AD-A168 942
942 MEAN CONVERGENCE OF THE VARIATIONS ITERATED INTEGRALS
AD-RI60
AND DOLEANS-DADE EX. (U) NORTH CAROLINA UNIV AT CHAPEL
HILL CENTER FOR STOCHASTIC PROC. F AVRAM MAR 86
NC
UNCLASSIFIED TR-135 AFOSR-TR-86-0327 F49620-85-C-0144 F/B 12/1 NL
If X is a sequence of semimartingales, converging to a semimartingale X, and such that \([X,X]\) converges to \([X,X]\), then all higher order variations \([X^n]\) and all the iterated integrals of X converge jointly to the respective functionals of X.
CENTER FOR STOCHASTIC PROCESSES

Department of Statistics
University of North Carolina
Chapel Hill, North Carolina

WEAK CONVERGENCE OF THE VARIATIONS, ITERATED INTEGRALS,
AND DOLEANS-DADE EXPONENTIALS OF SEQUENCES OF SEMIMARTINGALES

by

Florin Avram

Technical Report No. 135

March 1986
WEAK CONVERGENCE OF THE VARIATIONS, ITERATED INTEGRALS,
AND DOLÉANS-DADE EXPONENTIALS OF SEQUENCES OF SEMIMARTINGALES

by
Florin Avram
University of North Carolina at Chapel Hill

Abstract

If X is a sequence of semimartingales, converging to a semimartingale X, and such that [X, X] converges to [X,X], then all higher order variations (n) and all the iterated integrals of X converge jointly to the respective functionals of X.

AMS 1980 Subject Classifications: Primary, 60F17; Secondary, 60H05.

Keywords and Phrases: Semimartingales, weak J1 Skoronod topology, variations, multiple integrals, Doléans-Dade exponential.

This research supported by the Air Force Office of Scientific Research Contract No. F49620 85C 0144.
1. Introduction

A. Let \(X_t \) be a sequence of semimartingales, with \(t \in [0,1] \), such that

\[
X_t \xrightarrow{w(J_1)} X,
\]

where \(X \) is a semimartingale, and \(\xrightarrow{w(J_1)} \) denotes weak convergence on \(D[0,1] \) with respect to the \(J_1 \)-Skorohod topology.

We investigate the convergence of the variations, iterated integrals and Doléans-Dade exponentials of \(X \), which are defined as follows: for a semimartingale,

\[
V_k(Y)_t = \begin{cases}
Y_t & \text{for } k = 1 \\
[Y,Y]_t = \langle Y, Y \rangle_t + \sum_{s \leq t} (\Delta Y)_s^2, & \text{for } k = 2 \\
\sum_{s \leq t} (\Delta Y)_s^k, & \text{for } k \geq 3
\end{cases}
\]

\[
I_k(Y)_t = \begin{cases}
Y_t & \text{for } k = 1 \\
\int_{t}^{s} I_{k-1}(Y) \, dY_s, & \text{for } k \geq 2
\end{cases}
\]

\[
E(\lambda Y)_t = \exp\left[\lambda Y_t - \frac{\lambda^2}{2} \sum_{s \leq t} (\Delta Y)_s\right] \prod_{s \leq t} I(\lambda \Delta Y)_s,
\]

where \(\ell(x) = (1+x) e^{-x} \).

\(V_k(Y), I_k(Y) \) and \(E(\lambda Y) \) are called respectively the variations, the iterated integrals and the Doléans-Dade exponential of the semimartingale \(Y \).

It is known that \(V_k, I_k \) and \(E \) are well defined for any semimartingale \(Y \) (see Meyer, 1976). These quantities are important in the theory of multiple integration with respect to \(Y_t \).

B. When \(X_t = \sum_{i=1}^{[nt]} X_{i,n} \), with \(X_{i,n} \) a triangular array, then

\[
V_k(X)_t = \sum_{i=1}^{[nt]} X_{i,n}^k.
\]
\[I_k(X)_t = \sum_{1 \leq i_1 < \ldots < i_k \leq [nt]} X_{i_1, \ldots, i_k, n}, \]
and
\[E(\lambda X)_t = \prod_{i=1}^{[nt]} (1 + \lambda X_{i, n}) = \sum_{k=0}^{[nt]} \lambda^k I_k(X)_t. \]

The problem of the convergence of these "moments", "symmetric statistics", and generating function of the symmetric statistics have been studied in [1], [3-5], [7], and [9].

C. From formula 41.1 of Meyer (1976), it follows that in the semimartingale context, just like in the discrete deterministic case, \(I_k, k = 1, \ldots, m \) and \(V_k, k = 1, \ldots, m \) can be represented as polynomials of \(n \) variables in one another (the Newton polynomials which relate sums of powers to the sums of products). Thus, the issue of the joint convergence of \(I_k, k = 1, \ldots, m \), and that of the convergence of \(V_k, k = 1, \ldots, m \), are equivalent.

D. \(X \xrightarrow{w(J_1)} X \) does not imply in general \([X, X] + [X, X] \), as the following deterministic example from Jacod (1983) shows:

\[X_t = \frac{n^2}{n} \sum_{k=1}^{n^2} (-1)^k \text{ converges uniformly to } 0, \text{ but } [X, X]_t = \sum_{k=1}^{n} \frac{1}{n^2} + t. \]

E. However, the following result holds:

Theorem 1: The following three statements are equivalent.

(1.5) \(\frac{n \,(X, [X, X]) \xrightarrow{n \to \infty} (X, [X, X]) \),

(1.6) \((V_1(X), \ldots, V_m(X)) \xrightarrow{n \to \infty} V_1(X), \ldots, V_m(X), \forall m \geq 2, \)

(1.7) \((I_1(X), \ldots, I_m(X)) \xrightarrow{n \to \infty} I_1(X), \ldots, I_m(X), \forall m \geq 2. \)

They also imply:

(1.8) \(E(\lambda X) \xrightarrow{w(J_1)} E(\lambda X), \forall \lambda. \)
Corollary: If
\[n \rightarrow X_{w(J^n)} \rightarrow X \]
and the condition of Jacod (1983) holds:
\[\limsup_{b \to \infty} P\{\text{Var}(B_{h}^{n}, n) > b\} = 0 \]
(where \(h \) is a truncation function and \(B_{h}^{n} \) is the predictable projection of the truncated semimartingale \(X \)), then (1.5), (1.6), (1.7) and (1.8) hold.

Proof: cf. Jacod (1983), Theorem 5.1.1, (1.9) and (1.10) imply (1.5).

2. Proofs

Introduce the following notation: For any real number \(x \),
\[x^\geq_a := x^*1[|x| \geq a] \]
\[x^<_a := x^*1[|x| < a] \]

We establish now the following:

Lemma 1: a) Suppose \(X \) are semimartingales such that
\[\lim_{b \to \infty} \lim_{n \to \infty} P\{X, X \geq b\} = 0, \]
and let \(f(x) \) be any real function such that \(f(x) = o(x^2) \), as \(x \to 0 \). Then, for all \(\varepsilon \),
\[\lim_{a \to 0} \lim_{n \to \infty} P\{\sum_{s=1}^{n} |f(X^a_{s})| \geq \varepsilon \} = 0. \]

b) If the assumptions of a) hold, \(X_{w(J^n)} \rightarrow X \) and \(f \) is a continuous, vector valued function, then:
\[\sum_{s \leq t} f(\Delta X^\geq_{s})_{w(J^n)} \rightarrow \sum_{s \leq t} f(\Delta X_{s}). \]
Proof: a) Note first that \(\sum_{s \leq t} |f(\Delta X_s)| < \infty \), since \(\sum_{s \leq t} \Delta X_s < \infty \). Let now
\(g(a) = \sup_{x \leq a} |f(x)|/x^2 \). Then,

\[
P\left(\sum_{s \leq 1} |f(\Delta X_s)| > \varepsilon \right) \leq P\left(\sum_{s \leq 1} (\Delta X_s)^2 g(a) > \varepsilon \right)
\]

\((n)(n) \quad P\{ \sum_{s \leq 1} (\Delta X_s)^2 g(a) > \varepsilon \} \leq P\{ \sum_{s \leq 1} |f(\Delta X_s)| > \varepsilon /g(a) \} \).

Since \(g(a) \to 0 \), (2.2) follows from (2.1).

b) Let \(U(X) = \{u > 0 : P\{|\Delta X_0| \neq u, \text{for all } t\} = 0\} \). \(U(X) \) is dense in \(\mathbb{R}_+ \). For any \(a \in U(X) \), and \(f \) continuous, the functional

\[
S_f^a(Z) = \sum_{s \leq t} f(\Delta Z_s) > a
\]

is \(J_1 \) continuous a.s. (dist \((X))\). Thus, \(X \xrightarrow{w(J_1)} X \) implies for \(a \in U(X) \)

\[
S_f^a(X) \xrightarrow{w(J_1)} S_f^a(X).
\]

Also,

\[
S_f^a(X) \xrightarrow{a.s. J_1} S_f(X)_t := \sum_{s \leq t} f(\Delta X_s).
\]

The result follows now by (2.2) and Theorem 4.2 of Billingsley (1968).

Proof of Theorem 1:

By Lemma 1b, we have (1.5) \(\Rightarrow \) (1.6), and in fact the same type of argument yields (1.5) \(\Rightarrow \) (1.8), as follows: Assume for convenience \(\lambda = 1 \) and

\(1 \in U(X) \), let

\[
f(x) = [\ell n(l+x) - x + \frac{x^2}{2}]_{|x| \leq 1},
\]

and let \(T : D[0,1] \to D[0,1] \) be defined by:

\[
T(Z)_t := \prod_{s \leq t} \ell (\Delta Z_s^1) = \prod_{s \leq t} (1 + \Delta Z_s^1 + \frac{1}{2}(\Delta Z_s^1)^2).
\]
Since the Doléans-Dade exponential
\[
E(X)_t = \exp\{X_t - \frac{1}{2}[X,X]_t + \sum_{s \leq t} f(\Delta X^s_{\leq t}) \cdot T(X)\}_t,
\]
it remains only to note that the functional:
\[
X^a : D^{(2)}[0,1] \rightarrow D^{(4)}[0,1]
\]
\[
X(Z_1, Z_2) = (Z_1, Z_2, S^a_t(Z_1), T_{Z_1})
\]
is continuous a.s., if both spaces are endowed with the respective \(J_1\) topologies. Letting then \(a \rightarrow 0\), as in the proof of Lemma 1, one gets:
\[
\begin{align*}
(n) & \rightarrow (n) \rightarrow (n) \rightarrow (n) \rightarrow (n)
\end{align*}
\]
\[
(\text{w}(J_1)) \rightarrow (X_t, [X,X]_t, \sum_{s \leq t} f(\Delta X^s_{\leq t}), \sum_{s \leq t} f(\Delta X^s_{> t})),
\]
since \(\ell n(1+x) - x + \frac{x^2}{2} = o(x^2)\), and since (1.5) implies (2.1). Finally, applying the continuous functional
\[
\rho : D^{(4)}[0,1] \rightarrow D[0,1],
\]
\[
\rho(Z_1, Z_2, Z_3, Z_4) = \exp[Z_1 - \frac{1}{2}Z_2 + Z_3] \cdot Z_4,
\]
we get that
\[
E(\lambda X) \xrightarrow{w(J_1)} E(\lambda X).
\]
Since (1.6) is equivalent to (1.7) (by the use of the polynomial mapping), and (1.6) trivially implies (1.5), Theorem 1 is proved. \(\Box\)
References

