THE EFFECT OF HIGH PRESSURE ON ELECTRICAL RELAXATION IN PPO AND ELECTRICAL...
The Effect of High Pressure on Electrical Relaxation in PPO and Electrical Conductivity in PPO Complexed with Lithium Salts

by

John J. Fontanella & Mary C. Wintersgill

Prepared for Publication in

Journal of Applied Physics, October 1986

U. S. Naval Academy
Department of Physics
Annapolis, MD 21402

June 1986

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
Title: The Effect of High Pressure on Electrical Relaxation in PPO and Electrical Conductivity in PPO Complexed with Lithium Salts

Authors: John J. Fontanella & Mary C. Wintersgill

Abstract:

Audio frequency electrical conductivity and relaxation studies have been carried out on Parel 58 elastomer and Parel 58 elastomer complexed with a variety of lithium salts. The measurements have been carried out in vacuum over the temperature range 5-380 K and at pressures up to 0.65 GPa over the temperature range 230-380 K. Both the electrical conductivity for the complexed material and the electrical relaxation time associated with the relaxation in the uncomplexed material exhibit VTF or WLF behavior. From the VTF analysis for both the vacuum electrical relaxation time and...
electrical conductivity, τ_a is found to be about 0.09 eV and T_α is found to be about 40°C below the central glass transition temperature. In addition, it is found that the activation volumes for the electrical relaxation time and the electrical conductivity are the same when compared relative to T_α. These results imply that the mechanism controlling ionic conductivity is the same as that for the α relaxation namely large scale segmental motions of the polymer chain.
THE EFFECT OF HIGH PRESSURE ON ELECTRICAL RELAXATION IN PPO AND ELECTRICAL CONDUCTIVITY IN PPO COMPLEXED WITH LITHIUM SALTS*

J. J. Fontanella, M. C. Wintersgill, M. K. Smith, J. Semancik
Physics Department
U. S. Naval Academy
Annapolis, MD 21402

C. G. Andeen
Physics Department
Case Western Reserve University
Cleveland, OH 44106
Audio frequency electrical conductivity and relaxation studies have been carried out on Parel 58 elastomer and Parel 58 elastomer complexed with a variety of lithium salts. The measurements have been carried out in vacuum over the temperature range 5-380K and at pressures up to 0.65 GPa over the temperature range 230-380K. Both the electrical conductivity for the complexed material and the electrical relaxation time associated with the α relaxation in the uncomplexed material exhibit VTF or WLF behavior. From a VTF analysis for both the vacuum electrical relaxation time and electrical conductivity, E_a is found to be about 0.09 eV and T_o is found to be about 40°C below the "central" glass transition temperature. In addition, it is found that the activation volumes for the electrical relaxation time and the electrical conductivity are the same when compared relative to T_o. These results imply that the mechanism controlling ionic conductivity is the same as that for the α relaxation namely large scale segmental motions of the polymer chain.
I. INTRODUCTION

A review of the work on ion conducting polymers has been given by Armand.1 Subsequently, there has been a considerable amount of work in the field including many new ion conducting materials and new types of measurements.2-13 To date, the material which has been studied most intensively, of course, is poly(ethylene oxide) (PEO). However, that material is highly crystalline which complicates the situation since it is generally believed that electrical transport in these materials takes place primarily in the amorphous region. Consequently, it is necessary to understand the relation between the crystalline and amorphous regions before definitive conclusions can be drawn concerning electrical transport in these materials. As an alternative approach, studies of poly(propylene oxide) (PPO) can be undertaken as it is possible to prepare highly amorphous ion containing material. Relatively little work has been carried out on that material.14-17 In the present work, the effect of high pressure on the electrical properties has been studied. A preliminary report has been given elsewhere.18 In the present paper, new measurements are reported and it is shown that the effect of high pressure on the electrical conductivity is very similar to the effect of high pressure on the alpha relaxation in the host material which provides strong evidence that, for PPO, ion transport is controlled by large-scale segmental motions characteristic of the glass-rubber transition.
II. EXPERIMENTAL

Audio frequency complex impedance/electrical relaxation measurements have been carried out using a fully automated spectrometer. The key element in the measurements is a CGA-82 microprocessor-controlled bridge operating at seventeen frequencies from 10^{-10^5} Hz. Vacuum measurements were carried out in a Precision Cryogenics CT-14 dewar controlled by a Lake Shore Cryotronics DRC-82 temperature controller using a silicon diode sensor. The high pressure measurements were carried out in a pressure vessel using either Spinesstic 22 (Exxon) or Fluorinert (3M Co.) FC-77 electronic liquid as the high pressure fluid. Differential scanning calorimetry measurements (DSC) were carried out using a DuPont 990 DSC. All systems were controlled using Apple II computers.

The material studied was Parel 58 (Hercules, Inc.) elastomer which is a sulfur-vulcanizable copolymer of propylene oxide and allyl glycidyl ether. As the primary constituent is propylene oxide, the material will be referred to throughout this paper as PPO. Samples were obtained by solution casting using methanol as the solvent. The salts, LiI, LiCF$_3$SO$_3$, LiClO$_4$, and LiSCN, were dried in a vacuum oven at approximately 110°C. All procedures including loading of the samples into the various sample holders were carried out in a dry box. FTIR measurements were carried out on both the salts and all polymers. It was found that all materials were dry except those containing LiSCN. Consequently, the results for those materials are included only for comparison and the results are not considered as reliable as those for the other three salts.

Aluminum electrodes were vacuum evaporated onto the surfaces of the material in either a three-terminal or two-terminal configuration. The
samples were about 1 mm thick and the electrodes about 4 mm in diameter.

III. RESULTS

A. Differential Scanning Calorimetry

The DSC results for PPO$_8$:LiI are shown in Fig. 1. The DSC results for the other materials are shown elsewhere.18 It is clear that the materials are highly amorphous as they exhibit only a glass transition. For PPO$_8$:LiI, for example, the as-prepared PPO$_8$:LiI showed a complex glass transition beginning at about 268K and ending at about 298K. After quench, the glass transition sharpened with an onset of about 278K and completion at about 283K. The effect is attributed to the inhomogeneities in the materials. However, the "central" glass transition temperature was about the same, 283K, both before and after quench. The results for all materials are listed in Table I.

B. Electrical Conductivity

A typical complex impedance plot is shown in Fig. 1 of Ref. 18 or Fig. 2 of Ref. 13. A single depressed arc was usually observed over the frequency range of measurement. The data were analyzed using a Cole-Cole distribution:

$$Z^* = \frac{Z_0}{1 + (i\omega\tau_0)^{1-\alpha}}$$

(1)

where Z_0, τ_0, and α are the fitting parameters. As temperature increases, less of a semicircle is observed together with more slanted vertical line at lower frequencies representing blocking electrode effects.
In most cases, a best-fit of Eq. (1), to the data was obtained allowing values for the bulk resistance of the materials to be determined. For the remaining plots, a combination of the depressed arc and slanted vertical line was used to determine the bulk resistance.

Occasionally, such simple plots were not obtained, an extra circle being observed. In fact, this anomalous behavior was usually observed after the aluminum electrodes had been on the samples for several months and thus the extra peak was attributed to a chemical reaction between the electrodes and the material and was eliminated in the data analysis.

The conductance values, G, were then used, in conjunction with room temperature geometrical measurements, to calculate the electrical conductivity from:

$$
\sigma = \frac{Gt}{S} \quad (2)
$$

where t is the thickness and S is the surface area. Neither compressibility nor thermal expansion effects are included in the data analysis.

The results of typical isobaric (data taken at a constant pressure after temperature has been varied) data runs are shown in Fig. 2. The curvature often observed for amorphous polymer systems is apparent. Consequently, the conductivity data were first analyzed via the VTF equation:

$$
\sigma = \alpha T^{-1/2} \exp\left[-\frac{E_A}{k(T-T_0)}\right] \quad (3)
$$
with the adjustable parameters A, k, and T. A non-linear least squares fit of Eq. (3) to the data was carried out and Table II contains the best-fit parameters.

Next, isothermal data (data taken a constant temperature after varying pressure) were also taken and typical results are shown in Fig. 3. The following equation:

$$\log_{10} \sigma = \log_{10} \sigma_0 + aP + bP^2$$ \hspace{1cm} (4)

was best fit to the isothermal data and the best-fit parameters are listed in Table III.

In order to check the results of the isobaric data runs, 0.1 and 0.2 GPa conductivities were calculated from the isothermal results using the vacuum results as a reference. The resultant best fit VTF parameters are also listed in Table II. It is seen that there is good agreement between the two approaches.

It is noted that the vacuum values for T_o are between 34 and 46°C lower than the "central" T_g's which were determined by DSC. Some of these results have been reported previously \(^{18}\) and a similar result has also been recently reported for poly(dimethyl siloxane-ethylene oxide) co-polymer containing a sodium salt.\(^{13}\) In the earlier paper, \(^{18}\) it was stated that T_g was 30-40°C above T_o. However, in that paper T_g was defined as the "onset" T_g. A similar result is obtained in the present work since as is apparent from a comparison of the results in Tables I and II, the "onset" T_g is 23-28°C above T_o.

Such results are not unexpected since $T_g - T_o$ is often on the order of
50°C for polymer systems. Furthermore, this phenomenon is consistent with
the configurational entropy model where is interpreted as the
temperature of zero configurational entropy which would be expected to
occur at a much lower temperature than DSC Tg's. However, this result
disagrees with those of other workers for similar materials. Possible
reasons for the discrepancy along with details of the data analysis
technique used in the present work are given elsewhere.

The first result of the high pressure work is that the previous
result that Tg for PPO:LiCF3SO3 increases about 10K/kbar is confirmed.
This is to be compared to dTg/dP=17K/kbar which was observed for the n
relaxation in uncomplexed PPO. That value is larger, but since Tg
increases several K/kbar, it adds evidence that Tg is somehow related to
the glass transition since this variation is typical of glass transitions.
However, it is apparent from Table II that for PPO:LiClO4 and PPO:LiI, Tg
does not change much with increasing pressure. A relation between Tg and
g will still be preserved, of course, if Tg does not increase much with
pressure for these materials. This is not unreasonable since it is clear
that Tg is strongly shifted by the salts for these materials.
Consequently, it is found that for materials for which the vacuum Tg or Tg
is shifted strongly by the salts, Tg does not shift much with pressure.
High pressure DSC studies are currently underway to check this result.

Since it is often suggested that electrical conductivity in these
materials is "liquid-like" it is of interest to compare the present results
with the effect of high pressure on ionic conductivity in liquids. In
particular, Angell et al. have shown that while VTF behavior is observed
in liquids, all of the pressure dependence can be described by the pressure-
dependence of T_0. That clearly is not observed for polymers in the present work and thus sheds doubt on the assertion that the ionic conductivity in polymers is "liquid-like."

The isothermal studies can also be used to determine activation volumes directly via:

$$\Delta V^* = -kT \frac{d\ln\sigma}{dP}$$ (5)

The zero pressure values are listed in Table III. As the values are calculated from pressure runs where curvature has been included, the updated values are somewhat less than the preliminary values reported previously. However, they are still on the order of the values reported for ion containing PEO. Further, the trend is the same in that the activation volume for perchlorate complexed material is larger than for thiocyanate complexed material. However, as reported previously, ΔV^* for the triflate complexed material is smaller than for either thiocyanate or perchlorate complexed PPO. In addition, in the present work it is found that the iodide complexed material has a very large activation volume. As the iodide is the smallest ion, the results cannot be explained solely on the basis of the size of the anion.

Before suggesting an explanation, it is interesting to plot all of the activation volumes vs. $T-T_0$. Those results are shown in Fig. 4. The plot shows that an alternative view of the activation volume is that it is approximately the same for all materials at a given temperature interval above T_0. Consequently, different activation volumes can merely be attributed to different T_0's. It is also noted that the activation
volume calculated from Eq. (5) decreases as temperature increases. This agrees with previous observations in PEO25,26 and is expected as in general the activation volume scales with activation energy (slope of the conductivity plot) and the activation energy clearly decreases as temperature increases as is apparent from Fig. 2.

However, in either view, it is left to explain the trend with ion species. Clearly, only a limited sampling of ions has been examined. However, one possible explanation is suggested. Namely, the activation volume (and T\textsubscript{0} or T\textsubscript{g}) is smallest for ions for which the lithium transport number may be largest. Specifically, the data in the literature imply that for PEO complexed with lithium iodide and lithium perchlorate, the lithium transport number is about 0.327,28 whereas for PEO complexed with lithium thiocyanate and lithium triflate the lithium transport numbers are on the order of 0.529 and 0.728 respectively. Consequently, a combination of ion size and transport number may be responsible for the observed trends. For example, the small values of AV* (and T\textsubscript{g} or T\textsubscript{0}) for the material complexed with the large triflate ion may be related to the comparatively large fraction of small, mobile lithium ions. Similarly, the large value of AV* for the LiI complexed material may be related to the relatively small fraction of mobile lithium ions. Obviously, this suggestion is highly speculative in that the transport number data are for PEO and not PPO. However, it is interesting in that an explanation for the transport number differences is further suggested. Namely, thiocyanate and triflate have a permanent dipole moment while perchlorate and iodide do not. Consequently, because of this dipole moment, it may be that the former interact more strongly with the chains and thus contribute less to the electrical
conductivity. Obviously, ion size will also affect the magnitude of the transport numbers. Clearly, further work concerning these points is necessary.

It is noted that the curvature in the conductivity vs. pressure data, such as shown in Fig. 3 and entries in Table III is opposite that reported for PEO. It is likely that the different apparent curvature for PEO is due to electrode effects in that the early work on PEO was single frequency data and not the results of complex impedance analysis. The data for PEO are being redone and preliminary results indicate that the correct curvature is similar to that observed in the present work on PPO.

It will be of interest to determine both the compressibility and thermal expansion coefficient for these materials. In addition to allowing corrections of the conductance data, such data will make it possible to calculate the volume independent temperature variation and the temperature independent volume variation of the conductivity. Such experiments are currently underway.

Next, the data were analyzed in terms of the WLF equation:

\[
\log_{10} \frac{\sigma(T)}{\sigma(T_g)} = \frac{C_1(T - T_g)}{C_2 + (T - T_g)} \quad \text{(6)}
\]

The resultant parameters are listed in Table I. The values of \(C_1\) and/or \(C_2\) are reasonably close to the "universal" values of 17.4 and 51.6.

Finally, for completeness, the data were analyzed via the VTF eq. in the form:

\[
\sigma = A' \exp \left[-\frac{E'}{a'(T - T')_0} \right] \quad \text{(7)}
\]
which is analytically identical to the WLF equation with \(T_o' = T_g - C_2 \),
\(E_a' = 2.303C_1C_2 \) and \(\ln A' = 2.303C_1 + \ln(T_g) \). The results are also
listed in Table II.

C. Electrical Relaxation

For comparison with the effect of pressure on the electrical
conductivity, the effect of pressure on the \(\alpha \) relaxation, that associated
with the glass transition, was studied. As mentioned above, a preliminary
report of single frequency data (the frequency, 1000 Hz was inadvertently
omitted from the paper) at a variety of pressures has been given
previously.\(^{18}\) Typical variable frequency data are shown in Fig. 5. In
each case, the peak position, \(\omega_p \), was obtained by best-fitting the
imaginary part of the Havriliak-Negami function:\(^{31}\)

\[
C^* = \frac{D}{[1 + (i\omega\tau_o)(1-\alpha)]^8} \tag{8}
\]

to the data where \(D, \beta, \tau_o, \) and \(\alpha \) are the fitting parameters. The
vacuum results are shown in Fig. 6 where VTF or WLF behavior is once again
obtained. The following VTF equation was best-fit to the data:

\[
\omega_p = AT^{-1/2} \exp[-E_a/k(T-T_o)] \tag{9}
\]

and the results are listed in Table II. It is seen that for three
materials \(E_a \) is very close to the vacuum values obtained for the electrical
conductivity for the complexed material. The exception is PPO\(_8\):LiSCN, for
which, as described in Part II, the data are considered less reliable. In addition, by comparison with the DSC results listed in Table I, it is seen that \(T_o \) is once again observed to be about 40°C below \(T_g \). Clearly, these results show a relation between the electrical conductivity and the \(\alpha \) relaxation and hence between electrical conductivity and the glass transition.

For completeness, the analytically equivalent equations:

\[
\log_{10} \frac{\omega_p(T)}{\omega_p(T_g)} = \frac{C_1(T-T_g)}{C_2+(T-T_g)}
\]

(10)

and

\[
\omega_p = A' \exp\left[-\frac{E'_a}{T-T_o}\right]
\]

(11)

were also best-fit to the data and the results are listed in Tables I and II.

Next, the equation:

\[
\log_{10} \omega_p = \log_{10} \omega_{p_0} + aP + bP^2
\]

(12)

was best-fit to the isothermal electrical relaxation data. Typical data and best fit curve are shown in Fig. 7. The best-fit parameters along with the zero pressure activation volumes calculated from:

\[
\Delta V^* = -kT \frac{d\ln \omega_p}{dP}
\]

(13)

are listed in Table III. For comparison, the activation volumes are plotted in Fig. 4. It is seen that to within the scatter in the data, on
the "reduced plot" they are the same as those for the electrical conductivity. This provides strong, albeit indirect evidence that electrical conductivity is controlled by the same mechanism as the α relaxation. Specifically, it provides evidence that ionic conductivity is controlled by the large scale segmental motions characteristic of the glass-rubber transition.

The idea that ionic conductivity in polymers is related to the α relaxation is not new, of course. For example, the concept is mentioned by Fuoss as early as 1941. Further, many authors have suggested that the large ionic conductivity in PEO is associated with chain mobility. However, it is to be emphasized that the above comments do not necessarily apply to the "transport mechanism." Specifically, in order for the results of the present work to imply that the electrical transport mechanism be due to large scale segmental motions, it is necessary that the number of mobile ions not change with temperature. That such is the case is not clear at the present time. In fact, it may be that all or part of the role of the large scale segmental motions is to control the degree of dissociation of the ions. Detailed microscopic experiments such as NMR will be useful toward separating out these effects.

IV. SUMMARY

In summary, then, the following results have been obtained:
(a) It has been found that both electrical conductivity in complexed PPO and the electrical relaxation associated with the glass transition in uncomplexed PPO exhibit the same pressure and temperature dependence. This represents evidence that ionic conductivity is controlled by the large
scale segmental motions characteristic of the glass-rubber transition.

(b) It has been shown that E_a cannot be considered a constant, independent of pressure, and thus the data are different from that for ionic conductivity in liquids.

(c) It has been found that T_o does not change much with pressure for materials with a high T_g or T_o i.e. materials for which large shifts in T_g or T_o have been caused by the presence of ions. This implies that T_g does not change much with pressure for those materials.

ACKNOWLEDGMENTS

The authors would like to thank Hercules, Inc. for supplying the Parel 58 elastomer. This work was supported in part by the Office of Naval Research. The authors would like to thank Dr. A. Tompa of NSWC, Indian Head for arranging for them to obtain the DSC Console.
REFERENCES

REFERENCES

Electrical Relaxation (a)

<table>
<thead>
<tr>
<th></th>
<th>Onset</th>
<th>Central</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncomplexed</td>
<td>208</td>
<td>211</td>
<td>215</td>
</tr>
<tr>
<td>PPO</td>
<td>211</td>
<td>216</td>
<td>215</td>
</tr>
<tr>
<td>PPO</td>
<td>211</td>
<td>216</td>
<td>215</td>
</tr>
<tr>
<td>PPO</td>
<td>211</td>
<td>216</td>
<td>215</td>
</tr>
</tbody>
</table>

Electrical Conductivity

<table>
<thead>
<tr>
<th></th>
<th>Onset</th>
<th>Central</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPO</td>
<td>268</td>
<td>283</td>
<td>298</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Onset</th>
<th>Central</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPO</td>
<td>245</td>
<td>266</td>
<td>285</td>
</tr>
</tbody>
</table>

a. Reference 18.
TABLE II. Best fit VTF parameters.

<table>
<thead>
<tr>
<th></th>
<th>$\log_{10} A$</th>
<th>E_a (eV)</th>
<th>T_0 (K)</th>
<th>RMS Deviation (Ω·cm)$^{-1}$/K</th>
<th>$\log_{10} A'$</th>
<th>E'_a (eV)</th>
<th>T'_0 (K)</th>
<th>RMS Deviation (Ω·cm)$^{-1}$/K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncomplexed PPO, electrical relaxation (a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vacuum</td>
<td>0.0038</td>
<td>[13.95]</td>
<td>0.089</td>
<td>172.5</td>
<td>0.0038</td>
<td>[12.68]</td>
<td>0.088</td>
<td>172.7</td>
</tr>
<tr>
<td>PPO$_8$LicF$_3$SO$_3$, electrical conductivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vacuuma</td>
<td>0.0110</td>
<td>-0.04</td>
<td>0.082</td>
<td>234.9</td>
<td>0.0111</td>
<td>-1.44</td>
<td>0.077</td>
<td>236.6</td>
</tr>
<tr>
<td>0.1 GPa$_b$</td>
<td>0.0170</td>
<td>+1.11</td>
<td>0.094</td>
<td>236.4</td>
<td>0.0172</td>
<td>-0.26</td>
<td>0.091</td>
<td>237.4</td>
</tr>
<tr>
<td>0.1 GPa$_b$</td>
<td>0.0435</td>
<td>+0.44</td>
<td>0.112</td>
<td>230.3</td>
<td>0.0436</td>
<td>-0.94</td>
<td>0.108</td>
<td>231.3</td>
</tr>
<tr>
<td>0.2 GPa$_b$</td>
<td>0.0196</td>
<td>+1.03</td>
<td>0.103</td>
<td>242.6</td>
<td>0.0197</td>
<td>-0.34</td>
<td>0.100</td>
<td>243.3</td>
</tr>
<tr>
<td>0.2 GPa$_b$</td>
<td>0.0692</td>
<td>+0.63</td>
<td>0.128</td>
<td>234.2</td>
<td>0.0692</td>
<td>-0.75</td>
<td>0.125</td>
<td>234.9</td>
</tr>
<tr>
<td>PPO$_8$LICLO$_4$, electrical conductivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vacuuma</td>
<td>0.0226</td>
<td>+0.56</td>
<td>0.085</td>
<td>245.3</td>
<td>0.0233</td>
<td>-0.80</td>
<td>0.082</td>
<td>246.1</td>
</tr>
<tr>
<td>0.1 GPa$_b$</td>
<td>0.0113</td>
<td>+0.97</td>
<td>0.114</td>
<td>240.3</td>
<td>0.0113</td>
<td>-0.40</td>
<td>0.111</td>
<td>241.0</td>
</tr>
<tr>
<td>0.1 GPa$_b$</td>
<td>0.0304</td>
<td>+0.75</td>
<td>0.104</td>
<td>244.4</td>
<td>0.0303</td>
<td>-0.62</td>
<td>0.101</td>
<td>245.1</td>
</tr>
<tr>
<td>0.2 GPa$_b$</td>
<td>0.0181</td>
<td>+0.72</td>
<td>0.127</td>
<td>241.1</td>
<td>0.0182</td>
<td>-0.66</td>
<td>0.124</td>
<td>241.8</td>
</tr>
<tr>
<td>0.2 GPa$_b$</td>
<td>0.0822</td>
<td>+1.02</td>
<td>0.126</td>
<td>244.2</td>
<td>0.0820</td>
<td>-0.35</td>
<td>0.123</td>
<td>244.8</td>
</tr>
<tr>
<td>PPO$_8$LiCN, electrical conductivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vacuuma</td>
<td>0.0086</td>
<td>+0.047</td>
<td>0.126</td>
<td>203.2</td>
<td>0.0087</td>
<td>-0.95</td>
<td>0.120</td>
<td>205.1</td>
</tr>
</tbody>
</table>

1. Reference 18.
2. Calculated from isothermal data runs using the vacuum isobaric data as a reference.
TABLE III. Best fit parameters (Eqs. 4 and 12) and activation volumes for isothermal data.

<table>
<thead>
<tr>
<th>T(K)</th>
<th>RMS Deviation [log10(Ω·cm)]</th>
<th>a(GPa)</th>
<th>b(GPa)</th>
<th>AV* (cm3·mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>log$_{10}$(ω_0·s$^{-1}$)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electrical Relaxation (α)

Uncomplexed PPO

<table>
<thead>
<tr>
<th>T(K)</th>
<th>RMS Deviation [log10(Ω·cm)]</th>
<th>log$_{10}$(ω_0·s$^{-1}$)</th>
<th>a(GPa)</th>
<th>b(GPa)</th>
<th>AV* (cm3·mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>237.1</td>
<td>0.0055</td>
<td>[6.176]</td>
<td>-17.94</td>
<td>-26.5</td>
<td>51.4</td>
</tr>
<tr>
<td>243.6</td>
<td>0.0071</td>
<td>[6.550]</td>
<td>-17.11</td>
<td>-21.3</td>
<td>79.8</td>
</tr>
<tr>
<td>253.1</td>
<td>0.0079</td>
<td>[7.121]</td>
<td>-12.51</td>
<td>-18.4</td>
<td>60.7</td>
</tr>
<tr>
<td>273.1</td>
<td>0.0063</td>
<td>[8.186]</td>
<td>-8.88</td>
<td>-8.49</td>
<td>46.4</td>
</tr>
</tbody>
</table>

Electrical Conductivity

PPO$_3$LiCF$_3$SO$_3$

<table>
<thead>
<tr>
<th>T(K)</th>
<th>RMS Deviation [log10(Ω·cm)]</th>
<th>log$_{10}$(ω_0·s$^{-1}$)</th>
<th>a(GPa)</th>
<th>b(GPa)</th>
<th>AV* (cm3·mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>303.4</td>
<td>0.0181</td>
<td>-7.055</td>
<td>-7.72</td>
<td>-8.61</td>
<td>44.8</td>
</tr>
<tr>
<td>320.8</td>
<td>0.0069</td>
<td>-6.272</td>
<td>-5.74</td>
<td>-5.34</td>
<td>35.3</td>
</tr>
<tr>
<td>333.2</td>
<td>0.0138</td>
<td>-5.856</td>
<td>-4.95</td>
<td>-3.72</td>
<td>31.6</td>
</tr>
<tr>
<td>349.1</td>
<td>0.0307</td>
<td>-5.436</td>
<td>-3.69</td>
<td>-3.16</td>
<td>24.7</td>
</tr>
<tr>
<td>357.8</td>
<td>0.0241</td>
<td>-5.244</td>
<td>-3.51</td>
<td>-2.16</td>
<td>24.0</td>
</tr>
<tr>
<td>370.4</td>
<td>0.0064</td>
<td>-5.008</td>
<td>-3.49</td>
<td>-1.11</td>
<td>24.7</td>
</tr>
</tbody>
</table>

PPO$_3$LiClO$_4$

<table>
<thead>
<tr>
<th>T(K)</th>
<th>RMS Deviation [log10(Ω·cm)]</th>
<th>log$_{10}$(ω_0·s$^{-1}$)</th>
<th>a(GPa)</th>
<th>b(GPa)</th>
<th>AV* (cm3·mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>303.0</td>
<td>0.0051</td>
<td>-7.303</td>
<td>-11.32</td>
<td>-11.80</td>
<td>65.7</td>
</tr>
<tr>
<td>309.8</td>
<td>0.0172</td>
<td>-6.753</td>
<td>-10.60</td>
<td>-6.58</td>
<td>62.9</td>
</tr>
<tr>
<td>323.1</td>
<td>0.0076</td>
<td>-5.938</td>
<td>-8.95</td>
<td>-5.25</td>
<td>55.4</td>
</tr>
<tr>
<td>332.9</td>
<td>0.0139</td>
<td>-5.480</td>
<td>-8.15</td>
<td>-1.99</td>
<td>52.0</td>
</tr>
<tr>
<td>343.1</td>
<td>0.0182</td>
<td>-5.093</td>
<td>-7.72</td>
<td>-0.37</td>
<td>50.7</td>
</tr>
<tr>
<td>354.0</td>
<td>0.0822</td>
<td>-4.753</td>
<td>-5.03</td>
<td>-3.53</td>
<td>34.1</td>
</tr>
<tr>
<td>369.4</td>
<td>0.0397</td>
<td>-4.370</td>
<td>-5.60</td>
<td>-0.42</td>
<td>39.6</td>
</tr>
</tbody>
</table>

PPO$_3$LiII

<table>
<thead>
<tr>
<th>T(K)</th>
<th>RMS Deviation [log10(Ω·cm)]</th>
<th>log$_{10}$(ω_0·s$^{-1}$)</th>
<th>a(GPa)</th>
<th>b(GPa)</th>
<th>AV* (cm3·mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>302.9</td>
<td>0.0070</td>
<td>-8.078</td>
<td>-12.20</td>
<td>-13.52</td>
<td>70.5</td>
</tr>
<tr>
<td>309.9</td>
<td>0.0136</td>
<td>-7.281</td>
<td>-11.05</td>
<td>-9.46</td>
<td>65.5</td>
</tr>
<tr>
<td>332.9</td>
<td>0.0026</td>
<td>-5.562</td>
<td>-7.61</td>
<td>-5.13</td>
<td>48.5</td>
</tr>
<tr>
<td>343.1</td>
<td>0.0063</td>
<td>-5.061</td>
<td>-7.41</td>
<td>-7.07</td>
<td>48.7</td>
</tr>
<tr>
<td>363.1</td>
<td>0.0193</td>
<td>-4.334</td>
<td>-5.70</td>
<td>-3.14</td>
<td>39.6</td>
</tr>
<tr>
<td>369.4</td>
<td>0.0285</td>
<td>-4.156</td>
<td>-5.31</td>
<td>-1.76</td>
<td>37.5</td>
</tr>
</tbody>
</table>

PPO$_3$LiSCN3

<table>
<thead>
<tr>
<th>T(K)</th>
<th>RMS Deviation [log10(Ω·cm)]</th>
<th>log$_{10}$(ω_0·s$^{-1}$)</th>
<th>a(GPa)</th>
<th>b(GPa)</th>
<th>AV* (cm3·mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>323.1</td>
<td>0.0385</td>
<td>-6.081</td>
<td>-4.34</td>
<td>-4.33</td>
<td>26.8</td>
</tr>
<tr>
<td>343.1</td>
<td>0.0059</td>
<td>-5.337</td>
<td>-3.62</td>
<td>-2.43</td>
<td>23.8</td>
</tr>
<tr>
<td>363.1</td>
<td>0.0068</td>
<td>-4.782</td>
<td>-3.66</td>
<td>-1.01</td>
<td>25.4</td>
</tr>
</tbody>
</table>

a. Reference 18.
Figure 1. DSC thermograms for (a) Uncomplexed PPO, (b) PPO$_8$LiI after quench from 200°C, (c) As-prepared PPO$_8$LiI.

Figure 2. Data and best-fit VTF curve (Eq. (3)) curves for the temperature dependence of the ionic conductivity for PPO$_8$LiI (a) in vacuum, (b) at 0.1 GPa, and (c) at 0.2 GPa.

Figure 3. Data and best-fit quadratic (Eq. (4)) for the pressure dependence of the ionic conductivity for PPO$_8$LiClO$_4$ at 369.4K.

Figure 4. Activation volumes vs. reduced temperature for (a) x-the electrical relaxation time for the α relaxation and the electrical conductivity for (b) Φ-PPO$_8$LiCF$_3$SO$_3$, (c) σ-PPO$_8$LiClO$_4$, (d) Δ-PPO$_8$LiI, and (e) κ-PPO$_8$LiSCN.

Figure 5. Data and best-fit Havriliak-Negami curves (Eq. (8)) for dielectric loss vs. frequency for the α relaxation at (a) 0.16 GPa, (b) 0.12 GPa, and (c) 0.08 GPa.

Figure 6. Data and best-fit VTF curve (Eq. (9)) for the relaxation time for the α relaxation for uncomplexed PPO.

Figure 7. Data and best-fit quadratic (Eq. (12)) for the relaxation time for the α relaxation at 237.1K.
Fig. 1 Fontanella et al.
Fig. 2 Fontanella et al.
Figure 3: Fortanella et al.
Fig. 5 Fantanella et al.
$\log_{10}(\omega_p(s^{-1}))$

$\frac{1000}{T (K^{-1})}$
Fig. 7 Fontanella et al.
Office of Naval Research	2	Dr. David Young
Attn: Code 413		Code 334
800 N. Quincy Street		NORDA
Arlington, Virginia 22217		NSTL, Mississippi 39529
Dr. Bernard Doua	1	Naval Weapons Center
Naval Weapons Support Center		Attn: Dr. Ron Atkins
Code 5042		Chemistry Division
Crane, Indiana 47522		China Lake, California 93555
Commander, Naval Air Systems	1	Scientific Advisor
Command		Commandant of the Marine Corps
Attn: Code 310C (H. Rosenwasser)		Code RD-1
Washington, D.C. 20360		Washington, D.C. 20380
Naval Civil Engineering Laboratory	1	U.S. Army Research Office
Attn: Dr. R. W. Drisko		Attn: CRD-AA-IP
Port Hueneme, California 93401		P.O. Box 12211
Defense Technical Information Center	12	Research Triangle Park, NC 27709
Building 5, Cameron Station		Mr. John Boyle
Alexandria, Virginia 22314		Materials Branch
DTNSROC		Naval Ship Engineering Center
Attn: Dr. G. Bosmajian	1	Philadelphia, Pennsylvania 19112
Applied Chemistry Division		Naval Ocean Systems Center
Annapolis, Maryland 21401		Attn: Dr. S. Yamamoto
Dr. William Tolles	1	Marine Sciences Division
Superintendent		San Diego, California 91232
Chemistry Division, Code 6100		Naval Research Laboratory
Naval Research Laboratory		Washington, D.C. 20375
Washington, D.C. 20375		
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Paul Delahay
Department of Chemistry
New York University
New York, New York 10003

Dr. P. J. Hendra
Department of Chemistry
University of Southampton
Southampton SO9 5NH
United Kingdom

Dr. J. Driscoll
Lockheed Palo Alto Research Laboratory
3251 Hanover Street
Palo Alto, California 94304

Dr. D. N. Bennion
Department of Chemical Engineering
Brigham Young University
Provo, Utah 84602

Dr. R. A. Marcus
Department of Chemistry
California Institute of Technology
Pasadena, California 91125

Dr. J. J. Auborn
Bell Laboratories
Murray Hill, New Jersey 0794

Dr. Joseph Singer, Code 302-1
NASA-LeWIS
21000 Brookpark Road
Cleveland, Ohio 44135

Dr. P. P. Schmidt
Department of Chemistry
Oakland University
Rochester, Michigan 48063

Dr. Manfred Breiter
Institut für Technische Elektrochemie
Technischen Universität Wien
9 Getreidemarkt, 1160 Wien
AUSTRIA

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 44106

Dr. C. E. Mueller
The Electrochemistry Branch
Naval Surface Weapons Center
White Oak Laboratory
Silver Spring, Maryland 20910

Dr. Sam Perone
Chemistry & Materials Science Department
Lawrence Livermore National Laboratory
Livermore, California 94550

Dr. Royce W. Murray
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. B. Brummer
EIC Incorporated
111 Downey Street
Norwood, Massachusetts 02062

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. A. B. Ellis
Chemistry Department
University of Wisconsin
Madison, Wisconsin 53706

Dr. P. P. Schmidt
Department of Chemistry
Oakland University
Rochester, Michigan 48063

Dr. Manfred Breiter
Institut für Technische Elektrochemie
Technischen Universität Wien
9 Getreidemarkt, 1160 Wien
AUSTRIA
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. John Owen
Department of Chemistry and Applied Chemistry
University of Salford
Salford M5 4WT ENGLAND

Dr. O. Stafssudd
Department of Electrical Engineering
University of California
Los Angeles, California 90024

Dr. Boone Owens
Department of Chemical Engineering and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. S. G. Greenbaum
Department of Physics
Hunter College of CUNY
New York, New York 10021

Dr. J. O. Thomas
University of Uppsala
Institute of Chemistry
Box 531
S-751 21 Uppsala, Sweden

Dr. Menahem Anderman
W.R. Grace & Co.
Columbia, Maryland 20144
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Robert Somoano</td>
<td>Jet Propulsion Laboratory</td>
<td>California Institute of Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pasadena, California 91103</td>
</tr>
<tr>
<td>Dr. Johann A. Joebstl</td>
<td>USA Mobility Equipment R&D Command</td>
<td>USA Mobility Equipment R&D Command</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DRDME-EC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fort Belvoir, Virginia 22060</td>
</tr>
<tr>
<td>Dr. Judith H. Ambrus</td>
<td>NASA Headquarters</td>
<td>M.S. RTS-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Washington, D.C. 20546</td>
</tr>
<tr>
<td>Dr. Albert R. Landgrebe</td>
<td>U.S. Department of Energy</td>
<td>U.S. Department of Energy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M.S. 68025 Forrestal Building</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Washington, D.C. 20595</td>
</tr>
<tr>
<td>Dr. J. J. Brophy</td>
<td>Department of Physics</td>
<td>Department of Physics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University of Utah</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Salt Lake City, Utah 84112</td>
</tr>
<tr>
<td>Dr. Charles Martin</td>
<td>Department of Chemistry</td>
<td>Texas A&M University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>College Station, Texas 77843</td>
</tr>
<tr>
<td>Dr. H. Tachikawa</td>
<td>Department of Chemistry</td>
<td>Jackson State University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jackson, Mississippi 39217</td>
</tr>
<tr>
<td>Dr. Theodore Beck</td>
<td>Electrochemical Technology Corp.</td>
<td>Electrochemical Technology Corp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3935 Leary Way N.W.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seattle, Washington 98107</td>
</tr>
<tr>
<td>Dr. Farrell Lytle</td>
<td>Boeing Engineering and Construction</td>
<td>Boeing Engineering and Construction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P.O. Box 3707</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seattle, Washington 98124</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MS G-226</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Washington, D.C. 20545</td>
</tr>
</tbody>
</table>
Dr. Hector D. Abruna
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. A. B. P. Lever
Chemistry Department
York University
Downsview, Ontario M3J1P3

Dr. Stanislaw Szpak
Naval Ocean Systems Center
Code 633, Bayside
San Diego, California 95152

Dr. Gregory Farrington
Department of Materials Science
and Engineering
University of Pennsylvania
Philadelphia, Pennsylvania 19104

M. L. Robertson
Manager, Electrochemical
and Power Sources Division
Naval Weapons Support Center
Crane, Indiana 47522

Dr. T. Marks
Department of Chemistry
Northwestern University
Evanston, Illinois 60201

Dr. Micha Tomkiewicz
Department of Physics
Brooklyn College
Brooklyn, New York 11210

Dr. Lesser Blum
Department of Physics
University of Puerto Rico
Rio Piedras, Puerto Rico 00931

Dr. Joseph Gordon, II
IBM Corporation
5600 Cottle Road
San Jose, California 95193

Dr. Nathan Lewis
Department of Chemistry
Stanford University
Stanford, California 94305

Dr. D. H. Whitmore
Department of Materials Science
Northwestern University
Evanston, Illinois 60201

Dr. Alan Bewick
Department of Chemistry
The University of Southampton
Southampton, S09 5NH ENGLAND

Dr. E. Anderson
NAVSEA-56Z33 NC #4
2541 Jefferson Davis Highway
Arlington, Virginia 20362

Dr. Bruce Dunn
Department of Engineering &
Applied Science
University of California
Los Angeles, California 90024

Dr. Elton Cairns
Energy & Environment Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

Dr. Richard Pollard
Department of Chemical Engineering
University of Houston
Houston, Texas 77004

Dr. M. Philpott
IBM Corporation
5600 Cottle Road
San Jose, California 95193

Dr. Donald Sandstrom
Boeing Aerospace Co.
P.O. Box 3999
Seattle, Washington 98124

Dr. Carl Kannewurf
Department of Electrical Engineering
and Computer Science
Northwestern University
Evanston, Illinois 60201

Dr. Joel Harris
Department of Chemistry
University of Utah
Salt Lake City, Utah 84112
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. M. Wrighton
Chemistry Department
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. B. Stanley Pons
Department of Chemistry
University of Utah
Salt Lake City, Utah 84112

Donald E. Mains
Naval Weapons Support Center
Electrochemical Power Sources Division
Crane, Indiana 47522

S. Ruby
DOE (STOR)
Room 5E036 Forrestal Bldg., CE-14
Washington, D.C. 20595

Dr. A. J. Bard
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. Janet Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. Donald W. Ernst
Naval Surface Weapons Center
Code R-33
White Oak Laboratory
Silver Spring, Maryland 20910

Mr. James R. Moden
Naval Underwater Systems Center
Code 3632
Newport, Rhode Island 02840

Dr. Bernard Spielvogel
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709

Dr. Aaron Fletcher
Naval Weapons Center
Code 3852
China Lake, California 93555

Dr. M. M. Nicholson
Electronics Research Center
Rockwell International
3370 Miraloma Avenue
Anaheim, California

Dr. Michael J. Weaver
Department of Chemistry
Purdue University
West Lafayette, Indiana 47907

Dr. R. David Rauh
EIC Laboratories, Inc.
111 Downey Street
Norwood, Massachusetts 02062

Dr. Aaron Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02192

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton SO9 5NH ENGLAND

Dr. R. A. Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. John Wilkes
Air Force Office of Scientific Research
Bolling AFB
Washington, D.C. 20332

Dr. R. Nowak
Naval Research Laboratory
Code 5171
Washington, D.C. 20375

Dr. D. F. Shriver
Department of Chemistry
Northwestern University
Evanston, Illinois 60201
EN D D T I C

8-86