSOPOULOU, SOPHIA, U. KARLSRUHE, POSTFACH 6380, KARLSRUHE, GERMANY
4185 -01 THE INTEGRATION OF EXISTING DATABASE SYSTEMS IN AN ADA ENVIRONMENT

5365 -03 ADA DOCUMENTATION AND PROGRAMMING GUIDELINES

DRUFFEL, LARRY E.
3275 -01 INTRODUCING ADA

DRUFFEL, LARRY E., ADA JT. PROG. OFF., ARLINGTON, VA 22209
4673 -02 STRATEGY FOR A DOD SOFTWARE INITIATIVE

4674 -02 STRATEGY FOR A DOD SOFTWARE INITIATIVE VOLUME II: APPENDICES

DRUFFEL, LARRY E., DEFENSE ADVANCED RESEARCH PROJECTS
AGENCY, ARLINGTON, VA
3276 -01 ADA: HOW WILL IT AFFECT COLLEGE COURSE OFFERINGS?

3984 -02 RECOLLECTIONS ON THE HISTORY OF ADA ENVIRONMENTS

DRUFFEL, LARRY E., U.S.DEPT. OF DEFENSE, THE PENTAGON, WASH., DC
3277 -01 THE POTENTIAL EFFECT OF ADA ON SOFTWARE ENGINEERING IN THE 1980'S

3277 -01 THE NEED FOR A PROGRAMMING DISCIPLINE TO SUPPORT THE APSE: WHERE DOES THE APSE PATH LEAD?

DULLI, S., UNIVERSITA DI PADOVA, ITALY
4531 -02 MODULAR DECOMPOSITION OF ADA INTO A HIERARCHY OF SUBLANGUAGES

DUNBAR, TERRY L., SOFTWARE ENGINEERING ASSOCIATES
4637 -02 JOVIAL/ADA MICROPROCESSOR STUDY

DUNCAN, ARTHUR G., GENERAL ELECTRIC CO., CORP. R&D CNTR, SCHENECTADY, NY
3296 -01 USING ADA FOR INDUSTRIAL EMBEDDED MICROPROCESSOR APPLICATIONS

4867 -02 PROTOTYPING IN ADA: A CASE STUDY

DWYER, TIMOTHY H., MARTIN MARIETTA AEROSPACE CORP., BX 179, DENVER, CO 80201
2280 -01 RECOMMENDATIONS FOR A RETARGETABLE COMPILER

EARNEST, C.P., COMPUTER SCIENCES CORP.
5543 -03 A NOTE ON "POINTERS"
EASTMAN, C.M., FLORIDA STATE UNIVERSITY, TALLAHASSEE, FL
3084 -01 LEXICAL CHARACTERISTICS OF KEYWORDS IN HIGH LEVEL PROGRAMMING LANGUAGES

EDWARDS, J.A., GENERAL DYNAMICS DATA SYSTEMS SERVICES, FORT WORTH, TX
5661 -03 HOW TO BUY A COMPILER FROM A SMALL BUSINESS

EHRENFRIED, DANIEL H., U.S.A.F. AVIONICS LAB, W-PAFB, OH 45433
4112 -01 FEASIBILITY ASSESSMENT OF JOVIAL TO ADA TRANSLATION

ELLIOTT, D.G., TELECOM AUSTRALIA, MELBOURNE, AUSTRALIA
5141 -02 FORTRAN 77 AND STRUCTURED DESIGN

ELLIOTT, JON K., ROLM CORP., MIL-SPEC, 4900 OLD IRONSIDES, SANTA CLARA, CA
4353 -01 THE ROLM ADA WORK CENTER

ELMQUIST, HILDING, STANFORD U., STANFORD, CA 94305
3771 -01 THE DESIGN AND IMPLEMENTATION OF PARAMETRIC TYPES IN PASCAL

ELSON, BENJAMIN M.
4366 -02 SOFTWARE UPDATE AIDS DEFENSE PROGRAM

ELZER, PETER F., CORNIER SYS, PO-1360, FRIEDRICHSHAFEN, FED REP OF GERMANY
3458 -01 SOME OBSERVATIONS CONCERNING EXISTING SOFTWARE ENVIRONMENTS

ELZER, PETER F., PHYSICS INST. III, ERWIN-ROMMEL-STR. 1, ERLANGEN-NURNBERG
4488 -03 REPORT ON A BRIEFING SESSION FOR CONTRACTORS OF THE US-DOD-HIGH-ORDER-LANGUAGE PROJECT

4507 -03 REPORT OF ANALYSIS OF THE PRELIMINARY DESIGNS FOR A COMMON PROGRAMMING LANGUAGE

EMERY, DAVID E., COMPUTER SCIENCES CORP., RED BANK, NJ 07701
4350 -01 THE DEPARTMENT OF DEFENSE SOFTWARE INITIATIVE, A SUMMARY

6198 -03 ADA AS A REAL-TIME OPERATIONS SYSTEM

ESCH, JOHN, SPERRY UNIVAC
4334 -01 PROGRAM DEVELOPMENT SYSTEMS - AN OVERVIEW
ESTELL, ROBERT G.
3378 -01 A CHAPTER IN THE HISTORY OF DOD-1

EVANS, ARTHUR JR., BOLT BERANEK AND NEWMAN, INC.
2921 -01 TASK MANAGEMENT IN ADA - A CRITICAL EVALUATION FOR REAL-TIME
MULTIPROCESSORS
3983 -02 A COMPARISON OF PROGRAMMING LANGUAGES: ADA, PRAXIS, PASCAL, C

EVANS, ARTHUR JR., TARTAN LAB'S INC. 477 MELWOOD AVE PITTSBURGH,
PA 15213
4789 -02 A DIANA-DRIVEN PRETTY-PRINTER FOR ADA
5475 -03 A COMPARISON OF PROGRAMMING LANGUAGES: ADA, PASCAL, C

EVANS, BOBBY R., U.S.A.F. ASD, WRIGHT-PATTERSON AFB, OH
3386 -01 JOVIAL LANGUAGE CONTROL PROCEDURES WITH A VIEW TOWARD ADA

EVENTOFF, W., PERKIN-ELMER DATA SYST. GRP., TINTON FALLS, NJ
3310 -01 THE RENDEZVOUS AND MONITOR CONCEPTS: IS THERE AN EFFICIENCY
DIFFERENCE?

FAASCH, H., FACHBEREICH INF OF HAMBURG
SCHLUETERSTRASSE70, HAMBURG
4352 -01 ADA ON A MINICOMPUTER-NETWORK FOR IMAGE SEQUENCE ANALYSIS: AN
INVESTIGATIVE IMPLEMENTATION

FACEMIRE, JEFFREY L., VIRGINIA POLYTECHNIC INSTITUTE, BLACKSBURG, VA
6084 -03 A SPECIFICATION TECHNIQUE FOR THE COMMON APSE INTERFACE SET

FAIRLEY, RICHARD E., COLORADO STATE U., FORT COLLINS, CO 80523
3295 -01 ADA DEBUGGING AND TESTING SUPPORT ENvironments

FALIS, EDWARD, STANFORD U., STANFORD, CA 94305
4171 -01 DESIGN AND IMPLEMENTATION IN ADA OF A RUNTIME TASK SUPERVISOR

FANTECHI, A., ISTITUTO ELABORAZIONE INFORMAZIONE, CNR,
PISA, ITALY
6175 -03 INTERFACING WITH REAL ENVIRONMENTS FROM ADA PROGRAMS

FANTECHI, A., OLIVETTI-DIDAU PISA, ITALY
4175 -01 PORTABLE ADA PROGRAMMING SYSTEM: A PROPOSED RUN-TIME
ARCHITECTURE
FAWCETTE, JAMES E., EW COMMUNICATIONS
3610 -01 ADA GOES TO WORK

4264 -01 ADA TACKLES SOFTWARE BOTTLE-NECK

FED. S/W TESTING CNTR, OFFICE OF S/W DEV. & INFO. TECHNOLOGY, FALLS CHURCH, VA
5107 -03 ADA VALIDATION SUMMARY REPORT

FEILER, PETER H., CARNEGIE-MELLON U., PITTSBURGH, PA 15213
2612 -01 AN INCREMENTAL PROGRAMMING ENVIRONMENT

FELDMAN, IRV, JERSEY CITY STATE COLLEGE, JERSEY CITY, NJ 07305
5539 -03 ECONOMIC, SOCIAL, AND LEGAL ASPECT OF SOFTWARE IN THE FUTURE

FELDMAN, MICHAEL B., GEORGE WASHINGTON U., WASHINGTON, DC 20052
6134 -03 ABSTRACT TYPES, ADA PACKAGES, AND THE TEACHING OF DATA STRUCTURES

FELLOWS, JON, SYSTEMS DEVELOPMENT CORPORATION
3583 -01 IMPLEMENTING THE ADA PROGRAMMING SUPPORT ENVIRONMENT IN ADA

FERGUSON, SCOTT E., U.S.A.F. ASD, WRIGHT-PATTERSON AFB, OH
4791 -02 A SYNTAX-DIRECTED PROGRAMMING ENVIRONMENT FOR THE ADA PROGRAMMING LANGUAGE

FERNANDEZ, JOHN D., TEXAS A&M U., COLLEGE STATION, TEXAS 77843
4670 -02 EXPERIENCES WITH MATRIX MULTIPLICATION USING ADA TASKS

FERRAN, GUY, CII-HONEYWELL BULL, LOUVECIENNES, FRANCE
5550 -03 SEPARATE DEFINITION AND COMPILATION IN LIS AND ITS IMPLEMENTATION

FILIPSKI, GARY L., U.S.A.F. MILITARY PERSONNEL CNTR, RANDOLPH AFB, TX
3312 -01 ADA AS A SOFTWARE TRANSITION TOOL

FIRTH, ROBERT, ROYAL MILITARY COLLEGE OF SCIENCE, WILTSHIRE, ENGLAND
3279 -01 PRELIMINARY DRAFT SPECIFICATION OF A BASIC MATHEMATICAL LIBRARY FOR THE HIGH ORDER PROGRAMMING LANGUAGE ADA

FISCHER, CHARLES N., U. OF WISCONSIN AT MADISON, MADISON, WI 53706
5547 -03 RUN-TIME CHECKING OF DATA ACCESS IN PASCAL-LIKE LANGUAGES
FISCHER, HERMAN, LITTON SYSTEMS, INC., WOODLAND HILLS, CALIF.
3584 -01 THE NEED FOR PROCEDURES FOR KAPSE HOST OS UPGRADES

FISCHER, HERMAN, LITTON DATA SYSTEMS, VAN NUYS, CA 91409
6135 -03 MIL-STD-SDS REVIEW ISSUES: ADA AND DESIGN METHODOLOGIES

FISHER, A.J., U. OF HULL, HULL HU6 7RX, U.K.
3812 -02 THE SYNTAX OF USER-DEFINED DYADIC OPERATORS

FISHER, DR. DAVID A.
3275 -01 INTRODUCING ADA

FISHER, DR. DAVID A., INSTITUTE FOR DEFENSE ANALYSES, ARLINGTON, VA.
0251 -01 THE INTERACTION BETWEEN THE PRELIMINARY DESIGNS AND THE TECHNICAL REQUIREMENTS FOR THE DOD COMMON HIGH ORDER LANGUAGE
0387 -01 THE COMMON PROGRAMMING LANGUAGE EFFORT OF THE DEPT. OF DEFENSE
3259 -01 DOD'S COMMON PROGRAMMING LANGUAGE EFFORT
3432 -01 INITIAL THOUGHTS ON THE PEBBLEMAN PROCESS
3434 -01 A COMMON PROGRAMMING LANGUAGE FOR THE DEPARTMENT OF DEFENSE-BACKGROUND AND TECHNICAL REQUIREMENTS
3435 -01 RATIONALE FOR FIXED-POINT AND FLOATING-POINT COMPUTATIONAL REQUIREMENTS FOR A COMMON PROGRAMMING LANGUAGE
4587 -02 "WOODENMAN" SET OF CRITERIA AND NEEDED CHARACTERISTICS FOR A COMMON DOD HIGH ORDER PROGRAMMING LANGUAGE

FISHER, DR. DAVID A., SCIENCE APPLICATIONS, INC., MCLEAN, VA 35805
4421 -02 DESIGN ISSUES FOR ADA PROGRAM SUPPORT ENVIRONMENTS - A CATALOGUE OF ISSUES

FISHER, DR. DAVID A., WESTERN DIGITAL CORP., PITTSBURGH, PA
4096 -01 FIRST COMPLETE ADA COMPILER RUNS ON A MICRO

FISHER, GERALD A., JR., COURANT INST. NEW YORK UNIV., 251 MERCER ST., NY, NY 10012
4180 -01 AN EFFICIENT METHOD FOR HANDLING OPERATOR OVERLOADING IN ADA

FISHER, GERALD A., JR., COMPUTER SCIENCES CORP.
5991 -03 A LALR (1) GRAMMAR FOR ANSI ADA

FISHER, GERALD A., JR., COMPUTER SCIENCES CORP., SAN DIEGO, CA
5977 -03 UNIVERSAL ARITHMETIC PACKAGES
FISHER, GERALD A., JR., NEW YORK U., NY, NY
2546 -01 THE NYU ADA TRANSLATOR AND INTERPRETER
3911 -01 A LALR(1) GRAMMAR FOR '82 ADA

FONASH, PETER M., ADA JT. PROG. OFF., ARLINGTON, VA 22209
3994 -02 PROGRAM OVERVIEW

FONASH, PETER M., DEPT OF ARMY, DEF. SUPPLY SERV., WASHINGTON, DC 20310
5658 -03 ADA AND THE MILITARY COMPUTER FAMILY (MCF)

FONASH, PETER M., DARCOM, DEA DIRECTORATE
4367 -02 NEW DIRECTIONS IN EMBEDDED COMPUTER SYSTEMS

FORAKIS, JOHN A., GTE GOVERNMENT SYS. CORP. WESTERN DIVISION MOUNTAIN VI
6174 -03 TIMING STUDIES USING A SYNTHETIC WHETSTONE BENCHMARK

FOREMAN, JOHN T., NONAFFILIATED
5981 -03 ADA PROGRAMMING STANDARDS AND GUIDELINES

FORSYTH, C.H., U. OF YORK, HESLINGTON, YORK YO1 5DD, U.K.
4614 -02 ADA WORKBENCH COMPILER PROJECT 1981

FOX, JOSEPH M., DECISIONS & DESIGNS, 8400 WESTPARK DR. MCLEAN, VA22101
3609 -01 BENEFIT MODEL FOR HIGH ORDER LANGUAGE

FOX, STEPHEN A., COMPUTER CORP OF AMER., TECHNOLOGY SQ. CAMBRIDGE, MA
4411 -02 THE DESIGN OF AN ADA COMPATIBLE LOCAL DATABASE MANAGER (LDM)
4586 -02 OVERVIEW OF AN ADA COMPATIBLE DISTRIBUTED DATABASE MANAGER
4612 -02 REFERENCE MANUAL FOR ADAPLEX
4752 -02 DDM: AN ADA COMPATIBLE DISTRIBUTED DATABASE MANAGER

FRANKEL, GARY, TELESOF 10639 ROSELLE ST. SAN DIEGO, CA. 92121
4191 -01 LINKAGE OF ADA COMPONENTS - THEME & VARIATIONS

FREEDMAN, ROY S., HAZELTINE CORP., PULASKI RD., GREENLAWN, NY 11740
3585 -01 A FORMAL APPROACH TO APSE PORTABILITY
<table>
<thead>
<tr>
<th>Author Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREEMAN, PETER, U. OF CALIFORNIA AT IRVINE, IRVINE, CA 92717</td>
</tr>
<tr>
<td>4095 -01 THE COMMON SENSE OF OBJECT ORIENTED LANGUAGES</td>
</tr>
<tr>
<td>5410 -03 PROGRAMMING CONCEPTS WITH THE ADA LANGUAGE</td>
</tr>
<tr>
<td>FROEHLICH, ROBERT, NEW YORK U., NY, NY</td>
</tr>
<tr>
<td>2546 -01 THE NYU ADA TRANSLATOR AND INTERPRETER</td>
</tr>
<tr>
<td>FROGGATT, TERRY, SYSTEMS DESIGNERS LIMITED, UNITED KINGDOM</td>
</tr>
<tr>
<td>3252 -01 THE ADA ENVIRONMENT: A PERSPECTIVE</td>
</tr>
<tr>
<td>FUHR, DONALD C., TUSKEGEE INSTITUTE, TUSKEGEE, AL 36088</td>
</tr>
<tr>
<td>5540 -03 OPERATING SYSTEM INTERFACE FOR ADA INSTRUCTORS</td>
</tr>
<tr>
<td>GABBER, ERAN, TEL AVIV UNIVERSITY, RAMAT AVIV, ISRAEL</td>
</tr>
<tr>
<td>4347 -01 THE MIDDLE WAY APPROACH FOR ADA BASED PDL SYNTAX</td>
</tr>
<tr>
<td>GALKOWSKI, J.T.</td>
</tr>
<tr>
<td>4295 -01 A CRITIQUE OF THE DOD COMMON LANGUAGE EFFORT</td>
</tr>
<tr>
<td>GALKOWSKI, J.T., IBM FEDERAL SYSTEMS DIVISION, OWEGO, NY</td>
</tr>
<tr>
<td>3358 -01 MODULARITY AND DATA ABSTRACTION IN ADA</td>
</tr>
<tr>
<td>GALLAHER, L.J., GEORGIA INSTITUTE OF TECHNOLOGY, ATLANTA, GA</td>
</tr>
<tr>
<td>30332</td>
</tr>
<tr>
<td>3421 -01 INVESTIGATE CAPABILITY OF ADA HIGHER ORDER PROGRAMMING LANGUAGE FOR DEVELOPING MACHINE INDEPENDENT SOFTWARE</td>
</tr>
<tr>
<td>GALLO, F., OLIVETTI-DIDAU PISA, ITALY</td>
</tr>
<tr>
<td>4175 -01 PORTABLE ADA PROGRAMMING SYSTEM: A PROPOSED RUN-TIME ARCHITECTURE</td>
</tr>
<tr>
<td>GAMINO, ROBERT</td>
</tr>
<tr>
<td>4367 -02 NEW DIRECTIONS IN EMBEDDED COMPUTER SYSTEMS</td>
</tr>
<tr>
<td>GANNON, JOHN, U. OF MARYLAND, COLLEGE PARK, MD 20742</td>
</tr>
<tr>
<td>3280 -01 MONITORING AN ADA SOFTWARE DEVELOPMENT PROJECT</td>
</tr>
</tbody>
</table>
GLASS, ROBERT L., BOEING COMPUTER SERVICES CO., P.O. BOX 24346, SEATTLE, WA
4163 -02 RECOMMENDED: A MINIMUM STANDARD SOFTWARE TOOLSET

GLASS, ROBERT L., COMPUTING TRENDS
3321 -01 FROM PASCAL TO PEBBLEMAN... AND BEYOND

GLASS, ROBERT L., SEATTLE PACIFIC UNIVERSITY
3483 -02 RECOMMENDED: A MINIMUM STANDARD SOFTWARE TOOLSET

GLASSMAN, DR. STEVE, TELEDYNE SYSTEMS
3587 -01 TOOL PORTABILITY AS A FUNCTION OF APSE ACCEPTANCE

GODA, JOHN J., GEORGIA INSTITUTE OF TECHNOLOGY, ATLANTA, GA
30332
3371 -01 ADA AND SOFTWARE DEVELOPMENT SUPPORT: A NEW CONCEPT IN LANGUAGE DESIGN
4103 -03 THE IMPACT OF ADA ON SOFTWARE DEVELOPMENT

GOLDSACK, STEPHEN J., ADA-EUROPE
4646 -02 ADA-EUROPE GUIDELINES FOR ADA COMPILER SPECIFICATION AND SELECTION

GOLDSACK, STEPHEN J., IMPERIAL COLLEGE OF SCIENCE AND TECHNOLOGY, LONDON, ENG.
4307 -01 ADA PACKAGE SPECIFICATIONS: PATH EXPRESSIONS AND MONITORS
5401 -03 PROGRAMMING EMBEDDED SYSTEMS WITH ADA

GOLDSTEIN, PHILIP, JERSEY CITY STATE COLLEGE, JERSEY CITY, NJ 07305
5523 -03 EXPERIENCES IN TEACHING ADA

GOLUBIATNIKOV, OLE, GENERAL ELECTRIC CO., ELECTRONIC SYS. DIV., SYRACUSE, NY
4133 -01 ARCHITECTURE, HARDWARE AND SOFTWARE ISSUES IN FIELDING THE NEXT GENERATION DOD PROCESSORS

GONZALEZ, CAPT. DEAN W., U.S.A.F. INSTITUTE OF TECHNOLOGY
6898 -03 ADA (TRADEMARK) TASKING AND EXCEPTIONS: A FORMAL DEFINITION

GOOD, DONALD I., U. OF TEXAS AT AUSTIN, AUSTIN, TX 78712
3198 -01 PROGRAM VERIFICATION AND EMBEDDED AEROSPACE SOFTWARE
3306 -01 GENERICS AND VERIFICATION IN ADA
3403 -01 STEELMAN AND THE VERIFIABILITY OF (PRELIMINARY) ADA
4023 -01 TOWARD BUILDING VERIFIED, SECURE SYSTEMS
4427 -02 A PRELIMINARY EVALUATION OF VERIFIABILITY IN ADA

GOODENOUGH, JOHN B., SOFTECH, INC. TOT TEN POND RD, WALTHAM, MA 02154
3255 -01 THE ADA COMPILER VALIDATION CAPABILITY
3288 -01 ADA COMPILER VALIDATION IMPLEMENTERS' GUIDE
4321 -01 ADA (JULY 1980) SYNTAX CROSS REFERENCE LISTING
4340 -01 ADA COMPILER VALIDATION CAPABILITY: LONG RANGE PLAN
5554 -03 THE NEED FOR OPTIMIZATION STANDARDS

GOODHART, BRIAN, INTELLIMAC, INC., 6001 MONTROSE RD, ROCKVILLE, MD 20852
4323 -01 ADA PROGRAMMING STYLE

GOODMAN, NATHAN, COMPUTER CORP OF AMER., TECHNOLOGY SQ, CAMBRIDGE, MA
4586 -02 OVERVIEW OF AN ADA COMPATIBLE DISTRIBUTED DATABASE MANAGER
4752 -02 DDM: AN ADA COMPATIBLE DISTRIBUTED DATABASE MANAGER

GOODWIN, JEREMY P., VIRGINIA POLYTECHNIC INSTITUTE, BLACKSBURG, VA
6119 -03 A REVISED STONEMAN FOR DISTRIBUTED ADA SUPPORT ENVIRONMENTS

GOOS, GERHARD, INSTITUT Fuer INFORMATIK II UNIVERSITAET, KARLSRUHE
4786 -02 AN ATTRIBUTE GRAMMAR FOR THE SEMANTIC ANALYSIS OF ADA
4788 -02 DIANA REFERENCE MANUAL

GOOS, GERHARD, U. OF KARLSRUHE, KARLSRUHE, FED. REP. OF GERMANY
3297 -01 TOWARDS A COMPILER FRONT-END FOR ADA
4318 -01 AN ATTRIBUTE GRAMMAR FOR ADA
4429 -02 PROBLEMS IN COMPILING ADA
4541 -02 THE ADA COMPILER DEVELOPMENT PROJECT - OVERVIEW
4650 -02 EARLY EXPERIENCE WITH THE PROGRAMMING LANGUAGE ADA
GORDON, MAUREEN E., THE FOXBORO COMPANY, FOXBORO, MA
2861 -01 USING PRELIMINARY ADA IN A PROCESS CONTROL APPLICATION

3369 -01 ADA - THE LATEST WORDS IN PROCESS CONTROL

GORDON, MICHAEL, INTERMETRICS, INC., CAMBRIDGE, MA 02138
4349 -01 THE BYRON (TM) PROGRAM DESIGN LANGUAGE -1-

GOSS, CLINTON F., NEW YORK U., NY, NY
2546 -01 THE NYU ADA TRANSLATOR AND INTERPRETER

GRAHAM, SUSAN L., U. OF CALIFORNIA AT BERKELEY, BERKELEY, CA
94720
3313 -01 SOURCE-TO-SOURCE TRANSLATION: ADA TO PASCAL AND PASCAL TO ADA

GRAU, KAYE J., HARRIS CORP., GOV'T INFO SYST DIV., MELBOURNE, FL 32901
5537 -03 ADA DESIGN LANGUAGE CONCERNS

GREENE, JOSEPH S. JR., WIS JOINT PROGRAM OFFICE, WASHINGTON, DC
5654 -03 ADA FOUNDATION FOR WIS

GRIESEHEIMER, ERIC, MCDONNELL DOUGLAS
3588 -01 TRANSPORTABILITY ISSUES

GRIMSDALE, R.L., U. OF SUSSEX, BRIGHTON, ENGLAND
4305 -01 DEVELOPMENT ENVIRONMENT FOR THE DESIGN AND TEST APPLICATIONS SOFTWARE FOR A DISTRIBUTED MULTIPROCESSOR COMPUTER SYSTEM
4309 -01 STRUCTURE AND TASKING FEATURES OF THE PROGRAMMING LANGUAGE MARTLET

GROSS, STEVE
2071 -01 ADA LANGUAGE FINDS WIDE ACCEPTANCE

GROUNDWATER, N.P., ANALYTIC DISCIPLINES, INC.
5668 -03 USING ADA WITH A DATA FLOW LANGUAGE

GROVE, MARK H., U.S.DEPT. OF DEFENSE, THE PENTAGON, WASH., DC
4251 -02 DOD POLICY FOR ACQUISITION OF EMBEDDED COMPUTER RESOURCES

GROVER, V., SOFTECH, INC. TOTTEN POND RD, WALTHAM, MA 02154
6187 -03 THE ADA RUNTIME KIT (ARK)
<table>
<thead>
<tr>
<th>Author</th>
<th>Institution</th>
<th>City, Country or Location</th>
<th>Page</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROVES, L. J.</td>
<td>U. OF WAIKATO, HAMILTON NEW ZEALAND</td>
<td></td>
<td>3316</td>
<td>THE DESIGN OF A VIRTUAL MACHINE FOR ADA</td>
</tr>
<tr>
<td>GUSMANN, B.</td>
<td>MESSERSCHMITT-BOLKOW-BLOHM P080 11 49 D8000</td>
<td>MUNCHEN 80</td>
<td>4818</td>
<td>SAFETY CRITICAL FAST-REAL-TIME SYSTEMS</td>
</tr>
<tr>
<td>GUSTAFSON, DAVID A.</td>
<td>KANSAS STATE U., MANHATTAN, KS 66506</td>
<td></td>
<td>4045</td>
<td>PREDICTING COST-OF-CHANGE FROM DESIGN STRUCTURE METRICS</td>
</tr>
<tr>
<td>HAARSLEV, V.</td>
<td>FACHBEREICH INF OF HAMBURG</td>
<td>SCHLUETERSTRASSE70, HAMBURG</td>
<td>4352</td>
<td>ADA ON A MINICOMPUTER-NETWORK FOR IMAGE SEQUENCE ANALYSIS: AN INVESTIGATIVE IMPLEMENTATION</td>
</tr>
<tr>
<td>HABERMANN, A. NICO</td>
<td>CARNEGIE-MELLON U., PITTSBURGH, PA 15213</td>
<td></td>
<td>4433</td>
<td>THE GANDALF SOFTWARE DEVELOPMENT ENVIRONMENT</td>
</tr>
<tr>
<td>HABERMANN, A. NICO</td>
<td></td>
<td></td>
<td>4716</td>
<td>SYSTEM COMPOSITION AND VERSION CONTROL FOR ADA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5405</td>
<td>ADA FOR EXPERIENCED PROGRAMMERS</td>
</tr>
<tr>
<td>HALL, PATRICK A. V.</td>
<td>SCICON CONSULTANCY INTERNAT'L LTD. LONDON, W1P</td>
<td></td>
<td>4351</td>
<td>ADDING DATABASE MANAGEMENT TO ADA</td>
</tr>
<tr>
<td>HANSALL, F.</td>
<td>U. OF SUSSEX, BRIGHTON, ENGLAND</td>
<td></td>
<td>4305</td>
<td>DEVELOPMENT ENVIRONMENT FOR THE DESIGN AND TEST APPLICATIONS SOFTWARE FOR A DISTRIBUTED MULTIPROCESSOR COMPUTER SYSTEM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4309</td>
<td>STRUCTURE AND TASKING FEATURES OF THE PROGRAMMING LANGUAGE MARTLET</td>
</tr>
<tr>
<td>HAMMARLING, S. J.</td>
<td>NAT'L PHYSICAL LAB., TEDDINGTON, MIDDLESEX, ENGLAND</td>
<td></td>
<td>2915</td>
<td>EVALUATION OF THE LANGUAGE ADA FOR USE IN NUMERICAL COMPUTATIONS</td>
</tr>
<tr>
<td>HANHAM, S. D.</td>
<td>SYSTEMHOUSE LIMITED, 99 BANK ST. OTTAWA CANADA</td>
<td></td>
<td>5670</td>
<td>IMPLEMENTING A RADAR DISPLAY WITH ADA ON A MICROCOMPUTER</td>
</tr>
</tbody>
</table>
HANSEN, R., MESSERSCHMITT-BOLKOW-BLOHM P080 11 49 D8000
MUNCHEN 80
4818 -03 SAFETY CRITICAL FAST-REAL-TIME SYSTEMS

HANSEN, WILFRED J., U. OF PITTSBURGH, PITTSBURGH, PA 15260
3965 -02 THE STRUCTURE OF "DATA STRUCTURES"

HARBAUGH, SAM, GTE GOVERNMENT SYS. CORP. WESTERN DIVISION
MOUNTAIN VI
4599 -03 XADA: AN EXECUTABLE ADA DESIGN LANGUAGE METHODOLOGY
6174 -03 TIMING STUDIES USING A SYNTHETIC WHETSTONE BENCHMARK

HARIDI, SEIF, ROYAL INST. OF TECH., S-100 44 STOCKHOLM, SWEDEN
3397 -01 AN IMPLEMENTATION AND EMPIRICAL EVALUATION OF THE TASKING FACILITIES IN ADA

HARIVEL, PHYSICS INST.
III.ERWIN-ROMMEL-STR.1,ERLANGEN-NURNBERG
4507 -03 REPORT OF ANALYSIS OF THE PRELIMINARY DESIGNS FOR A COMMON PROGRAMMING LANGUAGE

HART, HAL, TRW DEFENSE & SPACE SYST DIV, REDONDO BEACH,CA
3014 -01 ADA FOR DESIGN: AN APPROACH FOR TRANSITIONING INDUSTRY SOFTWARE DEVELOPERS
4170 -01 A CASE FOR A SIMPLE ADA PDL

HART, HAL, TRW SYS ENGINEERING & INTEGRATION GRP,REDONDO BEACH,CA
5532 -03 AN ADVANCED HOST-TARGET ENVIRONMENT FOR THE MILITARY COMPUTER FAMILY

HART, RUTH, TRW SYS ENGINEERING & INTEGRATION GRP,REDONDO BEACH,CA
5532 -03 AN ADVANCED HOST-TARGET ENVIRONMENT FOR THE MILITARY COMPUTER FAMILY

HARTIG, HERMANN, U. OF KARLSRUHE,KARLSRUHE,FED.REP. OF GERMANY
3987 -02 TASK STATE TRANSITIONS IN ADA

HARTWOOD, W.T., U. OF BATH,CLAVERTON DOWN,BATH BA2 7AY,U.K.
4310 -01 SPECIFYING AND IMPLEMENTING OBJECT MANAGERS IN ADA
HARVEY, D., PERKIN-ELMER DATA SYST. GP., TINTON FALLS, NJ
07724
3310 -01 THE RENDEZVOUS AND MONITOR CONCEPTS: IS THERE AN EFFICIENCY
DIFFERENCE?

HAUSEN, HANS-LUDWIG, GESELLSCHAFT FUR MATHEMATIK &
DATENVERARBEITUNG, GERMANY
4718 -02 SOFTWARE ENGINEERING ENVIRONMENTS - A BIBLIOGRAPHY

HAYES, A.B., U. OF UTAH, SALT LAKE CITY, UTAH 84112
5681 -03 TRANSFORMING AN ADA PROGRAM UNIT TO SILICON AND VERIFYING ITS
BEHAVIOR IN AN ADA ENVIRONMENT: A FIRST EXPERIMENT

HEGER, PHYSICS INST.
III, ERWIN-ROMMEL-STR. 1, ERLANGEN-NURNBERG
4507 -03 REPORT OF ANALYSIS OF THE PRELIMINARY DESIGNS FOR A COMMON
PROGRAMMING LANGUAGE

HEIDEBRECHT, J.B.
4628 -02 VHSIC PHASE III SOFTWARE ARCHITECTURE STUDY PRELIMINARY HOL
DEFINITION

HEIMBIGNER, D., U. OF SOUTHERN CALIFORNIA AT MARINA DEL RAY,
CA
3314 -01 A MULTI-PROCESSING IMPLEMENTATION-ORIENTED FORMAL DEFINITION OF
ADA IN SEMANOL

HEKER, WOLF-DIETER, SYSTEAM KG AM ENTENFANG 10 D-7500 KARLSRUHE 21
5567 -03 SOME COMMENTS ON "EXPERIENCES WITH MATRIX MULTIPLICATION USING
ADA TASKS"

HEKER, WOLF-DIETER, U. KARLSRUHE, POSTFACH 6380, KARLSRUHE, GERMANY
4413 -02 ADA TASKING

HELIARD, J.C.
3290 -01 RATIONALE FOR THE DESIGN OF THE ADA PROGRAMMING LANGUAGE

HELMBOLD, DAVID P., STANFORD U., STANFORD, CA 94305
4172 -01 MONITORING FOR DEADLOCKS IN ADA TASKING

HENIN, BERNARD, CENTRE DI RECHERCHES EN INFORMATIQUE DE NANCY,
FRANCE
6902 -03 A LIS COMPILER FOR GCOS-7
Ada Bibliography Volume III

6136 -03 MONITORING AN ADA SOFTWARE DEVELOPMENT

GANSLER, J.S., U.S.AMY, THE PENTAGON, WASH., DC
0736 -01 KEYNOTE: SOFTWARE MANAGEMENT

GANZINGER, HARRALD, FACHBEREICH INF, MUNCHEN, D-8014, NEUBIBERG, FED. REP.
5132 -03 A COMMENT ON "OPERATOR IDENTIFICATION IN ADA"

GANZINGER, HARALD, INSTITUE FUR INFORMATIK POSTFACH202420 FED REP GERMANY
4423 -02 OPERATOR IDENTIFICATION IN ADA: FORMAL SPECIFICATION, COMPLEXITY, AND CONCRETE IMPLEMENTATION

GARDNER, MICHAEL R., INTELLIMAC, INC., 6001 MONTROSE RD, ROCKVILLE, MD20852
4323 -01 ADA PROGRAMMING STYLE
4668 -02 USING ADA FOR COMMERCIAL SOFTWARE
5980 -03 WHEN TO USE PRIVATE TYPES

GARGARO, ANTHONY, COMPUTER SCIENCES CORP.
3586 -01 AJPO KIT POSITION PAPER

GARLINGTON, ALAN R., U.S.A.F. INSTITUTE OF TECHNOLOGY
3444 -01 PRELIMINARY DESIGN AND IMPLEMENTATION OF AN ADA PSEUDO-MACHINE

GARRARD, KEN, NORTH CAROLINA STATE UNIVERSITY RALEIGH 27650
5155 -02 COMMENTS ON THE SUGGESTED IMPLEMENTATION OF TASKING FACILITIES IN THE "RATIONALE FOR THE DESIGN OF THE ADA PROGRAMMING LANGUAGE"

GARRISON, PHILLIP E., U. OF CALIFORNIA AT BERKELEY, BERKELEY, CA 94720
3313 -01 SOURCE-TO-SOURCE TRANSLATION: ADA TO PASCAL AND PASCAL TO ADA

GART, MITCHELL B., CII-HONEYWELL BULL, LOUVECIENNES, FRANCE
4736 -02 ALPAGE: A SOFTWARE ENGINEERING ENVIRONMENT FOR LARGE SCALE APPLICATIONS

GATTI, S., TXT MILANO, ITALY
5979 -03 USING ADA AND APSE TO SUPPORT DISTRIBUTED MULTIMICROPROCESSOR TARGETS
GAUDINO, CAPT. RICHARD L., U.S.A.F. INSTITUTE OF TECHNOLOGY
3456 -01 ANALYSIS AND DESIGN OF INTERACTIVE DEBUGGING FOR THE ADA
PROGRAMMING SUPPORT ENVIRONMENT

GEHANI, NARAIN H., BELL LABORATORIES, MURRAY HILL, NJ 07974
5402 -03 ADA AN ADVANCED INTRODUCTION
5477 -03 AN EARLY ASSESSMENT OF THE ADA PROGRAMMING LANGUAGE
5731 -03 CONCURRENT PROGRAMMING IN THE ADA LANGUAGE: THE POLLING BIAS

GEORGE, DENNIS, HEWLETT-PACKARD COMP DIV 3404 E.HARMONY FT.
COLLINS,CO
4045 -02 PREDICTING COST-OF-CHANGE FROM DESIGN STRUCTURE METRICS

GERHARDT, MARK S., RAYTHEON CO., SUBMARINE SIGNAL
DIV., PORTSMOUTH, RI 02871
4166 -01 THE CASE FOR FULL ADA AS A DESIGN LANGUAGE

GERMAN, STEVEN M., STANFORD U., STANFORD, CA 94305
4172 -01 MONITORING FOR DEADLOCKS IN ADA TASKING

GILBERT, R. (EDITOR)
4548 -02 CURRENT PROPOSALS OF THE LANGUAGE ENVIRONMENT SUBGROUP

GILBERT, ROGER, SYSTEMS DESIGNERS LIMITED, UNITED KINGDOM
3252 -01 THE ADA ENVIRONMENT: A PERSPECTIVE

GILLMAN, RICHARD, U. OF SOUTHERN CAL., INFOR.SCI.INST., MARINA DEL
RAY, CA
4153 -02 TRANSLATION OF CMS-2 PROGRAMS TO ADA

GILPIN, GEOFF
4152 -01 ADA FOR CP/M
4297 -01 THE COUNTESS AND THE COMPUTER LANGUAGE - PART II
4312 -01 THE COUNTESS AND THE COMPUTER LANGUAGE - PART I

GILROY, KATHLEEN, HARRIS CORP., GOV'T INFO SYST DIV,
MELBOURNE, FL 32901
5530 -03 EXPERIENCE WITH ADA FOR THE GRAPHICAL KERNEL SYSTEM
6177 -03 EXPERIENCE WITH ADA FOR THE GRAPHICAL KERNEL SYSTEM
HENNESSY, JOHN, STANFORD U., STANFORD, CA 94305
3771 -01 THE DESIGN AND IMPLEMENTATION OF PARAMETRIC TYPES IN PASCAL

HENRY, ROGER, U. OF NOTTINGHAM, COMPUTER LAB., DEPT OF
PSYCHOLOGY
4527 -02 REAL-TIME PROGRAMMING LANGUAGES

HENRY, SALLIE, U. OF WISCONSIN, LA CROSSE, WI 54601
4045 -02 PREDICTING COST-OF-CHANGE FROM DESIGN STRUCTURE METRICS

HESS, HERMAN, LITTON SYSTEMS, INC., WOODLAND HILLS, CALIF.
3584 -01 THE NEED FOR PROCEDURES FOR KAPSE HOST OS UPGRADES

HEYLIGER, GEORGE E., MARTIN MARIETTA AEROSPACE CORP., BX
179, DENVER, CO 80201
2280 -01 RECOMMENDATIONS FOR A RETARGETABLE COMPILER

HIBBARD, PETER, CARNEGIE-MELLON U., PITTSBURGH, PA 15213
3457 -01 PROGRAMMING IN ADA: EXAMPLES
5472 -03 STUDIES IN ADA STYLE (SECOND EDITION JANUARY 1983)

HILFINGER, PAUL N., U. OF CALIFORNIA AT BERKELEY, BERKELEY, CA
94720
4200 -02 SIMULATION OF PROCEDURE VARIABLES USING ADA TASKS

HILFINGER, PAUL N., CARNEGIE-MELLON U., PITTSBURGH, PA 15213
3284 -01 TARTAN - LANGUAGE DESIGN FOR THE IRONMAN REQUIREMENT: REFERENCE
MANUAL
3285 -01 TARTAN - LANGUAGE DESIGN FOR THE IRONMAN REQUIREMENT: NOTES AND
EXAMPLES
4173 -01 IMPLEMENTATION STRATEGIES FOR ADA TASKING IDIOMS

HINDIN, HARVEY J., NONAFFILIATED
4661 -02 VERIFIABILITY SOUGHT FOR SPACE SHUTTLE

HISGEN, ANDY, CARNEGIE-MELLON U., PITTSBURGH, PA 15213
3301 -01 THE CHARRETTE ADA COMPILER
3302 -01 A RUNTIME REPRESENTATION FOR ADA VARIABLES AND TYPES
3303 -01 AN ADA CODE GENERATOR FOR VAX 11/780 WITH UNIX
3457 -01 PROGRAMMING IN ADA: EXAMPLES
A METHODOLOGY FOR PROGRAMMING ABSTRACT DATA TYPES IN ADA

THE CHARRETTE ADA COMPILER

STUDIES IN ADA STYLE (SECOND EDITION JANUARY 1983)

HOARE, RICHARD, OXFORD U., ENGLAND

THE EMPEROR'S OLD CLOTHES

HOFKIN, MARY K.

KEN BOWLES TALKS ABOUT ADA PART II

THE FIRST ADA COMPILER FAIR

KEN BOWLES TALKS ABOUT ADA PART I

HOLDEN, J., U. OF YORK, HESLINGTON, YORK Y01 5DD, U.K.

AN ASSESSMENT OF MODULA

HOLLAND, JOHN M., NORTH CAROLINA STATE UNIVERSITY RALEIGH 27650

AN ADA RELATIONAL DATABASE INTERFACE USING ABSTRACT DATA TYPES

HOLMES, GEOFF

ADA - IS DEFENSE LEADING THE LANGUAGE FIELD?

HOLSCHBACH, JEAN M., HONEYWELL AVIONICS DIV., MINNEAPOLIS, MN 55413

RADAR DETECTION SYSTEM: A REAL-TIME APPLICATION USING ADA

HOROWITZ, ELLIS, U. OF CALIF. AT LOS ANGELES, LOS ANGELES, CA

YEARLY REPORT FOR PROGRAMMING PRODUCTIVITY ENHANCEMENT BY THE USE OF APPLICATION GENERATORS

HOROWITZ, ELLIS, U. OF SOUTHERN CALIFORNIA, LOS ANGELES, CA

CONCURRENT COMMUNICATION AND SYNCHRONIZATION MEchanisms

FUNDAMENTALS OF PROGRAMMING LANGUAGES

HOUGHTON, RAYMOND C., JR., NATIONAL BUREAU OF STANDARDS, WASHINGTON, DC

A TAXONOMY OF TOOL FEATURES FOR THE ADA PROGRAMMING SUPPORT ENVIRONMENT (APSE)

COMPARING SOFTWARE DEVELOPMENT METHODOLOGIES FOR ADA: A STUDY PLAN
HULING, GEORGE, HUGHES AIRCRAFT CO., FULLERTON, CA 92634
5527 -03 AN ADA NETWORK: A REAL-TIME DISTRIBUTED COMPUTER SYSTEM

HUNT, JAMES W., BELL LABORATORIES, WHIPPANY, NJ 07981
3888 -02 PROGRAMMING LANGUAGES

HUSKEY, HARRY D., U. OF CALIF. AT SANTA CRUZ, SANTA CRUZ, CA 95064
5636 -03 ADA, COUNTESS OF LOVELACE, AND HER CONTRIBUTION TO COMPUTING

HUSKEY, VELMA R.
5636 -03 ADA, COUNTESS OF LOVELACE, AND HER CONTRIBUTION TO COMPUTING

HUTCHENS, DAVID, U. OF MARYLAND, COLLEGE PARK, MD 20742
4045 -02 PREDICTING COST-OF-CHANGE FROM DESIGN STRUCTURE METRICS

HUTCHISON, J.S., GENERAL ELECTRIC CO., CORP. R&D CNTR, SCHENECTADY, NY
3296 -01 USING ADA FOR INDUSTRIAL EMBEDDED MICROPROCESSOR APPLICATIONS

HYDE, BEN. INTERMETRICS, INC., CAMBRIDGE, MA 02138
4124 -01 A STANDARD RUN-TIME EXECUTIVE FOR COMPILED ADA

HYERLE, ROBERT H., U. OF CALIFORNIA AT BERKELEY, BERKELEY, CA 94720
3313 -01 SOURCE-TO-SOURCE TRANSLATION: ADA TO PASCAL AND PASCAL TO ADA

IBSEN, LEIF, CHRISTIAN ROVSING LAUTRUPVANG, BALLERUP, DENMARK
4583 -03 A PORTABLE VIRTUAL MACHINE FOR ADA

ICHBIAH, JEAN D.
3290 -01 RATIONALE FOR THE DESIGN OF THE ADA PROGRAMMING LANGUAGE

ICHBIAH, JEAN D., CII-HONEYWELL BULL, LOUVECIENNES, FRANCE
5550 -03 SEPARATE DEFINITION AND COMPILATION IN LIS AND ITS IMPLEMENTATION

ICHBIAH, JEAN D., CII-HONEYWELL BULL, PARIS, FRANCE
3612 -01 JEAN ICHBIAH ASSESSES ADA AND THE FUTURE OF MICROCOMPUTERS

ICHBIAH, JEAN D., HONEYWELL SYSTEMS & RESEARCH CNTR, MINNEAPOLIS, MN
3289 -01 REFERENCE MANUAL FOR THE ADA PROGRAMMING LANGUAGE
INCE, DARREL C., OPEN U., MILTON KEYNES MK 76AA, UK
3395 -01 PAGED INPUT/OUTPUT IN SOME HIGH LEVEL LANGUAGES
5148 -02 THE IMPLEMENTATION OF FILE STRUCTURES IN SOME HIGH LEVEL LANGUAGES

INGARGIOLA, GIORGIO P., TEMPLE U., PHILADELPHIA, PA.
5485 -03 IMPLEMENTING AN ADA KERNEL ON NEBULA

INVERARDI, P., OLIVETTI-DIDAU PISA, ITALY
5564 -03 A DISTRIBUTED KAPSE ARCHITECTURE

IP, PATRICIA, U. OF CALIFORNIA AT BERKELEY, BERKELEY, CA 94720
3313 -01 SOURCE-TO-SOURCE TRANSLATION: ADA TO PASCAL AND PASCAL TO ADA

JACKSON, K., MINDEF, MALVERN, U.K.
5558 -03 PARALLEL PROCESSING AND MODULAR SOFTWARE CONSTRUCTION

JAMSA, KRIS A., U.S.A.F. ACADEMY, COLORADO
6043 -03 OBJECT ORIENTED DESIGN VS STRUCTURED DESIGN -- A STUDENT'S PERSPECTIVE

JEANROND, HANS, ADA-EUROPE
4646 -02 ADA-EUROPE GUIDELINES FOR ADA COMPILER SPECIFICATION AND SELECTION

JESSOP, WARREN H., U. OF WASHINGTON, SEATTLE, WA.
4293 -01 ADA PACKAGES AND DISTRIBUTED SYSTEMS

JOHNSON, C.W., U. OF YORK, HESLINGTON, YORK Y01 5DD, U.K.
4614 -02 ADA WORKBENCH COMPILER PROJECT 1981

JOHNSON, R. COLIN
4611 -02 ADA COMPUTER ON FIVE BOARDS SET TO BOW

JOHNSON, R. COLIN, ELECTRONICS JOURNAL
3263 -01 ADA'S MODULARITY SPARKS INTEREST FOR CIVILIAN USES
3264 -01 SPECIAL REPORT: ADA, THE ULTIMATE LANGUAGE?
JOHNSON, ROBERT, INTEL CORP., 3200 LAKESIDE DR., SANTA CLARA, CA 95051
3254 -01 ADA FOR THE INTEL 432 MICROCOMPUTER

JOLIAT, M.L., BELL-NORTHERN RESEARCH, BX 3511, ST’N C, OTTAWA, CANADA
2156 -01 EXPERIENCE WITH A MODULAR TYPED LANGUAGE: PROTEL

JONES, ANITA, CARNEGIE-MELLON U., PITTSBURGH, PA 15213
4192 -01 COMPARATIVE EFFICIENCY OF DIFFERENT IMPLEMENTATIONS OF THE ADA RENDEZVOUS

JONES, ARTHUR M., MOREHOUSE COLLEGE, ATLANTA, GA 30314
5535 -03 ADA AND STATISTICS

JONES, DO-WHILE
6264 -03 LEARN TO THINK IN ADA

JONES, DOUGLAS W., U. OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, IL 61801
3405 -01 TASKING AND PARAMETERS: A PROBLEM AREA IN ADA

JONES, KEITH, ALSYS S.A
4278 -01 FRENCH COMPANY PACES INTERNATIONAL ADA DEVELOPMENT

JONES, KEITH, NONAFFILIATED
4537 -02 EUROPEANS SET THE PACE FOR SEVERAL ADA DEVELOPMENTS

JONES, KEITH (EDITOR), MINI-MICRO SYSTEMS, EUROPEAN DIVISION
5059 -03 ADA COMPILER IS AIMED AT DEC VAX

JONES, W., JR., TRW DEFENSE & SPACE SYST DIV, REDONDO BEACH, CA 90278
4502 -02 VHSCIC PHASE III SOFTWARE ARCHITECTURE STUDY. PART II. SYSTEM SPECIFICATION FOR THE VHSCIC SUPPORT SOFTWARE SYSTEM (TYPE A)
4503 -02 VHSCIC PHASE III SOFTWARE ARCHITECTURE STUDY. PART I. FINAL REPORT

JORSTAD, NORMAN D., INSTITUTE FOR DEFENSE ANALYSES, ARLINGTON, VA.
3998 -02 AN EVALUATION OF THE NEEDS AND REQUIREMENTS FOR THE ESTABLISHMENT OF AN ADA LIAISON ORGANIZATION
JOURNAL STAFF

6044 - 03 PROFILE: ALSYS, INC.

KAFURA, DENNIS G., U. OF IOWA

4045 - 02 PREDICTING COST-OF-CHANGE FROM DESIGN STRUCTURE METRICS

KAFURA, DENNIS G., VIRGINIA POLYTECHNIC INSTITUTE, BLACKSBURG, VA

4324 - 01 VALIDATION IN ADA PROGRAMMING SUPPORT ENVIRONMENTS

6084 - 03 A SPECIFICATION TECHNIQUE FOR THE COMMON APSE INTERFACE SET

KAHN, KEVIN C., INTEL CORP., ALOHA, OR

4659 - 02 OBJECT-ORIENTED LANGUAGES TACKLE MASSIVE PROGRAMMING HEADACHES

KAMEL, R.F., BELL-NORTHERN RESEARCH, BX 3511, ST'N C, OTTAWA, CANADA

2156 - 01 EXPERIENCE WITH A MODULAR TYPED LANGUAGE: PROTEL

KAMRAD, MICHAEL J. II, HONEYWELL AVIONICS DIV., MINNEAPOLIS, MN 55413

4315 - 01 RADAR DETECTION SYSTEM: A REAL-TIME APPLICATION USING ADA

KAPSE INTERFACE TEAM, NAVAL OCEAN SYSTEMS CENTER

4380 - 02 KERNEL ADA PROGRAMMING SUPPORT ENVIRONMENT (KAPSE) INTERFACE TEAM: PUBLIC REPORT VOL. II

4677 - 02 KERNEL ADA PROGRAMMING SUPPORT ENVIRONMENT (KAPSE) INTERFACE TEAM: PUBLIC REPORT VOL. I

5414 - 03 KERNEL ADA PROGRAMMING SUPPORT ENVIRONMENT (KAPSE) INTERFACE TEAM: PUBLIC REPORT VOL. III

KARADIMITROPOULOS, I.A., NAVAL POSTGRADUATE SCHOOL, MONTEREY, CA 93940

6005 - 03 INTEL 432/670 ADA BENCHMARK PERFORMANCE EVALUATION IN THE MULTIPROCESSOR/MULTIPROCESS ENVIRONMENT

KARP, TONY, NONAFFILIATED

5368 - 03 BABBAGE - THE LANGUAGE OF THE FUTURE

KATWIJK, J. VAN, DELFT UNIVERSITY OF TECHNOLOGY

6115 - 03 PRACTICAL EXPERIENCES WITH AUTOMATIC REPAIR OF SYNTACTICAL ERRORS OR SYNTACTICAL ERROR REPAIR IN THE DAS COMPILER

KATZ, ELIZABETH, U. OF MARYLAND, COLLEGE PARK, MD 20742

3280 - 01 MONITORING AN ADA SOFTWARE DEVELOPMENT PROJECT

6136 - 03 MONITORING AN ADA SOFTWARE DEVELOPMENT
KLASS, D., U. OF UTAH, SALT LAKE CITY, UTAH 84112
5681 -03 TRANSFORMING AN ADA PROGRAM UNIT TO SILICON AND VERIFYING ITS
BEHAVIOR IN AN ADA ENVIRONMENT: A FIRST EXPERIMENT

KLING, ROB, U. OF CALIFORNIA AT IRVINE, IRVINE, CA 92717
4299 -01 THE DOD COMMON HIGH ORDER PROGRAMMING LANGUAGE EFFORT (DOD-1): WHAT WILL THE IMPACTS BE?
4335 -01 WHAT WILL THE IMPACTS BE OF A COMMON HIGH ORDER PROGRAMMING LANGUAGE?
4336 -01 DOD'S COMMON PROGRAMMING LANGUAGE EFFORT: THE WORK ENVIRONMENTS OF EMBEDDED SYSTEM DEVELOPMENT
4337 -01 ASSUMPTIONS ABOUT THE SOCIAL AND TECHNICAL CHARACTER OF PRODUCTION PROGRAMMING ENVIRONMENTS

KNAPPER, ROBERT J., ROBERTS CORP., PO BOX 64324, VIRGINIA BEACH, VA 23464
4666 -02 USING ADA-INFORMATION

KNIGHT, JOHN C., U. OF VIRGINIA, CHARLOTTESVILLE, VA. 22901
4188 -01 THE IMPLEMENTATION AND USE OF ADA ON DISTRIBUTED SYSTEMS WITH HIGH RELIABILITY REQUIREMENTS
6225 -03 ON THE IMPLEMENTATION AND USE OF ADA ON FAULT-TOLERANT DISTRIBUTED SYSTEMS

KNOBE, BRUCE, INTERMETRICS, INC., CAMBRIDGE, MA 02138
1618 -01 FLIGHT LANGUAGES ADA VS. HAL/S
4344 -01 RED LANGUAGE DESIGN RATIONALE

KNOOP, PATRICIA A., U.S.A.F. ASD, WRIGHT-PATTERSON AFB, OH
3386 -01 JOVIAL LANGUAGE CONTROL PROCEDURES WITH A VIEW TOWARD ADA

KNUDSEN, JORGEN LINDSKOV, AARHUS UNIVERSITY, DENMARK
5732 -03 EXCEPTION HANDLING - A STATIC APPROACH

KOHLER, CHRISTIAN, RUHPOLDINGERSTR. 14 D8000 MUNCHEN 82
5570 -03 ABOUT A PURE FORMAL PROBLEM IN ADA

KOK, J., MATHEMATICAL CENTRE, AMSTERDAM, NETHERLANDS
5848 -03 GUIDELINES FOR THE DESIGN OF LARGE MODULAR SCIENTIFIC LIBRARIES IN ADA
KATZAN, HARRY JR., NONAFFILIATED
5411 -03 INVITATION TO ADA & ADA REFERENCE MANUAL (JULY 1980)

KEAN, ELIZABETH S., ROME AIR DEVELOPMENT CENTER, GAFB, ROME, NY
13441
4142 -01 APSE DATABASE USER SCENARIO

KEEFE, D., U. OF YORK, HESLINGTON, YORK YO1 5DD, U.K.
5998 -03 A PROBLEM WITH ADA AND RESOURCE ALLOCATION

KELLER, S., BURROUGHS CORP., PAOLI, PA. 19301
5204 -03 SSAGS: A SYNTAX AND SEMANTICS ANALYSIS AND GENERATION SYSTEM

KELLY, JOHN R., SOFTECH, INC. TOTTEN POND RD, WALTHAM, MA 02154
4340 -01 ADA COMPILER VALIDATION CAPABILITY; LONG RANGE PLAN

KERNER, JUDITH S., NORDEN SYSTEMS
3589 -01 THE EFFECT OF DATA DESIGN ON APSE DATA AND TOOL PORTABILITY
3913 -01 SHOULD PDL/ADA BE COMPILABLE?

KERRIDGE, J.M., SHEFFIELD CITY POLYTECH. COMPUTER STUDIES, POND ST. 1W
5986 -03 PARALLEL PROGRAMMING- A BIBLIOGRAPHY

KEZIAH, PATRICK J., MARTIN MARIETTA AEROSPACE CORP., BX
179, DENVER, CO 80201
2280 -01 RECOMMENDATIONS FOR A RETARGETABLE COMPILER

KINI, VITTAL, U. OF SOUTHERN CAL, INFOR. SCI. INST., MARINA DEL RAY, CA
4182 -01 TESTING THE INRIA ADA FORMAL DEFINITION: THE USC-ISI FORMAL SEMANTICS PROJECT

KIRCHGASSNER, WALTER, INSTITUT FUER INFORMATIK II UNIVERSITAET, KARLSRUHE
4786 -02 AN ATTRIBUTE GRAMMAR FOR THE SEMANTIC ANALYSIS OF ADA

KIRCHGASSNER, WALTER, U. KARLSRUHE, POSTFACH 6380, KARLSRUHE, GERMANY
4185 -01 THE INTEGRATION OF EXISTING DATABASE SYSTEMS IN AN ADA ENVIRONMENT

KIT/KITI ACAIS WKG GROUP, U.S. DEPT. OF DEFENSE, THE PENTAGON, WASH., DC
5471 -03 DRAFT SPECIFICATION OF THE COMMON APSE INTERFACE SET (CAIS) VERSION 1.1
KOK, J., NAT’L PHYSICAL LAB., TEDDINGTON, MIDDLESEX, ENGLAND
6499 -03 PROPOSAL FOR STANDARD BASIC FUNCTIONS IN ADA

KOSLOW, J.R., U.S.A.F. INSTITUTE OF TECHNOLOGY
5839 -03 SYNTAX DIRECTED EDITOR ENVIRONMENT

KOTLER, REED S., LOCKHEED MISSILES & SPACE CO. SUNNYVALE CA
3590 -01 DATABASE PORTABILITY ISSUES IN THE KAPSE

KOUTSOTOLIS, APOSTOLOS, NAVAL POSTGRADUATE SCHOOL, MONTEREY, CA 93940
4639 -02 INVESTIGATION OF THE ADA LANGUAGE IMPLEMENTATION OF THE HELLENIC COMMAND CONTROL AND INFORMATION SYSTEM

KRAMER, J.F. JR., INSTITUTE FOR DEFENSE ANALYSES, ARLINGTON, VA.
6765 -03 ADA JOINT PROGRAM OFFICE OBJECTIVES AND PROGRESS - THROUGH 1983

KRANC, MORRIS E., INTERMETRICS, INC., CAMBRIDGE, MA 02138
4189 -01 A COMMAND LANGUAGE FOR ADA ENVIRONMENT

KRATZER, ANN, DARTMOUTH COLLEGE, HANOVER, NH 03755
5667 -03 VIEW-3 AND ADA: TOOLS FOR BUILDING SYSTEMS WITH MANY TASKS

KRIEGER-BRUCKNER, BERND
3290 -01 RATIONALE FOR THE DESIGN OF THE ADA PROGRAMMING LANGUAGE

KRIEGER-BRUCKNER, BERND, U. OF CALIFORNIA AT BERKELEY, BERKELEY, CA 94720
3313 -01 SOURCE-TO-SOURCE TRANSLATION: ADA TO PASCAL AND PASCAL TO ADA

KRIEGER-BRUCKNER, BERND, STANFORD U., STANFORD, CA 94305
3307 -01 ANNA: TOWARDS A LANGUAGE FOR ANNOTATING ADA PROGRAMS

KRONENTHAL, M., IRIA, ROCQUENCOURT, 78150, LE CHESNAY, FRANCE
2651 -01 THE LTPL-E TASKING PROPOSALS

KRUCHTEN, PHILIPPE, NEW YORK U., NY, NY
6220 -03 SOFTWARE PROTOTYPING USING THE SETL PROGRAMMING LANGUAGE

KRUESI, ELIZABETH, GENERAL ELECTRIC CO.
6136 -03 MONITORING AN ADA SOFTWARE DEVELOPMENT
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kuchinski, Michael J.</td>
<td>Naval Surface Weapons Center, Dahlgren VA</td>
<td>Software design prototyping using Ada</td>
</tr>
<tr>
<td>Kung, Antonio</td>
<td>Tecsi-Software, 29 Rue des Pyramides, F-75001 Paris</td>
<td>Ada syntax diagrams for top-down analysis</td>
</tr>
<tr>
<td>Kurki-Suonio, Reino</td>
<td>Oy Softplan AB, Finland</td>
<td>On the requirements for a mapse command language</td>
</tr>
<tr>
<td>Lahtinen, Pekka</td>
<td>Oy Softplan AB, Finland</td>
<td>A machine architecture for ADA</td>
</tr>
<tr>
<td>Lamb, David A.</td>
<td>Carnegie-Mellon U., Pittsburgh, PA 15213</td>
<td>Construction of a peephole optimizer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Charrette Ada compiler</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A runtime representation for Ada variables and types</td>
</tr>
<tr>
<td></td>
<td></td>
<td>An Ada code generator for Vax 11/780 with Unix</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tcol-Ada: revised report on an intermediate representation for the preliminary Ada language</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Simulation of procedure variables using Ada tasks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thf Charrette Ada compiler</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The hardest thing to learn (thoughts on Ada)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thoughts on Ada (subsets)</td>
</tr>
<tr>
<td>Lamb, J. Eli</td>
<td>Bell Laboratories</td>
<td>Standards for the kernel Ada programming support environment</td>
</tr>
<tr>
<td>Lambert, J. E.</td>
<td>U. of Sussex, Brighton, England</td>
<td>Development environment for the design and test applications software for a distributed multiprocessor computer system</td>
</tr>
</tbody>
</table>
LANDERS, TERRY. COMPUTER CORP OF AMER., TECHNOLOGY SQ. C. CAMBRIDGE, MA
4612 -02 REFERENCE MANUAL FOR ADAPLEX

LANE, DEBRA S., HUGHES AIRCRAFT CO., FULLERTON, CA 92634
5527 -03 AN ADA NETWORK: A REAL-TIME DISTRIBUTED COMPUTER SYSTEM

LANG, LARRY E., U.S.A.F. INSTITUTE OF TECHNOLOGY
3453 -01 A MICROPROGRAMMED PROCESSOR IMPLEMENTATION OF A SUBSET ADA CODE

LAREAU, NEIL W., U. OF SOUTH CAROLINA, COLUMBIA, SC 29208
5370 -03 ADA MULTI-TASKING SUPPORT FOR MICROPROCESSOR SYSTEMS

LARSEN, H.J., STANFORD U., STANFORD, CA 94305
3454 -01 ADAM - AN ADA BASED LANGUAGE FOR MULTI-PROCESSING
6017 -03 ADAM: AN ADA-BASED LANGUAGE FOR MULTIPROCESSING

LASHER, D.M., BELL-NORTHERN RESEARCH, BX 3511, ST'N C, OTTAWA, CANADA
2156 -01 EXPERIENCE WITH A MODULAR TYPED LANGUAGE: PROTEL

LATTIN, WILLIAM W., INTEL CORP., ALOHA, OR
3265 -01 ADA DETERMINES ARCHITECTURE OF 32-BIT MICROPROCESSOR

LAWLIS, CAPT. PATRICIA K., U.S.A.F. INSTITUTE OF TECHNOLOGY
3441 -01 ARBITRARY PRECISION IN A PRELIMINARY MATH UNIT FOR ADA

LAWSON, J.T., TRW DEFENSE & SPACE SYSTEMS GROUP, HUNTSVILLE, AL
2426 -01 SPECIFICATION TOOLS ENVIRONMENT STUDY

LEATHRUM, JAMES F., CLEMSON U., CLEMSON, SC 29631
5428 -03 INTEGRATION TESTING OF SOFTWARE

LEAVITT, R.P., SYSTEMHOUSE LIMITED, 99 BANK ST. OTTAWA CANADA KIP689
5670 -03 IMPLEMENTING A RADAR DISPLAY WITH ADA ON A MICROCOMPUTER

LEBLANC, RICHARD J., GEORGIA INSTITUTE OF TECHNOLOGY, ATLANTA, GA 30332
3371 -01 ADA AND SOFTWARE DEVELOPMENT SUPPORT: A NEW CONCEPT IN LANGUAGE DESIGN
4103 -03 THE IMPACT OF ADA ON SOFTWARE DEVELOPMENT

LEBLANC, RICHARD J., U. OF WISCONSIN AT MADISON, MADISON, WI 53706
5547 -03 RUN-TIME CHECKING OF DATA ACCESS IN PASCAL-LIKE LANGUAGES

LEBLANC, THOMAS J., U. OF WISCONSIN AT MADISON, MADISON, WI 53706
4199 -02 A SYMBOL TABLE ABSTRACTION TO IMPLEMENT LANGUAGES WITH EXPLICIT SCOPE CONTROL

LEBLANC, DAVID B., APPOLLO COMPT INC., 19 ALPHA RD. CHELMSFORD, MA 01824
4190 -01 ABSTRACT SYNTAX BASED PROGRAMMING ENVIRONMENTS

LEDGARD, HENRY F., E&L INSTRUMENTS, DERBY, CT
3372 -01 SCALING DOWN ADA (OR TOWARDS A STANDARD ADA SUBSET)

LEDGARD, HENRY F., HUMAN FACTORS LTD., LEVERETT, MA
3271 -01 ADA - AN INTRODUCTION (ALSO CONTAINS THE ADA REFERENCE MANUAL OF JULY 1980)

LEDGARD, HENRY F., U. OF MASSACHUSETTS, AMHERST, MA 01003
5153 -02 A HUMAN ENGINEERED VARIANT OF BNF
5555 -03 A REMINDER FOR LANGUAGE DESIGNERS

LEE, JOHN A.N., INSTITUTE FOR DEFENSE ANALYSES, ARLINGTON, VA.
3998 -02 AN EVALUATION OF THE NEEDS AND REQUIREMENTS FOR THE ESTABLISHMENT OF AN ADA LIAISON ORGANIZATION

LEE, JOHN A.N., VIRGINIA POLYTECHNIC INSTITUTE, BLACKSBURG, VA
4324 -01 VALIDATION IN ADA PROGRAMMING SUPPORT ENVIRONMENTS

LEE, LISA, FORD AEROSPACE & COMM. 1260 CROSSMAN AVE, SUNNYVALE CA
5697 -03 A MESSENGER SERVICE IN ADA

LEVI, G., U. DI PISA, C.SO. ITALIA 40, I-56100, PISA, ITALY
5564 -03 A DISTRIBUTED KAPSE ARCHITECTURE

LEVINE, DAVID R., INTERMETRICS, INC., CAMBRIDGE, MA 02138
3377 -01 TCOL-ADA: REVISED REPORT ON AN INTERMEDIATE REPRESENTATION FOR THE PRELIMINARY ADA LANGUAGE
LEVY, ARNOLD J., APPLICATION SOFTWARE, 67 SIMMONDS ST., JOHANNESBURG
4539 -02 THE ADA ATOM SYSTEM ENVIRONMENT

LEVY, MICHAEL R., U. OF VICTORIA, VICTORIA, B.C., CANADA V8V2Y2
5207 -03 PROGRAMMING LANGUAGES AND THE PROGRAMMING PROCESS

LEWIS, WILLIAM E., IBM CORP.
5990 -03 PROBLEM-SOLVING PRINCIPLES FOR ADA PROGRAMMERS APPLIED LOGIC,
PSYCHOLOGY, AND GRIT

LI, WEI, U. OF EDINBURGH, HOPE PK SQ., EDINBURGH EH8
9NW, SCOTLAND
4184 -01 AN OPERATIONAL SEMANTICS OF MULTITASKING AND EXCEPTION HANDLING
IN ADA

LIN, WEN-TE K., COMPUTER CORP OF AMER., TECHNOLOGY
SQ, CAMBRIDGE, MA
4411 -02 THE DESIGN OF AN ADA COMPATIBLE LOCAL DATABASE MANAGER (LDM)

LINDLEY, LAWRENCE M., DEPT. OF NAVY, NAVAL AVIONICS CTR,
INDIANAPOLIS, IN
4100 -01 ADA PROGRAM DESIGN LANGUAGE SURVEY

LINDQUIST, DR. TIMOTHY E., VIRGINIA INSTITUTE OF TECHNOLOGY
3592 -01 KERNEL INTERFACE REQUIREMENTS BASED ON USER NEEDS

LINDQUIST, DR. TIMOTHY E., VIRGINIA POLYTECHNIC INSTITUTE, BLACKSBURG, VA
4324 -01 VALIDATION IN ADA PROGRAMMING SUPPORT ENVIRONMENTS

6084 -03 A SPECIFICATION TECHNIQUE FOR THE COMMON APSE INTERFACE SET

LINDSTROM, GARY, U. OF UTAH, SALT LAKE CITY, UTAH 84112
3455 -01 TRANSFORMATION OF ADA PROGRAMS INTO SILICON

4417 -02 MAPPING HIGH-ORDER LANGUAGE PROGRAM UNITS INTO VLSI STRUCTURES

4638 -02 TRANSFORMATION OF ADA PROGRAMS INTO SILICON

5681 -03 TRANSFORMING AN ADA PROGRAM UNIT TO SILICON AND VERIFYING ITS
BEHAVIOR IN AN ADA ENVIRONMENT: A FIRST EXPERIMENT

LISKOV, BARBARA, MASSACHUSETTS INSTITUTE OF TECH., CAMBRIDGE, MA
02139
4344 -01 RED LANGUAGE DESIGN RATIONALE
<table>
<thead>
<tr>
<th>Author</th>
<th>Institution</th>
<th>Paper/Article</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lister, Andrew</td>
<td>U. of Queensland, St. Lucia, Queensland, Australia</td>
<td>A Comparative Study of Task Communication in ADA</td>
</tr>
<tr>
<td>Littlejohn, Michael B.</td>
<td>Software Engineering Associates</td>
<td>Jovial/Ada Microprocessor Study</td>
</tr>
<tr>
<td>Litvintchouk, Steven D.</td>
<td>Norden Systems</td>
<td>The Effect of Data Design on Apse Data and Tool Portability</td>
</tr>
<tr>
<td>Litvintchouk, Steven D.</td>
<td>Raytheon Co., Submarine Signal Div., Portsmouth, RI 02871</td>
<td>An Algebraic Approach to Reusable Ada Components</td>
</tr>
<tr>
<td>Lamosi, Albert</td>
<td>Universitat Politecnica de Catalunya, Barcelona, Spain</td>
<td>On Unlimited Types and Reliability of Ada Programs</td>
</tr>
<tr>
<td>Locke, C. Douglass</td>
<td>IBM Corp.</td>
<td>Managing Transportable Software</td>
</tr>
<tr>
<td>Locke, C. Douglass</td>
<td>IBM Federal Systems Division, Owego, NY</td>
<td>The Ada Programming Support Environment</td>
</tr>
<tr>
<td>Lockemann, P.C.</td>
<td>U. Karlsruhe, Postfach 6380, Karlsruhe, Germany</td>
<td>The Integration of Existing Database Systems in an Ada Environment</td>
</tr>
<tr>
<td>Loebenstein, E.</td>
<td>Mitre Corp., Box 208, Bedford, MA 01730</td>
<td>A Cost/Benefit Analysis of Higher Order Language Standardization</td>
</tr>
<tr>
<td>Lomow, Greg</td>
<td>U. of Calgary, Alberta Canada</td>
<td>The Process View of Simulation in Ada</td>
</tr>
<tr>
<td>Lomuto, Nico</td>
<td>Softech, Inc. Totten Pond Rd, Waltham, MA 02154</td>
<td>Self-Reproducing Ada(*) Tasks. The Problem of Termination</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Ada Runtime Kit (Ark)</td>
</tr>
</tbody>
</table>
LONDON, RALPH L., USC INF SCIENCES, INSE, MARINA DEL REY, CA 90291
5552 -03 REMARKS ON THE IMPACT OF PROGRAM VERIFICATION ON LANGUAGE DESIGN

LONGO, STEPHEN A., LASALLE COLLEGE, PHILADELPHIA, PA 19141
5699 -03 AN EXAMPLE OF ADA TASKING
6046 -03 CALCULATING FUNCTIONS USING ADA

LOPER, WARREN, U.S.NAVY, ELECTRONICS LAB'TORY CNTR, SAN DIEGO, CA 92152
2498 -01 REPORT TO THE HIGH ORDER LANGUAGE WORKING GROUP (HOLWG)

LOSHBOUGH, R.P., TRW DEFENSE & SPACE SYSTEMS GROUP, HUNTSVILLE, AL
2426 -01 SPECIFICATION TOOLS ENVIRONMENT STUDY

LOVEMAN, DAVID B.
3368 -01 TUTORIAL ON ADA EXCEPTIONS

LOVEMAN, DAVID B., INSTITUTE FOR ADVANCED PROFESSIONAL STUDIES
2492 -01 SUBPROGRAMS AND TYPES BOOST ADA VERSATILITY
2676 -01 ADA KNACK FOR MULTITASKING BENEFITS PROCESS CONTROL

LOVEMAN, DAVID B., MASSACHUSETTS COMPUTER ASSOC., INC., WAKEFIELD, MA
2294 -01 ADA DEFINES RELIABILITY AS A BASIC FEATURE
3322 -01 ADA RESOLVES THE UNUSUAL WITH 'EXCEPTIONAL' HANDLING
4663 -02 ADA STRENGTHENS RECOGNITION THROUGH ADAPTABILITY
4664 -02 ADA'S IMPACT ON ATE
4675 -02 ADA: HOW BIG A DIFFERENCE WILL IT MAKE IN SOFTWARE?

LOVENGREEN, HANS H., TECHNICAL U. OF DENMARK, DK-2800 LYNGBY, DENMARK
3315 -01 ON A FORMAL MODEL OF THE TASKING CONCEPT IN ADA
4538 -02 FORMAL DEFINITION OF ADA - THE STORAGE MODEL
4616 -02 PARALLELISM IN ADA

LUCKHAM, DAVID C., STANFORD U., STANFORD, CA 94305
3262 -01 ADA EXCEPTION HANDLING: AN AXIOMATIC APPROACH
3286 -01 ADA EXCEPTIONS: SPECIFICATION AND PROOF TECHNIQUES

3305 -01 A PRACTICAL METHOD OF DOCUMENTING AND VERIFYING ADA PROGRAMS WITH PACKAGES

3307 -01 ANNA: TOWARDS A LANGUAGE FOR ANNOTATING ADA PROGRAMS

3454 -01 ADAM - AN ADA BASED LANGUAGE FOR MULTI-PROCESSING

4027 -01 PROGRAM VERIFICATION AT STANFORD

4172 -01 MONITORING FOR DEADLOCKS IN ADA TASKING

6017 -03 ADAM: AN ADA-BASED LANGUAGE FOR MULTIPROCESSING

LYLE, JAMES R., U. OF MARYLAND, COLLEGE PARK, MD 20742

3437 -01 ASSERTION MECHANISMS IN PROGRAMMING LANGUAGES

LYONS, TIMOTHY G.L., SOFTWARE SCIENCES LTD., UNITED KINGDOM

3594 -01 TRANSPORTABILITY OF TOOLS AND DATABASES BETWEEN APSES

MAC AN AIRCHINNIGN, MIKE, TRINITY COLLEGE, DUBLIN 2, IRELAND

5994 -03 ADA PACKAGES AND THE USER'S CONCEPTUAL MODEL

MACEWEN, GLENN H., QUEEN'S UNIVERSITY, KINGSTON, ONTARIO, K7L 3N6, CANADA

3866 -02 ABSTRACTION HIERARCHIES IN TOP-DOWN DESIGN

MACHADO, JOHN, NAVAL ELECTRONICS SYSTEMS COMMAND

4332 -01 DOD COMMON HIGH ORDER LANGUAGE ENVIRONMENT WORKSHOP

MACLAREN, LEE, BOEING MILITARY AIRPLANE DEVELOPMENT CO., SEATTLE, WASH.

3309 -01 EVOLVING TOWARD ADA IN REAL TIME SYSTEMS

MACRAKIS, STAVROS M., HARVARD U., CAMBRIDGE, MA 02138

4054 -02 SAFETY AND POWER

MADERNA, F., CISE RESEARCH CENTER

5979 -03 USING ADA AND APSE TO SUPPORT DISTRIBUTED MULTIMICROPROCESSOR TARGETS

MAHJOUB, AHMED, PHILIPS LAB., BRIARCLIFF MANOR, NY 10510

3400 -01 SOME COMMENTS ON ADA AS A REAL-TIME PROGRAMMING LANGUAGE
MALONEY, M.P., U. OF UTAH, SALT LAKE CITY, UTAH 84112
5681 -03 TRANSFORMING AN ADA PROGRAM UNIT TO SILICON AND VERIFYING ITS
BEHAVIOR IN AN ADA ENVIRONMENT: A FIRST EXPERIMENT

MANN, STEPHEN E., CREATIVE DIGITAL SYS 1401 JONES ST. SAN
FRANCISCO, CA
5513 -03 CPM PLUS BOOTSTRAP LOADER IN JANUS/ADA

MARCINIAK, JOHN J. COL, ROME AIR DEVELOPMENT CENTER, GAFF, ROME, NY
13441
5423 -03 ADVANCED COMPUTER INFORMATION PROCESSING CAPABILITY

MARDONJH., BOEING COMMERCIAL AIRPLANE CO,BX
3707.SEATTLE,WA
1619 -01 A TECHNIQUE FOR ASSESSING AVIONIC PROGRAMMING LANGUAGE
REQUIREMENTS

MARDINLY, S., BURROUGHS CORP.,PAOLI,PA. 19301
5204 -03 SSAGS: A SYNTAX AND SEMANTICS ANALYSIS AND GENERATION SYSTEM

MARMOR-SQUIRES, ANN, BOLT BERANEK AND NEUMANN, INC.
4334 -01 PROGRAM DEVELOPMENT SYSTEMS - AN OVERVIEW

MARTIN, BENJAMIN J., U. OF ATLANTA, ATLANTA, GA 30314
5533 -03 MATHEMATICAL SUBROUTINE PACKAGES FOR ADA

MARTIN, DAVID F., U. OF SOUTHERN CAL, INFOR.SCI.INST., MARINA DEL
RAY,CA
4182 -01 TESTING THE INRIA ADA FORMAL DEFINITION: THE USC-ISI FORMAL
SEMANTICS PROJECT

MARTIN, DR. FRED H., INTERMETRICS, INC., CAMBRIDGE, MA 02138
4833 -02 COMPUTER PROGRAM DEVELOPMENT SPECIFICATION FOR ADA INTEGRATED
ENVIRONMENT: MAPSE GENERATION AND SUPPORT TYPE B5

4840 -02 COMPUTER PROGRAM DEVELOPMENT SPECIFICATION FOR ADA INTEGRATED
ENVIRONMENT: MAPSE GENERATION AND SUPPORT TYPE B

MARTIN, EDITH W., U.S.DEPT. OF DEFENSE, THE PENTAGON, WASH., DC
4796 -02 STRATEGY FOR A DOD SOFTWARE INITIATIVE

MARTIN, EDITH W., GEORGIA INSTITUTE OF TECHNOLOGY, ATLANTA, GA
30332
1089 -01 THE MILITARY COMPUTER FAMILY PART II: THE APPROACH
MARTIN, T. PATRICK, QUEEN'S UNIVERSITY, KINGSTON, ONTARIO, K7L 3N6, CANADA
3866 -02 ABSTRACTION HIERARCHIES IN TOP-DOWN DESIGN

MARTIN-POLO, F., U. OF SUSSEX, BRIGHTON, ENGLAND
4309 -01 STRUCTURE AND TaskING FEATURES OF THE PROGRAMMING LANGUAGE MARTLET

MASTERS, MICHAEL W., NAVAL SURFACE WEAPONS CENTER, DAHLGREN VA 22448
4274 -01 SOFTWARE DESIGN PROTOTYPING USING ADA
4348 -01 SOFTWARE DESIGN PROTOTYPING USING ADA

MATHIS, ROBERT F., ROBERTS CORP., PO BOX 64324, VIRGINIA BEACH, VA 23464
4666 -02 USING ADA-INFORMATION

MATSUMOTO, A.S., RAYTHEON CO., SUBMARINE SIGNAL DIV., PORTSMOUTH, RI 02871
4647 -02 AN ALGEBRAIC APPROACH TO REUSABLE ADA COMPONENTS

MATTSSON, S.E., LUND INSTITUTE OF TECHNOLOGY, S-220 07 LUND 7, SWEDEN
3999 -02 ADA IN CONTROL APPLICATIONS: A CASE STUDY

MAUREL, OLIVIER, ALSYS S.A
4195 -01 LOLITA - A LOW LEVEL INTERMEDIATE LANGUAGE FOR ADA

MAYER, ALASTAIR J.W., U. OF CONCORDIA, COMPUTER CENTRE, MONTREAL, QUEBEC
5147 -02 VALUE RECEIVING PROCEDURES

MAYER, HERBERT, SAN DIEGO STATE U.
6114 -03 EXPERIENCES PORTING PASCAL SOURCE FROM A MICRO COMPUTER TO A VAX

MAYOH, BRIAN, AARHUS UNIVERSITY, DENMARK
4585 -02 PARALLELISM IN ADA: PROGRAM DESIGN AND MEANING
5406 -03 PROBLEM SOLVING WITH ADA

MICALHANY, ELIZABETH B., U. OF SOUTH CAROLINA, COLUMBIA, SC 29208
6047 -03 MODULA-2 & ADA: A COMPARISON OF FOUR FEATURES
MCBRIDE, BRIAN, SCICON CONSULTANCY INTERNAT'L. LTD. LONDON, WIP 4AO GB
3416 -01 SOFTWARE STRATEGY FOR MULTIPROCESSORS.

MCCLIMENS, MICHAEL G., SYSTEMS CONSULTANTS, INC. DAYTON, OHIO 4314 -01 DOD'S ADA COMPARED TO PRESENT MILITARY STANDARD HOLS A LOOK AT NEW CAPABILITIES

MCCOY, EARLE E., NAVAL POSTGRADUATE SCHOOL, MONTEREY, CA 93940 3440 -01 AN ADA LANGUAGE MODEL OF THE AN/SPY-1A COMPONENT OF THE AEGIS WEAPON SYSTEM.

MCCRACKEN, M.L., U.S.A.F. INSTITUTE OF TECHNOLOGY 5841 -03 ADA 1: AN ADA SUBSET COMPILER FOR THE AFIT SYNTAX DIRECTED PROGRAMMING ENVIRONMENT

MCCUNE, BRIAN P., ADV INF & DECIS SYS 201 SAN ANTONIO CIR, MTN VIEW, CA 3245 -02 DESIGN OF AN INTELLIGENT PROGRAM EDITOR
4615 -02 ADVANCED TOOLS FOR SOFTWARE MAINTENANCE

MCDERMID, JOHN A., MINISTRY OF DEFENSE, RSRE MALVERN, WORCS 3443 -01 ADA ON MULTIPLE PROCESSORS

MCDERMID, JOHN A., NONAFFILIATED 4649 -02 LIFE CYCLE SUPPORT IN THE ADA ENVIRONMENT

MCDERMID, JOHN A., SYSTEMS DESIGNERS LIMITED, UNITED KINGDOM 5496 -03 LIFE CYCLE SUPPORT IN THE ADA ENVIRONMENT

MCDONALD, C.W., INSTITUTE FOR DEFENSE ANALYSES, ARLINGTON, VA. 6765 -03 ADA JOINT PROGRAM OFFICE OBJECTIVES AND PROGRESS-THROUGH 1983

MCELHANEY, LYLE L., MARTIN MARIETTA AEROSPACE CORP., BX 179, DENVER, CO 80201 2280 -01 RECOMMENDATIONS FOR A RETARGETABLE COMPILER

MCGETTRICK, ANDREW D., U. OF STRATHCLYDE, GLASGOW, SCOTLAND 4308 -01 PROGRAM VERIFICATION AND ADA
5390 -03 THE CURRENT PROGRAMMING LANGUAGE STANDARDS SCENE VIIIA: ADA
5452 -03 PROGRAM VERIFICATION USING ADA
MCGRAW, JAMES R., CORNELL U., ITHACA, NY 14853
5549 -03 LANGUAGE FEATURES FOR PARALLEL PROCESSING AND RESOURCE CONTROL

MCKEEMAN, W.M., XEROX CORP., PALO ALTO RESEARCH CNTR, PALO ALTO, CA 94304
4301 -01 ADA SYNTAX CHART

MEARNS, I., U. OF MANCHESTER, MANCHESTER M13 9PL, U.K.
4306 -01 AXIOMS AND PROOF RULES FOR ADA TASKS

MEDEMA, P., PHILIPS RESEARCH LAB., EINDHOVEN, THE NETHERLANDS
5634 -03 THE PROGRAMMING LANGUAGES: PASCAL, MODULA, CHILL, ADA

MEDINA-MORA, RAUL, CARNEGIE-MELLON U., PITTSBURGH, PA 15213
2612 -01 AN INCREMENTAL PROGRAMMING ENVIRONMENT

MEILING, ERIK, DANSK DATAMATIK CTR, LUNDTOFTEVEJ 2800 LYNGBY, DENMARK
5995 -03 A COMPARATIVE STUDY OF CHILL AND ADA ON THE BASIS OF DENOTATIONAL DESCRIPTIONS

MELLIAR-SMITH, P.M., SRI INTERNATIONAL, MENLO PARK, CA 94025
2171 -01 THE FINALIZATION OPERATION FOR ABSTRACT TYPES

3449 -01 ON THE SUITABILITY OF ADA FOR ARTIFICIAL INTELLIGENCE APPLICATIONS

MENGARINI, BILL
3411 -01 MACRO FACILITIES IN ADA

MENTEN, LARRY, U. OF PENNSYLVANIA
2916 -01 A CODASYL INTERFACE FOR PASCAL AND ADA

MEYERS, RICHARD, HEWLETT-PACKARD CO., CUPERTINO, CA 95014
3270 -01 A SYNTAX DIAGRAM FOR (PRELIMINARY) ADA

3274 -01 A SIMPLIFIED OPERATOR IDENTIFICATION SCHEME FOR ADA

MINEL, PHYSICS INST.
III. ERWIN-ROMMEL-STR. 1, ERLANGEN-NURNBERG
4507 -03 REPORT OF ANALYSIS OF THE PRELIMINARY DESIGNS FOR A COMMON PROGRAMMING LANGUAGE
MINOT, REGIS, CII-HONEYWELL BULL, LOUVECIENNES, FRANCE
4736 -02 ALPAGE: A SOFTWARE ENGINEERING ENVIRONMENT FOR LARGE SCALE APPLICATIONS

MOFFAT, DAVID V., NORTH CAROLINA STATE UNIVERSITY RALEIGH 27650
3399 -01 ENUMERATIONS IN PASCAL, ADA, AND BEYOND

MOLICH, ROLF, DANSK DATAMATIK CTR, LUNDTOFEVEJ 2800
LYNGBY, DENMARK
5566 -03 ADA COMPILER QUALITY ASSURANCE

MOLICH, ROLF, NONAFFILIATED
5363 -03 PORTABLE ADA PROGRAMMING SYSTEM COMPILER PROJECT OVERVIEW

MONTANARI, U., U. DI PISA, C.SO.ITALIA 40, I-56100, PISA, ITALY
5564 -03 A DISTRIBUTED KAPSE ARCHITECTURE

MONTGOMERY, ALAN, ADA-EUROPE
4646 -02 ADA-EUROPE GUIDELINES FOR ADA COMPILER SPECIFICATION AND SELECTION

MOONEY, CHARLES S., GRUMMAN AEROSPACE CORP., JETHPAGE, L.I., NY
3595 -01 PORTABILITY AND EXTENSIBILITY ISSUES

MOORE, DAVID T., SYSTEMS CONSULTANTS, INC., SAN DIEGO, CALIF.
4632 -02 EVALUATION OF ADA AS A COMMUNICATIONS PROGRAMMING LANGUAGE

MOORE, DONALD R., U.S.A.F. MILITARY PERSONNEL CNTR, RANDOLPH AFB, TX
3312 -01 ADA AS A SOFTWARE TRANSITION TOOL

MOORE, J., SRI INTERNATIONAL, MENLO PARK, CA 94025
4029 -01 EXPERIENCE IN WRITING VCG SYSTEMS

MORALEE, DENNIS
3424 -01 ADA: SOFTWARE ENGINEERING LANGUAGE OF THE FUTURE?

MORALEE, DENNIS, ELECTRONICS AND POWER
3614 -01 MIL SPEC COMPUTERS - BUILDING THE HARDWARE TO FIT THE SOFTWARE
MORETON, T., IMPERIAL COLLEGE OF SCIENCE AND TECHNOLOGY, LONDON, ENG.
4307 -01 ADA PACKAGE SPECIFICATIONS: PATH EXPRESSIONS AND MONITORS

MORGAN, C. ROBERT, BOLT BERANEK AND NEWMAN, INC.
2921 -01 TASK MANAGEMENT IN ADA - A CRITICAL EVALUATION FOR REAL-TIME MULTIPROCESSORS

MORGAN, C. ROBERT, INTERMETRICS, INC., CAMBRIDGE, MA 02138
4416 -02 CONSTRAINT CHECK ELIMINATIONS

MORGAN, ALFRED H., JR., NAVAL SURFACE WEAPONS CENTER, DAHLGREN VA 22448
4687 -02 CAN ADA REPLACE FORTRAN FOR NUMERICAL COMPUTATIONS?

MORRIS, ALFRED H., JR., NAVAL SURFACE WEAPONS CENTER, DAHLGREN VA 22448
4687 -02 CAN ADA REPLACE FORTRAN FOR NUMERICAL COMPUTATIONS?

MORRIS, DEREK S., U.S. ARMY, CENTACS, ECOM, FT. MONMOUTH, NJ 07703
2498 -01 REPORT TO THE HIGH ORDER LANGUAGE WORKING GROUP (HOLWG)

MORRIS, DEREK S., U.S. ARMY, COMMUNICATIONS R & D COMND, FT. MONMOUTH, NJ
1182 -01 AN EXPERIMENTAL APPLICATION OF THE DOD COMMON LANGUAGE TO A TELECOMMUNICATIONS SYSTEM DESIGN

MORRIS, JAMES, INTEL CORP., 3200 LAKESIDE DR., SANTA CLARA, CA 95051
3254 -01 ADA FOR THE INTEL 432 MICROCOMPUTER

MORRIS, ROBERT, BELL LABORATORIES
4334 -01 PROGRAM DEVELOPMENT SYSTEMS - AN OVERVIEW

MORSE, HARRISON R., FREY FEDERAL SYSTEMS
3603 -01 POSITION PAPER (ON ADA)

MOSS, ELIOT, INTERMETRICS, INC., CAMBRIDGE, MA 02138
4345 -01 RED LANGUAGE FORMAL SEMANTIC SPECIFICATION

MOWDAY, B.L., GENERAL DYNAMICS DATA SYSTEMS SERVICES, FORT WORTH, TX
5661 -03 HOW TO BUY A COMPILER FROM A SMALL BUSINESS

MUENNICHEW, ISABEL, TRW SYS ENGINEERING & INTEGRATION GRP, REDONDO BEACH, CA
5532 -03 AN ADVANCED HOST-TARGET ENVIRONMENT FOR THE MILITARY COMPUTER FAMILY
MULLERBURG, MONIKA, GESELLSCHAFT FUR MATHEMATIK &
DATENVERARBEITUNG, GERMANY
4718 -02 SOFTWARE ENGINEERING ENVIRONMENTS - A BIBLIOGRAPHY

MURDIE, J.A., U. OF YORK, HESLINGTON, YORK Y01 5DD, U.K.
4614 -02 ADA WORKBENCH COMPILER PROJECT 1981

MURRAY, D.W., ANALYTIC DISCIPLINES, INC.
5668 -03 USING ADA WITH A DATA FLOW LANGUAGE

MUSCHIK, HANS J., ESG ELEKTRONIK-SYS VOGELWEIDEPLATZ 9, 8000
MUNCHEN 80
4414 -02 PROPOSAL FOR THE IMPLEMENTATION OF THE PEARL I/O CONCEPT IN THE
ADA HIGH-ORDER LANGUAGE

MYERS, LINDA M., NAVAL POSTGRADUATE SCHOOL, MONTEREY, CA 93940
3448 -01 AN ADAPTATION OF THE ADA LANGUAGE FOR MACHINE GENERATED COMPILERS

NAGEL, H. H., FACHBEREICH INF OF HAMBURG
SCHLUETERSTRASSE 70, HAMBURG
4352 -01 ADA ON A MINICOMPUTER-NETWORK FOR IMAGE SEQUENCE ANALYSIS: AN
INVESTIGATIVE IMPLEMENTATION

NASSI, ISAAC R., DIGITAL EQUIPMENT CORP.
3251 -01 WHAT IS ADA?

NATALI, A., CISE RESEARCH CENTER
5979 -03 USING ADA AND APSE TO SUPPORT DISTRIBUTED MULTIMICROPROCESSOR
TARGETS

NEIMAN, MARK, PROPRIETARY SOFTWARE SYS, 9911 W PICO, LOS
ANGELES, CA
4603 -02 JOVIAL (J73) TO ADA TRANSLATOR

NELSON, B.E., U. OF UTAH, SALT LAKE CITY, UTAH 84112
5681 -03 TRANSFORMING AN ADA PROGRAM UNIT TO SILICON AND VERIFYING ITS
BEHAVIOR IN AN ADA ENVIRONMENT: A FIRST EXPERIMENT

NELSON, ELDRED, TRW CORP.
4338 -01 A PRACTICAL, PRECISE, AND COMPLETE STANDARD DEFINITION FOR THE
DOD COMMON PROGRAMMING LANGUAGE

NESTOR, JOHN R.
3361 -01 TYPES
NESTOR, JOHN R., INTERMETRICS, INC., CAMBRIDGE, MA 02138
4654 -02 RED LANGUAGE REFERENCE MANUAL
5545 -03 MODELS OF DATA OBJECTS AND DATA TYPES

NEWCOMER, JOSEPH M., CARNEGIE-MELLON U., PITTSBURGH, PA 15213
0822 -01 A COMPARISON OF PROGRAMMING LANGUAGES FOR SOFTWARE ENGINEERING
3377 -01 TCOL-ADA: REVISED REPORT ON AN INTERMEDIATE REPRESENTATION FOR THE PRELIMINARY ADA LANGUAGE

NEWTON, JOHN E., U.S.A.F. MILITARY PERSONNEL CNTR, RANDOLPH AFB, TX
3312 -01 ADA AS A SOFTWARE TRANSITION TOOL

NEWTON, ROY, TEESIDE POLYTECHNIC, MIDDLESBROUGH, ENGLAND
4303 -01 ON EXCEPTION HANDLING WITH THE "IRONMAN" LANGUAGES, GREEN AND REDL
4304 -01 SOME EXCEPTION HANDLING PROBLEMS IN LANGUAGE SYSTEMS DISPLAYING A MULTI-PATH CAPABILITY

NGUYEN THE THANH, ADA-EUROPE
4646 -02 ADA-EUROPE GUIDELINES FOR ADA COMPILER SPECIFICATION AND SELECTION

NICHOLSON, LEONARD K., YALE U., NEW HAVEN, CT 06520
4302 -01 MACRO FACILITIES IN THE ADA ENVIRONMENT

NICOLESCU, RADU, U. OF BUCHAREST, BUCHAREST, ROMANIA R77116
3318 -01 SOME SHORT COMMENTS ON THE DEFINITION AND THE DOCUMENTATION OF THE ADA PROGRAMMING LANGUAGE

NIELSEN, O.F., MESSERSCHMITT-BOLKOW-BLOHM PO80 11 49 D8000 MUNCHEN 80
4818 -03 SAFETY CRITICAL FAST-REAL-TIME SYSTEMS

NISSEN, J.C.D., ADA-EUROPE
4646 -02 ADA-EUROPE GUIDELINES FOR ADA COMPILER SPECIFICATION AND SELECTION

NISSEN, J.C.D., NAT'L PHYSICAL LAB., TEDDINGTON, MIDDLESEX, ENGLAND
3420 -01 ADA-EUROPE GUIDELINES FOR THE PORTABILITY OF ADA PROGRAMS
5999 -03 NPL REPORT: ADA-EUROPE GUIDELINES FOR ADA COMPILER SPECIFICATION AND SELECTION
NISSEN, JOHN, GEC TELECOMMUNICATIONS, COVENTRY, UK
4844 -03 PORTABILITY AND STYLE IN ADA

NIXON, M.R., TRW DEFENSE & SPACE SYSTEMS
GROUP, HUNTSVILLE, AL
2426 -01 SPECIFICATION TOOLS ENVIRONMENT STUDY
4628 -02 VHSIC PHASE III SOFTWARE ARCHITECTURE STUDY PRELIMINARY HOL DEFINITION

NORRIS, DAVID C.
5693 -03 A REVERSE POLISH CALCULATOR IN ADA

NORRIS, DAVID C., NONAFFILIATED
6045 -03 AN ADA PRETTY-PRINTER
6083 -03 ADA BIBLIOGRAPHY

NORTH, STEVEN, SOFTECH INC., 5201 LEESBURG PIKE, FALLS CHURCH, VA 2204
6192 -03 REAL-TIME OPERATING SYSTEM EXPERIENCE

NOTKIN, DAVID S., CARNEGIE-MELLON U., PITTSBURGH, PA 15213
3294 -01 AN EXPERIENCE WITH PARALLELISM IN ADA
4433 -02 THE GANDALF SOFTWARE DEVELOPMENT ENVIRONMENT

OBERNDORF, PATRICIA, NAVAL OCEAN SYSTEMS CENTER
4123 -01 THE KAPSE INTERFACE TEAM

OEST, OLE N., DANSK DATAMATIK CTR, LUNDTOFTEVEJ 2800 LYNGBY, DENMARK
4618 -02 THE DDC ADA COMPILER DEVELOPMENT METHOD
4787 -02 TOWARDS A FORMAL DESCRIPTION OF ADA

OEST, OLE N., ELECKTROVEJ, DK-2800 LYNGBY, DENMARK
5363 -03 PORTABLE ADA PROGRAMMING SYSTEM COMPILER PROJECT OVERVIEW
5364 -03 THE DDC ADA COMPILER PROJECT DEVELOPMENT PLAN. PART 0: DEVELOPMENT METHODOLOGY.

OGILVIE, JOHN W.L., NONAFFILIATED
5516 -03 MODULA-TO-ADA TYPE TRANSLATION
OLSEN, ERIC W., U. OF CALIFORNIA AT IRVINE, IRVINE, CA 92717
5404 -03 ADA FOR PROGRAMMERS

OREJAS, FERNANDO, UNIVERSITAT POLETENICA DE CATALUNYA
BARCELONA, SPAIN
6139 -03 ON UNLIMITED TYPES AND RELIABILITY OF ADA PROGRAMS

ORGANICK, DR. ELLIOTT I., U. OF UTAH, SALT LAKE CITY, UTAH 94112
3455 -01 TRANSFORMATION OF ADA PROGRAMS INTO SILICON
4417 -02 MAPPING HIGH-ORDER LANGUAGE PROGRAM UNITS INTO VLSI STRUCTURES
4638 -02 TRANSFORMATION OF ADA PROGRAMS INTO SILICON
5421 -03 A PROGRAMMER'S VIEW OF THE INTEL 432 SYSTEM
5681 -03 TRANSFORMING AN ADA PROGRAM UNIT TO SILICON AND VERIFYING ITS BEHAVIOR IN AN ADA ENVIRONMENT: A FIRST EXPERIMENT

ORNDORFF, M.S., U.S.A.F. INSTITUTE OF TECHNOLOGY
6151 -03 EVALUATION OF AUTOMATED CONFIGURATION MANAGEMENT TOOLS IN ADA PROGRAMMING SUPPORT ENVIRONMENTS

PALM, STEEN U., DANSK DATAMATIK CTR, LUNDTOFTEVEJ 2800
LYNGBY, DENMARK
5995 -03 A COMPARATIVE STUDY OF CHILL AND ADA ON THE BASIS OF DENOTATIONAL DESCRIPTIONS

PANLILIO-YAP, MONINA N., U. OF MARYLAND, COLLEGE PARK, MD 20742
6136 -03 MONITORING AN ADA SOFTWARE DEVELOPMENT

PARISH, STEVE, GTE AUTOMATIC ELECTRIC LAB. PHOENIX, AZ
5528 -03 DCP-EXPERIENCE IN BOOTSTRAPPING AN ADA ENVIRONMENT

PASSAFIUME, JOHN F., GEORGIA INSTITUTE OF TECHNOLOGY, ATLANTA, GA 30332
3436 -01 ADA EDUCATION FOR TECHNICAL MANAGERS

PATTERSON, JOHN C., DEFENSE ELECTRONICS
3613 -01 EXTENDING ADA INTO SILICON

PAYTON, TERRI F., BURROUGHS CORP., PAOLI, PA. 19301
5204 -03 SSAGS: A SYNTAX AND SEMANTICS ANALYSIS AND GENERATION SYSTEM
PAYTON, THERI F., SYSTEM DEVELOPMENT CORP., SANTA MONICA, CA 90406
5562 -03 ADA-EUROPE/ADATEC JOINT SYMPOSIUM AND TUTORIAL ON ADA

PEDERSEN, JAN STORBANK, DANSK DATAMATIK CTR, LUNDTOFTEVEJ 2800
LYNGBY, DENMARK
4620 -02 A FORMAL SEMANTICS DEFINITION OF SEQUENTIAL ADA

PEELING, N.E., MINISTRY OF DEFENSE, RSRE MALVERN, WORCS
4426 -02 MODULAR COMPILATION SYSTEMS FOR HIGH LEVEL PROGRAMMING LANGUAGES

PENNELLO, THOMAS, METAWARE INCORPORATED
4250 -02 EFFICIENT COMPUTATION OF LALR(1) LOOK-AHEAD SETS

PENNELLO, THOMAS, U. OF CALIF. AT SANTA CRUZ, SANTA CRUZ, CA 95064
3270 -01 A SYNTAX DIAGRAM FOR (PRELIMINARY) ADA
3274 -01 A SIMPLIFIED OPERATOR IDENTIFICATION SCHEME FOR ADA
4301 -01 ADA SYNTAX CHART

PERKINS, J., BURROUGHS CORP., PAOLI, PA. 19301
5204 -03 SSAGS: A SYNTAX AND SEMANTICS ANALYSIS AND GENERATION SYSTEM

PERRY, DEWAYNE E.
3365 -01 LOW LEVEL LANGUAGE FEATURES

PERRY, DEWAYNE E., CARNEGIE-MELLON U., PITTSBURGH, PA 15213
4716 -02 SYSTEM COMPOSITION AND VERSION CONTROL FOR ADA
5405 -03 ADA FOR EXPERIENCED PROGRAMMERS

PERRY, JOHN, NONAFFILIATED
4332 -01 DOD COMMON HIGH ORDER LANGUAGE ENVIRONMENT WORKSHOP

PERSCH, GUIDO, INSTITUT FUER INFORMATIK II UNIVERSITAET, KARLSRUHE
4786 -02 AN ATTRIBUTE GRAMMAR FOR THE SEMANTIC ANALYSIS OF ADA

PERSCH, GUIDO, U. OF KARLSRUHE, KARLSRUHE, FED. REP. OF GERMANY
3298 -01 OVERLOADING IN PRELIMINARY ADA
3412 -01 AN LALR(1) GRAMMAR FOR (REVISED) ADA
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Author(s)</th>
<th>Institution/Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>4318-01</td>
<td>AN ATTRIBUTE GRAMMAR FOR ADA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4419-02</td>
<td>AIDA - AN INTERMEDIATE REPRESENTATION OF ADA PROGRAMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4420-02</td>
<td>NOTES ON TCOL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4541-02</td>
<td>THE ADA COMPILER DEVELOPMENT PROJECT - OVERVIEW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4650-02</td>
<td>EARLY EXPERIENCE WITH THE PROGRAMMING LANGUAGE ADA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4185-01</td>
<td>THE INTEGRATION OF EXISTING DATABASE SYSTEMS IN AN ADA ENVIRONMENT</td>
<td>PERSCH, GUIDO, U. KARLSRUHE, POSTFACH 6380, KARLSRUHE, GERMANY</td>
<td></td>
</tr>
<tr>
<td>5365-03</td>
<td>ADA DOCUMENTATION AND PROGRAMMING GUIDELINES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6522-03</td>
<td>INTERFACING ADA WITH OTHER PROGRAMMING LANGUAGES IN THE ROLM/DG ADA DEVELOPMENT ENVIRONMENT (ADE)</td>
<td>PETERSON, A. SPENCER, LOCKHEED MISSILES & SPACE CO. SUNNYVALE CA</td>
<td></td>
</tr>
<tr>
<td>5370-03</td>
<td>ADA MULTI-TASKING SUPPORT FOR MICROPROCESSOR SYSTEMS</td>
<td>PETTUS, ROBERT O., U. OF SOUTH CAROLINA, COLUMBIA, SC 29208</td>
<td></td>
</tr>
<tr>
<td>3967-02</td>
<td>AN ADA COMPATIBLE SPECIFICATION LANGUAGE</td>
<td>PEYTON JONES, S.L., BEALE ELECTRONIC SYS LTD., WAYSBURY, BERKS, ENGLAND</td>
<td></td>
</tr>
<tr>
<td>3987-02</td>
<td>TASK STATE TRANSITIONS IN ADA</td>
<td>PFITZMANN, ANDREAS, U. OF KARLSRUHE, KARLSRUHE, FED. REP. OF GERMANY</td>
<td></td>
</tr>
<tr>
<td>6001-03</td>
<td>A SIMPLE ADA COMPILER INVALIDATION TEST</td>
<td>PHILIPSON, LARS, LUND INSTITUTE OF TECHNOLOGY, S-220 07 LUND 7, SWEDEN</td>
<td></td>
</tr>
<tr>
<td>5997-03</td>
<td>THE ROLE OF ADA IN REAL TIME EMBEDDED APPLICATIONS</td>
<td>PHILLIPS, STEPHEN P., LOCKHEED MISSILES & SPACE CO. SUNNYVALE CA</td>
<td></td>
</tr>
<tr>
<td>4091-02</td>
<td>SOFTWARE DEVELOPMENT COSTING - THE IMPACT OF LANGUAGE STANDARDIZATION</td>
<td>PHOHA, SHASHI, MITRE CORP., BOX 208, BEDFORD, MA 01730</td>
<td></td>
</tr>
<tr>
<td>4646-02</td>
<td>ADA-EUROPE GUIDELINES FOR ADA COMPILER SPECIFICATION AND SELECTION</td>
<td>PIERCE, RON, ADA-EUROPE</td>
<td></td>
</tr>
</tbody>
</table>
PLOEDEREDER, ERHARD PH.D., IND'L BETRIEBSGESELLSCHAFT MBH OTTOBRUNN, W. GERMANY
5996 -03 PROJECT SPERBER BACKGROUND, STATUS, FUTURE PLANS

PNUELI, AMIR, WEIZMANN INSTITUTE OF SCIENCE, REHOVOT, ISRAEL
4183 -01 RENDEVOUS WITH ADA - A PROOF THEORETICAL VIEW

POLAK, WOLFGANG, STANFORD U., STANFORD, CA 94305
3262 -01 ADA EXCEPTION HANDLING: AN AXIOMATIC APPROACH
3286 -01 ADA EXCEPTIONS: SPECIFICATION AND PROOF TECHNIQUES
3305 -01 A PRACTICAL METHOD OF DOCUMENTING AND VERIFYING ADA PROGRAMS WITH PACKAGES

PORCELLA, MARIA, U. OF CALIFORNIA AT IRVINE, IRVINE, CA 92717
5484 -03 ADA METHODOLOGY QUESTIONNAIRE SUMMARY

PORUBCANSKY, CYNTHIA A., U.S.A.F. ASD, WRIGHT-PATTERSON AFB, OH
5270 -03 PROCEEDINGS PAPERS OF THE SECOND AFSC AVIONICS STANDARDIZATION CONFERENCE

PRICE, R.J., PERKIN-ELMER DATA SYST. GP., TINTON FALLS, NJ
3310 -01 THE RENDEZVOUS AND MONITOR CONCEPTS: IS THERE AN EFFICIENCY DIFFERENCE?

PRIVITERA, DR. J.P., FORD AEROSPACE AND COMMUNICATIONS CORP., PALO ALTO, CA
4167 -01 ADA DESIGN LANGUAGE FOR THE STRUCTURED DESIGN METHODOLOGY

PROBERT, DR. THOMAS H., INSTITUTE FOR DEFENSE ANALYSES, ALEXANDRIA, VA 22311
5659 -03 THE NEED FOR NEW PROCUREMENT STRATEGIES FOR NEW SOFTWARE TECHNOLOGY

PROBERT, DR. THOMAS H., MITRE CORP., 1820 DOLLEY MADISON BLVD., MCLEAN, VA 22102
4313 -01 ADA VALIDATION ORGANIZATION: POLICIES AND PROCEDURES
4324 -01 VALIDATION IN ADA PROGRAMMING SUPPORT ENVIRONMENTS

PROBERT, ROBERT L., U. OF OTTAWA, OTTAWA, ONTARIO, CANADA
3638 -01 OPTIMAL INSERTION OF SOFTWARE PROBES IN WELL-DELIMITED PROGRAMS
<table>
<thead>
<tr>
<th>Author</th>
<th>Affiliation</th>
<th>Conference/Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>PULFORD, KEVIN J.</td>
<td>MARCONI AVIONICS LTD., BOREHAMWOOD, HERTFORDSHIRE ENG.</td>
<td>4821 -03 CONFIGURATION MANAGEMENT AND THE ADA PROGRAMMING SUPPORT ENVIRONMENT</td>
</tr>
<tr>
<td>PYLE, I.C.</td>
<td>U. OF YORK, HESLINGTON, YORK YO1 5DD, U.K.</td>
<td>1664 -01 INPUT/OUTPUT IN HIGH LEVEL PROGRAMMING LANGUAGES</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2081 -01 AXIOMS FOR USER-DEFINED OPERATORS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4430 -02 THE ADA PROGRAMMING LANGUAGE - A GUIDE FOR PROGRAMMERS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4614 -02 ADA WORKBENCH COMPILER PROJECT 1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6000 -03 A PACKAGE FOR SPECIFYING ADA PROGRAMS</td>
</tr>
<tr>
<td>QUINN, M.E.</td>
<td>BELL LABORATORIES, MURRAY HILL, NJ 07974</td>
<td>4648 -02 AN ADA LANGUAGE TYPE CHECKING PROBLEM AND TWO MORALS</td>
</tr>
<tr>
<td>RAJEEN, S.</td>
<td>SOFTECH, INC. TOTTEN POND RD, WALTHAM, MA 02154</td>
<td>6187 -03 THE ADA RUNTIME KIT (ARK)</td>
</tr>
<tr>
<td>RAKITIN, STEVEN R.</td>
<td>SOFTECH, INC. TOTTEN POND RD, WALTHAM, MA 02154</td>
<td>3486 -02 EXPERIENCE IN PERFORMING SOFTWARE QUALITY ASSURANCE ON THE ADA LANGUAGE SYSTEM PROJECT</td>
</tr>
<tr>
<td>RANANOWSKY, HELEN</td>
<td>ROCKWELL INT'L. MS124-211 COLLINS RD. NE, CEDAR RAPIDS</td>
<td>4534 -02 ADA PUBLICATIONS</td>
</tr>
<tr>
<td>RAMSEY, CONNIE LOGGIA</td>
<td>U. OF MARYLAND, COLLEGE PARK, MD 20742</td>
<td>6136 -03 MONITORING AN ADA SOFTWARE DEVELOPMENT</td>
</tr>
<tr>
<td>RATTNER, JUSTIN</td>
<td>INTEL CORP., ALOHA, OR</td>
<td>3265 -01 ADA DETERMINES ARCHITECTURE OF 32-BIT MICROPROCESSOR</td>
</tr>
<tr>
<td>READY, ANN.</td>
<td>PLANNING RESEARCH CORP., MCLEAN, VA</td>
<td>3586 -01 PORTABILITY AND KAPSE INTERFACE STANDARDIZATION ISSUES</td>
</tr>
<tr>
<td>REDWINE, SAMUEL T., JR.</td>
<td>MITRE CORP., 1820 DOLLEY MADISON BLVD., MCLEAN, VA 22102</td>
<td>2893 -01 CANDIDATE R&D THRUSTS FOR THE SOFTWARE TECHNOLOGY INITIATIVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5657 -03 THE FUTURE GOVERNMENT AND INDUSTRY SOFTWARE TOOLS TOOLS MARKETPLACE</td>
</tr>
</tbody>
</table>
REFICE, MARIO. ADA-EUROPE
4646 -02 ADA-EUROPE GUIDELINES FOR ADA COMPILER SPECIFICATION AND SELECTION

REID, BRIAN K. CARNegie-MELLoW U., PITTSBURGH, PA 15213
0822 -01 A COMPARISON OF PROGRAMMING LANGUAGES FOR SOFTWARE ENGINEERING

REYNOLDS, PAUL F., U. OF VIRGINIA, CHARLOTTESVILLE, VA 22901
4188 -01 THE IMPLEMENTATION AND USE OF ADA ON DISTRIBUTED SYSTEMS WITH HIGH RELIABILITY REQUIREMENTS

RHYMER, P., MITRE CORP., BOX 208, BEDFORD, MA 01730
3354 -01 A COST/BENEFIT ANALYSIS OF HIGHER ORDER LANGUAGE STANDARDIZATION

RICE, JOHN R., PURDUE U., WEST LAFAYETTE, IN 47907
4626 -02 REMARKS ON SOFTWARE COMPONENTS AND PACKAGES IN ADA

RICHARD, D.A., TRW DEFENSE & SPACE SYSTEMS GROUP, HUNTSVILLE, AL
2426 -01 SPECIFICATION TOOLS ENVIRONMENT STUDY

RICHARD, FREDERIC, U. OF MASSACHUSETTS, AMHERST, MA 01003
5555 -03 A REMINDER FOR LANGUAGE DESIGNERS

RICHMAN, SUSAN M., PENNSYLVANIA STATE U., UNIVERSITY PARK, PA 16802
5526 -03 TEACH ADA AS THE STUDENT'S FIRST PROGRAMMING LANGUAGE?

RIDDLE, WILLIAM E., CRAY LABS INC., 5311 WESTERN AVE, BOULDER, CO 80301
4718 -02 SOFTWARE ENGINEERING ENVIRONMENTS - A BIBLIOGRAPHY

RIES, DANIEL. COMPUTER CORP OF AMER., TECHNOLOGY SQ, CAMBRIDGE, MA
4411 -02 THE DESIGN OF AN ADA COMPATIBLE LOCAL DATABASE MANAGER (LDM)

4586 -02 OVERVIEW OF AN ADA COMPATIBLE DISTRIBUTED DATABASE MANAGER

4752 -02 DOM: AN ADA COMPATIBLE DISTRIBUTED DATABASE MANAGER

RIPKEN, KNUt. FACHBEREICH INF., MUNCHEN, D-8014, NEUBIBERG, FED. REP.
5132 -03 A COMMENT ON "OPERATOR IDENTIFICATION IN ADA"
RIPKEN, KNUT, NONAFFILIATED
4649 -02 LIFE CYCLE SUPPORT IN THE ADA ENVIRONMENT

RIPKEN, KNUT, TECSI-SOFTWARE, 29 RUE DES PYRAMIDES, F-75001 PARIS
4298 -01 ADA SYNTAX DIAGRAMS FOR TOP-DOWN ANALYSIS
4423 -02 OPERATOR IDENTIFICATION IN ADA: FORMAL SPECIFICATION, COMPLEXITY, AND CONCRETE IMPLEMENTATION
5496 -03 LIFE CYCLE SUPPORT IN THE ADA ENVIRONMENT

ROADS, C.
3404 -01 MACHINE TONGUES VI

ROBERTS, ERIC S., BOLT BERANEK AND NEWMAN, INC.
2921 -01 TASK MANAGEMENT IN ADA - A CRITICAL EVALUATION FOR REAL-TIME MULTIPROCESSORS

ROBERTS, J.W., ENTWICKLUNGSBÜRO WERUM, WALDWE 7, WEST GERMANY
2651 -01 THE LTPL-E TASKING PROPOSALS

ROBINSON, W.B., THE FOXBORO COMPANY, FOXBORO, MA
2861 -01 USING PRELIMINARY ADA IN A PROCESS CONTROL APPLICATION

RODRIGUES, JORGE E., SOFTECH, INC. TOTTEN POND RD, WALTHAM, MA 02154
5664 -03 INSURING THAT ADA COMPILER SYSTEMS SATISFY USER NEEDS

ROGERS, MARK A., NAVAL POSTGRADUATE SCHOOL, MONTEREY, CA 93940
3448 -01 AN ADAPTATION OF THE ADA LANGUAGE FOR MACHINE GENERATED COMPILERS

ROGERS, THEODORE F. JR., NAVAL POSTGRADUATE SCHOOL, MONTEREY, CA 93940
6005 -03 INTEL 432/670 ADA BENCHMARK PERFORMANCE EVALUATION IN THE MULTIPROCESSOR/MULTIPROCESS ENVIRONMENT

ROGERS, W.J., U. OF WAIKATO, HAMILTON NEW ZEALAND
3316 -01 THE DESIGN OF A VIRTUAL MACHINE FOR ADA

ROMANOWSKY, HELEN, ROCKWELL INT’L. MS124-211 COLLINS RD. NE, CEDAR RAPIDS
6179 -03 ADA PUBLICATIONS

ROOT, DAVID, U. OF PENNSYLVANIA
2916 -01 A CODASYL INTERFACE FOR PASCAL AND ADA
ROSENBERG, JONATHAN. CARNEGIE-MELLON U., PITTSBURGH, PA 15213
3301 -01 THE CHARRETTE ADA COMPILER
3302 -01 A RUNTIME REPRESENTATION FOR ADA VARIABLES AND TYPES
3303 -01 AN ADA CODE GENERATOR FOR VAX 11/780 WITH UNIX
3345 -01 PROGRAMMING IN ADA: EXAMPLES
4176 -01 A METHODOLOGY FOR PROGRAMMING ABSTRACT DATA TYPES IN ADA
4369 -02 THE CHARRETTE ADA COMPILER
5472 -03 STUDIES IN ADA STYLE (SECOND EDITION JANUARY 1983)

ROSNER, A.J. C.S.DRAPER LAB, INC., TECHNOLOGY
SQ., CAMBRIDGE, MA 02142
6458 -03 AUTOMATING SOFTWARE DESIGN METRICS

ROSS, DONALD L., INTELLIMAC, INC., 6001 MONTROSE RD, ROCKVILLE, MD 20852
4323 -01 ADA PROGRAMMING STYLE

ROSSI, G.F. INSTITUTO DE SCIENZE DELL' INFORMAZIONE, U. OF PIZA, IT
5686 -03 PROGRAMMING A DISTRIBUTED SYSTEM IN ADA

ROUBINE, OLIVER
3290 -01 RATIONALE FOR THE DESIGN OF THE ADA PROGRAMMING LANGUAGE

ROUBINE, OLIVER, CII-HONEYWELL BULL, LOUVECIENNES, FRANCE
4736 -02 ALPAGE: A SOFTWARE ENGINEERING ENVIRONMENT FOR LARGE SCALE APPLICATIONS

ROUBINE, OLIVER, CII-HONEYWELL BULL, PARIS, FRANCE
4195 -01 LOLITA - A LOW LEVEL INTERMEDIATE LANGUAGE FOR ADA

ROWAN, S., BURROUGHS CORP., PAOLI, PA. 19301
5204 -03 SSAGS: A SYNTAX AND SEMANTICS ANALYSIS AND GENERATION SYSTEM

RUBIN, SYLVAN, FORD AEROSPACE & COMM. 1260 CROSSMAN AVE., SUNNYVALE CA
5697 -03 A MESSENGER SERVICE IN ADA
6242 -03 DYNAMIC STRING FUNCTIONS IN ADA
RUBY, J., HUGHES AIRCRAFT COMPANY
3600 -01 THE ROLE OF THE PERSONAL WORKSTATION IN AN ADA PROGRAM SUPPORT ENVIRONMENT

RUDD, DAVID, HAMPTON INSTITUTE, HAMPTON, VA 23668
5524 -03 TEACHING ADA AT HAMPTON INSTITUTE

RUDMIK, ANDRES, GTE AUTOMATIC ELECTRIC LAB., PHOENIX, AZ
5528 -03 DCP-EXPERIENCE IN BOOTSTRAPPING AN ADA ENVIRONMENT

RUDOLPH, BRUCE L., NORDEN SYSTEMS
4669 -02 AN OVERVIEW OF THE DESIGN OF AN ADA BALLISTICS SYSTEM

RUNCIMAN, COLIN, U. OF YORK, HESLINGTON, YORK Y01 5DD, U.K.
4528 -02 MODULA AND VISION LABORATORY
4540 -02 RESOLVING OVERLOADED EXPRESSIONS IN ADA
4614 -02 ADA WORKBENCH COMPILER PROJECT 1981

RYER, MICHAEL J., INTERMETRICS INC., 4733 BETHESDA, BETHESDA, MD 20814
5663 -03 EXPERIENCE IN USING ADA TO IMPLEMENT A COMPILER

RYER, MICHAEL J., INTERMETRICS INC., CAMBRIDGE, MA 02138
4097 -02 DEVELOPING AN ADA PROGRAMMING SUPPORT ENVIRONMENT

RYMER, J., IBM CORP.
3423 -01 AN ADA TUTORIAL

SAIB, SABINA H., GENERAL RESEARCH CORP.
3597 -01 MAKING TOOLS TRANSPORTABLE
6214 -03 AN ADA LANGUAGE PRIMER, PART I
6215 -03 AN ADA LANGUAGE PRIMER, PART II

SAIB, SABINA H., GENERAL RESEARCH CORP., SANTA BARBARA, CA 93111
3362 -01 ADA PACKAGES
3964 -02 AN INTRODUCTION TO ADA
4168 -01 AN ADA PROGRAM DESIGN ENVIRONMENT
SALE, ARTHUR H. J., U. Of TASMANIA, HOBART, TASMANIA, AUSTRALIA 7001
2684 -01 FORWARD-DECLARED PROCEDURES, PARAMETER-LISTS AND SCOPE
3406 -01 COUNTERVIEW IN FAVOUR OF STRICT TYPE COMPATIBILITY

SANTONI, PATRICIA, NAVAL OCEAN SYSTEMS CENTER
4332 -01 DOD COMMON HIGH ORDER LANGUAGE ENVIRONMENT WORKSHOP

SAYLER, JOHN, MANUFACTURING DATA SYSTEMS, INC., ANN ARBOR, MI
4045 -02 PREDICTING COST-OF-CHANGE FROM DESIGN STRUCTURE METRICS

SCACCHI, WALTER, U. OF CALIFORNIA AT IRVINE, IRVINE, CA 92717
4299 -01 THE DOD COMMON HIGH ORDER PROGRAMMING LANGUAGE EFFORT (DOD-1): WHAT WILL THE IMPACTS BE?
4335 -01 WHAT WILL THE IMPACTS A COMMON HIGH ORDER PROGRAMMING LANGUAGE BE?
4336 -01 DOD'S COMMON PROGRAMMING LANGUAGE EFFORT: THE WORK ENVIRONMENTS OF EMBEDDED SYSTEM DEVELOPMENT
4337 -01 ASSUMPTIONS ABOUT THE SOCIAL AND TECHNICAL CHARACTER OF PRODUCTION PROGRAMMING ENVIRONMENTS

SCARPELLI, ALFRED J., U.S.A.F. AVIONICS LAB, W-PAFB, OH 45433
3222 -01 ADA TEST AND EVALUATION

SCARROW, A., WARREN SPRING LAB, STEVENAGE, ENGLAND
6468 -03 REAL-TIME LANGUAGES FOR PROCESS CONTROL

SCHAFFERT, CRAIG, INTERMETRICS, INC., CAMBRIDGE, MA 02138
4344 -01 RED LANGUAGE DESIGN RATIONALE

SCHAFFNER, STUART C., MASSACHUSETTS COMPUTER ASSOC., INC., WAKEFIELD, MA
3606 -01 ADA I/O INTERFACE SPECIFICATION

SCHEER, LINDA S., SYSTEMS CONSULTANTS, INC., DAYTON, OHIO
4314 -01 DOD'S ADA COMPARED TO PRESENT MILITARY STANDARD HOLS A LOOK AT NEW CAPABILITIES

SCHINDLER, MAX, ELECTRONIC DESIGN, 50 ESSEX ST, ROCHELLE PARK, NJ 07662
2707 -01 1981 TECHNOLOGY FORECAST - SOFTWARE
AUTHOR INDEX

5400 -03 ADA TEAMS UP WITH 32-BIT CHIP TO FORM EFFICIENT OEM SYSTEM

SCHINDLER, MAX (EDITOR), ELECTRONIC DESIGN, 50 ESSEX ST, ROCHELLE PARK, NJ 07662
4678 -03 ENGINEERING SOFTWARE

SCHINDLER, PAUL E., JR.
2620 -01 COMPUTER LANGUAGES: WHAT'S IN STORE FOR THE '80S?

SCHMITZ, H. GREGORY DR., HONEYWELL SYSTEMS & RESEARCH CNTR., MINNEAPOLIS, MN
5403 -03 CAN ADA LOWER THE COST OF SOFTWARE IN C3I SYSTEMS?

SCHNEIDER, FRED B., CORNELL U., ITHACA, NY 14853
4792 -02 CONCEPTS AND NOTATIONS FOR CONCURRENT PROGRAMMING

SCHONBERG, EDMOND, COURANT INST. NEW YORK UNIV., 251 MERCER ST, NY, NY 10012
4180 -01 AN EFFICIENT METHOD FOR HANDLING OPERATOR OVERLOADING IN ADA

SCHONBERG, EDMOND, NEW YORK U., NY, NY
2546 -01 THE NYU ADA TRANSLATOR AND INTERPRETER
6220 -03 SOFTWARE PROTOTYPING USING THE SETL PROGRAMMING LANGUAGE

SCHULTZ, JAMES B., NONAFFILIATED
4642 -03 WEAPONS THAT THINK

SCHULTZ, LENNART, CRONE & KOCH ORDRUPVEJ 101, DK-2920 CHARLOTTENLUND, DENMARK
4619 -02 A DENOTATIONAL (STATIC) SEMANTICS METHOD FOR DEFINING ADA CONTEXT CONDITIONS

SCHUMAN, STEPHEN A.
3367 -01 TUTORIAL ON ADA TASKING

SCHUTT, HAROLD J., NONAFFILIATED
5666 -03 CAN ADA BE USED FOR THE PROGRAM MANAGER'S SUPPORT SYSTEM (PMSS)?

SCHWARTZ, JACOB, NEW YORK U., NY, NY
6220 -03 SOFTWARE PROTOTYPING USING THE SETL PROGRAMMING LANGUAGE

SCHWARTZ, RICHARD L., SRI INTERNATIONAL, MENLO PARK, CA 94025
2171 -01 THE FINALIZATION OPERATION FOR ABSTRACT TYPES
ON THE SUITABILITY OF ADA FOR ARTIFICIAL INTELLIGENCE APPLICATIONS

SEGALL, ZARY, CARNEGIE-MELLON U., PITTSBURGH, PA 15213
5973 -03 ADA TARGET MACHINE OPERATING SYSTEM (ATMOS) REVIEW

SEITA, ALFRED, TRW DEFENSE & SPACE SYST DIV, REDONDO BEACH, CA 90278
4170 -01 A CASE FOR A SIMPLE ADA PDL

SHAPIRO, DANIEL G., ADV INF & DECIS SYS 201 SAN ANTONIO CIR, MTN VIEW, CA 3245 -02 DESIGN OF AN INTELLIGENT PROGRAM EDITOR

SHAW, MARY, CARNEGIE-MELLON U., PITTSBURGH, PA 15213
0822 -01 A COMPARISON OF PROGRAMMING LANGUAGES FOR SOFTWARE ENGINEERING
3284 -01 TARTAN - LANGUAGE DESIGN FOR THE IRONMAN REQUIREMENT: REFERENCE MANUAL
3285 -01 TARTAN - LANGUAGE DESIGN FOR THE IRONMAN REQUIREMENT: NOTES AND EXAMPLES
5472 -03 STUDIES IN ADA STYLE (SECOND EDITION JANUARY 1983)
6218 -03 ABSTRACTION TECHNIQUES IN MODERN PROGRAMMING LANGUAGES

SHAW, STEPHEN
4265 -01 ROLM UNVEILS ADA COMPILER, HOPES TO GET JUMP ON COMPETITORS

SHEPHERD, JOHN T., MARCONI AVIONICS LIMITED ROCHESTER, KENT ENGLAND
4132 -01 OPTIONS AND OPPORTUNITIES FOR STANDARDS A NATO/AGARD VIEWPOINT

SHEPPARD, SALLIE, TEXAS A&M U., COLLEGE STATION, TEXAS 77843
4670 -02 EXPERIENCES WITH MATRIX MULTIPLICATION USING ADA TASKS

SHEPPARD, SYLVIA, GENERAL ELECTRIC CO.
6136 -03 MONITORING AN ADA SOFTWARE DEVELOPMENT

SHEPPARD, SYLVIA, GENERAL ELECTRIC CO., SOFTWARE MGM'T RES., ARLINGTON, VA
3280 -01 MONITORING AN ADA SOFTWARE DEVELOPMENT PROJECT

SHERMAN, MARK S., DARTMOUTH COLLEGE, HANOVER, NH 03755
5667 -03 VIEW-3 AND ADA: TOOLS FOR BUILDING SYSTEMS WITH MANY TASKS
SHERMAN, MARK S., CARNEGIE-MELLON U., PITTSBURGH, PA 15213
3300 -01 A FLEXIBLE SEMANTIC ANALYZER FOR ADA
3301 -01 THE CHARRETTE ADA COMPILER
3302 -01 A RUNTIME REPRESENTATION FOR ADA VARIABLES AND TYPES
3303 -01 AN ADA CODE GENERATOR FOR VAX 11/780 WITH UNIX
3457 -01 PROGRAMMING IN ADA: EXAMPLES
4176 -01 A METHODOLOGY FOR PROGRAMMING ABSTRACT DATA TYPES IN ADA
4369 -02 THE CHARRETTE ADA COMPILER
5472 -03 STUDIES IN ADA STYLE (SECOND EDITION JANUARY 1983)

SHOJA, G.C., U. OF SUSSEX, BRIGHTON, ENGLAND
4305 -01 DEVELOPMENT ENVIRONMENT FOR THE DESIGN AND TEST APPLICATIONS
SOFTWARE FOR A DISTRIBUTED MULTIPROCESSOR COMPUTER SYSTEM

SHUMATE, KENNETH A., HUGHES AIRCRAFT CO., SAN DIEGO, CA
5972 -03 UNDERSTANDING ADA

SHUMATE, KENNETH A., NONAFFILIATED
4684 -02 THE PROGRAMMING LANGUAGE ADA

SIBLEY, EDGAR H., ALPHA OMEGA, INCORPORATED
3598 -01 INCLUSION OF DICTIONARY/CATALOG AND CONTROL FEATURES WITHIN THE
ADA ENVIRONMENT

SIEGEL, ERIC D., MITRE CORP., 1820 DOLLEY MADISON
BLVD., MCLEAN, VA 22102
2893 -01 CANDIDATE R&D THRUSTS FOR THE SOFTWARE TECHNOLOGY INITIATIVE
4056 -02 SUMMARY OF RESPONSES TO THE SOFTWARE TECHNOLOGY INITIATIVE
QUESTIONNAIRE

SIEWIOREK, DAN, CARNEGIE-MELLON U., PITTSBURGH, PA 15213
5973 -03 ADA TARGET MACHINE OPERATING SYSTEM (ATMOS) REVIEW

SILBERSCHATZ, ABRAHAM, U. OF TEXAS AT AUSTIN, AUSTIN, TX 78712
3266 -01 ON THE SYNCHRONIZATION MECHANISM OF THE ADA LANGUAGE

SILVERMAN, BERNARD W., U. OF BATH, CLAVERTON DOWN, BATH BA2 7AY, U.K.
3415 -01 EFFICIENT IMPLEMENTATION OF THE ADA OVERLOADING RULES
SIMPSON, D., SHEFFIELD CITY POLYTECH. COMPUTER STUDIES, POND ST. 1W
5986 -03 PARALLEL PROGRAMMING- A BIBLIOGRAPHY

SIMPSON, RICHARD T., SOFTECH, INC. TOTTEN POND RD., WALTHAM, MA 02154
3253 -01 THE ADA LANGUAGE SYSTEM
4179 -01 THE ALS ADA COMPILER FRONT END ARCHITECTURE

SINCOVEC, RICHARD F., U. OF COLORADO AT COLORADO SPRINGS, CO
5607 -03 SOFTWARE ENGINEERING WITH MODULA-2 AND ADA
5692 -03 MODULAR SOFTWARE CONSTRUCTION AND OBJECT-ORIENTED DESIGN USING ADA

SINCOVEC, RICHARD F., WESTERN SOFTWARE DEVELOPMENT BOX 953 WOODLAND PARK, CO
5409 -03 PROGRAMMING IN ADA

SINGER, ANDREW, E&L INSTRUMENTS, DERBY, CT
3372 -01 SCALING DOWN ADA (OR TOWARDS A STANDARD ADA SUBSET)

SIPPU, SEppo, HELSINKI UNIVERSITY, FINLAND
4360 -02 SYNTAX ERROR HANDLING IN COMPILERS

SKEEN, DALE, COMPUTER CORP OF AMER., TECHNOLOGY SQ., CAMBRIDGE, MA
4586 -02 OVERVIEW OF AN ADA COMPATIBLE DISTRIBUTED DATABASE MANAGER
4752 -02 DDM: AN ADA COMPATIBLE DISTRIBUTED DATABASE MANAGER

SKELLY, PATRICK G., ACM STANDARDS COMMITTEE
3380 -01 THE ACM POSITION ON STANDARDIZATION OF THE ADA LANGUAGE

SLATER, KAREN
1130 -01 ADA, IT SEEMS, ISN'T EVERYBODY'S DARLING

SLUSARCZUK, MARKO M.G., INSTITUTE FOR DEFENSE ANALYSES, ALEXANDRIA, VA 22311
5659 -03 THE NEED FOR NEW PROCUREMENT STRATEGIES FOR NEW SOFTWARE TECHNOLOGY

SMART, ROBERT, LATROBE U., AUSTRALIA
4365 -02 POINTERS TO LOCAL VARIABLES
<table>
<thead>
<tr>
<th>Author</th>
<th>Institution/Location</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMITH, D.K.</td>
<td>U. OF UTAH, SALT LAKE CITY, UTAH 84112</td>
<td>TRANSFORMATION OF ADA PROGRAMS INTO SILICON</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRANSFORMATION OF ADA PROGRAMS INTO SILICON</td>
</tr>
<tr>
<td>SMITH, DAVID A.</td>
<td>HUGHES AIRCRAFT CO. 8000 E. MAPLEWOOD AVE.,</td>
<td>ANSI STANDARD ADA - QUICK REFERENCE SHEET</td>
</tr>
<tr>
<td></td>
<td>ENGLEWOOD,</td>
<td></td>
</tr>
<tr>
<td>SMITH, DAVID A.</td>
<td>U. OF CALIFORNIA AT IRVINE, IRVINE, CA 92717</td>
<td>RAPID SOFTWARE PROTOTYPING</td>
</tr>
<tr>
<td>SMITH, F.M.</td>
<td>RESEARCH TRIANGLE INST PO 12194, RESEARCH</td>
<td>A PRELIMINARY TESTABILITY ANALYSIS OF THE MIL-STD-1862 ARCHITECTURE</td>
</tr>
<tr>
<td></td>
<td>TRIANGLE PK., NC</td>
<td></td>
</tr>
<tr>
<td>SMITH, JOHN M.</td>
<td>COMPUTER CORP OF AMER., TECHNOLOGY SQ.,</td>
<td>REFERENCE MANUAL FOR ADAPLEX</td>
</tr>
<tr>
<td></td>
<td>CAMBRIDGE, MA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>THE INTEGRATION OF ADA AND ADAPLEX: ISSUES AND APPROACHES</td>
</tr>
<tr>
<td>SMITH, K.F.</td>
<td>U. OF UTAH, SALT LAKE CITY, UTAH 84112</td>
<td>TRANSFORMING AN ADA PROGRAM UNIT TO SILICON AND VERIFYING ITS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BEHAVIOR IN AN ADA ENVIRONMENT: A FIRST EXPERIMENT</td>
</tr>
<tr>
<td>SMOLKA, SCOTT A.</td>
<td>BROWN U., PROVIDENCE, RI 02912</td>
<td>PROCESSES, TASKS, AND MONITORS: A COMPARATIVE STUDY OF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CONCURRENT PROGRAMMING PRIMITIVES</td>
</tr>
<tr>
<td>SNYDER, GEORGE</td>
<td>INTERMETRICS, INC., CAMBRIDGE, MA 02138</td>
<td>LEARNING THE ADA INTEGRATED ENVIRONMENT</td>
</tr>
<tr>
<td>SODANO, NANCY M.</td>
<td>C.S. DRAPER LAB, INC., TECHNOLOGY SQ.,</td>
<td>DESIGN METRICS AND ADA</td>
</tr>
<tr>
<td></td>
<td>CAMBRIDGE, MA 02142</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AUTOMATING SOFTWARE DESIGN METRICS</td>
</tr>
</tbody>
</table>
SOFTech, Inc.
3971 -03 ADA Compiler Validation Summary Report: Telesoft Telesoft ADA Compiler, Version 2.0A2 for Callan Unistar 300, Using System V Version 4.1A

6207 -03 ADA Compiler Validation Summary Report: Telesoft Telesoft ADA Compiler, Version 2.0A2 for Sun 120 Motorola M68010 Using 4.2 BSD UNIX- SUN VER 1.1

Software Methodology Grp., Harris Corp., Gov'T Info Syst Div, Melbourne, FL 32901
4425 -02 ADA Process Description Language Guide

Sommer, Manfred, Siemens AG., Munich, W. Germany
4298 -01 ADA Syntax Diagrams for Top-Down Analysis

Spector, David, Intermetrics, Inc., Cambridge, MA 02138
4581 -02 TCOL Representation and Manipulation in the Intermetrics ADA Compiler

Squires, Stephen, Harvard U., Cambridge, MA 02138
4334 -01 Program Development Systems - An Overview

Staff Author
6171 -03 ADA: Past, Present, Future: An Interview with Jean Ichbiah, The Principle Designer of ADA

Staff Author, U.S. Army Comm-Electronics CMD(CECOM), Ft. Monmouth, NJ
4621 -02 Army Software Technology R&D Program Technology Transfer and Organization Plan

Staff Author, ADA Jt. Prog. Off., Arlington, VA 22209
3390 -01 Ada Test and Evaluation Newsletter: Number 1
5371 -03 Revisions to the Compiler Validation Implementors Guide

Staff Author, Business Week
3272 -01 A Common Language for Computers

Staff Author, Computer Corp of Amer., Technology SQ, Cambridge, MA
3992 -02 Adaplex: Rationale and Reference Manual
STAFF AUTHOR, CONTROL DATA CORP., SHREWSBURY, NJ
4377 -02 FINAL REPORT/LARGE SCALE SOFTWARE SYSTEM DESIGN/MISSILE MINDER AN/TSQ-73 USING THE ADA PROGRAMMING LANGUAGE

4672 -02 CASE STUDY II: FINAL REPORT DEVELOPED FOR LARGE SCALE SOFTWARE SYSTEM DESIGN OF THE MISSILE MINDER AN/TSQ-73 USING THE ADA PROGRAMMING LANGUAGE

STAFF AUTHOR, CII-HONEYWELL BULL, LOUVECIENNES, FRANCE
3282 -01 SET OF SAMPLE PROBLEMS FOR DOD HIGH ORDER LANGUAGE PROGRAM: GREEN SOLUTIONS
3291 -01 PRELIMINARY ADA REFERENCE MANUAL (RESULTS OF THE GREEN LANGUAGE)
3292 -01 RATIONALE FOR THE DESIGN OF THE GREEN PROGRAMMING LANGUAGE
3385 -01 PRELIMINARY REFERENCE MANUAL FOR THE GREEN PROGRAMMING LANGUAGE
4424 -02 THE GREEN LANGUAGE: AN INFORMAL INTRODUCTION
4679 -02 THE GREEN LANGUAGE: A FORMAL DEFINITION

STAFF AUTHOR, COURANT INST. NEW YORK UNIV., 251 MERCER ST, NY, NY 10012
6434 -03 NYU ADA/ED USER’S GUIDE - VERSION 1.4 FOR VAX/VMS SYSTEMS

STAFF AUTHOR, COMPUTER SCIENCES CORP.
3995 -02 ADA INTEGRATED ENVIRONMENT - COMPUTER PROGRAM DEVELOPMENT SPECIFICATION, PART I
4652 -02 ADA INTEGRATED ENVIRONMENT II COMPUTER PROGRAM DEVELOPMENT SPECIFICATION - VOLUME II

STAFF AUTHOR, COMPUTER SCIENCES CORP., ARLINGTON BLVD, FALLS CHURCH, VA
3427 -01 ADA INTEGRATED ENVIRONMENT II
3429 -01 ADA INTEGRATED ENVIRONMENT II SYSTEM SPECIFICATION
4845 -03 DESIGN EVALUATION REPORT FOR THE ADA INTEGRATED ENVIRONMENT

STAFF AUTHOR, DEFENSE ADVANCED RESEARCH PROJECTS AGENCY, ARLINGTON, VA
3287 -01 PROCEEDINGS OF THE ADA DEBUT

STAFF AUTHOR, DEFENSE ELECTRONICS
4662 -02 ADA MARKET TO APPROACH $750 MILLION BY 1986
STAFF AUTHOR, U.S.DEPT. OF DEFENSE, THE PENTAGON, WASH., DC
4634 -02 THE DEPARTMENT OF DEFENSE'S STANDARDIZATION PROGRAM FOR MILITARY COMPUTERS - A MORE UNIFIED EFFORT IS NEEDED

STAFF AUTHOR, GENERAL DYNAMICS DATA SYSTEMS SERVICES, FORT WORTH, TX
4371 -02 FINAL REPORT/LARGE SCALE SOFTWARE SYSTEM DESIGN/AN/TYC-39 STORE AND FORWARD MESSAGE SWITCH USING THE ADA PROGRAMMING LANGUAGE: VOLUME I OF IV
4372 -02 FINAL REPORT/LARGE SCALE SOFTWARE SYSTEM DESIGN/AN/TYC-39 STORE AND FORWARD MESSAGE SWITCH USING THE ADA PROGRAMMING LANGUAGE: VOLUME II OF IV
4375 -02 FINAL REPORT/LARGE SCALE SOFTWARE SYSTEM DESIGN/AN/TYC-39 STORE AND FORWARD MESSAGE SWITCH USING THE ADA PROGRAMMING LANGUAGE: VOLUME IV OF IV
4376 -02 FINAL REPORT/LARGE SCALE SOFTWARE SYSTEM DESIGN/AN/TYC-39 STORE AND FORWARD MESSAGE SWITCH USING THE ADA PROGRAMMING LANGUAGE: VOLUME III OF IV
4452 -02 FINAL REPORT DEVELOPED FOR LARGE SCALE SOFTWARE SYSTEM DESIGN OF THE AN/TYC-39 STORE AND FORWARD MESSAGE SWITCH USING THE ADA PROGRAMMING LANGUAGE
4633 -02 ADA CAPABILITY STUDY: DESIGN OF THE MESSAGE SWITCHING SYSTEM AN/TYC-39 USING THE ADA PROGRAMMING LANGUAGE. VOLUME II OF IV
4635 -02 ADA CAPABILITY STUDY: DESIGN OF THE MESSAGE SWITCHING SYSTEM AN/TYC-39 USING THE ADA PROGRAMMING LANGUAGE. VOLUME I OF IV
4640 -02 ADA CAPABILITY STUDY: DESIGN OF THE MESSAGE SWITCHING SYSTEM AN/TYC-39 USING THE ADA PROGRAMMING LANGUAGE. VOLUME IV OF IV
4641 -02 ADA CAPABILITY STUDY: DESIGN OF THE MESSAGE SWITCHING SYSTEM AN/TYC-39 USING THE ADA PROGRAMMING LANGUAGE. VOLUME III OF IV

STAFF AUTHOR, DEPT. OF DEFENSE HIGH ORDER LANGUAGE WORKING GROUP
4339 -01 DEPARTMENT OF DEFENSE COMMON LANGUAGE ENVIRONMENT REQUIREMENTS

STAFF AUTHOR, HONEYWELL, INC., 2600 RIDGEWOOD PKWY, MINNEAPOLIS, MN 55413
4679 -02 THE GREEN LANGUAGE: A FORMAL DEFINITION

STAFF AUTHOR, HONEYWELL SYSTEMS & RESEARCH CNTR., MINNEAPOLIS, MN
3282 -01 SET OF SAMPLE PROBLEMS FOR DOD HIGH ORDER LANGUAGE PROGRAM: GREEN SOLUTIONS
3291 -01 PRELIMINARY ADA REFERENCE MANUAL (RESULTS OF THE GREEN LANGUAGE)

3292 -01 RATIONALE FOR THE DESIGN OF THE GREEN PROGRAMMING LANGUAGE

3385 -01 PRELIMINARY REFERENCE MANUAL FOR THE GREEN PROGRAMMING LANGUAGE

4424 -02 THE GREEN LANGUAGE: AN INFORMAL INTRODUCTION

STAFF AUTHOR, IIT RESEARCH INSTITUTE, 199 LIBERTY PLAZA, ROME, NY 13440

4568 -02 SOFTWARE TECHNOLOGY FOR ADAPTABLE RELIABLE SYSTEMS (STARS) PROGRAM STRATEGY

4610 -02 ADA BIBLIOGRAPHY

4676 -02 CATALOG OF RESOURCES FOR EDUCATION IN ADA AND SOFTWARE ENGINEERING (CREASE) - VERSION 2.0

STAFF AUTHOR, INTERMETRICS, INC., CAMBRIDGE, MA 02138

3293 -01 FINAL REPORT ON ADA TEST AND EVALUATION

3355 -01 ADA INTEGRATED ENVIRONMENT (AIE) DESIGN RATIONALE: TECHNICAL REPORT

3425 -01 ADA INTEGRATED ENVIRONMENT I: SYSTEM SPECIFICATION

3426 -01 ADA INTEGRATED ENVIRONMENT I: DESIGN RATIONALE

3446 -01 ADA INTEGRATED ENVIRONMENT I COMPUTER PROGRAM DEVELOPMENT SPECIFICATION

4325 -01 COMPUTER PROGRAM DEVELOPMENT SPECIFICATION FOR ADA INTEGRATED ENVIRONMENT: MAPSE DEBUGGING FACILITIES B5-AIE(1).DBUG(1)

4326 -02 SYSTEM SPECIFICATION FOR ADA INTEGRATED ENVIRONMENT TYPE A AIE(1)

4327 -01 COMPUTER PROGRAM DEVELOPMENT SPECIFICATION FOR ADA INTEGRATED ENVIRONMENT: VIRTUAL MEMORY METHODOLOGY B5-AIE(1).VMM(2)

4328 -01 COMPUTER PROGRAM DEVELOPMENT SPECIFICATION FOR ADA INTEGRATED ENVIRONMENT: KAPSE/DATABASE TYPE B5. B5-AIE(1).KAPSE(1)

4329 -01 COMPUTER PROGRAM DEVELOPMENT SPECIFICATION FOR ADA INTEGRATED ENVIRONMENT: MAPSE COMMAND PROCESSOR B5-AIE(1).MCP(1)

4330 -01 COMPUTER PROGRAM DEVELOPMENT SPECIFICATION FOR ADA INTEGRATED ENVIRONMENT: ADA COMPILER PHASES B5-AIE(1)COMP(1)

4543 -02 LINKER FACILITY DESIGN SPECIFICATION FOR THE INTERMETRICS ADA/TOPS-20 PROTOTYPE COMPILER

4544 -02 DEBUGGER DESIGN SPECIFICATION FOR THE INTERMETRICS ADA/TOPS-20 PROTOTYPE COMPILER
4655 -02 RED LANGUAGE TEST TRANSLATOR USER'S GUIDE

4834 -02 COMPUTER PROGRAM DEVELOPMENT SPECIFICATION FOR ADA INTEGRATED ENVIRONMENT: MAPSE TEXT EDITOR TYPE B5

4837 -02 COMPUTER PROGRAM DEVELOPMENT SPECIFICATION FOR ADA INTEGRATED ENVIRONMENT: PROGRAM INTEGRATED FACILITIES TYPE B5

4838 -02 COMPUTER PROGRAM DEVELOPMENT SPECIFICATION FOR ADA INTEGRATED ENVIRONMENT: PROGRAM INTEGRATED FACILITIES TYPE B5

4838 -02 COMPUTER PROGRAM DEVELOPMENT SPECIFICATION FOR ADA INTEGRATED ENVIRONMENT: PROGRAM INTEGRATED FACILITIES TYPE B5

4843 -02 SYSTEM SPECIFICATION FOR ADA INTEGRATED ENVIRONMENT TYPE A

5444 -03 ADA SYSTEM SPECIFICATION FOR ADA INTEGRATED ENVIRONMENT TYPE A

STAFF AUTHOR, NEW ENGLAND RESEARCH APPLICATIONS CENTER, STORRS, CT
4431 -02 CITATIONS FROM THE INSPEC DATABASE - ADA PROGRAMMING LANGUAGE (JAN 79 - JUL 82)

STAFF AUTHOR, NATIONAL TECHNICAL INFOR. SERV., SPRINGFIELD, VA 22161
4651 -02 CITATIONS FROM THE INSPEC DATABASE: ADA PROGRAMMING LANGUAGE (1979-FEB 83)

STAFF AUTHOR, SOFTWARE SCIENCES LTD., UNITED KINGDOM
4346 -01 ADA SUPPORT SYSTEM STUDY PHASE 4 REPORT: THE INITIAL HOST

4410 -02 ADA SUPPORT SYSTEM STUDY - PHASE 1 REPORT - REQUIREMENTS AND SPECIFICATION

4658 -02 UNITED KINGDOM MINISTRY OF DEFENCE - ADA SUPPORT SYSTEM STUDY - PHASE 2 & 3 REPORTS

STAFF AUTHOR, SOFTWARE ENGINEERING ASSOCIATES
3995 -02 ADA INTEGRATED ENVIRONMENT - COMPUTER PROGRAM DEVELOPMENT SPECIFICATION, PART I

4652 -02 ADA INTEGRATED ENVIRONMENT II COMPUTER PROGRAM DEVELOPMENT SPECIFICATION - VOLUME II

4845 -03 DESIGN EVALUATION REPORT FOR THE ADA INTEGRATED ENVIRONMENT

STAFF AUTHOR, SOFTECH, INC., 4130 LINDEN AVE., DAYTON OH 45432
3701 -01 ADA PROGRAMMING DESIGN LANGUAGE SURVEY

STAFF AUTHOR, SOFTECH, INC., 3100 PRESIDENTIAL DR., FAIRBORN, OH 45324
5497 -03 ADA COMPILER VALIDATION SUMMARY REPORT: NEW YORK UNIVERSITY NYU ADA/ED COMPILER, VERSION 1.4
STAFF AUTHOR, SOFTECH, INC. TOTTEN POND RD, WALTHAM, MA 02154

3882 -02 DRAFT - PQT/FQT TEST PLAN FOR THE ADA LANGUAGE SYSTEM

4270 -02 ADA SOFTWARE DESIGN METHODS FORMULATION CASE STUDIES REPORT

4271 -02 ADA SOFTWARE DESIGN METHODS FORMULATION FINAL REPORT

4272 -02 ADA SOFTWARE DESIGN METHODS FORMULATION APPENDICES TO FINAL REPORT

4341 -01 ACVC USER'S MANUAL

4342 -01 USING THE ACVC TESTS

4343 -01 ADA LANGUAGE SYSTEM MOTOROLA M68000 CODE GENERATOR B5 SPECIFICATION

4407 -02 ADA LANGUAGE SYSTEM QUALITY ASSURANCE PLAN

4408 -02 ADA LANGUAGE SYSTEM DESIGN AND DEVELOPMENT PLAN

4535 -02 ADA COMPILER VALIDATION PLANS AND PROCEDURES (PRELIMINARY)

4536 -02 ADA LANGUAGE SYSTEM ROLM 1666 RUNTIME SUPPORT LIBRARY B5 SPECIFICATION

4545 -02 ADA LANGUAGE SYSTEM ROLM 1602B LOADER B5 SPECIFICATION

4550 -02 ADA LANGUAGE SYSTEM ROLM 1602B LOADER B5 SPECIFICATION

4551 -02 ADA LANGUAGE SYSTEM FILE ADMINISTRATOR B5 SPECIFICATION

4552 -02 ADA LANGUAGE SYSTEM VAX-11/780 CODE GENERATOR B5 SPECIFICATION

4553 -02 ADA LANGUAGE SYSTEM MCF LINKER B5 SPECIFICATION

4574 -02 ADA LANGUAGE SYSTEM MCF CODE GENERATOR B5 SPECIFICATION

4575 -02 ADA LANGUAGE SYSTEM KAPSE B5 SPECIFICATION

4580 -02 ADA LANGUAGE SYSTEM DATABASE MANAGER B5 SPECIFICATION

4584 -02 ADA LANGUAGE SYSTEM PDP-11/70 ASSEMBLER B5 SPECIFICATION

4585 -02 ADA LANGUAGE SYSTEM PDP-11/70 UNIX CODE GENERATOR B5 SPECIFICATION

4588 -02 ADA LANGUAGE SYSTEM ROLM 1602B CODE GENERATOR B5 SPECIFICATION
<table>
<thead>
<tr>
<th>ISBN</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4589 -02</td>
<td>ADA LANGUAGE SYSTEM COMMAND LANGUAGE PROCESSOR B5 SPECIFICATION</td>
</tr>
<tr>
<td>4590 -02</td>
<td>ADA LANGUAGE SYSTEM MCF ASSEMBLER B5 SPECIFICATION</td>
</tr>
<tr>
<td>4602 -02</td>
<td>ADA LANGUAGE SYSTEM ROLM 1666 CODE GENERATOR B5 SPECIFICATION</td>
</tr>
<tr>
<td>4604 -02</td>
<td>ADA LANGUAGE SYSTEM VAX-11/780 VAX/VMS RUNTIME SUPPORT LIBRARY</td>
</tr>
<tr>
<td>4605 -02</td>
<td>ADA LANGUAGE SYSTEM ROLM 1666 ASSEMBLER B5 SPECIFICATION</td>
</tr>
<tr>
<td>4606 -02</td>
<td>ADA LANGUAGE SYSTEM ROLM 1602B RUNTIME SUPPORT LIBRARY B5 SPECIFICATION</td>
</tr>
<tr>
<td>4607 -02</td>
<td>ADA LANGUAGE SYSTEM VAX-11/780 LINKER B5 SPECIFICATION</td>
</tr>
<tr>
<td>4608 -02</td>
<td>ADA LANGUAGE SYSTEM BARE VAX-11/780 RUNTIME SUPPORT LIBRARY B5 SPECIFICATION</td>
</tr>
<tr>
<td>4609 -02</td>
<td>ADA LANGUAGE SYSTEM PDP-11/70 UNIX LINKER B5 SPECIFICATION</td>
</tr>
<tr>
<td>4627 -02</td>
<td>ADA SYNTAX CROSS REFERENCE LISTING</td>
</tr>
<tr>
<td>5372 -03</td>
<td>ADA COMPILER VALIDATION SUMMARY REPORT: NYU ADA/ED, VERSION 19.7 V001</td>
</tr>
<tr>
<td>5373 -03</td>
<td>ADA COMPILER VALIDATION SUMMARY REPORT: WESTERN DIGITAL STC-ADA COMPI</td>
</tr>
<tr>
<td>5374 -03</td>
<td>ADA COMPILER VALIDATION SUMMARY REPORT: ROLM ADA COMPILER, VERSION 4.52 V-003</td>
</tr>
<tr>
<td>5375 -03</td>
<td>ADA COMPILER VALIDATION SUMMARY REPORT: ROLM ADA COMPILER, VERSION 4.42 V-002</td>
</tr>
<tr>
<td>6098 -03</td>
<td>ADA (TRADE NAME) ORIENTATION FOR MANAGERS L101 TEACHER'S GUIDE</td>
</tr>
<tr>
<td>6099 -03</td>
<td>INTRODUCTION TO ADA, A HIGHER ORDER LANGUAGE L103 TEACHER'S GUIDE</td>
</tr>
<tr>
<td>6100 -03</td>
<td>ADA (REGISTERED TRADEMARK) TECHNICAL OVERVIEW. L102 TEACHER'S GUIDE</td>
</tr>
<tr>
<td>6102 -03</td>
<td>ADA (TRADEMARK) PRIMER</td>
</tr>
<tr>
<td>6105 -03</td>
<td>ADA (TRADEMARK) CASE STUDIES II</td>
</tr>
<tr>
<td>6482 -03</td>
<td>ADA (TRADEMARK) TRAINING CURRICULUM: PROGRAMMING METHODOLOGY M203 TEACHER'S GUIDE</td>
</tr>
</tbody>
</table>

STAFF AUTHOR, SYSTEMS DESIGNERS LIMITED, UNITED KINGDOM

<table>
<thead>
<tr>
<th>ISBN</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4346 -01</td>
<td>ADA SUPPORT SYSTEM STUDY PHASE 4 REPORT: THE INITIAL HOST</td>
</tr>
<tr>
<td>4410 -02</td>
<td>ADA SUPPORT SYSTEM STUDY - PHASE 1 REPORT - REQUIREMENTS AND SPECIFICATION</td>
</tr>
</tbody>
</table>
4658 -02 UNITED KINGDOM MINISTRY OF DEFENCE - ADA SUPPORT SYSTEM STUDY - PHASE 2 & 3 REPORTS

STAFF AUTHOR, CENTRE TECHNIQUE, BOX 174, 2501CD HAGUE, THE NETHERLANDS
4653 -02 RESOURCE IMPLICATIONS OF ADA AS THE NATO STANDARD HIGH ORDER LANGUAGE

STAFF AUTHOR, TEXAS INSTRUMENTS, INC., LEWISVILLE, TX
3428 -01 ADA INTEGRATED ENVIRONMENT III
3430 -01 ADA INTEGRATED ENVIRONMENT III: SYSTEM SPECIFICATION
3988 -02 ADA INTEGRATED ENVIRONMENT III COMPUTER PROGRAM DEVELOPMENT SPECIFICATION - VOLUME I
3989 -03 ADA INTEGRATED ENVIRONMENT III COMPUTER PROGRAM DEVELOPMENT SPECIFICATION - VOLUME II
3990 -02 ADA INTEGRATED ENVIRONMENT III COMPUTER PROGRAM DEVELOPMENT SPECIFICATION - VOLUME III
3991 -02 ADA INTEGRATED ENVIRONMENT III COMPUTER PROGRAM DEVELOPMENT SPECIFICATION - VOLUME IV
3996 -02 TECHNICAL REPORT - DESIGN OF THE ADA INTEGRATED ENVIRONMENT

STAFF AUTHOR, TRW, INC., SAN DIEGO, CA 92110
4623 -02 INFORMAL TECHNICAL REPORT - APSE I&T TEST TOOL FUNCTIONAL REQUIREMENTS
4624 -02 INFORMAL TECHNICAL INFORMATION - AIE & ALS INTERFACE MATRIX
4625 -02 INFORMAL TECHNICAL REPORT - ADA PROGRAMMING SUPPORT ENVIRONMENT (APSE) INTEROPERABILITY AND TRANSPORTABILITY: STANDARDS, CONVENTIONS & GUIDELINES

STAFF AUTHOR-IEEE SPEC.
3417 -01 WHAT EVER HAPPENED TO UNCOL?

STAMMERS, R.A., SPL INTNAT'L RES CTR, ABINGDON, OXFORDSHIRE
5979 -03 USING ADA AND APSE TO SUPPORT DISTRIBUTED MULTIMICROPROCESSOR TARGETS

STANISH, THOMAS A., INSTITUTE FOR DEFENSE ANALYSES, ARLINGTON, VA.
3432 -01 INITIAL THOUGHTS ON THE PEBBLEMAN PROCESS
3984 -02 RECOLLECTIONS ON THE HISTORY OF ADA ENVIRONMENTS
STANDISH, THOMAS A., U. OF CALIFORNIA AT IRVINE, IRVINE, CA 92717
3431-02 PROCEEDINGS OF THE IRVINE WORKSHOP ON ALTERNATIVES FOR THE
ENVIRONMENT, CERTIFICATION, AND CONTROL OF THE DOD COMMON HIGH
ORDER LANGUAGE

3604-01 KAPSE INTERFACE STANDARDS
4645-02 INTERACTIVE ADA IN THE ARCTURUS ENVIRONMENT
4681-02 ADVANCED SOFTWARE PRODUCTION ENVIRONMENTS

STANDISH, TIM, U. OF CALIFORNIA AT IRVINE, IRVINE, CA 92717
4334-01 PROGRAM DEVELOPMENT SYSTEMS - AN OVERVIEW

STANKOVIC, JOHN A., U. OF MASSACHUSETTS, AMHERST, MA 01003
3887-02 SOFTWARE COMMUNICATION MECHANISMS: PROCEDURE CALLS VERSUS
MESSAGES

STENNING, VIC, SYSTEMS DESIGNERS LIMITED, UNITED KINGDOM
3252-01 THE ADA ENVIRONMENT: A PERSPECTIVE

STEVENSON, D.R., STANFORD U., STANFORD, CA 94305
3311-01 ALGORITHMS FOR TRANSLATING ADA MULTITASKING
3454-01 ADAM - AN ADA BASED LANGUAGE FOR MULTI-PROCESSING
6017-03 ADAM: AN ADA-BASED LANGUAGE FOR MULTIPROCESSING

STEVENSON, PETER R., LOCKHEED MISSILES & SPACE CO. SUNNYVALE CA
5997-03 THE ROLE OF ADA IN REAL TIME EMBEDDED APPLICATIONS

STONE, HAROLD S., U. OF MASSACHUSETTS, AMHERST, MA 01003
1031-01 MOVING TOWARD A STANDARD MILITARY COMPUTER FAMILY - EDITORIAL

STONEBRAKER, J. MARC, SYSTEMS CONSULTANTS, INC., SAN DIEGO, CALIF.
4632-02 EVALUATION OF ADA AS A COMMUNICATIONS PROGRAMMING LANGUAGE

STOUGHTON, ALLEN, U. OF SOUTHERN CAL, INFOR.SCI.INST., MARINA DEL
RAY, CA
4182-01 TESTING THE INRIA ADA FORMAL DEFINITION: THE USC-ISI FORMAL
SEMANTICS PROJECT

STRATFORD-COLLINS M., NONAFFILIATED
5407-03 ADA: A PROGRAMMER'S CONVERSION COURSE
STROET, JAN, U. OF NIJMEGEN, NIJMEGEN, THE NETHERLANDS
3407 -01 AN ALTERNATIVE TO THE COMMUNICATION PRIMITIVES IN ADA

STROUSTRUP, BJARNE, BELL LABORATORIES, MURRAY HILL, NJ 07974
3841 -02 AN EXPERIMENT WITH THE INTERCHANGEABILITY OF PROCESSES AND
MONITORS

STRYKER, DAVID, INTERMETRICS, INC., CAMBRIDGE, MA 02138
4582 -02 NEBULA AS A TARGET FOR ADA

SUBRAHMANYAM, T. CARTER, U. OF UTAH, SALT LAKE CITY, UTAH 84112
3455 -01 TRANSFORMATION OF ADA PROGRAMS INTO SILICON

SVENSSON, GERT, ROYAL INST. OF TECH., S-100 44 STOCKHOLM,
SWeden
3397 -01 AN IMPLEMENTATION AND EMPIRICAL EVALUATION OF THE TASKING
FACILITIES IN ADA

SWANN, DR. T.G., MARCONI AVIONICS LTD., BOREHAMWOOD,
HERTFORDSHIRE ENG.
4126 -01 A CODE OF PRACTICE TO CONSTRAIN ADA

SYMM, G.T., MATHEMATICAL CENTRE, AMSTERDAM, NETHERLANDS
5848 -03 GUIDELINES FOR THE DESIGN OF LARGE MODULAR SCIENTIFIC LIBRARIES
IN ADA

SYMM, G.T., NAT'L PHYSICAL LAB., TEDDINGTON, MIDDLESEX,
ENGLAND
6499 -03 PROPOSAL FOR STANDARD BASIC FUNCTIONS IN ADA

SYSTEM CONSULTANTS INC.
4409 -02 COMPARATIVE ANALYSIS OF THE ADA AND CHILL PROGRAMMING LANGUAGES

SZULEWSKI, PAUL A., C.S.DRAPER LAB, INC., TECHNOLOGY
SQ., CAMBRIDGE, MA 02142
5665 -03 DESIGN METRICS AND ADA
6458 -03 AUTOMATING SOFTWARE DESIGN METRICS

SZWEDO, EDWARD J., IIT RESEARCH INSTITUTE, 199 LIBERTY
PLAZA, ROME, NY 13440
4692 -02 TECHNICAL REPORT SERVICES FOR THE ADA JOINT PROGRAM OFFICE
TAFT, EDWARD A., XEROX CORP., PALO ALTO RESEARCH CNTR., PALO ALTO, CA 94304
4333 -01 TOWARD SELF-DOCUMENTING PROGRAMS

4334 -01 PROGRAM DEVELOPMENT SYSTEMS - AN OVERVIEW

TAFT, TUCKER S., INTERMETRICS, INC., CAMBRIDGE, MA 02138
4196 -01 DIANA AS AN INTERNAL REPRESENTATION IN AN ADA-IN-ADA COMPILER

TAFVELIN, SVEN, ADA-EUROPE
4646 -02 ADA-EUROPE GUIDELINES FOR ADA COMPILER SPECIFICATION AND SELECTION

TAI, KUO-CHUNG, NORTH CAROLINA STATE UNIVERSITY RALEIGH 27650
3088 -01 AN ADA RELATIONAL DATABASE INTERFACE USING ABSTRACT DATA TYPES

5155 -02 COMMENTS ON THE SUGGESTED IMPLEMENTATION OF TASKING FACILITIES IN THE "RATIONALE FOR THE DESIGN OF THE ADA PROGRAMMING LANGUAGE"

TAYLOR, CRAIG, U. OF SOUTHERN CAL, INFOR., SCI. INST., MARINA DEL RAY, CA
4153 -02 TRANSLATION OF CMS-2 PROGRAMS TO ADA

TAYLOR, RICHARD N., BOEING COMPUTER SERVICES CO., P.O. BOX 24346, SEATTLE, WA
4331 -01 POSITION PAPER (ADA)

TAYLOR, RICHARD N., U. OF VICTORIA, VICTORIA, B.C., CANADA V8V2Y2
3954 -02 A GENERAL-PURPOSE ALGORITHM FOR ANALYZING CONCURRENT PROGRAMS

TEDD, M.D., SPL INTNAT'L RES CTR, ABINGDON, OXFORDSHIRE OX14 3UE, UK
5979 -03 USING ADA AND APSE TO SUPPORT DISTRIBUTED MULTIMICROPROCESSOR TARGETS

TEITELBAUM, RAY T., CORNELL U., ITHACA, NY 14853
5546 -03 ENCAPSULATED DATA TYPES AND GENERIC PROCEDURES

TELLER, JACHIM, SIEMENS AG., MUNICH, W. GERMANY
4195 -01 LOLITA - A LOW LEVEL INTERMEDIATE LANGUAGE FOR ADA

TEXEL, PUTNAM, SOFTECH, TINTON FALLS, NJ
5519 -03 THE U.S. ARMY MODEL ADA TRAINING CURRICULUM

5525 -03 THE CECOM SUMMER FACULTY RESEARCH PROGRAM
THALL, RICHARD M., SOFTECH, INC. TOTTEN POND RD, WALTHAM, MA 02154
3253 -01 THE ADA LANGUAGE SYSTEM
4174 -01 THE KAPSE FOR THE ADA LANGUAGE SYSTEM
5520 -03 CONFIGURATION MANAGEMENT WITH THE ADA LANGUAGE SYSTEM

THOMAS, ELLIS, SYSTEMS DESIGNERS LIMITED, UNITED KINGDOM
3252 -01 THE ADA ENVIRONMENT: A PERSPECTIVE

TICHY, WALTER F., PURDUE U., WEST LAFAYETTE, IN 47907
4292 -01 ADABASE: A DATA BASE FOR ADA PROGRAMS

TIMMESFELD, K. H., IDAS GMBH, D6250 LIMBURG/LAHN, WEST GERMANY
2651 -01 THE LTPL-E TASKING PROPOSALS

TIMMESFELD, K. H., PHYSICS INST.
3. ERWIN-ROMMEL-STR. 1, ERLANGEN-NURNBERG
4507 -03 REPORT OF ANALYSIS OF THE PRELIMINARY DESIGNS FOR A COMMON
PROGRAMMING LANGUAGE

TOMLINSON, G.M., U. OF YORK, HESLINGTON, YORK Y01 5DD, U.K.
5998 -03 A PROBLEM WITH ADA AND RESOURCE ALLOCATION

TRAISTER, LEON M., INSTITUTE FOR SOFTWARE ENGINEERING, MENLO
PARK, CA
4682 -02 A SOFTWARE DEMAND METRIC FOR THE ADA LANGUAGE

TRASK, MICHAEL J., U. OF SOUTH CAROLINA, COLUMBIA, SC 29208
5370 -03 ADA MULTI-TASKING SUPPORT FOR MICROPROCESSOR SYSTEMS

TREFF, LEO, U. OF KARLSRUHE, KARLSRUHE, FED. REP. OF GERMANY
3987 -02 TASK STATE TRANSITIONS IN ADA

TRIPATHI, A.R., U. OF TEXAS AT AUSTIN, AUSTIN, TX 78712
4427 -02 A PRELIMINARY EVALUATION OF VERIFIABILITY IN ADA

TURNER, DENNIS J., U.S. ARMY COMM-ELECTRONICS CMD (CECOM), FT.
MONMOUTH, NJ
5518 -03 THE ARMY ADA EDUCATION PROGRAM

TURNER, DENNIS J., U.S. ARMY, COMMUNICATIONS R & D COMND.
FT. MONMOUTH, NJ
1183 -01 AN INTEGRATED SYSTEM OF TOOLS TO SUPPORT THE DOD COMMON LANGUAGE
U.S. DEPARTMENT OF NAVY
3462 -01 MASTER PLAN FOR TACTICAL EMBEDDED COMPUTER RESOURCES

U.S. DEPT. OF DEFENSE
2341 -01 REFERENCE MANUAL FOR THE ADA PROGRAMMING LANGUAGE
3408 -01 DEPARTMENT OF DEFENSE REQUIREMENTS FOR HIGH ORDER COMPUTER
PROGRAMMING LANGUAGES: REVISED "IRONMAN" (JULY 1977): THE
TECHNICAL REQUIREMENTS
3451 -01 REQUIREMENTS FOR ADA PROGRAMMING SUPPORT ENVIRONMENTS: "STONEMAN"
3460 -01 DEPARTMENT OF DEFENSE REQUIREMENTS FOR THE PROGRAMMING
ENVIRONMENT FOR THE COMMON HIGH ORDER LANGUAGE: PEBBLEMAN
3461 -01 DEPARTMENT OF DEFENSE REQUIREMENTS FOR HIGH ORDER COMPUTER
PROGRAMMING LANGUAGES: "STEELMAN"
3463 -01 REQUIREMENTS FOR HIGH ORDER COMPUTER PROGRAMMING LANGUAGES:
"STEELMAN"
3607 -01 ADA METHODOLOGIES: CONCEPTS AND REQUIREMENTS
4165 -01 SOFTWARE DEVELOPMENT METHODOLOGIES AND ADA
4374 -02 DEPARTMENT OF DEFENSE REQUIREMENTS FOR ADA LANGUAGE INTEGRATED
COMPUTER ENVIRONMENTS: PRELIMINARY "STONEMAN"
4656 -02 DEPARTMENT OF DEFENSE REQUIREMENTS FOR THE PROGRAMMING
ENVIRONMENT FOR THE COMMON HIGH ORDER LANGUAGE - PEBBLEMAN
REVISED
5542 -03 DESIGN AND IMPLEMENTATION OF PROGRAMMING LANGUAGES, VOL. 54
LECTURE NOTES IN COMPUTER SCIENCE
5559 -03 THE TINMAN NEEDED CHARACTERISTICS
5674 -03 DEPARTMENT OF DEFENSE COMPUTER TECHNOLOGY (STUDY ANNEX)

U.S. DEPT. OF DEFENSE, U.S.DEPT. OF DEFENSE, THE PENTAGON, WASH., DC
3700 -01 DEPARTMENT OF DEFENSE REQUIREMENTS FOR HIGH ORDER COMPUTER
PROGRAMMING LANGUAGES: "IRONMAN"

UHL, JORGEN, INSTITUT FUER INFORMATIK II UNIVERSITAT,
KARLSRUHE
4786 -02 AN ATTRIBUTE GRAMMAR FOR THE SEMANTIC ANALYSIS OF ADA

UHL, JORGEN, U. OF KARLSRUHE, KARLSRUHE, FED. REP. OF GERMANY
4318 -01 AN ATTRIBUTE GRAMMAR FOR ADA
<table>
<thead>
<tr>
<th>Author</th>
<th>Institution and Location</th>
<th>Page and -02</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unger, Brian</td>
<td>U. of Calgary, Alberta Canada</td>
<td>4400 -02</td>
<td>The Process View of Simulation in ADA</td>
</tr>
<tr>
<td>Urban, Louis J.</td>
<td>U.S.A.F. ASD, Wright-Patterson AFB, OH</td>
<td>4132 -01</td>
<td>Options and Opportunities for Standards A NATO/AGARD Viewpoint</td>
</tr>
<tr>
<td>Ure, William R.</td>
<td>U.S.A.F. ASD, Wright-Patterson AFB, OH</td>
<td>4790 -02</td>
<td>ADAPAR: An ADA Recognizer</td>
</tr>
<tr>
<td>Urquhart, John I.A.</td>
<td>U. of Virginia, Charlottesville, VA 22901</td>
<td>6225 -03</td>
<td>On the Implementation and Use of ADA on Fault-Tolerant Distributed Systems</td>
</tr>
<tr>
<td>Vallario, G.N.</td>
<td>Olivetti-DIDau Pisa, Italy</td>
<td>5564 -03</td>
<td>A Distributed Kapse Architecture</td>
</tr>
<tr>
<td>Van Den Bos, Jan</td>
<td>U. of Nijmegen, Nijmegen, The Netherlands</td>
<td>4296 -01</td>
<td>Comments on ADA Process Communication</td>
</tr>
<tr>
<td>Van Der Linden, Peter</td>
<td>Nonaffiliated</td>
<td>6176 -03</td>
<td>Writing Diagnostic Software in ADA</td>
</tr>
<tr>
<td>Van Der Linden, Peter</td>
<td>Yale U., New Haven, CT 06520</td>
<td>4302 -01</td>
<td>Macro Facilities in the ADA Environment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4316 -01</td>
<td>Ambiguity and Orthogonality in ADA</td>
</tr>
<tr>
<td>Van Deusen, Mary S.</td>
<td>Intermetrics, Inc., Cambridge, MA 02138</td>
<td>3377 -01</td>
<td>TCOL-ADA: Revised Report on an Intermediate Representation for the Preliminary ADA Language</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4654 -02</td>
<td>RED Language Reference Manual</td>
</tr>
<tr>
<td>Van Deusen, Mary S.</td>
<td>Prime Computer, Inc., Farmingham, MA 01701</td>
<td>5144 -02</td>
<td>Types in RED</td>
</tr>
<tr>
<td>Van Katwijk, J.</td>
<td>Delft University of Technology</td>
<td>4077 -02</td>
<td>Descriptors for DAS</td>
</tr>
<tr>
<td>Van Name, Mark L.</td>
<td>North Carolina State University, Raleigh 27650</td>
<td>3088 -01</td>
<td>An ADA Relational Database Interface Using Abstract Data Types</td>
</tr>
<tr>
<td>Van Someren, J.</td>
<td>Delft University of Technology</td>
<td>4077 -02</td>
<td>Descriptors for DAS</td>
</tr>
</tbody>
</table>
VARNEY, R.C., ANALYTIC DISCIPLINES, INC.
5668 -03 USING ADA WITH A DATA FLOW LANGUAGE

VEMINI, SHAULA, COURANT INST. NEW YORK UNIV., 251 MERCER
ST. NY, NY 10012
4178 -01 ON THE SUITABILITY OF ADA MULTITASKING FOR EXPRESSING PARALLEL
ALGORITHMS

VOGELWEIDE, W.
4164 -01 ADA, AHA

VON HENKE, F.W., STANFORD U., STANFORD, CA 94305
3454 -01 ADAM - AN ADA BASED LANGUAGE FOR MULTI-PROCESSING
4027 -01 PROGRAM VERIFICATION AT STANFORD
6017 -03 ADAM: AN ADA-BASED LANGUAGE FOR MULTIPROCESSING

VOSSLER, R.A., TRW DEFENSE & SPACE SYSTEMS
GROUP, HUNTSVILLE, AL
2426 -01 SPECIFICATION TOOLS ENVIRONMENT STUDY

WALKER, I., U. OF YORK, HESLINGTON, YORK Y01 5DD, U.K.
4614 -02 ADA WORKBENCH COMPILER PROJECT 1981

WALLIS, PETER J. L., ADA-EUROPE
4646 -02 ADA-EUROPE GUIDELINES FOR ADA COMPILER SPECIFICATION AND
SELECTION

WALLIS, PETER J. L., NAT'L PHYSICAL LAB., TEDDINGTON, MIDDLESEX,
ENGLAND
3420 -01 ADA-EUROPE GUIDELINES FOR THE PORTABILITY OF ADA PROGRAMS

WALLIS, PETER J. L., U. OF BATH, CLAVERTON DOWN, BATH BA2 7AY, U.K.
2688 -01 HANDLING TYPE INFORMATION WHEN COMPILING A LANGUAGE WITH
USER-DEFINED TYPES
2821 -01 DESIGNING STORAGE MANAGEMENT SCHEMES FOR BLOCK-STRUCTURED
LANGUAGES
3415 -01 EFFICIENT IMPLEMENTATION OF THE ADA OVERLOADING RULES
4311 -01 ADA MODEL ARITHMETIC: COSTS AND BENEFITS
4844 -03 PORTABILITY AND STYLE IN ADA
6156 -03 REQUIREMENTS ANALYSIS FOR ADA COMPILERS
WALTERS, S.L., WARREN SPRING LAB, STEVENAGE, ENGLAND
6468 -03 REAL-TIME LANGUAGES FOR PROCESS CONTROL

WAND, IAN C., PHYSICS INST.
III,ERWIN-ROMMEL-STR.1,ERLANGEN-NURNBERG
4507 -03 REPORT OF ANALYSIS OF THE PRELIMINARY DESIGNS FOR A COMMON PROGRAMMING LANGUAGE

WAND, IAN C., U. OF YORK, HESLINGTON, YORK YO1 5DD, U.K.
1647 -01 SYSTEMS IMPLEMENTATION LANGUAGES AND IRONMAN
2014 -01 AN ASSESSMENT OF MODULA
2651 -01 THE LTPL-E TASKING PROPOSALS
4403 -02 ADA BIBLIOGRAPHY
4404 -02 ADA BIBLIOGRAPHY
4614 -02 ADA WORKBENCH COMPILER PROJECT 1981

WASSERMAN, ANTHONY I., U. OF CALIF. AT SAN FRANCISCO, SAN FRANCISCO, CA 94143
5484 -03 ADA METHODOLOGY QUESTIONNAIRE SUMMARY
6029 -03 COMPARING SOFTWARE DEVELOPMENT METHODOLOGIES FOR ADA: A STUDY PLAN

WASSERMAN, ANTHONY I., U. OF CALIFORNIA AT IRVINE, IRVINE, CA 92717
4636 -02 SOFTWARE DEVELOPMENT METHODOLOGIES AND ADA; ADA METHODOLOGIES:
CONCEPTS AND REQUIREMENTS

WAUGH, D.W., IBM FEDERAL SYSTEMS DIVISION, BETHESDA, MD 20034
3357 -01 ADA AS A DESIGN LANGUAGE
4667 -02 AN ADA LANGUAGE PROGRAMMING COURSE

WAUGH, D.W., SOFTWARE TECH DEPT., FSD HEADQUARTERS
BETHESDA, MD
4542 -02 PDL/ADA - PDL EQUIVALENCIES: A SIDE-BY-SIDE COMPARISON OF PDL/ADA AND PDL

WEGNER, PETER, BROWN U., PROVIDENCE, RI 02912
0733 -01 PROGRAMMING WITH ADA: AN INTRODUCTION BY MEANS OF GRADUATED EXAMPLES
2498 -01 REPORT TO THE HIGH ORDER LANGUAGE WORKING GROUP (HOLWG)
3258 -01 THE ADA LANGUAGE AND ENVIRONMENT

3360 -01 SELF-ASSESSMENT PROCEDURE VIII. A SELF-ASSESSMENT PROCEDURE DEALING WITH THE PROGRAMMING LANGUAGE ADA

3509 -01 TOWARDS CAPITAL-INTENSIVE INFORMATION ENGINEERING

3914 -01 ADA EDUCATION AND TECHNOLOGY TRANSFER ACTIVITIES

4059 -02 REFLECTIONS ON CAPITAL-INTENSIVE SOFTWARE TECHNOLOGY

4631 -02 REPORT TO THE HOLWG

4775 -03 PROCESSES, TASKS, AND MONITORS: A COMPARATIVE STUDY OF CONCURRENT PROGRAMMING PRIMITIVES

5347 -03 PROGRAMMING LANGUAGES, TESTING, AND REUSABILITY

6031 -03 CAPITAL-INTENSIVE SOFTWARE TECHNOLOGY

WEGNER, PETER, BRUNEL UNIVERSITY, UXBRIDGE UB8 3PH, MIDDLESEX, ENG.

4406 -02 TOWARDS A COMPUTER-BASED ADA EDUCATIONAL ENVIRONMENT

WEICKER, REINHOLD P., INTEL CORP., HILLSBORO, OR 97123

4633 -02 ADA LANGUAGE STATISTICS FOR THE IMAX 432 OPERATING SYSTEM

WEICKER, REINHOLD P., SIEMENS CORPORATE RESEARCH & SUPPORT INC., PRINCETON, N

6172 -03 DHRYSTONE: A SYNTHETIC SYSTEMS PROGRAMMING BENCHMARK

WEISSMAN, LARRY, INTERMETRICS, INC., CAMBRIDGE, MA 02138

5551 -03 REQUIREMENTS FOR REAL-TIME LANGUAGES

WEISSMAN, LARRY, SOFTECH, INC. TOTTEN POND RD, WALTHAM, MA 02154

2953 -01 DESIGN CONSIDERATIONS IN LANGUAGE PROCESSING TOOLS FOR ADA

3253 -01 THE ADA LANGUAGE SYSTEM

WELLENS, A.J., U. OF YORK, HESLINGTON, YORK YO1 5DD, U.K.

5998 -03 A PROBLEM WITH ADA AND RESOURCE ALLOCATION

WELSH, JIM, U. OF QUEENSLAND, ST. LUCIA, QUEENSLAND, AUSTRALIA

2722 -01 A COMPARATIVE STUDY OF TASK COMMUNICATION IN ADA
WERNER, PATRICK R., U.S.A.F. INSTITUTE OF TECHNOLOGY
5454 -03 TOWARD ADA: THE CONTINUING DEVELOPMENT OF AN ADA COMPILER

WESTERMAN, ROB, TND - IBBC, THE NETHERLANDS
3601 -01 ADA PROGRAM SUPPORT ENVIRONMENTS REQUIREMENTS: NOTES ON KERNEL APSE INTERFACE ISSUES

WETHERALL, PHILIP R., INSTITUTE FOR DEFENSE ANALYSES, ARLINGTON, VA.
3435 -01 RATIONALE FOR FIXED-POINT AND FLOATING-POINT COMPUTATIONAL REQUIREMENTS FOR A COMMON PROGRAMMING LANGUAGE

WETHERELL, C.S., BELL LABORATORIES, MURRAY HILL, NJ 07974
4648 -02 AN ADA LANGUAGE TYPE CHECKING PROBLEM AND TWO MORALS

WHEELER, THOMAS J., U.S.AMY TACTICAL DATA SYSTEMS, FT. MONMOUTH, NJ
3346 -01 EMBEDDED SYSTEM DESIGN WITH ADA AS THE SYSTEM DESIGN LANGUAGE

WHEELER, THOMAS J., COMPUTER RES DIV CENTACS CECOM FT. MONMOUTH, NJ 07703
5992 -03 A COMMAND INTERPRETER FOR ADA

WHITAKER, LT. COL. WM. A
3275 -01 INTRODUCING ADA

WHITAKER, LT. COL. WM. A, U.S.AIR FORCE
0465 -01 A DEFENSE VIEW OF SOFTWARE ENGINEERING

3401 -01 SUMMARY OF THE ADA IMPLEMENTOR'S MEETING, DECEMBER 1980
3402 -01 COMMENTS ON PORTIONS OF THE ACM SIGPLAN CONFERENCE ON THE ADA PROGRAMMING LANGUAGE NOT AVAILABLE IN THE PROCEEDINGS

WHITAKER, LT. COL. WM. A, U.S.A.F. ARMAMENT LAB AD/AFATL/DLA, EGLIN AFB FL32542
3986 -02 FORTRAN-LIKE FORMATTED OUTPUT WITH ADA

WHITAKER, LT. COL. WM. A, U.S.DEPT. DEFENSE, ADVANCED RESEARCH PROJECTS AGENCY
3278 -01 THE U.S. DEPARTMENT OF DEFENSE COMMON HIGH ORDER LANGUAGE EFFORT

WHITAKER, LT. COL. WM. A, JPM WIS, WASHINGTON, DC 20330
4747 -02 THREE ADA* EXAMPLES
ADA Bibliography Volume III

WHITAKER, LT. COL. WM. A. WIS JOINT PROGRAM OFFICE, WASHINGTON, DC
5654 -03 ADA FOUNDATION FOR WIS

WHITE, DOUGLAS, ROME AIR DEVELOPMENT CENTER, GAFB, ROME, NY
13441
2498 -01 REPORT TO THE HIGH ORDER LANGUAGE WORKING GROUP (HOLWG)

WHITE, KERRY, SOFTWARE ENGINEERING ASSOCIATES
4637 -02 JOVIAL/ADA MICROPROCESSOR STUDY

WHITE, TIM, ADA-EUROPE
4646 -02 ADA-EUROPE GUIDELINES FOR ADA COMPILER SPECIFICATION AND
SELECTION

WHITEHILL, STEPHEN B., U. OF CALIFORNIA AT IRVINE, IRVINE, CA 92717
4194 -01 AN ADA VIRTUAL OPERATING SYSTEM
5404 -03 ADA FOR PROGRAMMERS

WICHMAN, P.A., NAT’L PHYSICAL LAB., TEDDINGTON, MIDDLESEX, ENGLAND
5999 -03 NPL REPORT: ADA-EUROPE GUIDELINES FOR ADA COMPILER SPECIFICATION
AND SELECTION

WICHMANN, BRIAN A.
3290 -01 RATIONALE FOR THE DESIGN OF THE ADA PROGRAMMING LANGUAGE

WICHMANN, BRIAN A., ADA-EUROPE
4646 -02 ADA-EUROPE GUIDELINES FOR ADA COMPILER SPECIFICATION AND
SELECTION

WICHMANN, BRIAN A., MATHEMATICAL CENTRE,AMSTERDAM,NETHERLANDS
5848 -03 GUIDELINES FOR THE DESIGN OF LARGE MODULAR SCIENTIFIC LIBRARIES
IN ADA

WICHMANN, BRIAN A., NAT’L PHYSICAL LAB., TEDDINGTON, MIDDLESEX, ENGLAND
3364 -01 TUTORIAL MATERIAL ON THE REAL DATA-TYPES IN ADA
3420 -01 ADA-EUROPE GUIDELINES FOR THE PORTABILITY OF ADA PROGRAMS
3450 -01 TUTORIAL MATERIAL ON THE REAL DATA-TYPES IN ADA
6156 -03 REQUIREMENTS ANALYSIS FOR ADA COMPILERS

WIENER, RICHARD S., U. OF COLORADO AT COLORADO SPRINGS, CO
5409 -03 PROGRAMMING IN ADA
5607 -03 SOFTWARE ENGINEERING WITH MODULA-2 AND ADA
5692 -03 MODULAR SOFTWARE CONSTRUCTION AND OBJECT-ORIENTED DESIGN USING ADA

WILDEN, JACK C., U. OF MASSACHUSETTS, AMHERST, MA 01003
3308 -01 NESTING IN ADA PROGRAMS IS FOR THE BIRDS

WILDER, WILLIAM L., SOFTECH, INC. TOTTEN POND RD, WALTHAM, MA 02154
5568 -03 MINIMAL HOST FOR THE KAPSE

WILLIAMS, A.J., U. OF YORK, HESLINGTON, YORK YO1 5DD, U.K.
4614 -02 ADA WORKBENCH COMPILER PROJECT 1981

WILLIAMS, JIM., ROLM CORP., MIL-SPEC, 4900 OLD IRONSIDES, SANTA CLARA, CA
4160 -01 COMPILER AND TOOL SET FOR ADA DESIGN AND IMPLEMENTATION

WILLIAMS, JOHN H., CORNELL U., ITHACA, NY 14853
5546 -03 ENCAPSULATED DATA TYPES AND GENERIC PROCEDURES

WILLIAMSON, RONALD, U. OF SOUTHERN CALIFORNIA, LOS ANGELES, CA
90007
5641 -03 CONCURRENT COMMUNICATION AND SYNCHRONIZATION MECHANISMS

WILLIS, N., SHEFFIELD CITY POLYTECH. COMPUTER STUDIES, POND ST. 1W
5986 -03 PARALLEL PROGRAMMING - A BIBLIOGRAPHY

WILLMAN, HERB, RAYTHEON
3599 -01 APSE PORTABILITY ISSUE - PRAGMATIC LIMITATIONS

WILSON, GERALD A., ADV INF & DECIS SYS 201 SAN ANTONIO CIR, MTN VIEW, CA
3245 -02 DESIGN OF AN INTELLIGENT PROGRAM EDITOR

WINCHMANN, B.A., NAT'L PHYSICAL LAB., TEDDINGTON, MIDDLESEX, ENGLAND
5474 -03 A COMPARISON OF PASCAL AND ADA
WINKLER, JURGEN F. H., SIEMENS AG., MUNICH, W. GERMANY
3409 -01 DIFFERENCES BETWEEN PRELIMINARY AND FINAL ADA

4298 -01 ADA SYNTAX DIAGRAMS FOR TOP-DOWN ANALYSIS
5978 -03 MORE ON BLOCK STRUCTURE: USING ADA

WINTER, D.T., MATHEMATICAL CENTRE, AMSTERDAM, NETHERLANDS
5848 -03 GUIDELINES FOR THE DESIGN OF LARGE MODULAR SCIENTIFIC LIBRARIES IN ADA

WINTERSTEIN, GEORG, INSTITUT FUER INFORMATIK II UNIVERSITAET, KARLSRUHE
4786 -02 AN ATTRIBUTE GRAMMAR FOR THE SEMANTIC ANALYSIS OF ADA

WINTERSTEIN, GEORG, NONAFFILIATED
4429 -02 PROBLEMS IN COMPILING ADA

WINTERSTEIN, GEORG, U. OF KARLSRUHE, KARLSRUHE, FED. REP. OF GERMANY
3297 -01 TOWARDS A COMPILER FRONT-END FOR ADA
3298 -01 OVERLOADING IN PRELIMINARY ADA
3412 -01 AN LALR(1) GRAMMAR FOR (REVISED) ADA
4318 -01 AN ATTRIBUTE GRAMMAR FOR ADA
4419 -02 AIDA - AN INTERMEDIATE REPRESENTATION OF ADA PROGRAMS
4420 -02 NOTES ON TCOL
4541 -02 THE ADA COMPILER DEVELOPMENT PROJECT - OVERVIEW

WINTERSTEIN, GEORG, U. KARLSRUHE, POSTFACH 6380, KARLSRUHE, GERMANY
4185 -01 THE INTEGRATION OF EXISTING DATABASE SYSTEMS IN AN ADA ENVIRONMENT
5365 -03 ADA DOCUMENTATION AND PROGRAMMING GUIDELINES

WOLF, ALEXANDER L., U. OF MASSACHUSETTS, AMHERST, MA 01003
3308 -01 NESTING IN ADA PROGRAMS IS FOR THE BIRDS

WOLFE, DR. MARTIN L., U.S. ARMY, COMMUNICATIONS R & D COMND, FT. MONMOUTH, NJ
3253 -01 THE ADA LANGUAGE SYSTEM
<table>
<thead>
<tr>
<th>Author</th>
<th>Affiliation</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>WOLFE, DR. MARTIN I., U.S. ARMY CNTR FOR SYSTEMS ENGRG & INTEGRTN, FT. MONMOUTH</td>
<td>2953 -01 DESIGN CONSIDERATIONS IN LANGUAGE PROCESSING TOOLS FOR ADA</td>
<td></td>
</tr>
<tr>
<td>WOLFE, DR. MARTIN I., U.S. ARMY COMM-ELECTRONICS CMD, FT. MONMOUTH, NJ</td>
<td>4689 -02 AN ADA PROGRAMMING SUPPORT ENVIRONMENT - THE ADA LANGUAGE SYSTEM</td>
<td></td>
</tr>
<tr>
<td>WOLVERTON, DAVID ALAN, U. OF CALIFORNIA AT IRVINE, IRVINE, CA 92717</td>
<td>6137 -03 A PERFECT HASH FUNCTION FOR ADA RESERVED WORDS</td>
<td></td>
</tr>
<tr>
<td>WONG, S., U. OF SUSSEX, BRIGHTON, ENGLAND</td>
<td>4309 -01 STRUCTURE AND TASKING FEATURES OF THE PROGRAMMING LANGUAGE MARTLET</td>
<td></td>
</tr>
<tr>
<td>WOOD, PAUL., SPERRY UNIVAC</td>
<td>4418 -02 DESPITE SOME RISKS, FUTURE APPEARS PROMISING FOR ADA</td>
<td></td>
</tr>
<tr>
<td>WOOLLEY, J.D., BOEING COMMERCIAL AIRPLANE CO.BX</td>
<td>1619 -01 A TECHNIQUE FOR ASSESSING AVIONIC PROGRAMMING LANGUAGE REQUIREMENTS</td>
<td></td>
</tr>
<tr>
<td>WREGE, D.E., CONTROL DATA CORPORATION</td>
<td>3602 -01 KAPSE STANDARDIZATION: A FIRST STEP</td>
<td></td>
</tr>
<tr>
<td>WUEBKER, FREDERICK E., RCA GOV'T SYSTEMS DIV., MOORESTOWN, NJ</td>
<td>4118 -01 THE IMPACT OF NEBULA, MCF, AND ADA ON REAL-TIME EMBEDDED COMPUTER SYSTEMS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5531 -03 MILITARY COMPUTER FAMILY OPERATING SYSTEM: AN ADA APPLICATION</td>
<td></td>
</tr>
<tr>
<td>WULF, WILLIAM A., CARNEGIE-MELLON U., PITTSBURGH, PA 15213</td>
<td>0822 -01 A COMPARISON OF PROGRAMMING LANGUAGES FOR SOFTWARE ENGINEERING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3284 -01 TARTAN - LANGUAGE DESIGN FOR THE IRONMAN REQUIREMENT: REFERENCE MANUAL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3285 -01 TARTAN - LANGUAGE DESIGN FOR THE IRONMAN REQUIREMENT: NOTES AND EXAMPLES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3377 -01 TCOL-ADA: REVISED REPORT ON AN INTERMEDIATE REPRESENTATION FOR THE PRELIMINARY ADA LANGUAGE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4344 -01 RED LANGUAGE DESIGN RATIONALE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4788 -02 DIANA REFERENCE MANUAL</td>
<td></td>
</tr>
</tbody>
</table>
ADA Bibliography Volume III

YATES, ROBERT K., TECNISOFTWARE, 29 RUE DES PYRAMIDES, F-75001 PARIS
4298 -01 ADA SYNTAX DIAGRAMS FOR TOP-DOWN ANALYSIS

YEE, DONALD, JERSEY CITY STATE COLLEGE, JERSEY CITY, NJ 07305
5523 -03 EXPERIENCES IN TEACHING ADA

YEHUDAI, AMIRAM, TEL AVIV UNIVERSITY, RAMAT AVIV, ISRAEL
3912 -01 DATA ABSTRACTION: TYPES VS. OBJECTS
5143 -02 A METHODOLOGY FOR MODULAR USE OF ADA

YELLOWITZ, L., FORD AEROSPACE AND COMMUNICATIONS CORP, PALO ALTO, CA
4034 -01 FACC ACTIVITIES/POSITIONS IN METHODOLOGY, VERIFICATION, AND TRUSTED SYSTEMS

YOUNG, RAY P., SPERRY UNIVAC DEFENSE SYSTEMS, ST. PAUL, MN.
4403 -02 ADA BIBLIOGRAPHY

YOUNG, STEPHEN J., PH.D., U. OF MANCHESTER, MANCHESTER M13 9PL, U.K.
4368 -02 A COMPLETE INTRODUCTION TO ADA
5408 -03 AN INTRODUCTION TO ADA

YOUNG, WILLIAM D., U. OF TEXAS AT AUSTIN, AUSTIN, TX 78712
3198 -01 PROGRAM VERIFICATION AND EMBEDDED AEROSPACE SOFTWARE
3306 -01 GENERICS AND VERIFICATION IN ADA
3403 -01 STEELMAN AND THE VERIFIABILITY OF (PRELIMINARY) ADA
4427 -02 A PRELIMINARY EVALUATION OF VERIFIABILITY IN ADA

ZALEWSKI, JANUSZ, INSTITUTE OF NUCLEAR RESEARCH, OTWOCK-SWIERK, POLAND
4403 -02 ADA BIBLIOGRAPHY
4404 -02 ADA BIBLIOGRAPHY

ZALEWSKI, JANUSZ, INST. OF NUCLEAR RES. DORODNA 16
03-195 WARSZAWA, POLAND
4076 -02 EXAMPLE OF CAMAC PROGRAMMING IN ADA
ZEIGLER, DR. STEPHEN F., INTEL CORP., 3200 LAKESIDE DR., SANTA CLARA, CA 95051
3254 -01 ADA FOR THE INTEL 432 MICROCOMPUTER

ZEIGLER, DR. STEPHEN F., INTEL CORP., HILLSBORO, OR 97123
4533 -02 ADA LANGUAGE STATISTICS FOR THE IMAX 432 OPERATING SYSTEM

ZEIGLER, DR. STEPHEN F., VERDIX CORPORATION
5662 -03 CONSIDERATIONS IN ACQUERING ADA COMPILERS

ZELKOWITZ, MARVIN V., U. OF MARYLAND, COLLEGE PARK, MD 20742
3280 -01 MONITORING AN ADA SOFTWARE DEVELOPMENT PROJECT
3437 -01 ASSERTION MECHANISMS IN PROGRAMMING LANGUAGES
6136 -03 MONITORING AN ADA SOFTWARE DEVELOPMENT

ZICARI, R., SYNTAX S.P.A., VIA G.NEGRI-8, MILANO, ITALY
5686 -03 PROGRAMMING A DISTRIBUTED SYSTEM IN ADA

ZUCKERMAN, SUSAN LANA, DEFENSE COMMUNICATIONS ENGINEERING CENTER
3433 -01 PROBLEMS WITH THE MULTITASKING FACILITIES IN THE ADA PROGRAMMING LANGUAGE
4. INDEX TERM (SUBJECT) INDEX
<table>
<thead>
<tr>
<th>Topic</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT DATA TYPES</td>
<td>5515-03 5516-03 6218-03</td>
</tr>
<tr>
<td>ABSTRACT MACHINES</td>
<td>4620-02</td>
</tr>
<tr>
<td>ACCEPTANCE TESTING</td>
<td>3430-01 4343-01</td>
</tr>
<tr>
<td>ACCESS-CONTROL MECHANISMS</td>
<td>3355-01 3583-01 4097-02 4104-01 4181-01 4191-01 4307-01 5549-03</td>
</tr>
<tr>
<td>ACCESSIBILITY</td>
<td>3355-01 3404-01 3407-01</td>
</tr>
<tr>
<td>ACQUISITION COSTS</td>
<td>4662-02</td>
</tr>
<tr>
<td>ACQUISITION MANAGEMENT</td>
<td>3462-01 4056-02 4251-02 4668-02 4639-02 4673-02 4674-02 5653-03 5655-03 5659-03 5661-03 5662-03 5667-03</td>
</tr>
<tr>
<td>ADA TOOL ENVIRONMENT</td>
<td>4287-03 4359-03 4678-03 4791-02 4821-03 4825-03 4833-02 4834-02 4837-02 4838-02 4840-02 4843-02 4845-03 5277-02 5278-02 5364-03 5414-03 5428-03 5444-03 5471-03 5496-03 5520-03 5521-03 5528-03 5564-03 5568-03 5667-03 5674-03 5736-03 5841-03 5973-03 5979-03 5994-03 5995-03 5996-03 5999-03 6006-03 6084-03 6119-03 6151-03 6175-03 6179-03 6216-03 6434-03</td>
</tr>
<tr>
<td>ADAPTABILITY</td>
<td>3427-01 6765-03</td>
</tr>
<tr>
<td>ALGOL</td>
<td>2081-01 2688-01 2821-01 3312-01 3373-01 3388-01 3391-01 3395-01 3411-01 3413-01 3415-01 3449-01 3812-02 3888-02 4095-01 4360-02 4365-02 4403-02 4404-02 4426-02 4631-02 5148-02 5986-03 6171-03</td>
</tr>
<tr>
<td>ALGORITHM ANALYSIS</td>
<td>4249-02 4250-02</td>
</tr>
<tr>
<td>ALPHARD</td>
<td>5552-03</td>
</tr>
<tr>
<td>APL (A PROGRAMMING LANGUAGE)</td>
<td>3084-01</td>
</tr>
<tr>
<td>APPLICATION-ORIENTED LANGUAGES</td>
<td>0733-01 1619-01 2156-01 3434-01 6187-03</td>
</tr>
<tr>
<td>APPLICATIONS</td>
<td>5656-03</td>
</tr>
<tr>
<td>ARCHITECTURAL FAMILIES</td>
<td>1031-01 1089-01 4118-01 6005-03</td>
</tr>
</tbody>
</table>
ARCHITECTURE
3316-01 3317-01 3426-01 3444-01 3581-01 3598-01 3910-01
4143-01 4176-01 4179-01 4197-01 4502-02 4503-02 4610-02
4674-02 4677-02 4752-02 5400-03 5568-03 5681-03 5973-03
6172-03 6175-03 6176-03

ARTIFICIAL INTELLIGENCE
3245-02 3268-01 3449-01 3509-01 4406-02 4615-02 4642-03
6031-03

ASSEMBLERS
4428-02 4584-02 4590-02 4605-02

ASSEMBLY LANGUAGE
3365-01 4110-01 4162-01 4275-01 4315-01 4365-02 4369-02
6099-03

ASSERTIONS
3286-01 5563-03

ATLAS
4664-02

AUDITS
4568-02

AUTOMATED DESIGN TOOLS
3460-01 4672-02

AUTOMATED DOCUMENTATION
4615-02 4789-02 5364-03

AUTOMATED FAULT DETECTION
3262-01 3264-01 3408-01 3456-01 4416-02 4648-02

AUTOMATED PROGRAM ANALYSIS
6172-03

AUTOMATED TESTING
3460-01 4325-01 4544-02 4658-02 4664-02 4718-02 4833-02
4837-02 4838-02 4840-02

AUTOMATED VERIFICATION TOOLS
5452-03

AUTOMATIC DATA COLLECTION
6458-03

AUTOMATIC PROGRAMMING
2280-01 2620-01 3268-01 5204-03

AVAILABILITY
3461-01

AVIONICS APPLICATIONS
1618-01 1619-01 2453-01 4661-02 4825-03 5270-03 5997-03

BALLISTIC MISSILE DEFENSE
4377-02 4669-02 4747-02
BASIC
2620-01 3084-01

BCPL
3812-02

BOTTOM UP DESIGN
4297-01

BOTTOM-UP TESTING
5607-03

BUSINESS AND FINANCIAL APPLICATIONS
5529-03

C LANGUAGE
2620-01 3983-02 4097-02 4279-01 4527-02 4818-03 5475-03
5667-03 6171-03

CERTIFICATION
4340-01 4341-01 4342-01

CHIEF PROGRAMMER TEAM
4618-02

CHILL
5634-03 5732-03 5995-03

CLARITY
3434-01 4270-02

CLU
5207-03 5515-03 5732-03

CMS-2
2707-01 3321-01 3378-01 3462-01 3593-01 3610-01 4133-01
4153-02 4314-01 4631-02

COBOL
0822-01 2010-01 2426-01 2620-01 2707-01 3084-01 3411-01
3917-01 3919-01 4354-01 4631-02

COMMAND LANGUAGES
3355-01 3427-01 3428-01 3605-01 3990-02 3996-02 4104-01
4189-01 4194-01 4294-01 4325-01 4329-01 4374-02 4421-02
4589-02 4652-02 4681-02 4689-02 4736-02

COMMAND, CONTROL, & COMMUNICATION APPLICATION
3999-02 4615-02 4639-02 4642-03 5403-03 5423-03 5488-03
5997-03

COMMUNICATIONS SWITCHING SYSTEMS
1182-01 4371-02 4372-02 4375-02 4376-02

COMMUNICATIVENESS
3084-01 3461-01 3609-01 3917-01 4568-02
<table>
<thead>
<tr>
<th>INDEX TERM (SUBJECT) INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPILER-COMPILERS</td>
</tr>
<tr>
<td>2280-01 4250-02 5553-03</td>
</tr>
<tr>
<td>COMPILERS</td>
</tr>
<tr>
<td>1183-01 2280-01 2341-01</td>
</tr>
<tr>
<td>2463-01 2774-01 2821-01</td>
</tr>
<tr>
<td>2953-01</td>
</tr>
<tr>
<td>3253-01 3254-01 3255-01</td>
</tr>
<tr>
<td>3275-01 3297-01 3301-01</td>
</tr>
<tr>
<td>3304-01</td>
</tr>
<tr>
<td>3317-01 3355-01 3426-01</td>
</tr>
<tr>
<td>3427-01 3428-01 3429-01</td>
</tr>
<tr>
<td>3430-01 3431-02 3444-01</td>
</tr>
<tr>
<td>3446-01 3448-01 3453-01</td>
</tr>
<tr>
<td>3454-01</td>
</tr>
<tr>
<td>3455-01 3456-01 3610-01</td>
</tr>
<tr>
<td>3771-01 3971-03 3990-02</td>
</tr>
<tr>
<td>3996-02</td>
</tr>
<tr>
<td>4091-02 4096-01 4110-01</td>
</tr>
<tr>
<td>4152-01 4162-01 4179-01</td>
</tr>
<tr>
<td>4181-01</td>
</tr>
<tr>
<td>4195-01 4196-01 4197-01</td>
</tr>
<tr>
<td>4264-01 4265-01 4278-01</td>
</tr>
<tr>
<td>4287-03</td>
</tr>
<tr>
<td>4317-01 4330-01 4332-01</td>
</tr>
<tr>
<td>4334-01 4339-01 4340-01</td>
</tr>
<tr>
<td>4341-01</td>
</tr>
<tr>
<td>4342-01 4353-01 4360-02</td>
</tr>
<tr>
<td>4369-02 4403-02 4404-02</td>
</tr>
<tr>
<td>4413-02</td>
</tr>
<tr>
<td>4416-02 4429-02 4431-02</td>
</tr>
<tr>
<td>4502-02 4503-02 4529-02</td>
</tr>
<tr>
<td>4533-02</td>
</tr>
<tr>
<td>4534-02 4535-02 4541-02</td>
</tr>
<tr>
<td>4543-02 4544-02 4545-02</td>
</tr>
<tr>
<td>4581-02</td>
</tr>
<tr>
<td>4583-03 4603-02 4610-02</td>
</tr>
<tr>
<td>4614-02 4616-02 4617-02</td>
</tr>
<tr>
<td>4618-02</td>
</tr>
<tr>
<td>4637-02 4646-02 4648-02</td>
</tr>
<tr>
<td>4653-02 4658-02 4660-02</td>
</tr>
<tr>
<td>4668-02</td>
</tr>
<tr>
<td>4679-02 4680-02 4683-02</td>
</tr>
<tr>
<td>4689-02 4787-02 4788-02</td>
</tr>
<tr>
<td>4790-02</td>
</tr>
<tr>
<td>4791-02 5059-03 5107-03</td>
</tr>
<tr>
<td>5141-02 5270-03 5363-03</td>
</tr>
<tr>
<td>5364-03</td>
</tr>
<tr>
<td>5365-03 5371-03 5372-03</td>
</tr>
<tr>
<td>5373-03 5374-03 5375-03</td>
</tr>
<tr>
<td>5399-03</td>
</tr>
<tr>
<td>5454-03 5497-03 5521-03</td>
</tr>
<tr>
<td>5528-03 5565-03 5566-03</td>
</tr>
<tr>
<td>5565-03</td>
</tr>
<tr>
<td>5566-03 5662-03 5663-03</td>
</tr>
<tr>
<td>5664-03 5687-03 5693-03</td>
</tr>
<tr>
<td>5841-03</td>
</tr>
<tr>
<td>5902-03 5999-03 6001-03</td>
</tr>
<tr>
<td>6044-03 6115-03 6156-03</td>
</tr>
<tr>
<td>6179-03</td>
</tr>
<tr>
<td>6207-03 6215-03 6224-03</td>
</tr>
<tr>
<td>COMPLEXITY</td>
</tr>
<tr>
<td>2921-01</td>
</tr>
<tr>
<td>COMPLEXITY MEASUREMENT</td>
</tr>
<tr>
<td>4568-02 5456-03 5665-03</td>
</tr>
<tr>
<td>6458-03</td>
</tr>
<tr>
<td>COMPUTATION STRUCTURES</td>
</tr>
<tr>
<td>3435-01</td>
</tr>
<tr>
<td>COMPUTER COMMUNICATIONS NETWORKS</td>
</tr>
<tr>
<td>3422-01 3554-01 4293-01</td>
</tr>
<tr>
<td>4352-01 4529-02 4663-02</td>
</tr>
<tr>
<td>COMPUTER LOADING ANALYSIS</td>
</tr>
<tr>
<td>4568-02</td>
</tr>
<tr>
<td>CONCURRENT PROGRAMMING</td>
</tr>
<tr>
<td>3314-01 3367-01 3416-01</td>
</tr>
<tr>
<td>3915-01 3954-02 4183-01</td>
</tr>
<tr>
<td>4413-02</td>
</tr>
<tr>
<td>4632-02 4775-03 4792-02</td>
</tr>
<tr>
<td>5401-03 5402-03 5404-03</td>
</tr>
<tr>
<td>5405-03</td>
</tr>
<tr>
<td>5409-03 5421-03 5477-03</td>
</tr>
<tr>
<td>5485-03 5534-03 5548-03</td>
</tr>
<tr>
<td>5633-03</td>
</tr>
<tr>
<td>5641-03 5697-03 5731-03</td>
</tr>
<tr>
<td>5986-03 5998-03 6004-03</td>
</tr>
<tr>
<td>6031-03</td>
</tr>
<tr>
<td>6047-03 6083-03</td>
</tr>
<tr>
<td>CONFIGURATION MANAGEMENT</td>
</tr>
<tr>
<td>0736-01 2953-01 3253-01</td>
</tr>
<tr>
<td>3390-01 3426-01 3460-01</td>
</tr>
<tr>
<td>3486-02</td>
</tr>
<tr>
<td>3600-01 3607-01 3882-02</td>
</tr>
<tr>
<td>4045-02 4163-02 4332-01</td>
</tr>
<tr>
<td>4339-01</td>
</tr>
<tr>
<td>4410-02 4568-02 4689-02</td>
</tr>
<tr>
<td>4748-02 4821-03 5520-03</td>
</tr>
<tr>
<td>5663-03</td>
</tr>
<tr>
<td>6151-03</td>
</tr>
<tr>
<td>CONTROL STRUCTURES</td>
</tr>
<tr>
<td>3403-01 3408-01 3434-01</td>
</tr>
<tr>
<td>3461-01 3463-01 3638-01</td>
</tr>
<tr>
<td>3700-01</td>
</tr>
<tr>
<td>3964-02 4312-01 4659-02</td>
</tr>
<tr>
<td>5732-03</td>
</tr>
</tbody>
</table>
CONVERSION AIDS
3221-01 4112-01 4153-02

CONVERSIONS
4336-01 4603-02 5533-03

CORAL
4403-02 4404-02 4527-02 4631-02 6468-03

COROUTINES
3887-02 4173-01 4792-02

CORRECTNESS PROOFS
3305-01 3306-01 3408-01 3437-01 4183-01 4306-01 4308-01
4568-02 5452-03

COST
2071-01 2707-01 3309-01 3396-01 3461-01 3462-01 3609-01
3612-01 4023-01 4251-02 4311-01 4367-02 4796-02 5403-03

COST AND SCHEDULE CONTROL
0736-01

COST EFFECTIVENESS
0736-01 4112-01 4665-02

COST ESTIMATION
3354-01 3419-01 3593-01 4091-02

COST FACTORS
4568-02

COST-BENEFIT ANALYSIS
3354-01 4568-02

COST/PRODUCTIVITY MODELS
3419-01 3609-01

CP/M
4279-01

CRITICISMS/COMMENTS
4521-03

CURRICULA
3276-01 3965-02 4271-02 5519-03 5522-03 5523-03 5524-03
5525-03 5526-03 5535-03 6098-03 6134-03

DATA ABSTRACTION
5515-03 5660-03 6136-03 6139-03 6218-03

DATA ANALYSIS
4272-02 4533-02 4568-02 6136-03

DATA COLLECTION
3004-01 3280-01 3389-01 4165-01 4271-02 4272-02 4533-02
4568-02 4673-02 6029-03 6136-03 6172-03
<table>
<thead>
<tr>
<th>INDEX TERM (SUBJECT) INDEX</th>
</tr>
</thead>
</table>

DATA DICTIONARY
3989-03

DATA FLOWGRAPHS
3638-01 4377-02 4672-02 6004-03

DATA SEMANTICS
4182-01 4188-01 4318-01 4672-02 5565-03

DATA STRUCTURES
2171-01 2548-01 3221-01 3251-01 3273-01 5401-01 5405-03

DATA TYPES
2492-01 2681-01 2916-01 2688-01 3251-01 3264-01 3271-01 3273-01 3285-01

DATABASE MANAGEMENT SYSTEMS
2916-01 3253-01 3355-01 3356-01 3422-01 3429-01 3446-01 3446-02

DATAFLOW MACHINES
5668-03

DEADLOCKS
3837-02 4172-01 4306-01 4532-02

DEBUGGING
2612-01 3295-01 3355-01 3425-01 3429-01 3429-01

DECISION SUPPORT SYSTEMS
5423-03

DESIGN
2688-01 2774-01 3400-01 3426-01 3460-01 3651-01 3996-02 4077-02

- All codes and numbers are placeholders for specific entries or references within the document.
DESIGN ANALYSIS
4270-02 4661-02

DESIGN METHODOLOGIES
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3280-01</td>
<td>4166-01</td>
</tr>
<tr>
<td>3280-01</td>
<td>4672-02</td>
</tr>
<tr>
<td>4377-02</td>
<td>4658-02</td>
</tr>
<tr>
<td>4672-02</td>
<td>4690-02</td>
</tr>
<tr>
<td>5655-03</td>
<td>5681-03</td>
</tr>
</tbody>
</table>

DESIGN REVIEWS
4668-02

DESIGN TOOLS AND TECHNIQUES
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3014-01</td>
<td>3386-01</td>
</tr>
<tr>
<td>3268-01</td>
<td>3989-03</td>
</tr>
</tbody>
</table>

DEVELOPMENT
2010-01 3268-01 3989-03

DEVELOPMENT CYCLE
4103-03 5496-03 6765-03

DEVELOPMENT MANAGEMENT
4673-02 4673-02

DEVELOPMENT SUPPORT LIBRARIAN
3264-01 3460-01 3989-03 3990-02 4618-02

DEVELOPMENTAL METHODOLOGIES
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3607-01</td>
<td>4034-01</td>
</tr>
<tr>
<td>3607-01</td>
<td>4636-02</td>
</tr>
<tr>
<td>5528-03</td>
<td>5692-03</td>
</tr>
</tbody>
</table>

DEVELOPMENTAL PROCESS
3607-01 4334-01 4348-01

DEVELOPMENTAL TOOLS AND TECHNIQUES
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3354-01</td>
<td>3419-01</td>
</tr>
<tr>
<td>3492-01</td>
<td>4415-02</td>
</tr>
<tr>
<td>5528-03</td>
<td>5530-03</td>
</tr>
</tbody>
</table>

DIFFICULTY
4191-01

DIGITAL AIRCRAFT CONTROL
1619-01

DISTRIBUTED PROCESSING
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2548-01</td>
<td>2921-01</td>
</tr>
<tr>
<td>2966-01</td>
<td>3251-01</td>
</tr>
<tr>
<td>3416-01</td>
<td>3443-01</td>
</tr>
<tr>
<td>3700-01</td>
<td>3837-02</td>
</tr>
<tr>
<td>4193-01</td>
<td>4293-01</td>
</tr>
<tr>
<td>4674-02</td>
<td>4685-02</td>
</tr>
<tr>
<td>5564-03</td>
<td>5633-03</td>
</tr>
<tr>
<td>5998-03</td>
<td>6005-03</td>
</tr>
</tbody>
</table>
INDEX TERM (SUBJECT) INDEX

DOCUMENTATION
3305-01 3307-01 3337-02 3390-01 3408-01 3431-02 3983-02
3995-02 4331-01 4333-01 4340-01 4341-01 4641-02 4652-02
4672-02 4679-02 4680-02 5365-03

DOCUMENTATION LANGUAGES
2341-01

DOMAINS
4538-02

DYNAMIC TESTING
4162-01 4332-01

ECONOMIC ISSUES
5539-03 5657-03 6031-03 6138-03

EDISON
5986-03

EDITORS
2612-01 3245-02 3365-01 3425-01 3426-01 3427-01 3428-01
3429-01 3446-01 3460-01 3991-02 3996-02 4169-01 4190-01
4334-01 4433-02 4615-02 4645-02 4681-02 4834-02 5839-03

EDUCATION
3275-01 3389-01 3402-01 3431-02 3436-01 4122-01 4166-01
4371-02 4403-02 4406-02 4531-02 4534-02 4568-02 5655-03
5972-03 6044-03 6083-03 6098-03 6099-03 6100-03 6102-03
6105-03 6136-03 6138-03 6179-03 6214-03 6215-03 6217-03
6482-03

EFFICIENCY
2921-01 3004-01 3251-01 3253-01 3259-01 3310-01 3397-01
3400-01 3405-01 3408-01 3415-01 3421-01 3434-01 3461-01
3583-01 3612-01 4054-02 4112-01 4191-01 4192-01 4346-01
4587-02 4632-02 4658-02 5515-03 5551-03 6031-03 6174-03

EMBEDDED COMPUTER SYSTEMS
0387-01 1181-01 1182-01 2547-01 2681-01 3198-01 3346-01
3396-01 3408-01 3453-01 3462-01 3609-01 3614-01 3917-01
4104-01 4112-01 4118-01 4142-01 4251-02 4271-02
4287-03 4305-01 4315-01 4332-01 4335-01 4336-01 4337-01
4367-02 4415-02 4430-02 4431-02 4668-02 4663-02 4673-02
4675-02 4747-02 4867-02 5270-03 5401-03 5513-03 5527-03
5532-03 5564-03 5674-03 5996-03 5997-03 6217-03

EMBEDDED LANGUAGES
3992-02 4309-01 4612-02 4791-02 5204-03 5410-03 5411-03
5542-03

EMULATION
3453-01 3614-01

ERROR ANALYSIS
4659-02
ERROR CATEGORIES
3409-01

ERRORS
3004-01 3322-01 3368-01 3421-01 3700-01 3910-01 4152-01
4184-01 4360-02 4532-02

EUCLID
3437-01 3866-02 4199-02 4360-02 4631-02 5552-03

EVOLUTIONARY SYSTEMS
3509-01 4059-02

EXCEPTION HANDLING
3442-01 3964-02 3983-02 3993-02 4056-02 4303-01 4304-01
4344-01 4368-02 4409-02 4416-02 4422-02 4424-02 4427-02
4430-02 4582-02 4617-02 4668-02 4679-02 4684-02 5732-03
6047-03 6217-03 6898-03

EXECUTION TIME
3398-01 3612-01

EXPERT SYSTEMS
6176-03

EXTENSIBILITY
3595-01 4380-02

FAILURES
4188-01

FAULT CORRECTION
6115-03

FAULT DETECTION
3004-01 4056-02

FAULT TOLERANCE
3421-01 5527-03 5633-03 6115-03 6187-03 6192-03 6225-03

FIFTH GENERATION COMPUTING
5674-03

FILE MANAGEMENT SYSTEMS
4097-02 4194-01 4346-01 4551-02 4579-02 4580-02 4658-02
5148-02

FIRMWARE
2707-01 4118-01 4133-01 4417-02 4568-02 4628-02 4638-02

FLEXIBILITY
2612-01 2915-01 3434-01 3608-01 4191-01 4195-01 4587-02
INDEX TERM (SUBJECT) INDEX

FORTRAN
0822-01 1619-01 1664-01 2426-01 2620-01 2707-01 3084-01
3293-01 3377-01 3413-01 3415-01 3424-01 3593-01 3888-02
3986-02 4029-01 4314-01 4631-02 4669-02 4687-02 4747-02
5141-02 5279-02 6136-03 6141-03 6171-03 6174-03 6218-03
6522-03

FUNCTIONAL PROGRAMMING
4568-02 6004-03

FUNCTIONS
2492-01 3408-01 3463-01 3607-01 4297-01 4307-01 4308-01
4314-01 4316-01 4344-01 4620-02 4654-02 5147-02

GRAPHICS APPLICATIONS
4279-01 5530-03 6177-03

GYPSY
3437-01

HAL/S
1618-01 1619-01 3198-01 4631-02 4661-02

HALSTEAD'S LAW
5456-03 6458-03

HARDWARE/SOFTWARE TRADEOFFS
3416-01 3455-01 3611-01 3612-01 3613-01 3614-01 4377-02

HIERARCHICAL STRUCTURE
3315-01 3965-02

HISTORY
4451-03 4488-03 4507-03 5636-03 5689-03 6229-03

HUMAN ENGINEERING
1183-01 3084-01 4169-01 4354-01 4568-02 6325-03

IMPLEMENTATION
2071-01 3400-01 3441-01 3607-01 3771-01 4132-01 4310-01
4375-02 4633-02 4635-02 4640-02 4641-02 5156-02 5534-03
5542-03 5544-03 5550-03 5565-03 5641-03 5736-03 5996-03
6006-03

IMPLEMENTATION CORRECTNESS
4671-02

INDUSTRIAL PROCESS APPLICATIONS
2651-01 2675-01 3014-01 3296-01 3359-01 3369-01 4305-01
4415-02

INFORMATION HIDING
4166-01 4415-02 4629-02 5570-03 5660-03 5980-03

INFORMATION SYSTEMS
2548-01 4313-01 4636-02 4639-02

INTERFACE CONTROL
3430-01 3606-01 3999-02 4380-02 4568-02 4677-02
Ada Bibliography Volume III

INTERLISP
3455-01 4615-02

INTERMEDIATE LANGUAGES
4195-01 4196-01 4197-01 4343-01 4352-01 4369-02 4403-02
4404-02 4419-02 4420-02 4429-02 4534-02 4541-02 4574-02
4581-02

INTEROPERABILITY
3604-01 4380-02 4623-02 4625-02

INTERPRETERS
2546-01 3888-02 4194-01 4617-02 6220-03

INTERPROCESS COMMUNICATION
2722-01 5421-03

JOVIAL
0822-01 1619-01 2280-01 2426-01 2707-01 3221-01 3321-01
3377-01 3386-01 3387-01 3396-01 3610-01 4091-02 4110-01
4112-01 4133-01 4314-01 4338-01 4603-02 4631-02 4637-02
5270-03 5661-03 5993-03

KERNEL
3282-01 3355-01 3397-01 3416-01 3426-01 3427-01 3428-01
3429-01 3446-01 3554-01 3581-01 3582-01 3583-01 3584-01
3585-01 3586-01 3590-01 3591-01 3592-01 3594-01 3595-01
3596-01 3598-01 3599-01 3600-01 3601-01 3602-01 3604-01
3988-02 3995-02 3996-02 4023-01 4034-01 4104-01 4123-01
4142-01 4174-01 4175-01 4191-01 4305-01 4309-01 4324-01
4326-02 4328-01 4329-01 4408-02 4421-02 4527-02 4579-02
4616-02 4618-02 4623-02 4625-02 4675-02 4689-02

KNOWLEDGE BASED SYSTEMS
3245-02 3509-01 4380-02 4406-02 4615-02 4642-03 4674-02
4677-02 5437-03

LANGUAGE DESIGN
0251-01 0387-01 1130-01 1181-01 1182-01 1647-01 2081-01
2688-01 3249-01 3250-01 3251-01 3252-01 3253-01 3259-01
3275-01 3284-01 3285-01 3288-01 3289-01 3290-01 3291-01
3292-01 3293-01 3298-01 3302-01 3318-01 3321-01 3371-01
3373-01 3377-01 3385-01 3387-01 3388-01 3389-01 3391-01
3404-01 3408-01 3409-01 3418-01 3432-01 3433-01 3434-01
3554-01 3638-01 3700-01 3771-01 3888-02 3913-01 3992-02
3993-02 3999-02 4164-01 4308-01 4314-01 4344-01 4345-01
4403-02 4404-02 4415-02 4431-02 4587-02 4610-02 4612-02
4631-02 4654-02 4679-02 4788-02 5144-02 5153-02 5452-03
5552-03 5554-03 5555-03 5557-03 5559-03 5641-03 5732-03
6139-03 6171-03
<table>
<thead>
<tr>
<th>LANGUAGE EVALUATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0261-01 0387-01 0822-01 1130-01 1618-01 1619-01 1647-01</td>
</tr>
<tr>
<td>1664-01 2010-01 2014-01 2428-01 2498-01 2518-01 2618-01</td>
</tr>
<tr>
<td>2684-01 2688-01 2707-01 2722-01 2915-01 3084-01 3222-01</td>
</tr>
<tr>
<td>3313-01 3318-01 3371-01 3387-01 3388-01 3391-01 3397-01</td>
</tr>
<tr>
<td>3406-01 3411-01 3413-01 3424-01 3609-01 3611-01 3701-01</td>
</tr>
<tr>
<td>3812-02 3919-01 3983-02 4112-01 4199-02 4317-01 4318-01</td>
</tr>
<tr>
<td>4403-02 4404-02 4409-02 4427-02 4431-02 4527-02 4528-02</td>
</tr>
<tr>
<td>4542-02 4631-02 4659-02 4687-02 5559-03 5641-03 6171-03</td>
</tr>
<tr>
<td>6172-03 6174-03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LANGUAGE STRUCTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2915-01 2916-01 3360-01 3362-01 3366-01 3377-01 3385-01</td>
</tr>
<tr>
<td>3397-01 3399-01 3405-01 3406-01 3408-01 3409-01 3410-01</td>
</tr>
<tr>
<td>3412-01 3413-01 3414-01 3415-01 3418-01 3420-01 3423-01</td>
</tr>
<tr>
<td>3433-01 3444-01 3608-01 3911-01 3912-01 3964-02 3992-02</td>
</tr>
<tr>
<td>3993-02 3999-02 4054-02 4112-01 4166-01 4269-01 4293-01</td>
</tr>
<tr>
<td>4297-01 4306-01 4308-01 4309-01 4323-01 4344-01 4345-01</td>
</tr>
<tr>
<td>4349-01 4366-02 4368-02 4369-02 4403-02 4404-02 4415-02</td>
</tr>
<tr>
<td>4422-02 4423-02 4430-02 4431-02 4452-02 4540-02 4542-02</td>
</tr>
<tr>
<td>4612-02 4619-02 4620-02 4626-02 4627-02 4630-02 4654-02</td>
</tr>
<tr>
<td>4657-02 4668-02 4670-02 4672-02 4679-02 4680-02 4684-02</td>
</tr>
<tr>
<td>4788-02 4790-02 5515-03 5991-03 6002-03 6065-03 6140-03</td>
</tr>
<tr>
<td>6171-03 6224-03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LANGUAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>5559-03 6468-03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEGAL ISSUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>5539-03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEGIBILIT Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>3411-01 4126-01 4132-01 4270-02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIFE CYCLE COSTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0736-01 2010-01 4103-03 4418-02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LINKAGE EDITORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2953-01 3427-01 3460-01 4332-01 4543-02 4546-02 4553-02</td>
</tr>
<tr>
<td>4607-02 4609-02 4658-02 4689-02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4318-01 4541-02 4631-02 5550-03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LISP</th>
</tr>
</thead>
<tbody>
<tr>
<td>3084-01 3449-01 4194-01 4642-03 6004-03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIST PROCESSING</th>
</tr>
</thead>
<tbody>
<tr>
<td>3700-01 4365-02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOADERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4332-01 4547-02 4549-02 4550-02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MACROPROCESSORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4302-01</td>
</tr>
</tbody>
</table>
MAINTAINABILITY
2492-01 2893-01 3408-01 3411-01 3425-01 3434-01 3461-01
3609-01 3917-01 4112-01 4587-02 4639-02 6029-03 6264-03

MAINTENANCE
2071-01 3258-01 3396-01 3408-01 3432-01 3458-01 3509-01
3584-01 4299-01 4331-01 4335-01 4336-01 4337-01 4674-02
5551-03 5996-03 6031-03

MAINTENANCE COSTS
0736-01 2010-01 4045-02 4103-03 4299-01 4335-01

MAINTENANCE TOOLS AND TECHNIQUES
3354-01 3430-01 3460-01 4163-02 4615-02 4656-02 4664-02
4718-02

MANAGEMENT
3432-01 3593-01 4610-02 4796-02 5658-03 6141-03

MANAGEMENT TOOLS AND TECHNIQUES
3253-01 3419-01 3426-01 3458-01 3460-01 3607-01 4415-02
4668-02 4673-02 5666-03

MATHEMATICAL METHODOLOGIES
5699-03

MEMORY MANAGEMENT
2821-01 3265-01 3316-01 3416-01 3444-01 3613-01 3910-01
3983-02 4125-01 4191-01 4197-01 4327-01 4413-02 4538-02
4686-02 4683-02 5421-03 5485-03 6187-03

MESA
3841-02 4199-02

METALANGUAGES
4787-02 4791-02

MICRO COMPUTERS
3006-01 3254-01 3397-01 3608-01 3610-01 3612-01 3613-01
4096-01 4152-01 4264-01 4279-01 4431-02 5485-03 5488-03
5513-03 5548-03 6214-03 6215-03

MICROCODE
4503-02 4628-02

MICROPROCESSORS
3265-01 3296-01 3416-01 3611-01 4034-01 4278-01 4533-02
4611-02 4637-02 5370-03 5400-03 5421-03 5485-03 5534-03
5670-03 5979-03

MICROPROGRAMS
3265-01 3453-01 3614-01 4428-02

MILITARY COMPUTER FAMILY
4252-02 4553-02 4574-02 4590-02 5658-03 5674-03

MINICOMPUTERS
4352-01 5485-03
<table>
<thead>
<tr>
<th>MODELLING AND SIMULATION TOOLS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3440-01 3460-01 4143-01 4193-01 4401-02 4402-02 4502-02 4503-02 4668-02 4616-02 4669-02 4787-02 5277-02 5278-02</td>
<td></td>
</tr>
<tr>
<td>MODELS</td>
<td></td>
</tr>
<tr>
<td>4568-02 5545-03 6458-03</td>
<td></td>
</tr>
<tr>
<td>MODERN PROGRAMMING PRACTICES</td>
<td></td>
</tr>
<tr>
<td>4314-01 5407-03 5408-03 5472-03 5981-03 6105-03</td>
<td></td>
</tr>
<tr>
<td>MODIFIABILITY</td>
<td></td>
</tr>
<tr>
<td>3259-01 3917-01 6031-03 6139-03</td>
<td></td>
</tr>
<tr>
<td>MODIFICATION</td>
<td></td>
</tr>
<tr>
<td>4045-02 4190-01</td>
<td></td>
</tr>
<tr>
<td>MODIFICATION PROCEDURES</td>
<td></td>
</tr>
<tr>
<td>2612-01 4615-02</td>
<td></td>
</tr>
<tr>
<td>MODULA</td>
<td></td>
</tr>
<tr>
<td>1664-01 2014-01 3554-01 4199-02 4527-02 4528-02 4792-02</td>
<td></td>
</tr>
<tr>
<td>5516-03 5607-03 5634-03 5986-03 6047-03 6083-03 6468-03</td>
<td></td>
</tr>
<tr>
<td>MODULAR DECOMPOSITION</td>
<td></td>
</tr>
<tr>
<td>3866-02 4375-02 4531-02</td>
<td></td>
</tr>
<tr>
<td>MODULAR PROGRAMMING</td>
<td></td>
</tr>
<tr>
<td>4659-02 5558-03 5607-03 5692-03 5978-03 6047-03 6218-03</td>
<td></td>
</tr>
<tr>
<td>MODULARITY</td>
<td></td>
</tr>
<tr>
<td>1183-01 2156-01 2294-01 3263-01 3306-01 3366-01 3461-01</td>
<td></td>
</tr>
<tr>
<td>3611-01 3841-02 3919-01 4152-01 4191-01 4279-01 4426-02</td>
<td></td>
</tr>
<tr>
<td>4659-02 4669-02 4716-02 4736-02 4817-02 6047-03</td>
<td></td>
</tr>
<tr>
<td>MODULARIZATION</td>
<td></td>
</tr>
<tr>
<td>3613-01 4527-02 4531-02 4786-02 5143-02 5207-03</td>
<td></td>
</tr>
<tr>
<td>MODULES</td>
<td></td>
</tr>
<tr>
<td>2014-01 3357-01 3385-01 3454-01 3583-01 4328-01 4670-02</td>
<td></td>
</tr>
<tr>
<td>6139-03</td>
<td></td>
</tr>
<tr>
<td>MONITORS</td>
<td></td>
</tr>
<tr>
<td>3310-01 3315-01 3638-01 3841-02 4172-01 4173-01 4193-01</td>
<td></td>
</tr>
<tr>
<td>4413-02 4527-02 4616-02 4775-03 4792-02</td>
<td></td>
</tr>
<tr>
<td>MULTICS</td>
<td></td>
</tr>
<tr>
<td>3456-01</td>
<td></td>
</tr>
<tr>
<td>MULTIPROGRAMMING</td>
<td></td>
</tr>
<tr>
<td>4431-02 5669-03</td>
<td></td>
</tr>
<tr>
<td>MUTUAL EXCLUSION</td>
<td></td>
</tr>
<tr>
<td>2651-01 2921-01 3408-01 4527-02</td>
<td></td>
</tr>
<tr>
<td>NATURAL LANGUAGE PROCESSING</td>
<td></td>
</tr>
<tr>
<td>4642-03</td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>Volume</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>NERUBLA</td>
<td></td>
</tr>
<tr>
<td>NETWORKS</td>
<td></td>
</tr>
<tr>
<td>NUCLEAR REACTOR APPLICATIONS</td>
<td></td>
</tr>
<tr>
<td>NUMERICAL MANIPULATION</td>
<td></td>
</tr>
<tr>
<td>OBJECT-ORIENTED DESIGN</td>
<td></td>
</tr>
<tr>
<td>OPERATING SYSTEM DESIGN</td>
<td></td>
</tr>
<tr>
<td>OPERATING SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>OPTIMIZATION</td>
<td></td>
</tr>
<tr>
<td>OPTIMIZERS</td>
<td></td>
</tr>
<tr>
<td>OVERLOADING</td>
<td></td>
</tr>
<tr>
<td>P-SYSTEM</td>
<td></td>
</tr>
<tr>
<td>PACKAGING</td>
<td></td>
</tr>
<tr>
<td>PARALLEL PROCESSING</td>
<td></td>
</tr>
<tr>
<td>PARTITIONING</td>
<td></td>
</tr>
<tr>
<td>PASCAL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>INDEX TERM (SUBJECT) INDEX</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>PEARL</td>
<td></td>
</tr>
<tr>
<td>4318-01 4403-02 4404-02 4414-02 4431-02 4631-02 5996-03</td>
<td></td>
</tr>
<tr>
<td>PERFORMANCE</td>
<td></td>
</tr>
<tr>
<td>4110-01 4328-01 4329-01</td>
<td></td>
</tr>
<tr>
<td>PERFORMANCE EVALUATION</td>
<td></td>
</tr>
<tr>
<td>4682-02 6005-03</td>
<td></td>
</tr>
<tr>
<td>PERSONNEL MANAGEMENT</td>
<td></td>
</tr>
<tr>
<td>6136-03</td>
<td></td>
</tr>
<tr>
<td>PETRI NETS</td>
<td></td>
</tr>
<tr>
<td>5633-03</td>
<td></td>
</tr>
<tr>
<td>PL/I</td>
<td></td>
</tr>
<tr>
<td>2620-01 3084-01 3437-01 3887-02 4631-02 5147-02 5732-03</td>
<td></td>
</tr>
<tr>
<td>5986-03 6171-03 6468-03</td>
<td></td>
</tr>
<tr>
<td>POINTERS</td>
<td></td>
</tr>
<tr>
<td>5543-03</td>
<td></td>
</tr>
<tr>
<td>PORTABILITY</td>
<td></td>
</tr>
<tr>
<td>2280-01 3088-01 3252-01 3253-01 3263-01 3417-01 3420-01</td>
<td></td>
</tr>
<tr>
<td>3421-01 3427-01 3434-01 3450-01 3461-01 3582-01 3583-01</td>
<td></td>
</tr>
<tr>
<td>3585-01 3586-01 3587-01 3588-01 3589-01 3590-01 3591-01</td>
<td></td>
</tr>
<tr>
<td>3593-01 3594-01 3595-01 3597-01 3598-01 3599-01 3602-01</td>
<td></td>
</tr>
<tr>
<td>3604-01 3609-01 3610-01 4171-01 4175-01 4264-01 4279-01</td>
<td></td>
</tr>
<tr>
<td>4311-01 4324-01 4346-01 4380-02 4418-02 4537-02 4583-03</td>
<td></td>
</tr>
<tr>
<td>4587-02 4623-02 4625-02 4653-02 4668-02 4677-02 4844-03</td>
<td></td>
</tr>
<tr>
<td>5363-03 5528-03 5529-03 5551-03 5670-03 6114-03 6171-03</td>
<td></td>
</tr>
<tr>
<td>6765-03</td>
<td></td>
</tr>
<tr>
<td>PREPROCESSORS</td>
<td></td>
</tr>
<tr>
<td>3088-01 3460-01 4169-01 4307-01</td>
<td></td>
</tr>
<tr>
<td>PROBLEM REPORT ANALYSIS</td>
<td></td>
</tr>
<tr>
<td>3433-01 5990-03</td>
<td></td>
</tr>
<tr>
<td>PROCEDURES</td>
<td></td>
</tr>
<tr>
<td>2492-01 3311-01 3408-01 3463-01 3887-02 4297-01 4307-01</td>
<td></td>
</tr>
<tr>
<td>4308-01 4310-01 4344-01 4365-02 4620-02 4654-02</td>
<td></td>
</tr>
<tr>
<td>PROCESS</td>
<td></td>
</tr>
<tr>
<td>3841-02 4186-01 4296-01 4400-02 4792-02 6468-03</td>
<td></td>
</tr>
<tr>
<td>PROCESS DESIGN LANGUAGE (PDL)</td>
<td></td>
</tr>
<tr>
<td>4425-02 4529-02</td>
<td></td>
</tr>
<tr>
<td>PROCESS QUEUES</td>
<td></td>
</tr>
<tr>
<td>3369-01 5667-03</td>
<td></td>
</tr>
<tr>
<td>PRODUCT SAFETY</td>
<td></td>
</tr>
<tr>
<td>3434-01 4132-01</td>
<td></td>
</tr>
<tr>
<td>PRODUCTIVITY</td>
<td></td>
</tr>
<tr>
<td>2893-01 3268-01 3272-01 3354-01 3593-01 4350-01 4610-02</td>
<td></td>
</tr>
<tr>
<td>4615-02 4639-02 4668-02 4674-02 4748-02 5437-03 6031-03</td>
<td></td>
</tr>
<tr>
<td>6216-03</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Codes</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Productivity Factors</td>
<td>4668-02</td>
</tr>
<tr>
<td>Program Analysis</td>
<td>3419-01 4568-02</td>
</tr>
<tr>
<td>Program Complexity</td>
<td>5402-03 6458-03</td>
</tr>
<tr>
<td>Program Control Language (PDL)</td>
<td></td>
</tr>
<tr>
<td>3004-01 3014-01 3273-01 3280-01 3346-01 3357-01 3456-01</td>
<td></td>
</tr>
<tr>
<td>3701-01 3913-01 3919-01 4100-01 4122-01 4163-02 4166-01</td>
<td></td>
</tr>
<tr>
<td>4157-01 4166-01 4169-01 4170-01 4270-02 4274-01 4347-01</td>
<td></td>
</tr>
<tr>
<td>4349-01 4377-02 4403-02 4428-02 4530-02 4534-02 4542-02</td>
<td></td>
</tr>
<tr>
<td>4610-02 4633-02 4635-02 4640-02 4672-02 5410-03 5536-03</td>
<td></td>
</tr>
<tr>
<td>5537-03 5669-03 5666-03 5993-03 6141-03 6458-03</td>
<td></td>
</tr>
<tr>
<td>Program Correctness</td>
<td>6000-03</td>
</tr>
<tr>
<td>Program Design</td>
<td>4789-02</td>
</tr>
<tr>
<td>Program Design Methodologies</td>
<td>4672-02 4682-02 5155-02 6135-03</td>
</tr>
<tr>
<td>Program Library Systems</td>
<td></td>
</tr>
<tr>
<td>3355-01 3426-01 4104-01 4580-02 4626-02 4833-02 4837-02</td>
<td></td>
</tr>
<tr>
<td>4838-02 4840-02 5663-03 5736-03 6499-03</td>
<td></td>
</tr>
<tr>
<td>Program Maintenance</td>
<td>2612-01 3431-02 4615-02 5555-03 5557-03</td>
</tr>
<tr>
<td>Program Synthesis</td>
<td>4837-02 4838-02</td>
</tr>
<tr>
<td>Program Testing</td>
<td>4568-02 6172-03</td>
</tr>
<tr>
<td>Program Transformations</td>
<td>3456-01 4428-02</td>
</tr>
<tr>
<td>Program Understanding</td>
<td>4681-02 5407-03 5408-03</td>
</tr>
<tr>
<td>Program Validation</td>
<td>3198-01 5555-03 5557-03</td>
</tr>
<tr>
<td>Programmer Productivity</td>
<td>0736-01 2620-01 4663-02 4668-02</td>
</tr>
<tr>
<td>Programmer Training</td>
<td></td>
</tr>
<tr>
<td>3014-01 3280-01 3354-01 3460-01 3461-01 3914-01 4056-02</td>
<td></td>
</tr>
<tr>
<td>4127-01 4271-02 4272-02 4299-01 4377-02 4418-02 4566-02</td>
<td></td>
</tr>
<tr>
<td>4629-02 4653-02 4667-02 4672-02 4676-02 4975-03 5518-03</td>
<td></td>
</tr>
<tr>
<td>5519-03 5522-03 5524-03 5525-03 5660-03</td>
<td></td>
</tr>
<tr>
<td>PROGRAMMING</td>
<td>3308-01 4791-02 5475-03 5980-03 5993-03 6083-03 6102-03</td>
</tr>
<tr>
<td>PROGRAMMING AIDS</td>
<td>2081-01 2612-01 2953-01 3252-01 3254-01 3275-01 3276-01</td>
</tr>
<tr>
<td>PROGRAMMING LANGUAGE</td>
<td>0465-01 0733-01 0822-01 1130-01 1181-01 1618-01 1647-01</td>
</tr>
<tr>
<td>PROGRAMMING TECHNIQUES/METHODOLOGIES</td>
<td>2341-01 2612-01 4200-02 4249-02 4415-02 4424-02 4426-02</td>
</tr>
<tr>
<td>PROGRAMS</td>
<td>3262-01 3307-01 3308-01 6482-03</td>
</tr>
<tr>
<td>PROJECT MANAGEMENT SURVEYS</td>
<td>4056-02 4271-02 4272-02</td>
</tr>
<tr>
<td>PROTOCOLS</td>
<td>3006-01 3443-01 4034-01 4305-01 4307-01 4632-02 4638-02</td>
</tr>
<tr>
<td>PROTOTYPES</td>
<td>2546-01 4056-02 4274-01 4348-01 4428-02 4680-02 4683-02</td>
</tr>
<tr>
<td>QUALITY</td>
<td>3268-01 3432-01 3597-01</td>
</tr>
</tbody>
</table>
QUALITY ASSURANCE
3429-01 3430-01 3486-02 3882-02 3988-02 3989-03 3990-02
3991-02 3995-02 4165-01 4326-02 4327-01 4328-01 4329-01
4330-01 4343-01 4407-02 4536-02 4545-02 4546-02 4547-02
4549-02 4550-02 4551-02 4552-02 4553-02 4574-02 4579-02
4580-02 4584-02 4585-02 4588-02 4589-02 4600-02 4602-02
4604-02 4605-02 4606-02 4607-02 4608-02 4609-02 4618-02
4652-02 4674-02 4675-03 4683-02 4684-02 4840-02 4843-02 5364-03
5444-03 5566-03

QUALITY ATTRIBUTES
0387-01 2010-01 3593-01 4639-02 5665-03

QUALITY METRICS
3593-01 4568-02 4673-02 4682-02 6458-03

QUERY LANGUAGES
4630-02

QUEUING
2676-01 2921-01 3266-01 3368-01 3433-01 3457-01 4186-01
4401-02 4413-02

RADAR APPLICATIONS
4270-02 4315-01 5670-03

REAL-TIME SYSTEMS
2014-01 2651-01 2921-01 3251-01 3309-01 3400-01 3416-01
3999-02 4076-02 4167-01 4305-01 4314-01 4315-01 4414-02
4415-02 4430-02 4431-02 4527-02 4528-02 4532-02 4818-03
5485-03 5527-03 5531-03 5551-03 5558-03 5697-03 5997-03
6176-03 6192-03 6198-03 6468-03

RECOVERY
3198-01 3442-01 4318-01 4360-02 4380-02 4411-02 4752-02

RECURSION
3456-01 4671-02 5409-03

RELATIONAL DATA MODEL
3088-01 4411-02 5545-03 5656-03 6325-03

RELIABILITY
2010-01 2294-01 2492-01 2893-01 3251-01 3259-01 3403-01
3405-01 3408-01 3434-01 3461-01 3612-01 3917-01 4112-01
4132-01 4188-01 4668-02 4639-02 4674-02 5561-03 6139-03
6192-03 6225-03 6482-03 6765-03

RELIABILITY--DIFFERENCES OF OPINION
5437-03
INDEX TERM (SUBJECT) INDEX

REQUIREMENTS
0387-01 0465-01 0736-01 2498-01 3430-01 3432-01 3700-01
3995-02 4326-02 4327-01 4328-01 4329-01 4330-01 4343-01
4371-02 4372-02 4374-02 4376-02 4380-02 4536-02 4545-02
4546-02 4547-02 4549-02 4550-02 4551-02 4552-02 4553-02
4574-02 4579-02 4580-02 4584-02 4586-02 4588-02 4589-02
4590-02 4602-02 4604-02 4605-02 4606-02 4607-02 4608-02
4609-02 4633-02 4635-02 4640-02 4641-02 4652-02 4675-02
6156-03

REQUIREMENTS ANALYSIS
2547-01 3431-02 4270-02 4452-02

REQUIREMENTS ENGINEERING
4372-02

REQUIREMENTS ENGINEERING METHODOLOGIES
5655-03

REQUIREMENTS LANGUAGE
5537-03 5551-03

REQUIREMENTS SPECIFICATIONS
3451-01 4410-02

REQUIREMENTS TOOLS & TECHNIQUES
5496-03

RESOURCE MANAGEMENT
5228-03

REUSABILITY
3337-02 3434-01 3509-01 3598-01 3608-01 3614-01 3614-01 4059-02
4162-01 4426-02 4647-02 4796-02 5538-03 5656-03 6031-03
6134-03

ROBUSTNESS
3837-02 4112-01

ROLLBACK
3442-01

RTL/2
4403-02 4404-02 4527-02 4631-02

SCHEDULE ESTIMATION
4568-02

SCHEDULING
2722-01 2921-01 3251-01 3385-01 3400-01 3408-01 3454-01
3457-01 3841-02 4171-01 4173-01 4186-01 4672-02 5370-03
6017-03

SECURITY
4639-02 5515-03

SELF-DESCRIPTIVENESS
6264-03
SEMANOL
2428-01 3314-01 4338-01 4403-02 4610-02

SETL
2546-01 5977-03

SIMSCRIPT
5279-02

SIMULA
4059-02 4095-01 4400-02 4402-02 4581-02 4631-02 4683-02

SIMULATION LANGUAGES
4401-02 5279-02 6018-03

SIMULATORS
4380-02 4669-02

SMALLTALK
4059-02 4095-01 4718-02

SNOBOL (AND SNOBOL EXTENSIONS)
3084-01 6004-03

SOCIAL ISSUES
5539-03

SOFTWARE
4568-02

SOFTWARE DATABASE
5659-03

SOFTWARE DEVELOPMENT ENVIRONMENTS
5839-03 6031-03 6522-03

SOFTWARE ENGINEERING
0465-01 5364-03 5437-03 5607-03 5659-03 5660-03 5674-03
5681-03 6083-03 6134-03 6136-03 6138-03 6179-03 6522-03

SOFTWARE ENGINEERING ENVIRONMENTS
6765-03

SOFTWARE ENGINEERING FACILITY
3386-01

SOFTWARE ENGINEERING METHODOLOGIES
6482-03 6765-03

SOFTWARE ENGINEERING PROJECT MANAGEMENT
3280-01 4142-01 4568-02

SOFTWARE ENGINEERING STANDARDS
5654-03 6105-03

SOFTWARE ENGINEERING TOOLS AND TECHNIQUES
2547-01 3954-02 4122-01 4415-02 4683-02 4796-02 5686-03
6029-03 6458-03 6522-03
<table>
<thead>
<tr>
<th>INDEX TERM (SUBJECT) INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOFTWARE FACTORY</td>
</tr>
<tr>
<td>5674-03 6434-03</td>
</tr>
<tr>
<td>SOFTWARE ISSUES</td>
</tr>
<tr>
<td>5656-03</td>
</tr>
<tr>
<td>SOFTWARE LIBRARY MANAGEMENT SYSTEM</td>
</tr>
<tr>
<td>4689-02</td>
</tr>
<tr>
<td>SOFTWARE LIFE CYCLE</td>
</tr>
<tr>
<td>2547-01 3432-01 3462-01 4132-01 4270-02 4331-01 4415-02</td>
</tr>
<tr>
<td>4428-02 4529-02 5365-03 5496-03 5537-03 6031-03</td>
</tr>
<tr>
<td>6151-03</td>
</tr>
<tr>
<td>SOFTWARE PHYSICS</td>
</tr>
<tr>
<td>4682-02</td>
</tr>
<tr>
<td>SOFTWARE SCIENCE</td>
</tr>
<tr>
<td>5456-03 5665-03</td>
</tr>
<tr>
<td>SOFTWARE TOOL SYSTEMS</td>
</tr>
<tr>
<td>2341-01 2463-01 2612-01 2953-01 3245-02 3249-01 3252-01</td>
</tr>
<tr>
<td>3253-01 3254-01 3258-01 3273-01 3275-01 3276-01 3277-01</td>
</tr>
<tr>
<td>3294-01 3295-01 3355-01 3356-01 3371-01 3390-01 3401-01</td>
</tr>
<tr>
<td>3419-01 3425-01 3426-01 3427-01 3428-01 3429-01 3432-01</td>
</tr>
<tr>
<td>3446-01 3451-01 3456-01 3458-01 3460-01 3483-02 3486-02</td>
</tr>
<tr>
<td>3581-01 3582-01 3583-01 3584-01 3585-01 3586-01 3587-01</td>
</tr>
<tr>
<td>3589-01 3590-01 3591-01 3592-01 3594-01 3595-01 3596-01</td>
</tr>
<tr>
<td>3598-01 3599-01 3600-01 3601-01 3602-01 3603-01 3604-01</td>
</tr>
<tr>
<td>3605-01 3607-01 3882-02 3919-01 3984-02 3988-02 3989-03</td>
</tr>
<tr>
<td>3990-02 3991-02 3994-02 3995-02 3996-02 4056-02 4097-02</td>
</tr>
<tr>
<td>4104-01 4123-01 4124-01 4125-01 4142-01 4160-01 4162-01</td>
</tr>
<tr>
<td>4163-02 4165-01 4168-01 4174-01 4175-01 4179-01 4185-01</td>
</tr>
<tr>
<td>4189-01 4190-01 4271-02 4294-01 4300-01 4302-01 4305-01</td>
</tr>
<tr>
<td>4324-01 4325-01 4326-02 4327-01 4328-01 4329-01 4330-01</td>
</tr>
<tr>
<td>4332-01 4334-01 4353-01 4366-02 4374-02 4380-02 4403-02</td>
</tr>
<tr>
<td>4404-02 4407-02 4408-02 4409-02 4415-02 4416-02 4421-02</td>
</tr>
<tr>
<td>4428-02 4429-02 4431-02 4433-02 4529-02 4534-02 4536-02</td>
</tr>
<tr>
<td>4537-02 4539-02 4545-02 4546-02 4547-02 4548-02 4549-02</td>
</tr>
<tr>
<td>4550-02 4551-02 4552-02 4553-02 4568-02 4574-02 4579-02</td>
</tr>
<tr>
<td>4580-02 4584-02 4585-02 4588-02 4589-02 4590-02 4602-02</td>
</tr>
<tr>
<td>4604-02 4605-02 4606-02 4607-02 4608-02 4609-02 4610-02</td>
</tr>
<tr>
<td>4618-02 4621-02 4623-02 4624-02 4625-02 4636-02 4645-02</td>
</tr>
<tr>
<td>4649-02 4652-02 4653-02 4656-02 4658-02 4660-02 4663-02</td>
</tr>
<tr>
<td>4674-02 4675-02 4677-02 4684-02 4689-02 4716-02 4718-02</td>
</tr>
<tr>
<td>4736-02 4747-02 4748-02 4788-02 4825-03 4834-02 5144-02</td>
</tr>
<tr>
<td>5204-03 5207-03 5532-03 6229-03</td>
</tr>
<tr>
<td>SOFTWARE TOOLS</td>
</tr>
<tr>
<td>2426-01 2547-01 2620-01 3252-01 3272-01 3300-01 3354-01</td>
</tr>
<tr>
<td>3372-01 3463-01 3597-01 3614-01 4279-01 4309-01 4337-01</td>
</tr>
<tr>
<td>4672-02 5141-02 5557-03 5607-03 5653-03 5654-03 5656-03</td>
</tr>
<tr>
<td>5657-03 5658-03 5659-03 6031-03 6045-03 6137-03 6242-03</td>
</tr>
<tr>
<td>SPECIFICATION LANGUAGES</td>
</tr>
<tr>
<td>3440-01 3967-02 4027-01 4034-01 4332-01 5204-03 5537-03</td>
</tr>
</tbody>
</table>
SPECIFICATION TOOLS AND TECHNIQUES
2426-01 4718-02 6401-03 6084-03

SPECIFICATIONS
3262-01 3429-01 3430-01 3607-01 3967-02 4034-01 4190-01
4310-01 4325-01 4326-02 4327-01 4328-01 4329-01 4330-01
4343-01 4425-02 4638-02 4786-02 6204-03 6156-03

SPL (SYMBOL PROGRAMMING LANGUAGE)
4631-02

STACKS
3303-01 3316-01 3398-01 3444-01 3456-01 3910-01

STANDARDIZATION
1031-01 1089-01 3253-01 3272-01 3354-01 3373-01 3380-01
3396-01 3406-01 3431-02 3432-01 3434-01 3483-02 3587-01
3595-01 3596-01 3605-01 3614-01 3983-02 3985-02 3994-02
3998-02 4091-02 4125-01 4132-01 4251-02 4252-02 4287-03
4367-02 4420-02 4534-02 4634-02 5270-03 5390-03
6135-03

STANDARDS
1031-01 2010-01 2341-01 2684-01 3337-02 3386-01 3408-01
3420-01 4124-01 4126-01 4160-01 4265-01 4279-01 4324-01
4340-01 4372-02 4380-02 4625-02 5228-03 5403-03 5564-03
5658-03 5659-03 5981-03 6177-03 6178-03

STATE DIAGRAMS
3987-02

STATE MACHINES
3455-01

STATIC ANALYSIS
3419-01 3954-02 4182-01 4332-01 4790-02 5563-03

STATISTICAL SOFTWARE
6172-03

STEPWISE REFINEMENT
3866-02 3987-02 4375-02 4428-02 4531-02 4629-02 5402-03
5406-03

STRONG TYPING
5403-03

STRUCTURED DESIGN
2294-01 3999-02 4166-01 4167-01 5141-02 5543-03 6043-03
6218-03

STRUCTURED PROGRAMMING
3638-01 3999-02 4195-01 4659-02 4672-02 4790-02 5277-02
5278-02 5404-03 5421-03 5548-03 5569-03 5732-03 6482-03

STRUCTURED PROGRAMMING LANGUAGE
2341-01 3983-02 4791-02 5143-02
STRUCTUREDNESS
4101-01 4195-01

SUPERVISORY PROGRAM
3454-01 4171-01

SYNCHRONIZATION
2651-01 2676-01 2722-01 2921-01 3266-01 3367-01 3369-01
3388-01 3397-01 3405-01 3408-01 3416-01 3433-01 3457-01
3837-02 3954-02 4178-01 4183-01 4192-01 4307-01 4310-01
4411-02 4413-02 4527-02 4792-02 5731-03

SYNTAX GRAPHS
3270-01 4298-01 4301-01 4302-01 4321-01 4679-02 4790-02 5841-03
6217-03

SYSTEM ARCHITECTURE
3253-01 4305-01 4306-02 5485-03 5528-03

SYSTEM DESIGN
1182-01 3346-01 3386-01 3427-01 3431-02 3440-01 3999-02
4132-01 4371-02 4375-02 4377-02 4568-02 4672-02 4680-02
5513-03 5848-03 6083-03

SYSTEM DESIGN REQUIREMENTS
3427-01 3428-01 3430-01 5475-03 5848-03

SYSTEM ENGINEERING LANGUAGE
3297-01

SYSTEM INTEGRATION
4675-02

SYSTEM STRUCTURING
3999-02

SYSTEM TESTING
4132-01

SYSTEM VALIDATION
5372-03 5373-03 5374-03 5375-03

TECHNOLOGY FORECAST
4451-03 5437-03 5687-03 5688-03 5689-03 6171-03

TECHNOLOGY TRANSFER
2893-01 3914-01 4133-01 4339-01 4350-01 4380-02 4451-03
4621-02 4674-02 4676-02 4677-02 4692-02 4796-02 5423-03
5542-03 5562-L5 5567-03 5568-03 5688-03 5689-03 5698-03
6141-03

TELECOMMUNICATIONS APPLICATIONS
1182-01

TEST DATA GENERATION
3255-01

TEST LANGUAGES
4664-02
TEST METHODOLOGIES
4843-02 5444-03

TESTEDNESS
3638-01

TESTING
3222-01 3295-01 3300-01 3355-01 3390-01 3397-01 3431-02
3441-01 3442-01 3448-01 3554-01 3638-01 3882-02 4328-01
4329-01 4610-02 4615-02 4652-02 6428-03 6172-03 6176-03

TEXT-PROCESSING APPLICATIONS
4834-02 5488-03 6242-03

TOOL TAXONOMIES
3419-01

TOP DOWN DESIGN
3419-01 3866-02 4297-01 4298-01

TOP DOWN DEVELOPMENT
4790-02 5277-02 5278-02

TOP DOWN TESTING
5607-03

TOP-DOWN IMPLEMENTATION
3274-01 5527-03

TOP-DOWN PROGRAMMING
2071-01 4297-01 6218-03

TOTAL CORRECTNESS
4671-02

TRANSFORMATION
3419-01 4172-01 4413-02 4620-02 4638-02 4787-02 4790-02
6563-03

TRANSLATORS
2546-01 2612-01 2688-01 2774-01 3221-01 3312-01 3313-01
3390-01 3408-01 3417-01 3434-01 3460-01 3461-01 4163-02
4250-02 4603-02 4655-02 4788-02 6065-03 6220-03

TRI-SERVICE
1031-01 1089-01 1181-01 1182-01 3278-01 3321-01 3378-01
4418-02

UNIX
3268-01 3448-01 3591-01 4097-02 4189-01 4194-01 4279-01
4529-02 4585-02 4609-02 4615-02 4718-02 5667-03 5736-03

USABILITY
4132-01 4191-01 6434-03

USER-INTERACTIVE SYSTEMS
2612-01 3416-01 3456-01 4354-01 4406-02 4645-02
VALIDATION
3255-01 3386-01 3431-02 3607-01 3882-02 3971-03 4182-01
4313-01 4324-01 4340-01 4341-01 4342-01 4380-02 4610-02
4660-02 4672-02 6107-03 5371-03 6454-03 6497-03 6001-03
6029-03 6151-03 6207-03

VERIFICATION
3198-01 3262-01 3305-01 3306-01 3403-01 3431-02 3607-01
3882-02 4023-01 4308-01 4331-01 4503-02 4616-02 6552-03
6000-03 6029-03 6151-03

VERIFICATION TOOLS AND TECHNIQUES
4027-01 4029-01 4034-01 4427-02 4718-02 5452-03 6176-03

VIRTUAL MACHINES
3265-01 3316-01 3395-01 3460-01 3996-02 4196-01 4327-01
4581-02 4583-03 4617-02 4663-02 4787-02

VIRTUALIZATION
6187-03

VMS
5540-03

WEAPONS SYSTEMS APPLICATIONS
END

DTIC

8-86