A SOLID STATE DATA RECORDER FOR SPACE-BASED APPLICATIONS USING MAGNETIC BUBBLE MEMORY (U) NAVY
POSTGRADUATE SCHOOL MONTEREY CA T D'ERCOLE MAR 86
UNCLASSIFIED
A SOLID STATE DATA RECORDER
FOR SPACE-BASED APPLICATIONS
USING MAGNETIC BUBBLE MEMORY

by
Tina-Marie D'Ercole

March 1986

Thesis Advisor: R. Panholzer

Approved for public release; distribution is unlimited.
Earthbound recording systems come in many sizes and use various mediums on which to record the data. The harsh environment of space, however, introduces some unique problems. This limits the number of choices not only for the type of system but also for the optimum recording medium. How changes in temperature, radiation, lack of air, etc., affect the performance of the device must all be considered.

Magnetic bubble memory technology implemented in a solid state recorder is a possible solution. Included in this thesis is a description of the development and history of the magnetic bubble memory, along with a comparison to other technologies. The design and implementation of a digital data recorder using off-the-shelf four-megabit devices is presented. A schematic of the data recorder and software used is included in the appendices.
A Solid State Data Recorder
for Space-based Applications
using Magnetic Bubble Memory

by

Tina-Marie D'Ercole
Lieutenant, United States Navy
B.S., United States Naval Academy, 1980

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 1986

Author: Tina-Marie D'Ercole
Approved by: Rudolf Panholzer, Thesis Advisor
Mitchell L. Cotton, Second Reader
Harriett Rigas, Chairman, Department of Electrical and Computer Engineering

Dean of Science and Engineering
ABSTRACT

Earthbound recording systems come in many sizes and use various mediums on which to record the data. The harsh environment of space, however, introduces some unique problems. This limits the number of choices not only for the type of system but also for the optimum recording medium. How changes in temperature, radiation, lack of air, etc., affect the performance of the device as a whole must all be considered.

Magnetic bubble memory technology implemented in a solid state recorder is a possible solution. Included in this thesis is a description of the development and history of the magnetic bubble memory, along with a comparison to other technologies. The design and implementation of a digital data recorder using off-the-shelf four-megabit devices is presented. A schematic of the data recorder and software used is included in the appendices.
TABLE OF CONTENTS

I. INTRODUCTION ... 8

II. BUBBLE MEMORY CHARACTERISTICS .. 10
 A. MAGNETIC BUBBLE MEMORY PERFORMANCE 10
 B. COMPARISON OF MBM TO OTHER MEMORY DEVICES 12

III. MAGNETIC BUBBLE DEVELOPMENT ... 16

IV. FUNCTION OF SUPPORT CIRCUITRY ... 24

V. DESIGN OF THE SSDR .. 33
 A. PROTOTYPE ... 33
 B. SOLID STATE DATA RECORDER (SSDR) 36
 1. General Purpose SSDR ... 38
 2. Adaptation of the SSDR to the NPS GAS Experiment 39
 3. Limitations and Alternative 41

APPENDIX A: SCHEMATIC OF THE SOLID STATE RECORDER 43
 A. POWER SWITCHING CARD (ECARD) 43
 B. CONTROLLER CARD (MICROPROCESSOR/DMA) 47

APPENDIX B: SOFTWARE CODE .. 53

LIST OF REFERENCES ... 88

BIBLIOGRAPHY .. 89

INITIAL DISTRIBUTION LIST .. 90
LIST OF TABLES

1 DESIGN PARAMETERS .. 9
<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Magnetic Domains Under Magnetic Bias Field</td>
<td>17</td>
</tr>
<tr>
<td>3.2</td>
<td>Magnetic Bubble Unit Assembly</td>
<td>18</td>
</tr>
<tr>
<td>3.3</td>
<td>Movement of Bubbles Under Chevrons</td>
<td>20</td>
</tr>
<tr>
<td>3.4</td>
<td>Organization of Bubble Memory (One-Half Chip)</td>
<td>21</td>
</tr>
<tr>
<td>3.5</td>
<td>Seed Bubble and Bubble Generation</td>
<td>22</td>
</tr>
<tr>
<td>3.6</td>
<td>Swapping and Replication Configuration</td>
<td>23</td>
</tr>
<tr>
<td>4.1</td>
<td>System Block Diagram</td>
<td>25</td>
</tr>
<tr>
<td>4.2</td>
<td>CPD Logic Diagram</td>
<td>26</td>
</tr>
<tr>
<td>4.3</td>
<td>Ten Functional Blocks of the Controller</td>
<td>27</td>
</tr>
<tr>
<td>4.4</td>
<td>Six Parametric Registers</td>
<td>29</td>
</tr>
<tr>
<td>4.5</td>
<td>Parametric Register Organization</td>
<td>30</td>
</tr>
<tr>
<td>4.6</td>
<td>Commands Used by Bubble Memory Controller</td>
<td>31</td>
</tr>
<tr>
<td>5.1</td>
<td>Generic Data Recorder</td>
<td>37</td>
</tr>
<tr>
<td>5.2</td>
<td>Implementation of Hardware Comparator</td>
<td>38</td>
</tr>
<tr>
<td>5.3</td>
<td>Basic Channel Configuration</td>
<td>40</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

Since every person you come into contact with contributes something to your life, no matter how small, I would like to take this opportunity to give my thanks to the following individuals. I believe no one can accomplish anything without the help and support of friends.

1. Professor Panholzer for his direction and understanding. He exemplifies what the word teacher really means.

2. Roger Jaskot, Taylor Tripp, George Johnston (and Maureen), Debbie Anderson, Beth Patridge, Don Gold (and Michele), Elizabeth Sternaman, and Ann Stencil for their patience, support and friendship.

3. Tom and Holly Frey for their help and support. Tom is an excellent briefing partner! Holly is one special friend.

4. Elaine Christian, the heart of the "EE" curricular office and a very special person.

5. The "Bust Your Budget A Month Club" for adding to the fun of the non-academic hours!

6. Bill Cavitt, Nancy and Nels (DH) Petersen, Cathi and Wayne Borchers for making the last quarter a memorable one and helping to celebrate the completion of this thesis!

7. David Rigmaiden for his technical expertise and help with the Shuttle Project as a whole.

8. My oldest and dearest friend, Rick Cottrell, for his friendship and confidence in me since we were children. His sensitivity and insight is priceless.

9. Finally, John and Emily D'Ercole, my three sisters, Marianne, Elizabeth, and Angela, and their families for their belief in me as a person and support ever since I can remember.

I would also like to take this opportunity to remember the seven astronauts who lost their lives 28 Jan 1986, when the Space Shuttle Challenger exploded. We have come a long way in exploring this frontier we call "space." There is such a tremendous risk involved and we, as individuals, owe a great deal to those who are willing to take that risk.
I. INTRODUCTION

"Space, the final frontier"¹ For centuries space has been an unknown frontier to man, a frontier that has been, and is still, studied in great detail. Man, in his quest for knowledge, has progressed from performing experiments in space with unmanned vehicles to manned reusable platforms that can remain in space for days. With the birth of the Space Transportation System (STS or Shuttle), an opportunity has been provided for persons outside the National Aeronautics and Space Administration (NASA) and military organizations to send their own experiments into space. This opportunity is in the form of a program that is known as the Get Away Special Program or GAS.

The GAS program provides guidelines for the designers of an experiment. These guidelines include such tips as the recommended use of the standard GAS container provided by NASA, electronic interfaces to the Shuttle cargo bay, safety tips, and environmental considerations. Table I provides the conditions under which the payload must perform [Ref. 1: p. 2].

An experiment that will be flown on the Shuttle by students from the Naval Postgraduate School (NPS) is designed to measure the vibro-acoustic power levels that occur in the forward one-third of the STS cargo bay during launch. Acoustic vibrations may cause widespread damage to the electronic equipment. Three microphones will be used to detect the acoustic noise levels. The data obtained will be stored in a recorder. Since the required data will be produced during the first two to three minutes of launch, (the recorder will be idle for the remainder of the flight).

¹This quotation was taken from the television series "Star Trek."
TABLE I
DESIGN PARAMETERS

<table>
<thead>
<tr>
<th></th>
<th>MAXIMUM</th>
<th>MINIMUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude (NM)</td>
<td>400</td>
<td>120</td>
</tr>
<tr>
<td>Percent of time in</td>
<td>40</td>
<td>32</td>
</tr>
<tr>
<td>earth's shadow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prelaunch</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>Launch</td>
<td>5</td>
<td>65</td>
</tr>
<tr>
<td>On-orbit</td>
<td>-160</td>
<td>100</td>
</tr>
<tr>
<td>Entry/Postlanding</td>
<td>-45</td>
<td>105</td>
</tr>
<tr>
<td>Typical overall temp</td>
<td></td>
<td>+65 to -50</td>
</tr>
<tr>
<td>Pressure (atm)</td>
<td>10⁹</td>
<td>10⁷</td>
</tr>
<tr>
<td>Steady-state acceleration (g)</td>
<td>10²</td>
<td>10⁷</td>
</tr>
<tr>
<td>Acceleration in</td>
<td>0.1</td>
<td>0.001</td>
</tr>
<tr>
<td>maneuvers (g)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random Vibrations</td>
<td>0.125 g²/Hz</td>
<td>between 80-1000 Hz</td>
</tr>
</tbody>
</table>

the memory needed to record the data must be rugged, reliable, and non-volatile. It must be able to withstand the impact of lift-off and the hazards of a harsh environment such as space.

A solid state magnetic bubble memory data recorder (SSDR) has been chosen to perform the task of data storage. This and all other components of the whole experiment have been designed with the previous parameters as the specifications. This thesis presents the development of the magnetic bubble memory and its implementation as the recording medium in the solid state data recorder.
II. BUBBLE MEMORY CHARACTERISTICS

Equipment used in experiments performed in space must be inherently rugged in order to withstand the severe environmental surroundings. What may be a successfully operating piece of equipment on earth may have to be upgraded in certain areas in order to function reliably in space [Ref. 2: p. 1]. The first section of this chapter is devoted to a discussion of the performance of the Magnetic Bubble Memory (MBM) in such a hazardous environment. The remaining section compares it with other memory devices when required to function as a data recorder.

A. MAGNETIC BUBBLE MEMORY PERFORMANCE

In space, exposure to intense radiation and temperatures that far exceed those experienced on earth are encountered. Studies have been conducted to determine just how severe these effects may be on the MBM. These studies have shown that it is virtually unharmed by exposure to neutrons, protons and gamma rays. Experiments have demonstrated that levels above 10^{15} neutrons/cm2 do not cause permanent measurable changes in the properties of the materials used [Ref. 3: p. 2]. The MBM has also been exposed to transient radiation, such as X-rays. Even in the absence of shielding, tests have shown that failure occurred at a value of 5×10^6 rads/sec [Ref. 4: p. 4847]. This information can be put into perspective when one considers the radiation received by an already "space-born" system such as the Global Positioning System (GPS). It is in an orbit in which the satellites experience the greatest radiation dose to date by long-lived, earth-orbiting systems. Tests have shown that over a 448-day period, the average dose of radiation was 404 rads/day [Ref. 5: p. 477]. Radiation, therefore, will have very little effect on the MBM module.
Due to the lack of atmosphere in space the temperature range can be extensive. There are two major limitations on the operating temperature range of the MBM. The first limitation is in connection with the bias field. The second limitation is in connection with the rotating magnetic field. (Implementation of the two fields is discussed in Chapter 2.)

The permeability of both the bias field and the thin film of magnetic material on which the bubbles are formed is affected by varying temperatures. The composition of each part changes in accordance with changes in temperature, and thereby limits the operating temperature of the MBM. The effect on the rotating magnetic field is such that, as temperature decreases, the rotating field must increase in order to drive the bubbles through the medium.

Two other effects exist that may limit the operating temperature range of the MBM. First, to generate new bubbles—i.e., a write operation—a current pulse, which will be explained in the following chapter, is required. This pulse varies with changes in temperature. To ensure proper generation of each bubble, the pulse must be adjusted or else improper data may be recorded. The second effect occurs in a read operation. During the read cycle, the data is sent under a type of detector that senses the presence or absence of a bubble. This detector output changes with temperature. Since the bubbles' magnetic permeability and the detector's sensing ability vary with temperature, the operational temperature of the MBM is limited to a fixed range of values. Current MBM modules operate over a temperature range of -20° to +85° [Ref. 6: pp. 83-88].

Data already recorded in the MBM can be stored reliably over a full range of temperature from -40° to +90° [Ref. 7: p. 3]. The largest temperature restrictions imposed on equipment are those encountered in the military. Many of
the military applications require successful operation at

temperatures beginning as low as -55°C. Research is in

progress to improve the operating temperature capability of

the MBM [Ref. 6]. For the GAS experiment, however, the

advertised operating temperature range of the MBM is suffi-
cient.

The MBM has no mechanical moving parts (see Chapter 2).

With cassette recorders that require mechanisms to turn the

recording medium, mechanical breakdown, corrosion, and slip-

ping due to vibration may occur. None of these situations

which may prove fatal to the mission, i.e. loss of data,

will occur with the MBM.

B. COMPARISON OF MBM TO OTHER MEMORY DEVICES

A comparison of the MBM with other memories demonstrates

further why using it as a data recorder in the space envi-

ronment constitutes a practical choice. Memories can be

separated into two basic categories: semiconductor and

magnetic. Examples of the former include ROM, PROM, EPROM,

E² ROM, RAM, and CCD. Examples of the latter include tape,

disk, core and MBM. The semiconductor group uses voltage,

charge or current levels to represent data. The magnetic

group uses variation in magnetic flux [Ref. 8: p. 8].

The individual features of each memory should be consid-

ered in choosing an appropriate device; using one in space

adds even more constraints to the selection process. Some

required features, besides radiation hardness and temperaure

range, are versatility, non-volatility, reliability, small

size, low power consumption and, finally, cost.

When versatility is considered, some of the aforemen-
tioned memory devices can be eliminated. The PROM (program-
mable ROM) and EPROM (erasable programmable ROM) must be

programmed by the user outside the circuit. While the PROM

can be programmed only once, the EPROM has the capability of

being programmed numerous times. In order to accomplish
this, however, it must be removed from the circuit and exposed to ultraviolet light. As a result, using either as a recording medium would be impractical.

The electronically erasable ROM, \(\text{E}^2 \text{ROM} \), can be changed right in the circuit. Any byte can be erased in approximately 9ms (Intel \(\text{E}^2 \text{ROM} 2816A \)) without affecting the data in any other location. The entire memory can be erased in 9ms also [Ref. 9: p. 5-83]. The available chip sizes, however, do not compare to the amount that can be stored in one 1 Mbit MBM module or the 4 Mbit device. The \(\text{E}^2 \text{ROM} \) functions best as a read only memory suited for storing fixed programs, logic functions or code converters with the added capability of remote firmware update of program code and dynamic parameter storage [Ref. 9: p. 5-10].

Other memories can be eliminated when non-volatility is considered. If a memory is non-volatile, it has the ability to retain already stored data should a power failure occur. The semiconductor RAM (random access memory) is a volatile memory. Data recorded prior to a power failure would be lost.

The CCD, or charge-coupled device, was developed in an effort to find a semiconductor equivalent to the MBM. It is dynamic, and data must be internally shifted at a minimum rate or else electrons can be thermally generated, thereby modifying existing stored data [Ref. 8: p. 313]. Unless batteries are used to keep the RAM and CCD memories powered up in a stand-by mode, the data would be lost. The length of time the stand-by power is required rests on the mission of the Shuttle and the time it would take to return the experiment to the NPS. Adding stand-by power adds batteries and, consequently, adds to the weight and space situation inside the GAS cannister.

Tape recorders are frequently used because of their small size, comparatively low cost, and large data storage
capability that permits parallel storage of data on several channels. The tape, however, can be damaged should it be stretched or knocked off its tracks during launch. Tape also requires a very thin layer of air between itself and the recording heads. Finally, the moving parts aid in decreasing the overall reliability.

Magnetic disks and drums pose problems that are similar to the tape recorder's. Once again moving parts decrease the reliability. Another limiting factor is the amount of space available inside the GAS canister. Disks and drums require a great deal of space which leaves less room for other essential equipment.

Core memory has been around for many years. It is non-volatile and reliable, but size and power constraints limit its use as a piece of space equipment. In a self-contained experiment such as this one, power is critical. It is desirable to have nominal power consumption. As the amount of data to be stored increases, so does the power consumption, size, and cost of the core memory--to a much larger degree than with other memories. Should the design of this recorder be such that all of the MBM cards be turned on at once, it too would require a great deal of power. However, power switching becomes a viable option when implementing the recorder with the MBM. Thus, the only active MBM card needs to be the one currently in use, thereby conserving a great deal of power.

The preceding discussion of the MBM's ability to withstand conditions in space, and the comparison with other memory devices, helps to show why--in addition to its being versatile and non-volatile--the MBM is the best device for the GAS experiment. Even though there is shielding around the device to protect against radiation, choosing a device that is inherently unaffected by radiation provides an added element of reliability. Although the operating temperature
range of the MBM is not as extensive as would be required in several military applications, it is adequate for the purposes of the experiment. The MBM is reliable because it has no mechanical parts that move. The specific device chosen for the GAS experiment is the Intel Corporation Magnetic Bubble Memory 7114.
III. MAGNETIC BUBBLE DEVELOPMENT

The MBM has been in existence for approximately twenty years. After its introduction by Andrew Bobeck—an employee of Bell Labs—many companies became involved in the study and manufacture of bubble memory devices. They soon discovered, however, that the MBM required complicated control circuitry. It was also difficult to interface with existing hardware. As a result, the decision to discontinue production of the MBM was not long in coming (Ref. 10: pp. 30-32). The two major manufacturers remaining are Intel Corporation and Hitachi.

A study of the technology used in producing and manipulating "bubbles" is important for a better understanding of the MBM's overall operation and its use in the SSDR. This chapter is devoted to an explanation of this technology, while Chapter 3 explains how the support chips of the MBM function. Before beginning this chapter, however, it is important to point out that all figures in this chapter and the following chapter represent the 1 Mbit bubble device. The GAS experiment is using the 4 Mbit device. However, the basic operation is the same. Intel's 4 Mbit device "uses the same architecture as the 1 Mbit device. It has 8 identical sections instead of 4 and each section is enlarged to store double the number of bubbles. The result is a four-fold increase in capacity" [Ref. 9: p. 6-227].

The bubble chip of Intel Corporation's 7114 MBM begins with the formation of a nonmagnetic garnet wafer on top of which a thin ferromagnetic film is deposited. Ferromagnetism causes the atoms of a material to align with parallel magnetic orientations. If the material is thick enough, the orientation of the groups of atoms, or domains as they are called, occurs in three dimensions. In the case
of the MBM, however, the film is very thin—in practice less than 1/1000 inch thick. This thinness restricts the domains to two directions, one perpendicular to the substrate, the other parallel. Unless a magnetic field is present, these domains have a snakelike shape. As a magnetic field perpendicular to the film is applied, the snakelike structures begin to shrink. The field is then increased to a point where the domains have a cylindrical appearance with a three-micrometer diameter. These domains, when observed through a microscope, look like a circle or "bubble"—from which the name Magnetic Bubble Memory is derived (see Figure 3.1). The presence of a bubble is a binary 1; the absence, a 0 [Ref. 9: p. 6-3].

Figure 3.1 Magnetic Domains Under Magnetic Bias Field.

The fixed field that maintains the shape and stability of the bubbles is known as the bias field. This bias field is produced by two permanent magnets positioned on each side
of the MBM substrate. They remain unaffected by any type of power fluctuation. As a result, the integrity of the data that the bubbles represent is maintained, making the MBM a non-volatile memory device [Ref. 9: p. 6-4].

The MBM does not operate by moving the recording medium as is the case with the tape in a tape recorder or disks in a disk drive. In the MBM, the data is moved under the influence of a rotating magnetic field. The rotating field is generated by sending current through two coils which are wrapped perpendicular to one another around the substrate. Figure 3.2 shows how the different parts are assembled to produce the MBM module.

![Figure 3.2 Magnetic Bubble Unit Assembly.](image-url)
There is one more important feature that aids in the movement of the bubbles from one location to another. In order to control the direction of movement, a magnetic field gradient must be present. A magnetic film is deposited on top of the bubble substrate in the form of a number of paths. These paths have the shape of asymmetrical chevrons. Being asymmetrical, one side of the chevron has more energy than the other. The bubble will propagate toward the smaller side in the presence of the drive field (see Figure 3.3). The chevrons, in conjunction with the rotating magnetic field, provide the capability to move data from one location to another without moving the medium on which the data is stored. [Ref. 9: pp. 6-4 - 6-6].

The memory itself is designed in a block replicate architecture. The fundamental idea in this type of design is that the data is written in or read out in parallel from an input or output track, see Figure 3.4 (From the figure, note that there is a difference between the input and output tracks. The difference will be explained later in this chapter.)

The block-replicate architecture consists of a specified number of storage loops. An MBM has 320 loops, 48 of which are spares. An extra loop, called the bootloop, is used to keep track of the active loops and the spares. All 320 loops are divided into four groups or quads. This helps to shorten the read and write cycle times.

The quads are reduced even further to odd and even loops. The even loops store the even-numbered bits. Likewise, the odd loops store the odd-numbered bits. When a read operation is performed, the bits are interleaved back into the original order in which they were received and sent out serially on the output track. A write operation does not require this interleaving process, for it is a write operation that initially separates the bits to the odd and even loops.
The input and output tracks are serial devices. A distinction exists between the two tracks because they perform completely different tasks. The input track performs a swapping function; the output track performs a replication function.

To better explain each process, bubble generation must first be understood. A seed bubble is always present at one end of the input track and is initially generated by an electric current pulse which splits a hairpin loop of conductive material. Because of the interaction between the drive field, bias field, and conductive material (permalloy...
Figure 3.4 Organization of Bubble Memory (One-Half Chip).

patch, see Figure 3.5), this bubble maintains a kidneylike shape. Once created, it remains in existence for as long as the bias field does. When a binary 1 is to be generated, the seed bubble is split in two by the current pulse. One of the halves remains under the permalloy patch as the seed; the other is driven to the input track via the rotating field. To store a binary 0, the pulse is omitted.

As stated, the input track performs a swapping function. Once the bubble is generated and travels down the input track to the specific loop on which it is to be stored, another current pulse is generated. This pulse causes the new data to "swap" places with the old data on the storage loop, and the old data is destroyed.
Figure 3.5 Seed Bubble and Bubble Generation.

The bubbles are replicated when a read operation is performed. Each bubble on a storage loop acts essentially as its own seed bubble. The bubble is transferred under a large element, where it is stretched out. A current pulse cuts the bubble in two, leaving one half to remain in memory and the other half to be read as output. These new bubbles travel down the output track serially through a bubble detector. Detection is accomplished by passing the bubble under a "bridge" of magnetoresistive material. When a bubble passes under the bridge, the resistance changes and slightly modulates the current through the bridge. This fluctuation is then translated to a one or a zero. After detection, the output bubbles are destroyed (see Figure 3.6) [Ref. 9: pp. 6-7 - 6-10].
As can be seen, an intricate design is used in the making of a magnetic memory module. Additionally, the MBM is never "spoken to" directly by the microprocessor. A group of support chips is used for communication between the two, and this is the topic of discussion in Chapter 3.

Figure 3.6 Swapping and Replication Configuration.
IV. FUNCTION OF SUPPORT CIRCUITRY

A difficult obstacle to overcome in the introduction of the MBM into the commercial market was interfacing it with existing hardware. Initially, the support chips required by the MBM were purchased separately. In the past few years, however, Intel has introduced a package consisting of the MBM and its requisite support chips. These chips are:

1. 7244 Formatter/Sense Amplifier (FSA),
2. 7234 Current Pulse Generator (CPG),
3. 7250 Coil Predriver (CPD),
4. 7224 MBM Controller (BMC).

The BMC, in conjunction with the FSA, CPG, and CPD, carry out all communication with the MBM. Figure 4.1 shows how the chips interface with one another.

The FSA is a dual formatter/sense amplifier that contains on-chip sense amplifiers, a full FIFO data block buffer, and error-detection and correction circuits. As explained in Chapter 2, the bubbles are sent under a magnetoresistive bridge during a read operation. If a bubble is detected, the resistance of the bridge changes. This is the signal that a bubble or a one is present. The sense amplifiers in the FSA perform a sample-and-hold function on this input signal thereby, producing a digital one or zero.

The FSA then formats the data in the following manner. As explained in Chapter 2, each MBM has an extra loop that is known as the bootloop. This extra loop contains the information pertaining to all the active and inactive loops in the bubble module. When the FSA receives an incoming data bit, it confirms that it is from an active loop within the MBM by referring to the bootloop register. If the bit is from an active loop, it is stored in the FIFO buffer. If it is from an inactive loop, it is ignored. The FIFO in the
FSA is a serial, first-in-first-out buffer that can hold 256 bits of data (272 without error correction). The data is then sent to the BMC. In the write operation, the FSA enables the current pulses of the CPG that cause the bubbles to be generated.

Various current pulses are used to generate a bubble as well as to replicate one. The CPG performs this function. The CPG also converts digital timing signals to analog current pulses suited to drive the MBM.

The CPD, along with the two drive transistors (see Figure 4.1), supply the drive currents for the rotating magnetic field. Four signals (positive and negative X and Y waveforms) are sent to the CPD from the MBM Controller. The appropriate durations and phases must be maintained in order
to control the rotating field that moves the bubbles (see Figure 4.2) [Ref. 9: pp. 6-11 - 6-12].

![CPD Logic Diagram](image)

Figure 4.2 CPD Logic Diagram.

The heart of the system is the MBM Controller (BMC). It is the interface between the memory module and its host. The Controller provides all required timing signals. It converts the serial data from the FSA FIFO to parallel data and, conversely, changes parallel data to serial. Figure 4.3 shows the ten functional blocks of the Controller. A brief discussion is given for each of these functional blocks. The reader is referred to [Ref. 9] for a more detailed account.

The Power Fail and Reset (Block 1) is self-explanatory. When activated, the Controller resets the bubble system in an orderly manner.
The Sequencer (Block 2) encompasses the WAIT, DET.ON, and ERR. FLG commands. A step-by-step procedure must be followed by the BMC when one of these commands is given. Within the Sequencer is an internal ROM that contains the pre-programmed instructions used to implement the various commands. Once a command is given and decoded, the Sequencer steps through the instructions pertaining to that command [Ref. 11: p. 21].

The System Bus (Block 3) interfaces the Controller with the host. Commands, status information, address, and data are sent via these lines. In order to know what type of function it is to perform, the Controller's register file must be supplied with specific information (Block 9) before any type of data transfer can take place. The transfer of
this information is done on the 8-bit data bus with bit four set to zero. Figure 4.4 lists the six registers that must be addressed. The 4 Mbit Controller, 7224, does not make use of the Utility Register (UR). The Block Length Register (BLR) determines the system page size and the number of pages to be transferred. The Address Register (AR) defines the page on which the transfer of data is to start. The Enable Register (ER) defines the modes under which the transfer will take place, i.e., interrupt, polled, or DMA. In Figure 4.5, note the BLR and AR require two eight-bit codes, one pertaining to the most significant bits, the other to the least significant bits. Eleven of the bits available in the BLR hold the value for the number of pages to be transferred and provide the user with the possibility of transferring from 1 to 2048 pages. If more than one MBM is connected in parallel, the width of a page can be increased, i.e., 64, 128, 256, 512, etc. The four most significant bit positions hold this information. The four most significant bits of the AR are used in conjunction with the BLR to control the serial selection of bubble memories or a group of memories. The remaining eleven define on which page the transfer is to start [Ref. 7: pp. 7-10].

When data bit four is a one, the information is decoded as a command. There are sixteen commands used by the BMC, (See Figure 4.6) The four most common commands are ABORT, INITIALIZE, READ BUBBLE DATA, and WRITE BUBBLE DATA. Those commands pertaining to the bootloop are used only for diagnostic purposes. The remaining commands provide other options available to the user and are described in [Ref. 9].

Information about data manipulation, such as page size, mode of operation, pages being transferred, etc., is stored in the parametric registers. The AO line is held high during the programming of these registers. Once all of the required information has been passed, the AO line goes low and the BMC is ready to transfer data.
Figure 4.4 Six Parametric Registers.

Block 4, FSA Select Logic, contains the logic that controls all communication between the BMC and the FSA. As mentioned, the serial FIFO of the FSA receives information from and sends information to the FIFO of the BMC. The timing of this transfer is an important factor and is controlled internally by the FSA Logic Block.

The FIFO (Block 5) has the important function of settling timing differences between both the host interface and the BMC and between the FSA and the BMC. The FIFO is dual ported, i.e., it can be written into and read from simultaneously. The maximum amount of information it can hold at any one time is 40 bytes. While the BMC is executing a command, it functions as a data buffer. However, when the BMC has completed transfer of all commands, the FIFO performs as a general-purpose FIFO. As shown in Figure 4.4, the FIFO is automatically addressed after the last of the six parametric registers has been
Figure 4.5 Parametric Register Organization.

written to, thereby signalling that the BMC is ready for a data transfer.

Block 6 is concerned with the type of transfer to be used in recording data. The MBM can operate under three different modes:

1. Polled,
2. Interrupt driven,
3. Direct Memory Access (DMA).

Polled Transfer is the easiest mode to implement with the MBM. It is, however, the most time consuming in relation to microprocessor overhead. Interrupt driven transfer requires less microprocessor overhead. This mode also permits transfer of data in blocks of information. The DMA mode is the one that will be used in the NFS GAS experiment. There is no microprocessor overhead in a DMA transfer, and it is the fastest mode in transferring data to the MBM. The
BMC operates in a standard two-way handshake protocol, utilizing the DRQ and DACK lines found in Block 6 (see Figure 4.3).

The Bubble Signal Decoder (Block 7) contains all the logic needed for generating all MBM timing signals. It is comprised of a three-stage counter, a decoder, and synchronous latches. The first stage of the counter is a divide-by-four counter. The second stage, a divide-by-twenty counter, produces the field rotation frequency. For example, since BMC requires a 4 MHz clock, the output of the first stage is at 1 MHz, while the output of the second stage is at a 50 kHz rate. Any of the clock edges that occur during one complete cycle can be used to set and reset MBM signal latches. The TM.A and TM.B latches go to the CPG and determine the pulse widths for the generation and replication of bubbles.
Block 8, MBM Addressing Logic and RAM, contains two more user-accessible registers, an adder, and the MBM address RAM. This RAM stores the next-available logical page address for each MBM.

Finally, the DI/O Bootloop Decoder/Encoder (Block 10) performs parallel-to-serial and serial-to-parallel conversions between the FIFO data and the serial bit stream on the DI/O line. The BUSRD signal, also generated here, is a signal used to indicate the direction of the data transfer. The third function of this block contains the circuitry that decodes the bootloop data during a READ BOOTLOOP operation and encodes it during a WRITE BOOTLOOP operation [Ref. 11: pp. 20-21].

As is apparent, interfacing the MBM module to its host is an involved task. Timing is of great importance. Generation of pulses and rotating current fields must be accomplished. And, finally, circuitry is needed to transform digital data to magnetic, and vice versa. The current state of the art in bubble memories solves most of these problems for the user. The greatest obstacle is found in producing correctly coded software.
V. DESIGN OF THE SSDR

Before attempting to design the solid state data recorder for the NPS experiment, a prototype was built using the 1 Mbit MBM device. This made it possible to become familiar with both the hardware and the software of the MBM. The main goal was to prove the concept that the MBM could be used as a viable recording medium. The first section of this chapter briefly describes the design and programming of the 1 Mbit device as a mini recorder. The second section describes the 12 Mbyte data recorder used in the GAS experiment. The third section addresses the limitation and possible alternatives to this design.

A. PROTOTYPE

Before incorporating an MBM into a system it is necessary to choose the mode of operation, (i.e., Polled, Interrupt driven, or Direct Memory Access), the level of complexity, and flexibility required for the software drivers.

Since the prototype's function was to sample a sine wave of 1000 Hz frequency or less from only one channel, the Polled Mode (PM) was chosen. Sampling at the Nyquist frequency and using only one channel, provided ample time to perform all the operations needed when using the MBM. (Note: By increasing any part of the system, i.e., bubble memories, channels, etc., a faster mode would have to be chosen, which would result in improved performance.)

The complexity of the software was kept to a minimum, therefore flexibility was restricted. The reasons for designing a prototype were threefold:

1. gain familiarity with the MBM and its components,
2. prove it could record and play back accurately,
3. increase the design to the size required for the GAS experiment.

The basic operation for the 1 Mbit device is to sample the waveform through an analog-to-digital converter (A/D), store the data in the MBM, upon command, play back recorded waveforms through a digital-to-analog converter (D/A). The major components used to perform the three operations are the Analog Devices' A-D 570, Intel's 1 Mbit 7110 MBM, and National Semiconductor's DAC0800 D-A.

A dual trace oscilloscope was used to compare the accuracy of the recorded waveform to that of the one being played back from the memory. A signal generator provided the signal.

In the Polled Mode, blocks of data can be transferred into the MBM as long as the parametric registers in the BMC have been programmed accordingly. The DRQ line from the BMC signaled the microprocessor that the MBM was ready for a data transfer.

As explained in Chapter 4, the MBM is written to in pages, each page containing 64 bytes (68 bytes without error checking). The total amount of pages recorded at one time is established under software control. The initial draft of this software transferred one page at a time. Two temporary storage areas, each 64 bytes in size, were reserved in RAM. As one area was filling with data samples, the other area was being sent to the bubble. Timing was found to be extremely critical. After the recorder worked successfully for one page, the number of pages was increased until the record process failed. The maximum number of pages successfully transferred was found to be 270 at a sampling rate of 2 kHz.

Power failure is a concern in any system design. Writing the software so that data transfers of one-page are performed, ensures that the minimum amount of data will be lost. Whatever has been stored in the MBM will remain
intact, but whatever has been stored in RAM will be lost. As a consequence, storing a greater number of pages in RAM results in a greater data loss.

Recalling that communication is not carried out directly with the MBM, interfacing it with the host microprocessor, requires that specific procedures be followed before any data transfer can take place. In order for the BMC to prepare itself for any further instructions, it must receive an ABORT command, followed by an INITIALIZE (INIT) command. Once these commands are accomplished, the BMC's parametric registers are loaded in preparation for the upcoming data transfer. The eight-bit command/status port can be polled to determine whether a successful operation has been performed. If the operation has failed, the OP-FAIL bit will be set; if it has succeeded, the OP-COMPLETE bit is set.

Initializing the BMC before writing the parametric registers sets the BMC to a known state. This command results in resetting the support components, placing the bubble at page zero, and enabling the error correction. If the start of a record process is designed to start at a page other than page zero, then the desired page address must be reflected in the information supplied to the address register of the parametric registers. The block length register must be programmed with the number of channels to be used and the number of pages to be transferred.

The software program of the prototype made available to the user a menu which displayed a number of options to choose from. These options included:
1. Setting the sample rate,
2. Sampling without recording,
3. Record,
4. Playback,
5. Initialize the bubble.

35
Upon selection of an option, the program immediately executed it. Option 5 had to always be performed first. Additionally, the same sample rate chosen for RECORD had to be used for PLAYBACK. Option 2 was used primarily to establish the successful operation of the A/D and D/A.

Tests were performed on the 1 Mbit device. These tests included turning off power, changing the frequency of the sampled waveform while recording, changing the waveform itself while recording, and attaching a microphone/speaker arrangement in order to record a signal other than a pure sine wave. In all cases, the MBM performed successfully. It did not lose data when power was removed. It followed the changes in frequency and waveform with only a small phase shift due to the time delay. There was, however, distortion in the sound recording. This was due in part to the low sample rate and to the quality of the microphone and speaker being used.

B. SOLID STATE DATA RECORDER (SSDR)

The final design of the SSDR has the capability to store twelve mega-bytes (twenty-four four-megabit prototype MBM cards) of data. The 8085 microprocessor is at the heart of the system. A basic block diagram—a "generic" data recorder—can be found in Figure 5.1. Subsection 1 describes the SSDR as a general purpose data recorder. Subsection 2 describes how this general purpose recorder was adapted to the NPS GAS experiment.

As in the prototype model, the desired information is sampled by the A/D device. The digitized information is then temporarily transferred to a RAM buffer. Upon request, the DMA will gain control of the bus and perform the data transfer from the buffer to the MBM where it will be stored. The ideal data transfer rate of the four-megabit (4 Mbit) MBM is 25 Kbytes/sec [Ref. 7: pp. 3-4]. Due to an internal delay known as T-SEEK, the maximum obtainable data transfer
rate varies. T-SEEK is defined as the amount of time between the issuing of the READ (or WRITE) command to the MBM and the MBM locating the page to be read (or written). T-SEEK can range in values from 20 microseconds to 163,820 microseconds with an average of 81,920 microseconds.

By disguising T-SEEK so that the SSDR does not "feel" its effect, i.e., have an inherent delay every time a READ or a WRITE occurs, and by using a buffer 32 Kbytes in size, the data transfer rate of 17 Kbytes/sec is obtained. T-SEEK is disguised by using a hardware comparator. Calculations were performed to find at what RAM buffer location a WRITE command needed to be issued, so that, by the time a full storage area of the buffer was filled, the MBM would be ready for the data transfer. A comparator was then connected having the same address as that location. Upon addressing this location, the comparator generates the
appropriate interrupt, signaling the 8085 to issue the WRITE command (see Figure 5.2). If it were feasible to increase the buffer to store a full 4 Mbits of data, and by the additional elimination of T-SEEK, the ideal data transfer rate of 25 Kbytes/sec could be achieved.

Figure 5.2 Implementation of Hardware Comparator.

1. General Purpose SSDR

The SSDR has the following characteristics. The sample rate is fixed at 2.5 KHz. As a result, (and due to the T-SEEK buffer limitations) the maximum obtainable data rate for one eight-bit channel is 17 Kbytes/sec.

The MBMs are adaptable to a power switching configuration, therefore the active MBM card need only be the one being written to or read from. Power consumption is kept to a minimum by the use of a custom designed power switching card, the "ECARD," (see Appendix A.) Thus, power is 15 Watts total for this design. The maximum storage capacity
is 12 Mbytes. Baseline record time (i.e. one channel, 8-bit resolution) is 83.9 minutes continuous recording.

2. **Adaptation of the SSDR to the NPS GAS Experiment**

 The following is a description of how the general purpose SSDR is configured to fulfill the requirements of the NPS experiment for Shuttle.

 Six eight-bit channels are required to obtain all the data. An in-depth study was performed by students working on the acoustic section of the experiment to best determine how to implement these channels and is not discussed in this thesis. The results are that three microphones and two accelerometers are connected to five A/D's. The A/D's have up to sixteen data lines from which to obtain information. Since the SSDR has only eight-bit resolution, the acoustic group also determined which of the sixteen lines would be connected to each eight-bit channel. The A/D's are then strobed synchronously to prevent any time delays encountered when analyzing the data. Once strobed, the channels are read using time division multiplexing (TDM), always reading the channels in numerical order, (see Figure 5.3). The maximum obtainable data rate at 2.5 KHz for the six channels is 15 Kbytes/sec.

 The full 12 Mbytes of storage will be utilized. The organization of the memory is accomplished in the following manner under software control. (Appendix B provides the software code used to run the SSDR.) Three record options are available to chose from and they are SWEEP, SCROLL, and LAUNCH. SWEEP is to be performed prior to launch. A tone will be generated by a voltage controlled oscillator (VCO) starting at 25 Hz and stepping up to 1000 Hz at 1 Hz intervals. This will be done in order to excite and record the fundamental acoustic modes in the STS cargo bay. Seventeen of the twenty-four MBM cards are required to store this data and will take 16.5 minutes. The recorder will then go into a standby mode awaiting its next command.
Figure 5.3 Basic Channel Configuration.

SCROLL, the next record option, will be initiated by the powering up of the Auxiliary Power Unit (APU) on the Shuttle. This initiation process is done by the use of a matched filter and is the topic of a thesis written by LT D. W. Jordan, USN, titled *A Matched Filter Algorithm for Acoustic Signal Detection*. During SCROLL, two MBM cards will be continuously recorded on until launch. This option provides the capability to capture the very important information otherwise lost should the record process be initiated by a detection of the launch itself.
Once launch is detected, however, the recorder will transition immediately to the first of the remaining six MBM cards and record the information to be obtained before the Shuttle leaves the earth's atmosphere. At this point, the job of the data recorder is complete and it will be shut down, retaining the data for analysis when it returns to NPS. The total record time for the SSDR is 21 minutes. It should be noted, however, these options do not have to follow consecutively, i.e. should the matched filter not function properly and a launch is detected, the data recorder will jump to the specified MBM card and record the remainder of the launch. The determination of a launch is not done by the SSDR and is not a topic discussed in this thesis. For more information concerning the control of the experiment as a whole, the reader is referred to a thesis written by Lt J. W. Wallin, USN titled Microprocessor Controller with Nonvolatile Memory Implementation.

3. Limitations and Alternative

Some of the limitations of this design are a result of the prototype MBM card used in the experiment. For example, the 43 byte FIFO in the BMC limits the data transfer rate. One reason the FIFO exists is to smooth out timing differences between the host and the MBM. Only having 43 bytes for the buffer has proved to be inadequate. INTEL has since built the 4 Mbit device with a 128 byte FIFO.

The performance of a particular bubble memory device ultimately is a function of three factors,

1. the number of storage loops,
2. the number of storage locations on those storage loops,
3. the frequency of the rotating magnetic field (coil frequency).

The throughput, which is number of bytes/sec, is directly proportional to the number of storage loops and the coil
frequency. The time to find a particular page of data (T-SEEK) is directly proportional to the number of storage locations and inversely proportional to the coil frequency. Power is directly proportional to the coil frequency. Increasing or decreasing any of the three changes the performance and trade-offs must be made.

The 8085 microprocessor is an 8-bit device. Designing the SSDR to perform with a 16-bit device or a 32-bit device, would enhance the resolution and provide for data throughput of up to 272,000 Mbytes/second. For more information on a 32-bit design, the reader is referred to Lt T. J. Frey's thesis, A 32-bit Microprocessor Based Solid State Data Recorder for Space-based Applications.

The SSDR is limited to 12 Mbytes of storage. This is partly due to size, weight, and power constraints of the GAS container. It is also limited to this size because of the use of the prototype MBM card. Using "off the shelf" components benefitted the GAS experiment as far as time and money was concerned, however, flexibility was affected.

An alternative, not only for the MBM card but for the SSDR as a whole, would be to custom design a card enabling the BMC to control more than one MBM. The BMC can control up to eight MBMs at one time [Ref. 9]. For further information the reader is referred to Lt. B. A. Campbell's thesis, A Digital Recording System for Space-based Applications Utilizing Four-megabit Magnetic Bubble Memories.

The NPS GAS experiment is scheduled to fly in 1986. Analysis of the data and performance of the SSDR is another phase of the experiment as a whole. The scope of this thesis concentrates solely on the MBM and its implementation into a data recorder. Because of the MBM's inherent hardness to radiation, ruggedness and reliability, its future use in space-related or space-born systems should not be underestimated.
APPENDIX A

SCHEMATIC OF THE SOLID STATE RECORDER

A. POWER SWITCHING CARD (ECARD)
B. CONTROLLER CARD (MICROPROCESSOR/DMA)
APPENDIX B
SOFTWARE CODE

EXTERN INBSEL,EDZUEL,WDIZUEL,ZICTMP
ENTRY BUENUM,REDTMP,WRETMP,REDTMP,WCTMP
CSEG

SOLID STATE DATA RECORDER PROGRAM
FOR 4-MEGABIT BUBBLE "E"CRY BOARD

STACK EQU 0 ;STACK POINTER LOCATION
TPIPIC EQU 108 ;TIMER CONTROL/STATUS PORT
TPFIPA EQU 118 ;BUBBLE POWER PORT 025
TPFIPB EQU 128 ;BUBBLE SELECT PORT 026
TLSB EQU 148 ;TIMER LEAST SIG. BYTE 015
TWSTMP EQU 158 ;TIMER POST SIG. BYTE 015

PEIPFA EQU 208 ;PROGRAMMABLE PERIPHERAL INTERFACE PORT A
PEPIPB EQU 218 ;PROGRAMMABLE PERIPHERAL INTERFACE PORT B
PEPIPC EQU 228 ;PROGRAMMABLE PERIPHERAL INTERFACE PORT C
PEPICS EQU 238 ;PROGRAMMABLE PERIPHERAL INTERFACE STATUS

CONDATA EQU 378 ;CONSOLE DATA
CONSTAT EQU 318 ;CONSOLE STATUS
ATCD EQU $C000E ;ANALOG TO DIGITAL ADDRESS
DTCA EQU $C001H ;DIGITAL TO ANALOG ADDRESS
CR EQU $D8 ;CARRIAGE RETURN
LF EQU $0A ;LINE FEED
ES EQU $0B ;BACK SPACE
TXCNT EQU $1000 ;NUMBER OF BLOCK TRANSFERS

PAGE0 EQU $40000 ;RAM AREA 0 (2K X 64 BYTES)
PAGE1 EQU $60000 ;RAM AREA 1 (2K X 64 BYTES)

TABLE OF RELATIVE ADDRESSES OF VARIABLES AND JUMP VECTORS

RAM EQU $00000 ;BEGINNING ADDRESS OF RAM
RAMTABL EQU RAM ;BEGINNING OF RAM TABLE
ATODTMP EQU RAMTABL+1000 ;A TO D TEMPORARY STORAGE ADDRESS
ICTATMP EQU ATOITMP+2 ;I TO A TEMPORARY STORAGE ADDRESS
COUNT EQU ICTATMP+2 ;# OF 54 BYTE PAGES TRANSFERRED AS A BLOCK
BUENUM EQU COUNT+2 ;CURRENT BUBBLE BEING USED STORED HERE
REITMP EQU BUENUM+2 ;JUMP VECTOR CMD TO READ CURRENT BUBBLE
WRITMP EQU REITMP+2 ;JUMP VECTOR CMD TO WRITE TO CURRENT BUBBLE
RDTMP EQU WRITMP+2 ;JUMP VECTOR CMD TO READ STATUS CURRENT BUBBLE
WRCTMP EQU RDTMP+3 ;JUMP VECTOR CMD TO WRITE COMMAND BUBBLE REG
INTVEC EQU WRCTMP+3 ;17.5 INTERRUPT VECTOR CMD
RAMALL EQU INTVEC+3 ;CURRENT RAM ADDRESS TO READ OR WRITE FROM

53
; SOFTWARE INTERRUPTS

; BOCT: JMP SYSTEM ; JUMP TO START OF PROGRAM
 DS 5
RSTRT1: JMP INBUBL ; JUMP TO INITIALIZE BUBBLE
 DS 5
RSTRT2: JMP READBUBL ; JUMP TO READ BUBBLE
 DS 5
RSTRT3: JMP WRBUBL ; JUMP TO WRITE BUBBLE
 DS 5
RSTRT4: JMP DO5 ; JUMP TO DATA ERROR TEST
 DS 1
RSTRT5: JMP DOTRAP ; JUMP TO POWER FAILURE ROUTINE
 DS 1
RSTRT6: JMP DOIS5 ; JUMP TO CLEAR RAM BUFFER
 DS 1
RSTRT7: JMP INTVEC ; JUMP TO SERVICE ROUTINE
 DS 1

; INTERRUPT 6.5 INITIATES THE SERVICE ROUTINE WHICH CHECKS THE CURRENT BUBBLE FOR AN ERROR INTERRUPT OR OP-COMPLETE
; RSTRT8: POP B ; SAVE REGISTER B-C
 JMP DOCHB ; JUMP TO CLEAR BUBBLE INTERRUPT OR OP-COMPLETE
RSTRT9: JMP DO7 ; JUMP TO 7.5 SERVICE ROUTINE
 DS 1

; INTERRUPT 7.5 INITIATES THE ANALOG TO DIGITAL OR DIGITAL TO ANALOG SERVICE ROUTINE WHICH EITHER SENDS OR RECEIVES A BYTE FROM THE RAM
; RSTRT9: JMP INTVEC ; JUMP TO SERVICE ROUTINE

; SYSTEM: ; START OF THIS PROGRAM

LIL
LXI SP,STACK
VXI A,C
CALL DELAY
CALL INITHEW
LXI D,MENU
CALL PRINT

; THIS ROUTINE INPUTS A CHARACTER FROM THE CONSOLE AND ECHOES IT BACK TO THE CONSOLE IT DETERMINES WHAT FUNCTION IS TO BE PERFORMED BY POINTING THE PROGRAM COUNTER TO THE PROPER JUMP STATEMENT LOCATED AT THE SYSTEM TABLE (SYSTBL). THE PROGRAM UNDER NORMAL OPERATION RETURNS TO THIS ROUTINE.
AGAIN:

AGAIN:
LXI D, "SG2
CALL PRINT
CALL COMIN
MOV C, A
CALL CCNCUT
MOV A, C
CTI '0'
JMP E881
CLI '
SUI '0'
MOV C, A
ADD A
ADD C
MOV B, A
LXI E, D01TEL
DAD B

; D01TEL IS THE BASE ADDRESS FOR THE JUMP ROUTINE THAT SETS SPECIFIC
; SAMPLING RATES. A SPECIFIC JUMP IS SELECTED BY THE D01 ROUTINE
; USING D01TEL AS THE BASE ADDRESS.

; D01TEL:
JMP D010
JMP D011
JMP D012
JMP D013

; D010, D011, D012, D013 ARE THE SPECIFIC ROUTINES SELECTED BY THE D01TEL
; JUMPS. ONLY ONE IS INVOKED AT ANY ONE RUN. THE HL REG PR IS LOADED
; WITH THE NUMBER OF CLOCK CYCLES BETWEEN SAMPLES. THIS PROGRAM IS SET
; TO RUN WITH A CLOCK RATE OF 4MHZ.

; D010:
LXI E, 6000
JMP DONE1

; D011:
LXI E, 4000
JMP DONE1

; D012:
LXI E, 1500
JMP DONE1

; D013:
LXI E, 2000
JMP DONE1

; D014: LOADS THE OUTPUT ADDRESS OF THE D TO A INTO ETCA AND OUTPUTS THE
; NUMBER OF CLOCK CYCLES BETWEEN SAMPLES INTO THE COMMAND REGISTER OF THE
; 8085. IT WILL START IMMEDIATELY AFTER LOADING. AT TERMINAL COUNT IT
; WILL SEND THE NECESSARY INTERRUPT PULSE TO THE 7.5 INTERRUPT OF THE
; 8085.
DONE1:

DI
MVI A,60H
STA DTCA
MOV A,L
OUT T5E
MOV A,B
OPI 80H
OUT T5EH
PTL A,200H
OUT T5PH
LXI D,MENU
CALL PRINT
JMP AGAIN
;
;prints to the console when an unauthorized character is received
;"Eat Entry, try again!"
;
ERR1:
LXI D,30H1
CALL PRINT
JMP DC1
;
;THE SECOND MAIN ROUTINE INITIALIZES A BUBBLE. THE SPECIFIC BUBBLE IS
;SELECTED BY THE USER AT THE CONSOLE. IT RETURNS TO THE CONSOLE WITH AN
;"OPERATION COMPLETE" OR "INCOMPLETE." IN INCOMPLETE IT WILL ALSO GIVE
;THE RESULTS OF THE BUBBLE STATUS REGISTER. THIS ROUTINE USED BASICALLY
;THE SAME ROUTINE TO INPUT DATA FROM THE CONSOLE AS DOES ROUTINE DC1.
;
DC2:
DI
LXI D,30H2
CALL PRINT
CALL CONIN
MOV C,A
CALL CONOUT
MOV A,C
CPI 'G'
JMP ERR2
OPI 'G'
JF ERR2
SUI 'O'
MOV C,A
ADD A
ADD C
MOV C,A
XFA A
MOV B,A
LXI E,DC2TBL
DAD B
FCHI
;
;DC2TBL IS THE BASE ADDRESS FOR THE JUMP ROUTINES THAT INITIALIZE A SPECIFIC
;BUBBLE. THE SPECIFIC JUMP IS SELECTED BY THE DC2 ROUTINE USING DC2TBL
;AS THE BASE ADDRESS. THIS PROGRAM IS CAPABLE OF SELECTING 1 OF 5 SPECIFIC
; BUBLES. FOR THE SPACE SHUTTLE DATA RECORDER THIS WILL BE ENHANCED TO
; SELECT 1 OF 24 SPECIFIC BUBLES.
;
; DC20:
 JMP DC20
 JMP DC21
 JMP DC22
 JMP DC23
 JMP DC24
 JMP DC25
;
; THIS ROUTINE TURNS OFF THE POWER LIGHT (LED) TO A SPECIFIC BUBBLE
;
; DC20:
 LXI H,00E
 SED DCE5E
 MVI A,00E
 OUT PPIPA
 JMP DONE21
;
; INITIALIZATION ROUTINE FOR BUBBLE #1
;
; DC21:
 LXI H,00E
 MVI A,01E
 JMP DONE22
;
; INITIALIZATION ROUTINE FOR BUBBLE #2
;
; DC22:
 LXI H,01F
 MVI A,02E
 JMP DONE22
;
; INITIALIZATION ROUTINE FOR BUBBLE #3
;
; DC23:
 LXI H,02E
 MVI A,03E
 JMP DONE22
;
; INITIALIZATION ROUTINE FOR BUBBLE #4
;
; DC24:
 LXI H,03E
 MVI A,04E
 JMP DONE22
;
; INITIALIZATION ROUTINE FOR BUBBLE #5
;
; DC25:
 LXI H,04E
 MVI A,05E
;
; TON22 Initializes THE BUBBLE CARD INDICATED BY REGISTER PARI H-L. IT
; ALSO STORES THE B-1 IN BENUM TO BE USED LATER AS AN OFFSET POINTER
; IN OTHER ROUTINES.

DONE2:
 SPLD BENUM
 CUT PPIPA
 CALL BIODMP
 LIT 3, TABLES
 CALL INN3UL
 MCV B.A
 XRI 40E
 JNZ INTER
 LXI D, "SG4"
 CALL PRINT
 JMP DONE21

; THIS ROUTINE PRINTS "OP-FAILED" IF INITIALIZATION IN ROUTINE DONE2 DOES
; NOT WORK.

INTER:
 MOV A, B
 CALL STATUS
 LXI D, MSG5
 CALL PRINT

; RETURN TO END OF ROUTINE UPON INITIALIZATION.

DONE21:
 LXI D, END
 CALL PRINT
 JMP AGAIN

; PRINTS TO CONSOLE WHERE AN UNAUTHORIZED CHARACTER IS RECEIVED IN D02.
; RETURNS TO END OF ROUTINE TO INITIALIZE A SPECIFIC BUBBLE.

ERROR:
 LXI D, "SG1"
 CALL PRINT
 JMP D02

; THIS ROUTINE RECEIVES DATA FROM THE ANALOG TO DIGITAL CONVERTER AND PLACES
; IT TEMPORARILY IN THE RAM. THE RAM IS DIVIDED INTO TWO PAGES. FROM THE RAM
; IT IS THEN MOVED INTO THE BUBBLE MEMORY IN BLOCKS OF 32 PAGES (2K BYTES).
; WHERE A PAGE IS EQUAL TO 64 BYTES. THE BYTES ARE PLACED IN THE RAM BY THE
; LINT AT A TIME. AFTER THE 32 PAGES HAVE BEEN READ INTO THE RAM THE
; FLAG "PAGFUL" IS SET TO INDICATE A BLOCK IS READY FOR TRANSFER TO THE BUBBLE
; MEMORY. THE CURRENT BUBBLE IS INSTRUCTED TO START TRANSFERING THROUGH
; THE DMA. WHILE THE BLOCK TRANSFER OF PAGES IS OCCURRING, THE NEXT PAGE OF
; DATA FROM THE ANALOG TO DIGITAL CONVERTER IS BEING TRANSFERRED INTO THE OTHER PAGE OF
; RAM. BY THE TIME THE BLOCK TRANSFER IS COMPLETE, THE NEXT PAGE WILL BE
; NEARLY READY FOR TRANSFER. ONCE IT IS FILLED, A FLAG WILL BE SET AND ANOTHER
; BLOCK TRANSFER WILL BEGIN AND THE PREVIOUS PAGE OF RAM WILL BE RENEMRED.
; THIS BEGINNING THE CYCLE OVER AGAIN. THIS WILL CONTINUE UNTIL ALL BUBBLE
; CARDS HAVE BEEN WRITTEN.
DI
LIX SP, STACK
CALL BEINT
LI B1013
MVI A, 0CFE
STA INTVEG
S10D INTVEC+1
LI B, DOCHE
STA DOCHE
S10D DOCHE-1
;
GPA INITIAL SET OF
;
MVI A, 0FB
OUT 0FB
OUT 0CB
MVI A, 00B
OUT 04B
MVI A, 02B
OUT 02B
MVI A, 02B
OUT 02B
MVI A, 04B
OUT 02B
MVI A, 02B
OUT 02B
LXI A, 0
S10D SUBNUM
CALL BICTMP
LI B, TIXCNT
S10D COUNT
LXI B, 02E00B
S10D RAMADD
MVI A, 01
STA LENDUM
OUT PP1PA
MVI A, 0FB
OUT PP1PB
STA DMANUM
;
SET UP RAM TABLE WITH PARAMETRIC REGISTER INITIAL VALUES.
;
LXI R, RAMTABL
MVI R, 02E
INX B
MIV B, 10E
INX B
MVI B, 02E
INX B
INX B

60
MVI M,28H
CALL CONIN
MVI A,8H
STA PAGFUL
MVI A,2AH
EI

; THIS ROUTINE POLLS THE "PAGE FULL" FLAG TO SEE IF A PAGE IS READY
; FOR TRANSFER.
; IF IT IS READY, IT SENDS A WRITE COMMAND TO THE BUBBLE TO START
; TRANSFERRING A PAGE FROM RAM TO THE CURRENT BUBBLE MEMORY.

PAGPOL2:
LXI PAGFUL
CPI @FFB
JNZ PAGPOL2

LXI B,RAMTABL
CALL WRBUBL
MVI A,36H
CLI
MVI A,36H
CUT @FB

BECLT: JMP BECL3

; WHEN RECORDING, THIS ROUTINE IS THE 6.5 INTERRUPT ROUTINE. THE 6.5 IS
; INITIALIZED BY THE INTERRUPT OF THE BUBBLE CARDS UPON AN OP-COMPLETE OR
; ERROR. IF AN ERROR, IT WILL INDICATE BUBBLE STATUS REGISTER ON THE CONSOLE.

DO?CBL:
MVI A,22H
CLI
CALL RESTMP
MOV B,A
ANI 40H
CPI 40H
JZ RESIT3

; IF ERROR PRINT "OP FAIL" AND STATUS.

LXI D,CRLF
CALL PRINT
MOV A,E
CALL STATUS
LXI D,SCS
CALL PRINT
JMP GOAGAIN
; CHECK TO SEE IF THE CURRENT BUBBLE IS FINISHED. IF SO, MOVE TO NEXT CARD.
; IF LAST CARD, GO TO GOAGAIN TO START OVER. THIS NORMALLY IS CALLED FROM
; CCBK3.

; RESSET:
MVI A, 0FE
OUT 0EF
LELD COUNT
DCX B
SELD CCOUNT
MOV A, 0E
ORA L
JNZ AGAIN3
MVI A, 02E8
CALL WECTMP
LDA BUBCARD
DEC A
STA BUBCARD
JZ DONEZ
LELD BUENUM
LAX H
SELD BUENUM
LDA LNUM
INC STA LNUM
OUT PPIPA
LDA D'MANUM
INC STA D'MANUM
OUT PPIPA
CALL BIOTMP
JMP AGAIN3

; THIS ROUTINE PRINTS "OPERATION COMPLETE" TO CONSOLE AND RETURNS TO "MAIN
; MENU."

DONEZ:
LXI D,CRLF
CALL PRINT
MOV A, 05
CALL STATUS
LXI D,MSG4
CALL PRINT
JMP GOAGAIN

; SET UP FOR NEXT EIOCK TRANSFER TO BUBBLE BY PLACING PARAMETRIC BUBBLE REG-
; ISITER VALUES INTO RAM. THESE VALUES ARE READ BY THE WECTMP ROUTINE AND
; PLACED INTO THE APPROPRIATE REGISTERS.

AGAIN3:
MVI A, Z
STA PAGFUL
LXI H,RAMTABL
MVI H, 0208
INX B
SET UP DMA FOR TRANSFER TO BUBBLE BY LOADING CORRECT RAM LOCATION.

CUT 0CE
LBD RAMADD
MVI A,0
CUT 04E
MOV A,0
CPI 0E8H
JNC AGN31
MVI A,0E8B
JMP AGN32

AGN31:
MVI A,0E8B
AGN32:
CUT 04E
MVI A,0
OUT 05B
OU 05B
CPI 0E8H
JMP FATPOL3

; THIS ROUTINE IS VECTORED TO WHEN A 7.5 INTERRUPT IS ACKNOWLEDGED AND THE
; RECORDER IS IN THE RECORD MODE. THIS ROUTINE TAKES A BYTE FROM THE ANALOG
; TO DIGITAL CONVERTERS AND PLACES IT IN THE CORRECT RAM LOCATION INDICATED
; BY THE ADDRESS STORED IN RAMADD. THIS ROUTINE IS JUMPED TO THROUGH LOADING
; THE "INVECT" LOCATION WITH THE ADDRESS OF DC13.

DC13:
PUSH PSW
PUSH H
LBD RAMADD
LDA ATOD
STA DTDA
MOV M,A
MVI A,0C0H
SIM
MVI A,048B
SIM
INX H
MOV A,B
CPI 0F8B
JZ DC13A
CPI 0E8H

63
JZ DO132
SHLD RAMADD
POP H
FCP PSW
EI
RET

; THIS ROUTINE SETS THE PAGE FULL FLAG IF PAGE 1 IS FULL AND RESETS THE RAM ADDRESS VALUE IN RAMADD.

DO131:
LXI H, 00000H
SHLD RAMADD
MVI A, 0FFH
STA PAGFUL
FCP B
FCP PSW
EI
RET

; THIS ROUTINE TAKES THE DATA FROM THE BUBBLE MEMORY CARDS AND SENDS IT TO THE DIGITAL TO ANALOG CONVERTERS. IT DOES THIS BY FIRST PLACING A BLOCK OF DATA INTO THE RAM. A BLOCK OF DATA IS 32 SIXTY-FOUR BYTE PAGES. THE BLOCK IS MOVED BY THE DMA FROM THE BUBBLE TO THE RAM. ONCE IN THE RAM, THE DATA IS THEN MOVED BY THE DMA, A BYTE AT A TIME, TO THE DIGITAL TO ANALOG CONVERTERS. THE SAME TYPE OF PROCEDURE USED IN RECORDING THE DATA IS USED WHEN INTERLEAVING PAGE 0 AND PAGE 1 OF THE RAM. SINCE THE DMA CAN TRANSFER FROM THE BUBBLE FASTER THAN THE BYTES ARE BEING PLACED OUT ONTO THE DIGITAL TO ANALOG CONVERTERS, THERE IS ALWAYS A FULL PAGE OF DATA READY WHEN THE CURRENT PAGE IS FINISHED BEING READ OUT.

; MOST OF THE CODING IS IN SUPPORT OF CHANGING PAGES OF RAM DURING PLAYBACK.

DO132:
SHLD RAMADD
MVI A, 0FFH
STA PAGFUL
FCP B
FCP PSW
EI
RET

; THIS ROUTINE TAKES THE DATA FROM THE BUBBLE MEMORY CARDS AND SENDS IT TO THE DIGITAL TO ANALOG CONVERTERS. IT DOES THIS BY FIRST PLACING A BLOCK OF DATA INTO THE RAM. A BLOCK OF DATA IS 32 SIXTY-FOUR BYTE PAGES. THE BLOCK IS MOVED BY THE DMA FROM THE BUBBLE TO THE RAM. ONCE IN THE RAM, THE DATA IS THEN MOVED BY THE DMA, A BYTE AT A TIME, TO THE DIGITAL TO ANALOG CONVERTERS. THE SAME TYPE OF PROCEDURE USED IN RECORDING THE DATA IS USED WHEN INTERLEAVING PAGE 0 AND PAGE 1 OF THE RAM. SINCE THE DMA CAN TRANSFER FROM THE BUBBLE FASTER THAN THE BYTES ARE BEING PLACED OUT ONTO THE DIGITAL TO ANALOG CONVERTERS, THERE IS ALWAYS A FULL PAGE OF DATA READY WHEN THE CURRENT PAGE IS FINISHED BEING READ OUT.

; MOST OF THE CODING IS IN SUPPORT OF CHANGING PAGES OF RAM DURING PLAYBACK.

DC4: ; PLAYBACK DATA

DI
LXI H, SP.STACK
CALL PRINT
LXI H, DO14
MVI A, 0C3H
STA INTVEC
SHLD INTVEC+1
LXI H, DO4CBX
STA DOCBK
SHLD DOCBK+1
; SMTA INITIAL SET-UP

; **TI A,0FE
OUT 07E
OUT 0CE
**TI A,00E
OUT 04E
**TI A,01E
OUT 04E
**TI A,00E
OUT 05E
**TI A,10E
OUT 05E
**TI A,06E
OUT 03B
**TI A,02E
OUT 06E

I XI B,E
SELD SUBNUM
CALL B2IOTMP
I XI B,11CMT-1
SELD COUNT
I XI B,000000H
SELD RAPADD
**TI A,01
STA LSNMNUM
OUT PP1PA
**TI A,000H
OUT PPIPB
STA DMANUM

; SET UP RAM TABLE WITH PARAMETRIC REGISTER INITIAL VALUES.

I XI E,RAMTABL
**TI R,40E
INX E
**TI R,10E
INX E
**TI R,20E
INX E
**TI R,06E
INX E
**TI R,00E

; CALL COMIN

; **TI A,00E
SIM
I XI E,RAMTABL
CALL RDEUBL
**TI A,03E
OUT 0FE

D041:
; This routine polls the "PAGE FULL" flag to see if a page is ready for
; transfer. If it is ready, it sends a read command to the bubble to
; start transferring a page from bubble to RAM.

PAGPOL4:
LEA PAGEB
CPI $0FFH
JZ PAGPOL4

LXI B,RAMTBL
CALL ADDRBL
MVI A,$28B
SIM
MVI A,$28B
OUT $0F8H

BPCL4:
JMP BPCL4

; When reading, this routine is the 6.5 interrupt service routine. The 6.5 is
; initialized by the interrupt of the bubble cards upon an op-complete or
; error. If an error, it will indicate bubble status on the console.

DO4CHE:
MVI A,$28B
SIM
LXI CALL RDSTMP
MOV B,A
ANI $40H
CPI $40H
JZ RESET4

; If error print "OP-FAIL" and status.

LXI D,CRIIF
CALL PRINT
MOV A,E
CALL STATUS
LXI D,MSG5
CALL PRINT
JMP GOAGAIN

; Subroutine to see if the current bubble is finished. If so move to next card.
; If last card go to GOAGAIN to start over. This normally is called from
; IO4CHE.

RESET4:
MVI A,$0FFH
STA PAGEFUL
MVI A,$C6H
OUT $0F8H
LRLD COUNT

66
DCX H
SBLD COUNT
MOV A, $H
ORA L
JNZ AGAIN4
WVI A, $20H
CALL WRCTMP
LDA SUBCARD
DCR A
STA SUBCARD
JZ DONE4
LBDD BUBNUM
INX E
SBLD BUBNUM
LDA BUBNUM
RLC
STA BUBNUM
OUT PPIPA
LDA EMANUM
RLC
STA EMANUM
OUT PPIPB
CALL RDTMP
JMP AGAIN4

; THIS ROUTINE PRINTS "OPERATION COMPLETE" TO THE CONSOLE AND RETURNS TO
; THE MAIN MENU.

DONE4:
IXI D, CRLF
CALL PRINT
MCV A, $E
CALL STATUS
IXI D, MSG4
CALL PRINT
JMP GOAGAIN

; SET UP FOR NEXT BLOCK TRANSFER FROM BUBBLE TO RAM BY PLACING BUBBLE
; PARAMETRIC REG VALUES INTO RAM. THESE VALUES ARE READ BY THE RDTMP
; ROUTINE AND PLACED INTO THE APPROPRIATE REGS.

AGAIN4:
IXI H, RAMTABL
WVI M, $20H
INX H
WVI M, $10H
INX H
WPI M, $25H
INX H
WVI A, $2EH
CALL WRCTMP
CALL RDTMP
MOV M, A
INX H
CALL RDTMP

67
;SET UP DMA FOR TRANSFER TO RAM BY LOADING CORRECT RAM LOCATIONS.

OUT 0CB
LELD RAMADD
MVI A,0
OUT 04B
MOV A,8
CPI 08EH
JNC AGN41
MVI A,08EH
JMP AGN42

AGN41:
MVI A,08EH

AGN42:
OUT 04B
MVI A,08EH
OUT 05B
MVI A,06B
OUT 05B
JMP PAGPOL4

;THIS ROUTINE IS VECTORED TO WHEN A 7.5 INTR nRTUPT IS ACKNOWLEDGED AND THE
;RECORER IS IN THE PLAYBACK MODE. THIS ROUTINE TAKES A BYTE FROM RAM AND
;PLACES IT ON THE CORRECT DIGITAL TO ANALOG CONVERTER. THIS ROUTINE IS
;JUMPED TO THROUGH LOADING OF THE INVECT LOCATION WITH THE ADDRESS OF DOI4.

DOI4: READ BUBBLE INTERRUPT SERVICE

PUSH PSW
PUSH H
LELD RAMADD
MOV A,0
STA DTOA
INX H
MOV A,8
CPI 07EH
JZ DOI41
CPI 08EH
JZ DOI42
SELD RAMADD
PDP H
FCP PSW
EI
RET

;THIS ROUTINE SETS THE "PAGE FULL" FLAG IF THE CURRENT PAGE IS FULL AND
;RESISTS THE RAM ADDRESS VALUE IN RAMADD.

DOI41:
LXI H,020000H
SELD RAMADD
MVI A,02B
STA PAGFULL
FCP H
; THIS ROUTINE ALSO SETS THE "PAGE FULL" FLAG FOR THE OTHER PAGE IN RAM AND
; PSETS THE RAM ADDRESS VALUE IN RAMADD.

L0142:
SHLD RAMADD
MVI A,00H
STA PAGEFUL
POP B
FCP PSW
EI
RET

; THIS ROUTINE IS REFERENCED WHEN AN ERROR OCCURS. "OP-FAIL" IS PRINTED OUT
; INTO THE CONSOLE ALONG WITH THE STATUS OF THE BUBBLE MEMORY CONTROLLER
; SO THAT THE USER IS ABLE TO DETERMINE WHAT WENT WRONG WITH THE BUBBLE
; READ OR WRITE OPERATION.

; PRINT BUBBLE CONTROLLER STATUS

STAT1:
RLC
JC STAT2
MVI C,0EH
JMP STAT3

STAT2:
PUSH PSW
CALL CONOUT
FCP PSW
DCR B
JNZ STAT1
RET

; THIS NEXT ROUTINE ENABLES THE PROGRAM TO RETURN TO THE MAIN MENU
; FROM A READ OR WRITE OPERATION.

GOAGAIN:

; RETURN TO SYSTEM FROM READ/WRITE
DPI
MVI A,0FH
OUT 0FH
MVI A,0EH
OUT 0EH
MVI A,0FH
STA DTOA
MVI A,0
OUT FPA
MVI A,0FFH
OUT FPIB
LXI D,PIND
CALL PRINT
JMP AGAIN

;B5INT AND ITS SUBSEQUENT ROUTINES, B5INT0 AND B5INT1 RESPECTIVELY, ARE
;DEALING WITH THE INITIALIZATION OF THE 5 BUBBLE CARDS. WHENEVER AN
;INITIALIZATION IS PERFORMED, THESE ROUTINES FURNISH THE USER (VIA THE
;CONSOLE) SUCH INFORMATION AS TO HOW MANY CARDS INITIALIZED SUCCESSFULLY.

BEINT:
LXI H,00B
MVI A,01B
CALL B5INT1
LXI H,01B
MVI A,02B
CALL B5INT1
LXI H,02B
MVI A,04B
CALL B5INT1
LXI H,03B
MVI A,06B
CALL B5INT1
LXI H,04B
MVI A,10B
CALL B5INT1

BEINT0:
STA BUBCARD
LXI D,CRL.F
CALL PRINT
LDA BUBCARD
ADD 0BB
MOV C,A
CALL CONOUT
LXI D,PSG10
CALL PRINT
LXI H,00B
SBLD BENUM
MVI A,00B
OUT PPIPA
RET

BEINT1:
SBLD BENUM
CUT PPIPA
CALL BIOTAP
LXI B,STABLES
CALL INPUBL
MOV B,A
MVI A,20B
CALL WRCTAP
MOV A,2
ANI 0FBH
CFB 42B
MVI A,28B
NZ INLD BENUM
MOV A,L
POP B
; DOITRAP IS USED WHEN A SPURIOUS INTERRUPT OCCURS WITHIN THE SYSTEM
; THAT COULD POSSIBLY RUIN THE CURRENT OPERATION. THE WAY IN WHICH THE
; USER LEARNS THAT SOMETHING HAPPENED, I.E., AN UNEXPECTED INTERRUPT,
; IS THAT THE SYSTEM JUMPS TO THIS ROUTINE AND PRINTS OUT "SPURIOUS
; INTERRUPT" ONTO THE CONSOLE.
;
; DOITRAP:
; IXI D,MSG7
; CALL PRINT
; JMP AGAIN
;
; THE NEXT SET OF ROUTINES, DOS THROUGH DO155, ARE USED FOR THE DATA ERROR
; TESTING TO ENSURE PROPER OPERATION OF THE BUBBLES. THE PREDICTED ERROR
; RATE FOR THE BUBBLES IS 10^-13. IF ONE DESIRES TO, THEY COULD RUN THIS
; ROUTINE INDEFINITELY TO SEE IF THAT PREDICTION HOLDS. DURING THIS SECTION
; DIFFERENT PATTERNS OF "1'S" AND "0'S" ARE RECORDED INTO THE BUBBLE MEM-
;ORIES. THE USER HAS A CHOICE OF WHICH PATTERN (SEE MSG11). UPON COM-
;PLETION, THE USER CAN PLAYBACK WHAT WAS RECORDED AND DETERMINE THE
; ACCURACY OF THE BUBBLE MEMORIES.
;
; DOE:
; IXI SP,STACK
; LXI D,MSG11
; CALL PRINT
; CALL BEINT

; CONSOLE ENTRY SECTION.

; CALL COMIN
; MOV C,A
; CALL CONOUT
; MOV A,C
; CPI '0'
; JM ERR5
; CPI 'S'
; JF ERR5
; SUI '0'
; MOV C,A
; ADD A
; ADD C
; MOV C,A
; XRA A
; MOV B,A
; LXI H,DOSBL
; CAD B
; PCHL

; CONSOLE TABLE:
; JMP DOS5
; JMP DOS1
; JMP DOS2
; JMP DOS3
; JMP DOS4

; ERROR ROUTINE FOR INCORRECT CONSOLE ENTRY

; IXI D,MSG1
CALL PRINT
LXI D,"SG11"
CALL PRINT
JMP DO50

DO50:
JMP GOAGAIN

DC51:
JMP DONE5

DC52:
JMP DONE5

DC53:
JMP DONE5

DC54:
JMP DONE5

DONE5:
LXI D,"SG11"
CALL PRINT
JMP DONE5

DONE5:
; ROUTINE TO PRINT CHOICES FOR DATA ERROR TEST.

DO515:
LXI H,PGAO
LXI P,1000

DO05:
"DCX B
MOY A,B
CRA C
JNZ DO06..

MV A,H
STA DTCA
LXI D,"SG4"
CALL PRINT
LEI D,"MENU"
CALL PRINT
JMP AGAIN

; THIS SECTION, DO6-DO61, IS DESIGNED TO CLEAR THE RAM BUFFER IF CHOSEN.
; IT IS WISE TO START OUT WITH A RAM THAT IS IN A KNOWN STATE. THEN THE
; USER IS ASSURED TO HAVE NO PREVIOUS DATA FROM OTHER RECORDINGS.
; UPON COMPLETION IT RETURNS THE USER TO THE MAIN MENU.

DO6:
DI
LXI H,PAGEO
LXI E,1000

DO61:
MOV F,E
DCX B
MOV A,B
CRA C
JMW DO61
MVI A,E08
STA DTCA
LXI D,"SG4"
CALL PRINT
LEI D,"MENU"
CALL PRINT
JMP AGAIN

; SC7 AND DO17 ARE THE CONVERT AND DISPLAY OPTIONS. THE ADVANTAGE OF THESE
; ROUTINES IS THAT THE USER CAN ENSURE THE CORRECT OPERATION OF THE ANALOG
; AND DIGITAL CIRCUITRY. NO RECORDING OR PLAYING BACK IS PERFORMED. THE
; SAMPLING INPUT GOES DIRECTLY TO THE OUTPUT. HENCE, ONE IS ABLE TO CONNECT
; THE INPUT AND OUTPUT TO AN OSCILLOSCOPE, FOR EXAMPLE, AND DETERMINE
; THE ACCURACY OF BOTH WAVEFORMS. THE ONLY DISCREPANCY THAT MAY BE
; OBSERVED WILL BE A TIME DELAY.
; LOADING OF THE REGISTERS.

; CONVERT AND DISPLAY INTERRUPT ROUTINE

; DO7:
DI
LXI E,DO17
MVI A,033H
STA INTVEC
SHLD INTVEC+1
MVI A,27H
OUT 0FEH
OUT 0CEH
MVI A,08EH
OUT 00B
MVI A,01B
OUT 01B
MVI A,08EH
OUT 02EH
MVI A,00EH
OUT 03EH
MVI A,02EH
OUT 03EH
MVI A,05EH
OUT 02EH
MVI A,01EH
OUT 02EH
MVI A,02EH
OUT 03EH
MVI A,00EH
OUT 02EH
MVI A,04EH
SIM
MVI A,04EH
SIM
EI
LXI D,MENU
CALL PRINT
JMP AGAIN

; DO17:
FUSH PSW
FUSH H
FUSH D
FUSH B
MVI A,04EH
OUT 0SEH
NOP
MVI A,030EH
SIM
NOP
MVI A,040EH
START OF SUBROUTINES

;THE FOLLOWING SUBROUTINES SET THE HARDWARE TO KNOWN CONDITIONS AND
PROVIDE THE CODE FOR PRINTING OUT MENUS AND MESSAGES VIA THE CONSOLE.
;EVERYTIME A MESSAGE IS TO BE PRINTED, THE PRINT ROUTINES ARE CALLED.
;EVERYTIME THE USER IS REQUIRED TO INPUT (OR RECEIVED AN OUTPUT) VIA
;THE CONSOLE, THE CONIN/CONOUT/CONST SUBROUTINES ARE CALLED.
;INITRW IS THE SUBROUTINE THAT IS CALLED TO SET ALL THE HARDWARE TO A
KNOWN STATE.

PRINT:

ICBG

PRT1:
PCT A,l
CPI $4
HZ
PCT C,A

PRT2:
IN CONSTAT
ANI 01
CPI 01
JNZ PRT2
PCT A,C
OUT CONDATA
INX E
JMP PRT1

CONIN:
IN CONSTAT
ANI 02
JZ CONIN
IN CONDATA
ANI 7FB
RET

CONOUT:
IN CONSTAT
ANI 01
CPI 01
JNZ CONOUT
PCT A,C
OUT CONDATA
RET

CONST:
IN CONSTAT
ANI 02
BZ
MVI A.0FFH
RET

INITHW: SET HARDWARE TO KNOWN STATE

;8251 UART
MVI A.0
OUT CONSTAT
OUT CONSTAT
OUT CONSTAT
MVI A.40H
OUT CONSTAT
MVI A.42H
OUT CONSTAT
MVI A.42H
OUT CONSTAT

;8255 PROGRAMMABLE PERIPHERAL INTERFACE.

MVI A.88H
OUT PFICS
MVI A.00H
OUT PFIPA
MVI A.0FFH
OUT PFIPB

;ZERO A TO D STROBE
MVI A.48H
SIM

;ZERO D TO A OUTPUT
MVI A.88H
STA DTCA

;8237 DMA
MVI A.0
OUT 0DEB

;REST ALL REGISTERS
OUT 00
OUT 00
OUT 01
OUT 02
OUT 02
OUT 03
OUT 03
; ; SIT MCE REGISTERS
; MVI A,65H
OUT 0B8
MVI A,65H
OUT 0B8
MVI A,16H
OUT 0B8
MVI A,16H
OUT 0B8
;
; SIT COMMAND REGISTER
; MVI A,61H
OUT 068
RET
;
; DELAY:
; MOV B,A
; IDelay A times 10msec.
; LOOP1:
; CLI D,166H
; LOOP2:
; DCX D
; MOV A,D
; ORA E
; JNZ LOOP2
; JNZ LOOP1
; RET
;
; THIS IS THE MAIN MENU AND CHOICE OF OPERATIONS THAT CAN BE PERFORMED.
;
; MENU: DB CR,LF, 'SOLID STATE DATA RECORDER',CR,LF
DB CR,LF, '0= RESET SYSTEM'
DB CR,LF, '1= SET SAMPLE RATE'
DB CR,LF, '2= INITIALIZE BUFFER'
DB CR,LF, '3= RECORD INPUT DATA'
DB CR,LF, '4= PLAYBACK DATA'
DB CR,LF, '5= DATA ERROR TEST'
DB CR,LF, '6= CLEAR RAM'
DB CR,LF, '7= CONVERT / DISPLAY'
DB CR,LF, '8'
;
; THE FOLLOWING MESSAGES ARE SELF-EXPLANATORY AND ARE CALLED THROUGHOUT THE
; PROGRAM IN ORDER FOR THE SYSTEM TO COMMUNICATE WITH THE OPERATOR VIA THE
; CONSOLE.
MSG1: DB CR,LF,'BAD ENTRY, TRY AGAIN! ',CR,LF,\"\"

MSG2: DB CR,LF,'SET SAMPLE RATE ',CR,LF
 DB CR,LF,'0= 500HZ ';
 DB CR,LF,'1= 1.0KHZ ';
 DB CR,LF,'2= 2.5KHZ ';
 DB CR,LF,'3= 5.0KHZ ';
 DB CR,LF,\"\"

MSG3: DB CR,LF,'SPARE ',CR,LF,\"\"

MSG4: DB CR,LF,'OP-COMPLETE ',CR,LF,\"\"

MSG5: DB CR,LF,'OP-FAILED ',CR,LF,\"\"

MSG6: DB CR,LF,'CHOOSE BUBBLE FOR INITIALIZATION ',CR,LF
 DB CR,LF,'0= CLEAR ';
 DB CR,LF,'1= BUBBLE 1 ';
 DB CR,LF,'2= BUBBLE 2 ';
 DB CR,LF,'3= BUBBLE 3 ';
 DB CR,LF,'4= BUBBLE 4 ';
 DB CR,LF,\"\"

MSG7: DB CR,LF,'SPOROUS INTERRUPT ',CR,LF,\"\"

MSG8: DB CR,LF,'TIME OUT ERROR ',CR,LF,\"\"

MSG9: DB CR,LF,'SPARE ',CR,LF,\"\"

MSG10: DB CR,LF,'CARDS ACTIVE ',CR,LF,\"\"

MSG11: DB CR,LF,'SELECT TEST MODE ',CR,LF
 DB CR,LF,'0= END TEST ';
 DB CR,LF,'1= 00000000 ';
 DB CR,LF,'2= 01010101 ';
 DB CR,LF,'3= 10101010 ';
 DB CR,LF,'4= 11111111 ';
 DB CR,LF,\"\"

CRIF: DB CR,LF,\"\"

; THESE ARE THE INITIAL VALUES FOR THE PARAMETRIC REGISTERS. THEY ARE
; LOADED INTO BAM INITIALLY SO THAT THERE IS A CAPABILITY TO CHANGE THE
; VALUES THROUGHOUT THE OPERATION OF THE RECORDER.

TABLES: DB 018,10H,20H,08H,08H
 DS 1

END
; THIS SECTION WAS LINKED ONTO THE MAIN PROGRAM AND STORED IN THE EPROM.
; IT IS THEN COPIED FROM EPROM INTO THE RAM IN ORDER TO HAVE THE CAPABILITY
; TO CHANGE THE PARAMETRIC REGISTER VALUES DURING A RECORD OR PLAYBACK OPERA-
; TION. OBVIOUSLY, TO WORK OUT OF THE EPROM, THE VALUES WOULD NEVER HAVE
; BEEN ABLE TO BE CHANGED. CONSEQUENTLY, TABLES CONTAINS THE INITIAL
; VALUES BUT THE RAM COPY IS THE PART THAT CAN BE UPDATED TO REFLECT CURRENT
; VALUES.
ENTRY TABLES, BU0, BU01, BU02, BU03, BU04, ENDTAB
; CSRC
;
; SOLID STATE DATA RECORDER PROGRAM
; FOR 4-MEGABIT BUBBLE MEMORY BOARD
;
STACK ECU @
;
PRTA00 EQU $D000H
PRTA01 EQU $D01H
;
TPFICS EQU 10H
TPFIFA EQU 11H
TPFIFB EQU 12H
TPFIFC EQU 13H
TSLB EQU 14H
TSLBM EQU 15H
;
PPIFS EQU 20H
PPIFPC EQU 21H
PPIFPD EQU 22H
PPIFPS EQU 23H
;
CONDATA EQU 30H
CONSTAT EQU 31H
;
ATOD EQU OC000B
L OA ECU OC001B
CR ECU OCR
LF ECU OAR
BS EQU OBE
;
PAGEx EQU $1000H
PAGE1 EQU $1002H
;
RAIN EQU $1000E
RAMTABL EQU RAM
ATODMP EQU RAMTABL-100H
ATODMP EQU ATODMP+2
;
MOVE TABLE
;
TABLES: DB $1B, $10H, $20H, $00H, $00H
BU0B: DB $1B, $10H, $20H, $00H, $00H
BUE1: DB 01H,10H,20H,30H,40H
BUE2: DB 01H,10H,20H,30H,40H
BUE3: DP 01H,10H,20H,30H,40H
BUE4: DP 01H,10H,20H,30H,40H
ENDTAB EQU $
TABSIZ EQU ENDTAB-TABLES
;
DS 1
;
END
4-MEG BUBBLE DRIVERS

THE SOFTWARE DRIVERS FOR THE BUBBLE MEMORIES ARE SUPPLIED BY INTEL CORPORATION. ULMONT SMITH WAS THE ORIGINAL AUTHOR OF THE DRIVERS FOR THE ONE MEGABIT DEVICE. MOST OF THE SAME ONES CAN BE USED ON THE FOUR-MEGABIT DEVICE. HOWEVER, CHANGES NEEDED TO BE INCORPORATED IN ORDER FOR THEM TO WORK THE FOUR MEGABIT MEMORIES WITHOUT ERRORS. ONE OF THE ADDITIONS WAS THE ADDITION OF THE DRIVER TO WRITE ALL ONE'S TO THE FIFO/BOOTLOOP IN ORDER TO FORCE THE CONTROLLER TO UTILIZE THE EXTERNAL DATA ERROR CHECKING. THE OTHER ADDITION WAS THAT OF THE WRDTMP ROUTINE SO THAT THE DRIVERS DID NOT HAVE TO BE REPEATED 5 TIMES (IN THE CASE OF THE SQDRI, 24 TIMES.)

EXTRN TABLES,BUBNUM,BEDTMP,WRDTMP,READMP,WRCTMP

ENTRY INBUBL,RDBUBL,WRBUBL

BYTECNT EQU 256

INTPAR INITIALIZES THE PARAMETRIC REGISTERS OF THE BUBBLES. THESE REGISTERS MUST BE LOADED EACH TIME A READ OR A WRITE OPERATION IS PERFORMED.

NOTE: THIS DOES DESTROY THE A, F/FS

INTPAR: PUSH D
FUSB D
մ1 A,0EH
CALL WRCTMP
մ1 E,0EH
; INITIALIZE LOOP COUNTER
LOAD: LDAX B
CALL WRDTMP
INX B
; INCREMENT B-C REGS TO THE NEXT ADDR IN RAM
DCR E
; DECREMENT LOOP COUNTER
JNZ LOAD
; IF NOT ZERO, JP P LOAD
POP D
; RESTORE D-C REGS
POP B
; RESTORE B-C REGS
RET

RESET 7220 FIFO DATA BUFFER

NOTE: DESTROYS A, F/FS

FIFORS: PUSH B
FUSB B
մ1 B,40H
LXI D,0FFFFH INTIALIZE TIME OUT
մ1 A,1DE
CALL WRCTMP
BUSYBR:
CALL REDTMP
; TEST BUSY BIT=1
JC POLLFR ; IF BUSY = 1, POLL STATUS REG
ECX D ; INCREMENT TIME OUT LOOP
XRA A ; CLEAR A REG
CRA D ; TEST D-REG = 00H
CRA E ; TEST E-REG = 00H
JNZ BUSYPOLL ; IF NOT 0 CONTINUE POLLING
JMP RETFR ; TIME OUT ERROR

POLLFR:
CALL RDSTMP
XRA B ; TEST STATUS = 40H
JZ RETFR ; IF OP-COMPLETE JMP RETFR
DCX D ; INCREMENT TIME OUT LOOP
XRA A ; CLEAR A
ORA D ; TEST D-REG
CRA E ; TEST E-REG
JNZ POLLFR ; IF NOT 0 CONTINUE POLLING

RETFR:
POP B ; RESTORE B-C REGS
POP D ; RESTORE D-F REGS
JMP RESTMP

; ; ABORT MUST BE PERFORMED WHEN A BUBBLE IS INITIALLY TURNED ON OR IMMEDIATELY
; ; BEFORE POWERING DOWN THE BUBBLE.
; ; NOTE: DESTROYS A, F/FS
; ; ABORT:
PUSH D ; SAVE D-E REGS
PUSH B ; SAVE B-C REGS
LXI D,FFFFH ; INIT TIME OUT LOOP COUNTER
MVI B,40H ; LOAD E-REG = 40H, OP-COMPLETE
MVI A,1EH ; LOAD A-REG = ABORT COMMAND
CALL WRCTMP

BUSTA:
CALL RDSTMP
JC POLLA ; IF BUSY = 1, POLL STATUS REG FOR 40H
DCX D ; INCREMENT TIME OUT LOOP COUNTER
XRA A ; CLEAR A REG
CRA D ; TEST D-REG = 00H
CRA E ; TEST E-REG = 00H
JNZ BUSYA ; IF NOT 0, COAT POLLING ABORT COMMAND
JMP RETA ; TIME OUT ERROR, RETURN

POLLA:
CALL RDSTMP
JZ RETA ; IF OP-COMPLETE, JMP RETA
DCX D ; INCREMENT TIME OUT LOOP COUNTER
XRA A ; TEST STATUS FOR OP-COMPLETE
CRA D ; TEST D-REG FOR 0
CRA E ; TEST E-REG FOR 0
JNZ POLLA ; IF NOT 0 CONTINUE POLLING

RETA:
POP B ; RESTORE B-C REGS
POP D ; RESTORE D-F REGS
JMP RESTMP

;
;WRITE 7224 FIFO DATA BUFFER WITH ALL ONE'S. THIS PARTICULAR DRIVER HAD TO
;BE WRITTEN BECAUSE THE RECORDER IS USING THE 4MBIT DEVICES. WITH THE FIRST
;IN THE SERIES OF 4MBIT BUBBLES, THE BOOTLOOP HAD TO BE REWRITTEN (OR APPEAR
;TO BE) BY WRITING ALL ONE'S TO THE FIFO. THEN WHEN THE CONTROLLER DOES A
;COMPARE AND SEES ALL ONE'S--THEREFORE; IT INTERPRETS THAT AS A BUBBLE
;WITH ALL LOOPS ACTIVE--IT GOES CUT AND DOES AN EXTERNAL DATA ERROR CHECK.

;DESTROYS A, F/FS

:FILL FIFO WITH ALL ONE'S

WRFIFO:
PUSH B
PUSH D
MVI B,40H
MVI C,28H
CALL FIFORS
XRA B
JNZ RETWF
MVI A,0FFH

INIFIFO:
CALL WRTMP
DCR C
JNZ INIFIFO

RETWF:
POP D
POP B
JMP RESTMP

;WRITE 7224 BOOT LOOP REGISTERS WITH ALL ONE'S. THIS IS THE SECOND HALF OF
;THE PROCESS OF FAKING THE BUBBLE INTO BELIEVING THE BOOTLOOP HAS ALL ONE'S
;AND THEREFORE MUST DO AN EXTERNAL DATA ERROR CHECK.

;DESTROYS A, F/FS

WRFLRS:
PUSH B
PUSH D
MVI B,41H
MVI C,0F8H
IXX B,8
CALL WRFIFO
ANA C
XRA B
JNZ RETWBL
DCR B
MVI A,16B
CALL WRCTMP

BSYWBL:
CALL RESTMP
PLC
JZ POLEBL
DCX E
MOV A,B
ORA L
4.

JNZ BSTWBL
JMP RITWBI

POLWBL:
CALL RDSTMP
XRA B
JZ RETWBL
DCX H
POP A,B
CRA L
JNZ POLWBL

RETWBL:
POP H
POP B
JMP RSTMP

; WRITE BUBBLE MEMORY DATA IS THE ROUTINE USED TO PREPARE THE BUBBLE FOR A WRITE OPERATION.
; DESTROYS A, Y/FS

WREUBL; WRITE BUBBLE DATA
RET
PUSH H ;SAVE H-I REG
PUSH B ;SAVE B-C REG
PUSH D
CALL BIOTMP
MVI B,40H ;LOAD B REG OF-COMPLETE
CALL FIFOR ;RESET FICO
XRA B ;TEST FOR OP-COMPLETE
JNZ RETWR ;IF ERROR JMP RETWR
POP B ;RESTORE B-C
CALL INTPAR ;LOAD PARAMETRIC REGS
LXI H,3YTCNT
PUSH B ;SAVE B-C REGS
LXI H,2FFFH ;INITIALIZE TIME OUT LOOP

LOCPWR:
CALL RDSTMP
RCL ;TEST FOR BUSY=1
JNC RETWR ;IF ZERO JMP RETWR
DCX H ;DECREMENT TIME OUT LOOP
XRA A ;CLEAR A REG
ORA H ;TEST H-REG FCR 0
GRA L ;TEST L-REG FOR 0
JNZ LOCPWR ;CONTINUE POLLING

RETWR:
PCP D
POP P
FCP B ;RESTORE B-L REGS
JMP RSTMP

; READ BUBBLE MEMORY DATA IS THE ROUTINE USED TO PREPARE THE BUBBLE FOR A READ OPERATION.
; DESTROYS A, F/FS

; RECALL: ISEAL BUBBLE DATA

RET
PUSH H ; SAVE H-L REGS
PUSH B ; SAVE B-C REGS
PUSH D CALL BIOTMP
MVI B,40H ; LOAD B REG OF-COMPLETE
CALL FIFORS ; RESET FIFO
XRZ B ; TEST FOR OP-COMPLETE
JNZ RETRD ; IF NOT ZERO JMP RETRD
FCP B ; RESTORE B-C REGS
CALL INTPAR ; LOAD PARAMETRIC REGS
LXI H,BITCNT
PUSH B ; SAVE B-C REGS
LXI H,2FFFFH; INITIALIZE TIME OUT LOOP

LOOPRD:
CALL RDSTMP
BLC RETRD ; TEST FOR BUSY=1
JNC RETRD ; IF ZERO, NOT BUSY, JMP RETRD
DEC H ; DECREMENT TIME OUT LOOP
XRA A ; CLEAR A REG
ORA B ; TEST Z REG=2
ORA L ; TEST L REG=2
JNZ LOOPRD ; CONTINUE POLLING

RETIN:
PDP D
FCP B ; RESTORE H-L REGS
JMP RDSTMP

; INITIALIZE THE BUBBLE MUST BE PERFORMED EVERY TIME THE BUBBLE IS TO BE
; WRITTEN TO OR READ FROM. IT SETS UP THE BUBBLE INTO A KNOWN STATE.

; DESTROYS A, F/FS

INBUBL:
PUSH D
PUSH B
CALL BIOTMP
MVI B,40H ; LOAD B REG OF-COMPLETE
CALL AECRT ; CALL AECRT COMMAND
XRA B ; TEST FOR OP-COMPLETE
JNZ RETIN ; IF ZERO OP-COMPLETE
FCP B ; ADDRESS OF PARAMETRIC REGS
CALL INTPAR ; LOAD PARAMETRIC REGS
PUSH B ; SAVE B-C REGS
MVI B,40H ; LOAD B REG OF-COMPLETE
LXI D,2FFFFH; INITIALIZE TIME OUT LOOP
MVI A,11H ; LOAD A REG INIT COMMAND
CALL WRCOMP
BUSTIN:
CALL RDSTMP
; PREAMBLE TIME OUT LOOP
J C POLLIN ; IF BUSY=1 POLL FOR 40E
DEC D ; PREAMBLE TIME OUT LOOP
XRA A ; CLEAR A REG
ORA D ; TEST D REG FCR φ
CRA E ; TEST E REG FCR φ
JNZ BUSTIN ; IF NOT φ CONTINUE POLLING
JMP RETIN ; TIME OUT BRANCH, RETURN

POLLIN:
CALL RSTMP ; TEST FOR OP-COMPLETE
XRA B ; BUSTIN
JZ EARFIX
DEC D ; DECREMENT TIME OUT LOOP
XRA A ; CLEAR A REG
ORA D ; TEST D REG FCR φ
CRA E ; TEST E REG FCR φ
JNZ POLLIN ; IF NOT φ CONTINUE POLLING

EARFIX:
CALL WBLRS
RETIN:
PCP B
PCP D
JMP RSTMP

; BIOTMP AND ITS SUBSEQUENT ROUTINES SET UP THE POINTERS SO THAT THE BUBBLE
; DRIVERS DON'T HAVE TO BE DUPLICATED FIVE TIMES (IN THE CASE OF THE SSDR
; TWENTY-FOUR TIMES). IT PUTS THE PROPER ADDRESS IN ALL THE REGISTERS THAT
; ARE USED DURING A READ/WRITE TO A BUBBLE.

; BIOTMP: ; BUBBLE IO TMP LOADER
PUSH E
PUSH D
LELD BUENDU
LXI D,0
XCHG
DAD D
EAD B
DAD D
XCHG
MVI A,0C3B ; JMP OP CODE
LXI H,REBBUD
EAD D
STA RDTMP
SHLD RDDTMP+1
LXI H,REBOTBD
EAD D
STA WRDTMP
SHLD WRDTMP+1
LXI H,REBBUDS
EAD D
STA RDDTMP
SHLD RDDTMP+1
LXI H,REBOTBC
EAD D
STA WRDTMP

85
SELD WRCTM-P+1
PCF D
PCF E
RET

;RUBUB IS THE ADDRESS SUPPLIED TO RDCTM-P WHEN READING THE BUBBLE DATA.
;IT SUPPLIES THE ADDRESS OF THE ACTIVE BUBBLE.
RUBUB:
IN 00H ;BUBBLE ONE
RET
IN 02H ;BUBBLE TWO
RET
IN 04H ;BUBBLE THREE
RET
IN 06H ;BUBBLE FOUR
RET
IN 08H ;BUBBLE FIVE
RET

;WEBUBD IS THE ADDRESS SUPPLIED TO WRCTM-P DURING A WRITE OPERATION.
;IT SUPPLIES THE ADDRESS OF THE ACTIVE BUBBLE.
WEBUBD:
OUT 00H ;BUBBLE ONE
RET
OUT 02H ;BUBBLE TWO
RET
OUT 04H ;BUBBLE THREE
RET
OUT 06H ;BUBBLE FOUR
RET
OUT 08H ;BUBBLE FIVE
RET

;RUBUBS SUPPLIES THE ADDRESS TO RDCTM-P DURING A STATUS CHECK OF THE
;ACTIVE BUBBLE.
RUBUBS:
IN 01H ;BUBBLE ONE
RET
IN 03H ;BUBBLE TWO
RET
IN 05H ;BUBBLE THREE
RET
IN 07H ;BUBBLE FOUR
RET
IN 09H ;BUBBLE FIVE
RET

;WEBUBC SUPPLIES THE ADDRESS OF THE ACTIVE BUBBLE TO WRCTM-P. THEN WHEN
;THE COMMAND REGISTERS NEED TO BE WRITTEN TO THE CORRECT BUBBLE IS
;ADDRESSED.
WREP:)

; BUBBLE ONE
CUT 81H
RET

; BUBBLE TWO
CUT 83H
RET

; BUBBLE THREE
CUT 85H
RET

; BUBBLE FOUR
CUT 87H
RET

; BUBBLE FIVE
CUT 89H
RET

DS 1
END
LIST OF REFERENCES

BIBLIOGRAPHY

<table>
<thead>
<tr>
<th>No.</th>
<th>Initial Distribution List</th>
</tr>
</thead>
</table>
| 1. | Defense Technical Information Center
 Cameron Station
 Alexandria, Virginia 22304-6145 |
| 2. | Library, Code 0142
 Naval Postgraduate School
 Monterey, California 93943-5002 |
| 3. | Department Chairman, Code 62
 Department of Electrical and Computer Engineering
 Naval Postgraduate School
 Monterey, California 93943-5000 |
| 4. | Commander
 Naval Space Command
 Dahlgren, Virginia 22448 |
| 5. | Professor R. Panholzer, Code 62Pz
 Department of Electrical and Computer Engineering
 Naval Postgraduate School
 Monterey, California 93943-5000 |
| 6. | Professor M. Cotton, Code 62Cc
 Department of Electrical and Computer Engineering
 Naval Postgraduate School
 Monterey, California 93943-5000 |
| 7. | Lcdr Sandra L. Coachman, USN
 3 Willow Street
 Newport, Rhode Island 02871 |
| 8. | Lt Tina-Marie D’Ercole, USN
 172 Eaton Avenue
 Hamilton, Ohio 45013 |
| 9. | David Rigmaiden
 1135 3rd Street
 Monterey, California 93940 |
| 10. | Professor S. L. Garrett, Code 61Gx
 Department of Physics
 Naval Postgraduate School
 Monterey, California 93943-5000 |
| 11. | Professor O. B. Wilson, Jr., Code 61Wl
 Department of Physics
 Naval Postgraduate School
 Monterey, California 93943-5000 |
| 12. | Space Projects Group, Code 72
 Naval Postgraduate School
 Monterey, California 93943-5000 |
| 13. | Professor John Simpson
 Enrico Fermi Institute
 University of Chicago
 Chicago, Il 60010 |
14. Captain Roger P. Onorati
Commanding Officer
Naval Ocean Research and Development Activity
NSTL, MS 39529
END
DATE
8-86