ST. CROIX MOORING DESIGN

by

William N. Seelig

FPO-1-84 (47)
December 1984

Ocean Engineering

CHESAPEAKE DIVISION
NAVAL FACILITIES ENGINEERING COMMAND
WASHINGTON NAVY YARD
WASHINGTON, DC 20374
ST. CROIX MOORING DESIGN

by

William N. Seelig

PPO-1-84 (47)
December 1984

APPROVED BY:

SHUN C. LING P.E.
Director
Engineering Analyses Division

OCEAN ENGINEERING & CONSTRUCTION PROJECT OFFICE
CHESAPEAKE DIVISION
NAVAL FACILITIES ENGINEERING COMMAND
WASHINGTON, DC 20374

DISTRIBUTION STATEMENT A
Approved for public release; Distribution Unlimited
This report presents the design of a mooring to service surface ships and submarines operating off the west coast of the island of St. Croix, West Indies. This emergency mooring is required because the nearby Frederiksted Pier was damaged during tropical storm "Klause" on 1 November 1984 (Con't).
Little geologic or environmental data are available for the site and the emergency mooring is needed quickly, so the following approach is used in design:

1. The mooring will accommodate large submarines ("Lafayette" SSBN 616 or smaller) and a wide variety of surface ships ("Spruance" DD 963 was selected as typical). These vessels have the following characteristics:

<table>
<thead>
<tr>
<th>Ship Class</th>
<th>Ship Length (ft)</th>
<th>Max. Nav. Draft (ft)</th>
<th>Mooring Swing Circle (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD 963 "Spruance"</td>
<td>564.</td>
<td>30.</td>
<td>750.</td>
</tr>
<tr>
<td>SSBN 616 "Lafayette"</td>
<td>421.</td>
<td>32.</td>
<td>560.</td>
</tr>
</tbody>
</table>

2. Both static and dynamic ship/mooring forces and interactions are considered and a Class A mooring with 100 kips working holding capacity was selected. This corresponds to a maximum 2.0 knots current with a simultaneous 50 knot, 30-second duration wind. The surface ships control the design forces. The buoy is to be located 500 yards north of the pier in a water depth of 60 feet.

3. Because of the great uncertainty in bottom conditions the mooring will be installed and tested and the rating of the mooring will be re-evaluated.

4. A site survey is planned in January 1985. Design adjustment may be made based on those survey results and/or installation experiences. Drag anchors as well as Propellant Embedment Anchors will be mobilized to cover installation contingencies.
St. Croix Mooring Design

EXECUTIVE SUMMARY

This report presents the design of a mooring to service surface ships and submarines operating off the west coast of the island of St. Croix, West Indies. This emergency mooring is required because the nearby Frederiksted Pier was damaged during tropical storm "Klaus" on 1 November 1984.

Little geologic or environmental data are available for the site and the emergency mooring is needed quickly, so the following approach is used in design:

1. The mooring will accommodate large submarines ("Lafayette" SSBN 616 or smaller) and a wide variety of surface ships ("Spruance" DD 963 was selected as typical). These vessels have the following characteristics:

<table>
<thead>
<tr>
<th>Ship Class</th>
<th>Length (ft)</th>
<th>Max. Nav. Draft (ft)</th>
<th>Mooring Swing Circle (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD 963 "Spruance"</td>
<td>564</td>
<td>30.</td>
<td>750.</td>
</tr>
<tr>
<td>SSBN 616 "Lafayette"</td>
<td>421</td>
<td>32.</td>
<td>560.</td>
</tr>
</tbody>
</table>

2. Both static and dynamic ship/mooring forces and interactions are considered and a Class A mooring with 100 kips working holding capacity was selected. This corresponds to a maximum 2.0 knots current with a simultaneous 50 knot, 30-second duration wind. The surface ships control the design forces. The buoy is to be located 500 yards north of the pier in a water depth of 60 feet.

3. Because of the great uncertainty in bottom conditions the mooring will be installed and tested and the rating of the mooring will be re-evaluated.

4. A site survey is planned in January 1985. Design adjustments may be made based on those survey results and/or installation experiences. Drag anchors as well as Propellent Embedment Anchors will be mobilized to cover installation contingencies.
DESIGN OF THE ST. CROIX MOORING

by

William N. Seelig, P.E.

CONTENTS

EXECUTIVE SUMMARY
CONTENTS
INTRODUCTION
DESIGN CONDITIONS
DESIGN FORCES
MOORING DESIGN
MOORING LOCATION
INSTALLATION SEQUENCE
SUMMARY
TABLES
FIGURES
APPENDICIES

A. FORCE CALCULATION FOR SSBN 616
B. FORCE CALCULATIONS FOR DD 963
C. BUOY SURVIVABILITY
D. CATHODIC PROTECTION FOR CHAIN
DESIGN OF THE ST. CROIX MOORING

by

William N. Seelig, P.E.

INTRODUCTION

The purpose of this mooring is to service submarines and surface vessels operating off the western coast of St. Croix, West Indies. The mooring is needed because the Frederiksted Pier was damaged in a storm (Figure 1).

The approach taken in this design is to custom design a mooring for the site using mostly standard materials available in U. S. Navy Fleet Mooring Inventory. Both static and dynamic behavior of ships in the mooring are considered. Propellant Embedment Anchors (PEA) are specified as the primary anchor type, due to the poor bottom conditions in the area. A "soft" buoy and protective collar around the chain riser are used to protect contact with a submarine coming close to the mooring. A sinker and three ground legs are used to provide dynamic energy absorption in the mooring.

DESIGN CONDITIONS

1. Vessels. It is not known exactly what vessels may use the mooring, so the design is tailored to service all submarines of "Lafayette Class" (SSBN 616) and smaller. The "Spruance Class" DD 963 was taken as representative of U. S. NAVY surface combatants. A list of vessels authorized to use the mooring will be made once the mooring is installed, tested and rated.

2. Environment. A 50.0 knot wind with a 30-second duration was selected for design based on engineering judgement. Note that this operational wind speed may have to be adjusted based on the rating assigned to the as-built mooring.

3. Tide. The normal tide range at the site is 0.8 feet with an extreme tide range of 1.8 feet.

4. Currents. Little is known about the currents in the area. Howard Kelly (LANTDIV, phonecon of 12/10/84) states that current speed varies with location, but could be up to 2 knots. A design current of 2.0 knots is therefore specified. More information on currents should become available as a result of a planned site survey and based on observations made during mooring installation.
5. **Bathymetry Data.** Chart Number 25644 (May 1975) and NOAA survey files (personnel communication, National Ocean Survey) provided water depth and bottom conditions data. National Ocean Survey study of the area shows that the bottom is a combination of coral and sand (Figure 2).

6. **Additional Data.** An Underwater Construction Team One (UCT-1) is being planned for January 1985 which should provide additional information on bottom type, sediment thickness, bottom slope, water depths and current speeds.

DESIGN FORCES

The mooring design is based on static and dynamic design forces. A ship in a mooring may have much different motions than an unmoored vessel at the same site. This dynamic behavior depends on characteristics of the mooring and ship. Therefore, an iterative design procedure was used and many alternative designs considered. Only the selected design is presented in this report.

1. **STATIC FORCES.**

Methods in Design Manual 26.5 "Fleet Mooring" (95% Submittal) were used to calculate static mooring forces. In this method the design current speed of 2.0 knots was used. Thirty second wind speeds of both 35 and 50 knots were used to obtain data on the sensitivity of forces on wind speeds. Calculation in Appendices A and B were then used, together with a computer program, to find the equilibrium position of the vessel (Figure 3). Once the equilibrium position is known the required static mooring hawser tension (Figure 3) is also calculated using the computer program. Calculation procedures are described in great detail in DM 26.5, so they are not repeated here.

Little is known about the direction of currents and winds at the design site. Therefore, the approach taken here was to assume that the winds and currents could come from any direction. Relative wind/current directions at 10 degree angle increments were all analyzed and the combination of directions that gave the highest mooring force were selected for design. These static design equilibrium forces are given in Table 1.
2. **SHIP DYNAMICS - YAW.**

Even in relatively steady wind and current conditions a vessel moored to a single point mooring may experience dynamic action. Many references document this "fish-tailing" illustrated in Figure 4 (see Chrenshaw, R. S., *Naval Shiphandling*, Naval Institute Press, Annapolis, Md., 1975). "Fish-tailing" occurs because the total moment curve of the ship in the mooring may have a flat slope near the "equilibrium" position. Even a very small perturbation in forcing causes the ship to yaw from equilibrium (Figure 5). Ship inertia together with the flat sloped moment curve means that the ship may have +/-20 degree of yaw from equilibrium before the ship is brought back towards equilibrium. The main consequence of this yawing action is that mooring hawser forces are greatly increased. For example, the DD 963 calculations shown in Figure 5 indicate a 42 kip static mooring load at equilibrium that jumps to 96 kips at +/-20 degrees yaw (wind and current azimuth both 270 degrees for the example shown). Design forces including the +/-20 degree yaw are shown in Table 1 for the DD 963. Values at +/-10 degree yaw are used for the SSBN 616 (Figure 6 and Table 1). The smaller value of yaw for the submarine is justified based on the fact that the total restoring moment on a SSBN 616 is higher than for a DD 963.

3. **DYNAMIC FORCES - SURGE.**

A ship may also surge while in a mooring. Surge may be especially important, even if it is small, because (a) moorings may be highly non-linear and a small change in ship deflection away from the ground ring will produce a large increase in mooring force and (b) the ship and mooring (if poorly designed) may get into a resonance condition where motions and forces can be amplified.

Surge dynamics are investigated in this report by use of a one-dimensional computer program that simulates important aspects of the mooring, ship and forcing. Details of this numerical model are too complex to present here. The following gives a summary of important computer program components:

a. The mooring is represented by the non-linear load/deflection curves shown in Figure 7. Deflection (surge) of the bow of the ship away from the ground ring is shown on the x-axis and restoring force in the mooring shown on the y-axis. The load/deflection curve includes non-linear stretch of the mooring hawser (if any), submergence and rotation of the buoy, displacement of the riser catenary, lifting of the sinker, lifting and the catenary of ground legs.
b. The forcing wind is generated by the computer using the wind spectrum presented in Vellozzi, J. et al. "Gust Response Factors", ASCE, Structural Division, June 1968, pp. 1295-1313. This generalized wind spectral shape was developed by analyzing records from 90 storms under a wide variety of conditions. The computer takes the spectrum, uses wind energy components with periods between 5 seconds and one hour and generates the instantaneous wind acting on the vessel at one second intervals. A sample wind time history is given in Figure 8.

c. Hydraulic forcing on the vessel includes a steady current and reversing current component due to long waves.

d. Ship response/forcing includes: ship mass; added mass; damping; non-linear wind forcing; non-linear current forcing including the effects of the ship motion; and non-linear restoring forcing of the mooring. The solution is a time-marching scheme that updates the forcing and ship conditions at one-second intervals. Conditions are modeled for 1000 seconds and the highest predicted mooring hawser tension reported.

Sample computer plots of mooring hawser tension are given in Figure 9 (DD 963) and Figure 10 (SSBN 616). The destroyer is predicted to experience significant dynamics during a storm, while the submarine remains relatively static. These and many other computer plots show that the ship/mooring combination is well matched and that yaw action produces the highest total mooring force (Table 1).

MOORING DESIGN

The selected mooring design (Figure 11) was evolved after considering many factors:

a. A Class "A" mooring with 100 kips restoring force is desirable.

b. The SEACON will be used for installation.

c. The SEACON can easily mobilize any materials from the inventory of Fleet Mooring Materials in San Diego.

d. Installation is planned for early 1985.

e. The mooring will be used for surface ships, which require moorings with good energy absorption characteristics.

f. Submarines will use the mooring, therefore the buoy should be soft and the riser chain will be protected to minimize the possibility of metal contact with the submarine.

g. Propellant Embedment Anchors are used as the best and most cost effective method of providing anchoring considering the bottom type. However, since bottom conditions are poorly known, Stockless Anchors will also be mobilized as acontinency.
Predicted characteristics of the mooring with some notes are shown in Figure 12. Note that the energy absorption characteristics of the mooring are good throughout the working range of the mooring.

Materials to be mobilized for this mooring are given in Table 2. This list includes some spare materials. Cathodic protection for the chain is illustrated in Appendix D. Three 20-kip Stockless Anchors are also specified. These anchors could be used in various combination, if one or more of the PEA placements are unsuccessful. Another advantage of mobilizing these anchors is that they are needed for other projects on the U. S. East Coast, if the PEA's are successful.

MOORING LOCATION

A study of the required swing circles (Table 3), required water depths, bottom slopes and use of the mooring suggests that the site shown in Figure 13 is by far the best location for the mooring. Figure 14 shows the ships in the mooring at scale with the ship perpendicular to shore.

INSTALLATION SEQUENCE

The following general installation sequence is recommended. More detailed installation plans will be formulated by the FPO-l Construction Division as the project progresses.

1. Mobilize to the site with materials.

2. Locate the mooring site.

3. Locate the exact position of two of the PEA's.

4. Install, set and test the two PEA's.

5. Attach one ground leg to each of the two PEA's, attach riser, buoy, sinker and ground ring. Also attach the third ground leg.

6. Put the mooring in the water.

7. Tighten the mooring by pulling the mooring towards the third anchor site.

8. Locate, install and test the third PEA.

9. Attach the third PEA.
SUMMARY

A mooring design is presented for western St. Croix to service submarines and surface ships. Mooring use, performance characteristics, environmental conditions, the site, installation equipment and available Fleet Mooring Inventory materials were all considered in formulating the design.

Unique features of this mooring are that a "Soft" mooring buoy and covering riser chain are provided to minimize the possibility of damage to a moored submarine.

This mooring should be installed and each anchor leg tested. At that time the capacity and use of the mooring will have to be re-evaluated. This procedure is recommended due to the uncertain conditions at the site.
DD963 "Spruance" was used as the basis of design as a typical surface vessel. How does the CGN 38 compare? Under what conditions could it use the mooring?

<table>
<thead>
<tr>
<th>Vessel</th>
<th>L(m)</th>
<th>B(m)</th>
<th>Max Draft</th>
<th>End Limit Area</th>
<th>Disp</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Spruance"</td>
<td>529.</td>
<td>55.</td>
<td>30.0</td>
<td>4350.</td>
<td>6450. LT</td>
</tr>
<tr>
<td>"Virginia"</td>
<td>586.</td>
<td>61.</td>
<td>32.6</td>
<td>4430.</td>
<td>9220. LT</td>
</tr>
</tbody>
</table>

Frontal wind areas are about the same, so both vessels are good to about 50 knots of wind (as a first approximation). Exact conditions will be determined after mooring is installed and tested.

Water depth in the swing circle of the mooring site is at least 40 feet (to be verified by a UC2-1 inspection). Therefore, water depth is adequate.

Conclusion: "Virginia" CGN 38 could safely use the as-designed mooring.
CHESAPEAKE DIVISION
Naval Facilities Engineering Command
NDW DISCIPLINE

<table>
<thead>
<tr>
<th>Project: St. Claus Mooring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station:</td>
</tr>
<tr>
<td>ESR:</td>
</tr>
<tr>
<td>Contract:</td>
</tr>
<tr>
<td>Calculations for: Compass LPD-4 and DD963</td>
</tr>
</tbody>
</table>

Calcs made by: W. Seelig date: 12/19/84
Calcs ck'd by: N date: __________

Max. Nsfc.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>Wind Area END</th>
<th>Disp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>B</td>
<td>T</td>
<td>(ft^2)</td>
<td>(L.T.)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---------------</td>
<td>-------</td>
</tr>
<tr>
<td>529</td>
<td>55</td>
<td>300</td>
<td>4350.</td>
<td>6,450.</td>
</tr>
<tr>
<td>"Spruce" DD963</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LPD-4 570. 84. 27.0 8100. 11,480.

The LPD-4 has 86% more frontal wind area than the DD963. The mooring is designed for 100 kips, which corresponds to a 50 knot wind with the DD963. Wind Controls, so the moorings that an LPD-4 could use i.e. mooring is approximately:

\[
\text{Wind} = \frac{4350}{8100} \times \text{Speed} \approx 27 \text{ knots}
\]

Dynamics, etc. will have to be checked to verify this estimate.

Conclusion: The LPD-4 could only use the 22-design mooring in relatively calm conditions.
Table 1. DESIGN FORCES

30-second duration design wind speed = 50 knots
design current speed = 2.0 knots*

Design Load Between Ship & Mooring
(Kips)

<table>
<thead>
<tr>
<th>Condition</th>
<th>"Spruance" DD 963 L = 564 ft</th>
<th>"Lafayette" SSBN 616 L = 421 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Equilibrium</td>
<td>42</td>
<td>7.5</td>
</tr>
<tr>
<td>Static + Dynamic Yaw</td>
<td>100 (+/-20 deg)</td>
<td>31 (+/-10 deg)</td>
</tr>
<tr>
<td>Static + Dynamic Surge</td>
<td>56</td>
<td>8.2</td>
</tr>
</tbody>
</table>

*Relative direction between wind and current selected for each case to give the highest load.
<table>
<thead>
<tr>
<th>Item</th>
<th>Total Number (including spares)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 1/4" Chain</td>
<td>13 shots (or 12 shots + short sections)</td>
</tr>
<tr>
<td>2 1/4" Shackles</td>
<td>6</td>
</tr>
<tr>
<td>2 1/4" Detachable Links</td>
<td>17</td>
</tr>
<tr>
<td>2 1/4" Anchor Joining Links</td>
<td>10</td>
</tr>
<tr>
<td>2 1/2" Anchor Joining Links</td>
<td>3</td>
</tr>
<tr>
<td>2 1/4" Size Ground Ring</td>
<td>1</td>
</tr>
<tr>
<td>2 1/4" Sinker Shackle</td>
<td>3</td>
</tr>
<tr>
<td>16 Kip Stockless Anchor</td>
<td>1</td>
</tr>
<tr>
<td>20 Kip Stockless Anchor</td>
<td>3</td>
</tr>
<tr>
<td>100 Kip PEA Package</td>
<td>4</td>
</tr>
<tr>
<td>20 Kip Reserve Buoyancy Buoy (soft type)</td>
<td>1</td>
</tr>
<tr>
<td>2 1/4" Pelican Hooks</td>
<td>2</td>
</tr>
<tr>
<td>Chain Cathodic Protection Assemblies</td>
<td>10</td>
</tr>
<tr>
<td>2 1/4" Pear Links</td>
<td>4</td>
</tr>
<tr>
<td>Tires</td>
<td>As Needed</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>"Spruance"</td>
<td>564</td>
</tr>
<tr>
<td>DD 963</td>
<td></td>
</tr>
<tr>
<td>"Lafayette"</td>
<td>421</td>
</tr>
<tr>
<td>SSBN 616</td>
<td></td>
</tr>
</tbody>
</table>
Figure 2. Photo copy of National Ocean Survey Hydrographic Records for the Site.
Figure 3. SHIP IN A SINGLE POINT MOORING
FIGURE 4. A SHIP FISH TAILING IN A SINGLE POINT MOORING
WIND → 50 Knots

CURRENT → 2.0 Knots

Figure 5. Mooring hawser tension for a DD 963 at a single point moor under "equilibrium" and various amounts of yaw.
Figure 6. Mooring hawser tension for a SSBN 616 at a single point moor under "equilibrium" and various amounts of yaw.
DEFLECTION OF A SHIP FROM THE GROUND RING VS. APPLIED HORIZONTAL LOAD

HORIZONTAL LOAD, H (kips) vs. DEFLECTION, d (ft.)

DD 963
SSBN 616

FIGURE 7. LOAD DEFLECTION CURVES FOR SHIPS IN THE MOORING
Figures 8. Sample wind speed time history generated by the computer.
30-second wind speed 15 knots
Steady Current 2.5 knots

Figure 9. Hawser tension under surge dynamics (DO 963)
30-second wind speed - 50 Knots
steady current speed - 2.0 Knots

FIGURE 10. SURGE DYNAMICS FOR SSBN 616
Figure 11. Mooring Design

1. 10 LINKS
2. SEE NOTE 3
3. SEE NOTE 3
4. 4 LINKS
5. SEE NOTE 4
6. 9 LINKS
7. SEE NOTE 5
8. SEE DETAIL A
9. 6 LINKS
10. SEE NOTE 2
11. 1 LINK
12. 1 LINK
13. SEE NOTE 8
One per Shot of Chain (3 Req'd)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 LINKS</td>
<td>Steel</td>
</tr>
<tr>
<td>2</td>
<td>SEE NOTE 3</td>
<td>Steel</td>
</tr>
<tr>
<td>3</td>
<td>SEE NOTE 3</td>
<td>Steel</td>
</tr>
<tr>
<td>4</td>
<td>4 LINKS</td>
<td>Steel</td>
</tr>
<tr>
<td>5</td>
<td>SEE NOTE 4</td>
<td>Steel</td>
</tr>
<tr>
<td>6</td>
<td>9 LINKS</td>
<td>Steel</td>
</tr>
<tr>
<td>7</td>
<td>SEE NOTE 5</td>
<td>Steel</td>
</tr>
<tr>
<td>8</td>
<td>SEE DETAIL A</td>
<td>Steel</td>
</tr>
<tr>
<td>9</td>
<td>6 LINKS</td>
<td>Steel</td>
</tr>
<tr>
<td>10</td>
<td>SEE NOTE 2</td>
<td>Steel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>100 KIP SIZE CABLE & ANCHOR</td>
<td>Steel</td>
</tr>
<tr>
<td>12</td>
<td>TIMES</td>
<td>As Required</td>
</tr>
<tr>
<td>13</td>
<td>CHAIN CATHODIC PROTECTION ASSEMBLY</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>GALVANIZED BOLTS (1/2-20 TAP)</td>
<td>As Required</td>
</tr>
<tr>
<td>15</td>
<td>GALVANIZED WASHERS TYPE B (WIDE)</td>
<td>As Required</td>
</tr>
<tr>
<td>16</td>
<td>GALVANIZED LOCK WASHERS</td>
<td>As Required</td>
</tr>
<tr>
<td>17</td>
<td>GALVANIZED HEX NUTS</td>
<td>As Required</td>
</tr>
</tbody>
</table>

SEE NOTE 8

NOTE: The diagram and table provide specifications for the mooring design, including the number and type of links, bolts, washers, and nuts required, as well as the material each component is made of. The diagram illustrates the arrangement of these components in the mooring system.
Surface ship in the mooring

Figure 12. Predicted Mooring Characteristics
Figure 13. Mooring Location

AT BUOY:

Water depth = 60'

17° 43' 09" N
64° 53' 30" W

500 yds north of pier
FIGURE 14. PROFILE VIEW OF TYPICAL SHIPS IN THE MOORING
APPENDIX A. FORCE CALCULATIONS FOR SSBN 616

DM - 26.5 "Fleet Moorings" is used in this appendix to calculate forces and moments due to wind and currents on a 'Lafayette' Class submarine. Here force and moment calculations are made only in dimensionless form. A computer program is then used to make detailed calculations and to determine the corresponding mooring forces. The approach taken in this appendix is to directly quote and use equations in the DM. DM 26.5 (95%) can be referenced for a detailed description of equations and variables.
Lafayette SSBN 616

\[
L = 421', \\
B = 33', \\
T = 25.2' \quad \text{(32' Max Navigational)} \\
D_{sg} = 6920 \text{ cu ft} \\
A_{w,2} = 4870 \text{ ft}^2 \\
A_{e,1} = 420 \text{ ft}^2
\]

Laterale Wind Look

\[E_8 (S-11) \quad F_y w = \frac{1}{2} (0.0027) V_w^2 (0.75) f_Y w (\theta) \times 4870 \]

\[= 4.33 \quad V_w^2 f_Y w (\theta) \]

Longitudinal Wind Look

\[E_8 (S-16) \quad F_x w = \frac{1}{2} (0.00237) V_w^2 (430) 0.4 \quad f_x w (\theta) \]

\[= 0.20 \quad V_w^2 f_x w (\theta) \]
Wind Yaw Moment

\[F_y (5-29) \quad M_{xyw} = \frac{1}{c} (0.0237) V_w^2 (4970)(421) C_{xyw}(\theta) \]

\[= 2430 \cdot V_w^2 C_{xyw}(\theta) \]

Lateral Current Look

Let \(\omega_d = 75' \)

\[(5-37) \quad \phi = \frac{35(6920)}{421 \times 33 \times 25.2} = 0.69 \]

Let \(C_m = 1.0 \)

Then \(C_p = \frac{\phi}{C_m} = 0.69 \)

\[\frac{L}{B} = \frac{421}{33} = 12.76 \]

\[C_p L / V_T = 0.69 \frac{421}{\sqrt{25.2}} = 57.9 \]

From Fig 58 \(K = 1.2 \)

From Fig 57 \(C_{yc1} = 3.6 \)

From Fig 56 \(C_{ycb0} = 0.7 \)

\[(5-36) \quad C_{yc} = 0.7 + (3.6 - 0.7) e^{-1.2 \left(\frac{75}{25.2} - 1 \right)} = 0.97 \]

\[(5-35) \quad F_{yc} = \frac{1}{2} C_{yc} V_c^2 (421)(25.2) 0.97 \sin \theta \]

\[= 1029.1 \quad V_c^2 \sin \theta \]
Longitudinal Curves: L

\[(5-41) \quad F_{x, \text{form}} = \frac{1}{2} V_c^2 (33)(25.2) 0.1 \cos \Theta_c = 83.2 V_c^2 \cos \Theta_c \]

\[(5-44) \quad R_n = \frac{V_c (421)}{\cos \Theta_c} / 0.00014 \]

\[C_{x, \text{ca}} = 0.075 / (\log R_n - 2)^2 \]

\[S = \frac{2}{3} \pi D L = 0.66(3.14) 33 \times 421 = 2879.2 \]

\[(5-42) \quad F_{x, \text{fric}} = \frac{1}{2} V_c^2 \times 2879.2 (C_{x, \text{ca}}) \cos \Theta_c \]

From Table 13 (Page 113)

\[A_R = 125 \]

\[(5-48) \quad A_{rpp} = 421 (33) / 125 = 111.1 \]

\[(5-47) \quad A_p = A_{rpp} / \rho_c = 132.6 \]

\[(5-46) \quad F_{x, \text{prop}} = \frac{1}{2} V_c^2 (132.6) \cos \Theta_c \]
APPENDIX B. FORCE CALCULATIONS FOR DD 963

DM - 26.5 "Fleet Moorings" (1957) is used in this appendix to calculate forces and moments due to wind and currents on a "Spruance" Class destroyer. Here force and moment calculations are made only in dimensionless form. A computer program is then used to make detailed calculations and to determine the corresponding mooring forces. The approach taken in this appendix is to directly quote and use equations in the DM. DM 26.5 can be referenced for a detailed description of equations and variables.
FORCES

"SPRUANCE" CLASS DESTROYER DD963

\[L_{WL} = 529', \]
\[C = 55', \]
\[T = 18.8' \quad (1/3 \text{ Circ}) \quad [30.0 \text{ Max No}] \]
\[\text{Disp} = 6480 \text{ L.T.} \quad '' \]
\[A_c = 25,250 \text{ ft}^2 \]
\[A_e = 4,250 \text{ ft}^2 \]

Lateral Wind Load

\[(5-12) \quad C_{yw} = 0.92 \left[\left(\frac{55}{25} \right)^{2/3} x 1.6 + \left(\frac{55}{25} \right)^{2/3} x 4 \right] = 0.93 \]
\[F_{yw} = \frac{1}{2} (0.00227) V_w^2 \times 25,250 (0.93) f_{yw}(\theta) \]
\[= 27.8 \times V_w^2 f_{yw}(\theta) \]

*Note: Coefficients value of 30.2 used.
This is conservative by 7.6%.
Longitudinal Wind Load

\[F_{xw} = \frac{1}{2} \times 0.00237 \times V_w^2 \times (4.350) \times 0.7 \times f_{xw}(\theta) \]

\[= 3.605 \times V_w^2 \times f_{xw}(\theta) \]

Wind Yaw Moment \((5-29) \)
\[M_{xyw} = \frac{1}{2} \times 0.00237 \times V_w^2 \times (25230) \times 829 \times C_{xyw} \]
Lateral Current Load
\[= 15828 \times V_w^2 \times C_{xyw}(\theta) \]

Let \(d = 75' \)
\[\phi = \frac{35}{(6450 \times 529 \times 55 \times 12.6)} = 0.41 \]

\[C_{lw} = 529 / 55 = 9.6 \]

From Fig 56 use \(C_{ycx} = 0.4 \) (Limiting value)

\[C_{pc} = \frac{\phi}{1.0} \]

\[C_{plw} / \sqrt{T} = 0.41 + 529 / \sqrt{18.8} = 50. \]

From Fig 57 \(C_{ycl} = 3.2 \)

From Fig 58 \(K = 0.7 \)

\[(5-35) \]
\[C_{yc} = 0.4 + (3.2 - 0.4) e^{-0.7 \left(\frac{75}{18.8} - 1 \right)} \]
\[= 0.745 \]
FIGURE 55

Recommended Moment Coefficient for Typical Naval Warships

- CRUISERS
- DESTROYERS
\[(5.35) \quad F_{yr} = \frac{1}{2} (21 V_e^2 (529) (18 \pi) (0.745) \sin \theta_c = 7409. V_e^2 \sin \theta_c \]

\text{Longitudinal Current Load}

\[(5.41) \quad F_{x \text{form}} = -\frac{1}{2} (2) V_e^2 (55) (18 \pi) (1) \cos \theta_c = -1034 V_e^2 \cos \theta_c \]

\[(5.45) \quad R_e = V_e (529) \cos \theta_c / 0.000014 \]

\[(5.42) \quad F_{x \text{cru}} = -\frac{1}{2} (2) V_e^2 S (x_{cc} \cos \theta_c \]

\[(5.43) \quad S = 1.7 (18 \pi) 529 + 35 \times 6450 / 18 \pi = 28915 \]

\[(5.48) \quad A_{TPe} = (529) (55) / 100 = 290.95 \]

\[(5.47) \quad A_p = 290.95 / 0.838 = 347 \]

\[(5.46) \quad F_{x \text{prop}} = -\frac{1}{2} (2) V_e^2 (347) (1.6) \cos \theta_c \]
Current Yaw Moment

\[(S-49) \quad M_{Xyc} = F_{yc} \left(\frac{e_c}{L_{WL}} \right) S_{29} \]
APPENDIX C. BUOY SURVIVABILITY

This appendix addresses the ability of the buoy to survive various events.
What can go wrong with the mooring when a ship is not moored?

Accidents

Little damage to the mooring or a vessel is expected if a vessel accidentally runs into the mooring. The buoy is "soft" and risen chain covered with a protective tube. Therefore a ship or small boat will bounce off the buoy. Submarines should avoid getting propellers too close to the rise. Submarine propeller design is unknown by the author. However, problems are possible if the propeller gets too close to the rise.

Vandalism/Sabotage

Any determined group of individuals could seriously damage the mooring with high explosives or high temperature torches. Any mooring would have similar vulnerability. A large amount of reserve buoyancy is provided, so if even a large portion (say 25%) of the buoy were removed, the buoy would still support the rises. If a section were removed on one side, then the buoy would list and would be more difficult to moor to the buoy.
Extreme Environmental Forces

What happens if the largest wave possible hits the mooring?

Soln:

\[H_{map} = 0.78d \]

\[= 0.78(55) = 42.9' \]

\[T = 13 \text{ sec} \]

The dynamic interaction between mooring and wave will be complex and beyond the scope of this report. As an extreme upper limit assuming the the buoy/riser is a fixed pile.

Riser

Shore Protection Manual Eq (7-36) \(^{(SM)}\)

\[F_d = C_d \frac{1}{2} \rho g D H^2 K_{dm} \]

From \(SM \) Fig. 7-47

\[K_{dm} = 0.4 \]

From SPM Fig 7-62

\[C_0 = 0.7 \]

\[F_d = 0.7 \left(\frac{1}{2} \right) (2)(32.2) (3)(42.9)^2 (0.4) \]

\[= 48,900 \text{ lbs} \]

Buoy

SPM Eq (7-25)

\[F_D = \int_{h_i}^{h_2} f_d \, dz \approx h f_D \]

SPM Eq (7-18)

\[f_D = C_0 \frac{1}{2} \rho D u_1 u_1 \]

\[F_D = h C_0 \frac{1}{2} \rho D u_1 u_1 \]

SPM Eq (2-13)

\[U = \frac{H}{Z} e^T \frac{\cosh \left(\frac{2\pi (Z+d)}{L} \right)}{\cosh \left(\frac{2\pi d}{L} \right)} \left(\cos \left(\frac{2\pi y}{L} - \frac{2\pi x}{T} \right) \right) \]
at Surface

\[U_{max} = \frac{HgT}{2L} \]

(1.0) (1.0)

From SPM

\[\frac{d}{L_0} = \frac{d}{5.12(T)^2} = \frac{55}{5.12(13)^2} = 0.06 \]

from SPM, Volume III

\[\frac{d}{L} = 0.104 \]

\[L = \frac{(d/L)}{0.104} = \frac{55}{0.104} = 528.8 \text{ feet} \]

\[U_{max} = \frac{42.9(32.3)(13)}{2(528.8)} = 16.97 \text{ fps} \]

\[F_0 = 6 (0.7) \frac{1}{2} (2) (10.0) (16.97)^2 \]

\[= 12,095 \text{ lbs} \]
For a totally stiff structure the maximum drag force would be:

\[F = F_{\text{rise}} + F_{\text{buoy}} = 48,900 + 12,095 \]

\[\approx 61 \text{ Kips} \]

Since the mooring buoy will surely move some under wave action, it is believed the actual wave force will be much less than 61 kips. For a Class "A" mooring good to 100 kips working load the mooring will survive any anticipated wave action.

Submarine of the buoy is not anticipated to cause any problems because the buoy is "soft" and can flex under pressure.
APPENDIX D. CATHODIC PROTECTION FOR CHAIN

The chain cathodic protection design developed for use at Diego Garcia is also specified for this mooring design.
A 250 lb. zinc anode. 1-anode per shot needed.
MIL-A-18001 zinc 1" sch. 40 pipe core nominal dimensions 9" x 9" x 12" zinc.
B 1 1/4" wire rope clips. Two required per anode.
C 1/2" preformed IWRC improved plow steel wire rope. 110 feet needed per shot.
D 2 1/2" pipe clamps/U-bolts. One required every five links.
E 1/2" wire rope clips. Four required per shot.
F 3/4" preformed IWRC improved plow steel wire rope. 8' required per anode.
G 3/4" wire rope clips. Two required per anode.
H Stud link chain, 1 3/4" to 2 3/4" wire diameter.

See detailed materials list - next page.

From "Diego Garcia Fleet Moorings Installation",
Project Execution Plan, OPORDER 6-80,
FPO-1, CHESNAVFACENGCOM, 1 Nov 1980.
END

Dtic

7-86