THE USE OF TAILORED TESTING WITH INSTRUCTIONAL PROGRAMS

AMERICAN COLL TESTING PROGRAM IOWA CITY IA

M D RECKASE MAR 86 86-1 N80814-02-K-0716

UNCLASSIFIED
Final Report

The Use of Tailored Testing With Instructional Programs

Mark D. Reckase

Research Report ONR 86-1
March 1986

The American College Testing Program
Assessment Programs Area
Test Development Division
Iowa City, Iowa 52243

Prepared under Contract No. N00014-82-K-0716
Contract Authority Identification Number: NR154-499
with the Personnel and Training Research Programs
Psychological Sciences Division
Office of Naval Research

Approved for public release; distribution unlimited.
Reproduction in whole or in part is permitted for any purpose of the United States Government.
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
<table>
<thead>
<tr>
<th>REPORT DOCUMENTATION PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3b OFFICE SYMBOL (if applicable)</td>
</tr>
<tr>
<td>Personnel & Training Research Programs Office of Naval Research</td>
</tr>
</tbody>
</table>

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

N00014-82-K-0716

10 SOURCE OF FUNDING NUMBERS

<table>
<thead>
<tr>
<th>PROGRAM ELEMENT NO</th>
<th>PROJECT NO</th>
<th>TASK NO</th>
<th>WORK UNIT ACCESSION NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>61153N</td>
<td>RR042-04</td>
<td>042-04-01</td>
<td>NR150-489</td>
</tr>
</tbody>
</table>

73 TITLE OF REPORT

Tailored Testing with Instructional Programs

74 TITLE OF MONITORING ORGANIZATION

Personnel & Training Research Programs Office of Naval Research (Code 442PT)

75 NAME OF MONITORING ORGANIZATION

Personnel & Training Research Programs Office of Naval Research (Code 442PT)

76 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release: distribution unlimited, Reproduction in whole or part is permitted for any purpose of the U.S. Govt.

77 RESTRICTIVE MARKINGS

80 PROPRIETARY RIGHTS NOTIFICATION

None

81 DATE OF REPORT (Year, Month, Day)

1986, March

82 PAGE COUNT

31

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Computerized testing, Item response theory, Computerized adaptive testing, Mode effect.
procedure was found to operate adequately. Some items were found to operate differently when administered on a computer screen as compared to a paper-and-pencil administration. Further research is needed to determine the cause of the differences in item performance.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Instructional Environment</td>
<td>2</td>
</tr>
<tr>
<td>Course Description</td>
<td>3</td>
</tr>
<tr>
<td>Course Exams</td>
<td>11</td>
</tr>
<tr>
<td>Systems Design</td>
<td>13</td>
</tr>
<tr>
<td>Hardware</td>
<td>13</td>
</tr>
<tr>
<td>Software</td>
<td>16</td>
</tr>
<tr>
<td>Research Projects</td>
<td>17</td>
</tr>
<tr>
<td>Summary and Conclusions</td>
<td>22</td>
</tr>
<tr>
<td>References</td>
<td>24</td>
</tr>
<tr>
<td>Appendix</td>
<td>25</td>
</tr>
</tbody>
</table>

Accession For

<table>
<thead>
<tr>
<th>NTIS CRA&I</th>
<th>DTIC TAB</th>
<th>Unannounced</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Distribution

<table>
<thead>
<tr>
<th>Availability Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dist</td>
</tr>
<tr>
<td>A-1</td>
</tr>
</tbody>
</table>
Final Report

The Use of Tailored Testing with Instructional Programs

The primary objective of the project was to investigate issues that are related to the implementation of tailored, or adaptive, testing in the instructional programs environment. These issues are of two major types:

- Those related to the design of a computer system for the administration, scoring, and reporting of results in tailored tests.
- Those related to the psychometric theory that is the foundation of tailored testing.

To address these issues in a practical and realistic way, this project involved the staff at the Great Lakes Naval Training Center in developing and testing a computer system for use in administering tests in conjunction with instructional programs at the base. This report is a summary of the knowledge gained from the development and implementation of the system.

The report is composed of three sections. The first describes the instructional environment at the training center that served as a test site for the tailored testing system. The second section describes the computer hardware used for the project and the software that was developed for the implementation of instructional testing at Great Lakes Naval Training Center. The third section describes the psychometric research that was performed as part of the project and summarizes the results of the research.

Instructional Environment

Since the goal of this project was to evaluate tailored testing for instructional purposes in a realistic educational environment, arrangements
were made to implement tailored testing in the Radar Technician Training Course in the Electronics Technician School at the Naval Training Center at Great Lakes, Illinois. This course was selected for use because it was taken by a relatively large number of trainees (approximately 60 new trainees started the course each week), it had fairly extensive item pools available for the material covered by the course, the trainees were fairly sophisticated about computer equipment, and systems programming support was available from the Naval Education and Training Program Development Center Detachment at Great Lakes.

Course Description

The Radar Technician Training Course is a six week course that is divided into three major areas. These areas, in turn, are subdivided into instructional modules. Table 1 presents a brief outline of the course, showing the major areas and the modules. The performance of trainees in the course was evaluated using examinations covering the three major areas: power, transmitter, and receiver. The trainees were required to receive a score equal to or greater than 64% of the total possible on each exam in order to proceed through the course. If they failed a test they were given remediation and retested over the same material, but with an alternate form of the test. Trainees who failed an examination three times were dropped from the course.

Although the testing and remediation procedure implied a self-paced instructional strategy, in actuality there was little flexibility in the rate at which trainees could proceed through the course. At most, trainees were allowed to spend three extra days on the material from a section of the
Table 1
Course Outline
for the Radar Technicians Training Course

<table>
<thead>
<tr>
<th>Major Area</th>
<th>Module Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>4.1.1</td>
<td>Introduction to AN/SPS-10 Radar Set</td>
</tr>
<tr>
<td></td>
<td>4.1.2</td>
<td>Primary Power Distribution</td>
</tr>
<tr>
<td></td>
<td>4.1.3</td>
<td>AC Voltage Regulator</td>
</tr>
<tr>
<td></td>
<td>4.1.4</td>
<td>DC Power Supply</td>
</tr>
<tr>
<td>Transmitter</td>
<td>4.2.1</td>
<td>Modulator</td>
</tr>
<tr>
<td></td>
<td>4.2.2</td>
<td>Radar Transmitter</td>
</tr>
<tr>
<td></td>
<td>4.2.3</td>
<td>RF System</td>
</tr>
<tr>
<td>Receiver</td>
<td>4.3.1</td>
<td>Radar Receivers</td>
</tr>
<tr>
<td></td>
<td>4.3.2</td>
<td>Adapter, Indicator</td>
</tr>
<tr>
<td></td>
<td>4.3.3</td>
<td>Video Clutter Suppressor</td>
</tr>
<tr>
<td></td>
<td>4.3.4</td>
<td>Antenna System</td>
</tr>
</tbody>
</table>

The instructional schedule for the course is given in Table 2. This table gives the topic number for the class, the type of class, the class period, the topic description, and the ratio of students to instructor. The first three digits of the topic number refer to the instructional modules listed in Table 1. The fourth digit refers to specific topics within the module. The class period indicates the number of hours since the beginning of training. The Radar Technician Training Course begins at hour 741 with a three hour class on "Introduction to Radar Systems" and ends at hour 980 after the four hour performance test on receivers. Thus, the course is 240 hours long, arranged into 30, eight hour days.
Table 2
Advanced Electronics Field Master Schedule
Radar Technicians Training Course

<table>
<thead>
<tr>
<th>TOPIC NO.</th>
<th>TYPE</th>
<th>PERIOD</th>
<th>TOPIC</th>
<th>RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.1.1</td>
<td>Class</td>
<td>741</td>
<td>Introduction to Radar Systems</td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>742</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>743</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td>Class</td>
<td>744</td>
<td>GMT</td>
<td></td>
</tr>
<tr>
<td>4.1.1.1</td>
<td>Class</td>
<td>745</td>
<td>Intro to Radar Sys (cont'd)</td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>746</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>747</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>748</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td>4.1.1.2</td>
<td>Class</td>
<td>749</td>
<td>Radar Principles</td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>751</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td>Class</td>
<td>752</td>
<td>GMT</td>
<td></td>
</tr>
<tr>
<td>4.1.1.2</td>
<td>Class</td>
<td>753</td>
<td>Radar Principles (cont'd)</td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>754</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>755</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td>4.1.1.3</td>
<td>Class</td>
<td>756</td>
<td>Introduction to AN/SPS-10</td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>757</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>758</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>759</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>760</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td>4.1.1.3</td>
<td>Class</td>
<td>761</td>
<td>Intro to AN/SPS-10</td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>762</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>763</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>764</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>765</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>766</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>767</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td>Class</td>
<td>768</td>
<td>GMT</td>
<td></td>
</tr>
<tr>
<td>4.1.1.4</td>
<td>Lab</td>
<td>769</td>
<td>AN/SPS-10 Lab</td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>770</td>
<td>4.1.1.4 1J Familiarization</td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>771</td>
<td>with the AN/SPS-10 Radar Set</td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>772</td>
<td>4.1.1.4 2J AN/SPS-10 Radar Set</td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>773</td>
<td>and AN/SPA-25 Indicator</td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>774</td>
<td>operating procedures</td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>775</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Class</td>
<td>776</td>
<td>GMT</td>
<td></td>
</tr>
</tbody>
</table>
Table 2 (Continued)

<table>
<thead>
<tr>
<th>TOPIC NO.</th>
<th>TYPE</th>
<th>PERIOD</th>
<th>TOPIC</th>
<th>RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.2.1</td>
<td>Class</td>
<td>777</td>
<td>Primary Power Distribution</td>
<td>20:1</td>
</tr>
<tr>
<td>777</td>
<td>20:1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>778</td>
<td>20:1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>779</td>
<td>20:1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>780</td>
<td>20:1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>781</td>
<td>20:1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>782</td>
<td>20:1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>783</td>
<td>20:1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>784</td>
<td>GMT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.2.1</td>
<td>Class</td>
<td>785</td>
<td>Pri Power Dist (cont'd)</td>
<td>20:1</td>
</tr>
<tr>
<td>786</td>
<td>20:1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>787</td>
<td>20:1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>788</td>
<td>20:1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>789</td>
<td>20:1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>790</td>
<td>20:1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>791</td>
<td>20:1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>792</td>
<td>GMT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.3.1</td>
<td>Class</td>
<td>793</td>
<td>AC Voltage Regulator</td>
<td>20:1</td>
</tr>
<tr>
<td>794</td>
<td>20:1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>795</td>
<td>20:1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>796</td>
<td>20:1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.4.1</td>
<td>Class</td>
<td>797</td>
<td>DC Power Supply</td>
<td>20:1</td>
</tr>
<tr>
<td>798</td>
<td>20:1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>799</td>
<td>20:1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>20:1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.2-4.1.3</td>
<td>Lab</td>
<td>801</td>
<td>AC Voltage Regulator Lab</td>
<td>6:1</td>
</tr>
<tr>
<td>802</td>
<td>6:1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>803</td>
<td>6:1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>804</td>
<td>6:1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.2.2</td>
<td>Lab</td>
<td>805</td>
<td>Primary Power Distribution Lab</td>
<td>6:1</td>
</tr>
<tr>
<td>806</td>
<td>6:1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.3.2</td>
<td>Class</td>
<td>807</td>
<td>4.1.2.2 1J</td>
<td>6:1</td>
</tr>
<tr>
<td>808</td>
<td>GMT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.3.2</td>
<td>Class</td>
<td>809</td>
<td>Written Exam (Power)</td>
<td>20:1</td>
</tr>
<tr>
<td>810</td>
<td>20:1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>811</td>
<td>20:1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.2.2</td>
<td>Lab</td>
<td>813</td>
<td>Primary Power Distribution Lab</td>
<td>6:1</td>
</tr>
<tr>
<td>814</td>
<td>6:1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>815</td>
<td>6:1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOPIC NO.</td>
<td>TYPE</td>
<td>PERIOD</td>
<td>TOPIC</td>
<td>RATIO</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>--------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>Class</td>
<td>816</td>
<td>GMT</td>
<td></td>
</tr>
<tr>
<td>4.1.2.2</td>
<td>Lab</td>
<td>817</td>
<td>Primary Power Distribution Lab</td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>818</td>
<td>4.1.2.2 J (cont'd)</td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>819</td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>820</td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>821</td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>822</td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>823</td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td>Class</td>
<td>824</td>
<td>GMT</td>
<td></td>
</tr>
<tr>
<td>4.1.2 - 4.1.3</td>
<td>Lab</td>
<td>825</td>
<td>Performance Test (PPD/ACVR)</td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>826</td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>827</td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>828</td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td>4.2.1.1</td>
<td>Class</td>
<td>829</td>
<td>Vacuum Tube TPG</td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>830</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>831</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td>Class</td>
<td>832</td>
<td>GMT</td>
<td>20:1</td>
</tr>
<tr>
<td>4.2.1.1</td>
<td>Class</td>
<td>833</td>
<td>Vacuum Tube TPG (cont'd)</td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>834</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>835</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>836</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>837</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>838</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>839</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>840</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td>4.2.1.2</td>
<td>Class</td>
<td>841</td>
<td>Modulator (MPG)</td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>842</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>843</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>844</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>845</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>846</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td>4.2.1.4</td>
<td>Class</td>
<td>847</td>
<td>Solid State TPG</td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td>Class</td>
<td>848</td>
<td>GMT</td>
<td></td>
</tr>
<tr>
<td>4.2.1.4</td>
<td>Class</td>
<td>849</td>
<td>Solid State TPG (cont'd)</td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>850</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>851</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>852</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td>4.2.2.1</td>
<td>Class</td>
<td>853</td>
<td>Microwave Devices</td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>854</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>855</td>
<td></td>
<td>20:1</td>
</tr>
</tbody>
</table>
Table 2 (Continued)

<table>
<thead>
<tr>
<th>TOPIC NO.</th>
<th>TYPE</th>
<th>PERIOD</th>
<th>TOPIC</th>
<th>RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class</td>
<td>856</td>
<td>GMT</td>
<td>20:1</td>
</tr>
<tr>
<td>4.2.2.1</td>
<td>Class</td>
<td>857</td>
<td>Microwave Devices (cont'd)</td>
<td>20:1</td>
</tr>
<tr>
<td>4.2.2.2</td>
<td>Class</td>
<td>860</td>
<td>Microwave Xmtr Tubes</td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td>Class</td>
<td>864</td>
<td>GMT</td>
<td>20:1</td>
</tr>
<tr>
<td>4.2.2.3</td>
<td>Class</td>
<td>865</td>
<td>Transmitter</td>
<td>20:1</td>
</tr>
<tr>
<td>4.2.3.1</td>
<td>Class</td>
<td>869</td>
<td>RF Systems</td>
<td>20:1</td>
</tr>
<tr>
<td>4.2.1.3</td>
<td>Lab</td>
<td>871</td>
<td>TPG and MPG Lab 4.2.1.3 1J</td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td>Class</td>
<td>872</td>
<td>GMT</td>
<td>6:1</td>
</tr>
<tr>
<td>4.2.1.3</td>
<td>Lab</td>
<td>873</td>
<td>TPG and MPG Lab 4.2.1.3 2J</td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>874</td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>875</td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>876</td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>877</td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>878</td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td>4.2.2.4</td>
<td>Lab</td>
<td>879</td>
<td>Transmitter Lab 4.2.2.4 1J</td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>880</td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>881</td>
<td>Transmitter Lab (cont'd)</td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>882</td>
<td>4.2.2.4 2J & 3J</td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>883</td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td>4.2.3.2</td>
<td>Lab</td>
<td>884</td>
<td>RF System 4.2.3.2.1J</td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>885</td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>886</td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>887</td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td>Class</td>
<td>888</td>
<td>GMT</td>
<td>6:1</td>
</tr>
<tr>
<td>4.2.1 - 4.2.2</td>
<td>Class</td>
<td>889</td>
<td>Written Exam (Xmtr)</td>
<td>20:1</td>
</tr>
<tr>
<td>4.2.1 - 4.2.2</td>
<td>Lab</td>
<td>892</td>
<td>Performance Test (Xmtr)</td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td>Class</td>
<td>896</td>
<td>GMT</td>
<td>6:1</td>
</tr>
</tbody>
</table>
Table 2 (Continued)

<table>
<thead>
<tr>
<th>TOPIC NO.</th>
<th>TYPE</th>
<th>PERIOD</th>
<th>TOPIC</th>
<th>RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.1.1</td>
<td>Class</td>
<td>897</td>
<td>Introduction to Receivers</td>
<td>20:1</td>
</tr>
<tr>
<td>4.3.1.1</td>
<td>Class</td>
<td>898</td>
<td>Introduction to Receivers (cont'd)</td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>899</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>900</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>901</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>902</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>903</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td>Class</td>
<td>904</td>
<td>GMT</td>
<td></td>
</tr>
<tr>
<td>4.3.1.2</td>
<td>Class</td>
<td>905</td>
<td>IF Strip</td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>906</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td>4.3.1.3</td>
<td>Class</td>
<td>907</td>
<td>Detectors and Video Circuits</td>
<td>20:1</td>
</tr>
<tr>
<td>4.3.1.5</td>
<td>Class</td>
<td>908</td>
<td>Automatic Frequency Control</td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>909</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>910</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>911</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td>Class</td>
<td>912</td>
<td>GMT</td>
<td></td>
</tr>
<tr>
<td>4.3.1.4</td>
<td>Class</td>
<td>913</td>
<td>Interference Elimination Circuits</td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>914</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>915</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>916</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>917</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td>4.3.2.1</td>
<td>Class</td>
<td>918</td>
<td>Adapter Indicator Trigger Ckts</td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>919</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>920</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td>4.3.2.2</td>
<td>Class</td>
<td>921</td>
<td>Adapter Indicator Video Ckts</td>
<td>20:1</td>
</tr>
<tr>
<td>4.3.2.2</td>
<td>Class</td>
<td>922</td>
<td>Adapter Indicator Video Ckts</td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>923</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td>4.3.3.1</td>
<td>Class</td>
<td>924</td>
<td>Video Clutter Suppressor</td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>925</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td>4.3.4.1</td>
<td>Class</td>
<td>926</td>
<td>Synchros/Servos/Antennas</td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>927</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td>Class</td>
<td>928</td>
<td>GMT</td>
<td></td>
</tr>
<tr>
<td>4.3.4.1</td>
<td>Class</td>
<td>929</td>
<td>Synchros/Servos/Antennas</td>
<td>20:1</td>
</tr>
<tr>
<td>4.3.4.2</td>
<td>Class</td>
<td>930</td>
<td>Antennas Systems</td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>931</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>932</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td>4.3.4.3</td>
<td>Lab</td>
<td>933</td>
<td>Antenna System Lab</td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>934</td>
<td>4.3.4.3 1J & 2J</td>
<td>6:1</td>
</tr>
</tbody>
</table>
Table 2 (Continued)

<table>
<thead>
<tr>
<th>TOPIC NO.</th>
<th>TYPE</th>
<th>PERIOD</th>
<th>TOPIC</th>
<th>RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>935</td>
<td>Class</td>
<td></td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td>936</td>
<td></td>
<td>CMT</td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td>4.3.1.6</td>
<td>Lab</td>
<td>937</td>
<td>Receiver Lab 4.3.1.6 1J</td>
<td>6:1</td>
</tr>
<tr>
<td>938</td>
<td></td>
<td></td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td>939</td>
<td></td>
<td></td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td>940</td>
<td></td>
<td></td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td>941</td>
<td></td>
<td></td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td>942</td>
<td></td>
<td></td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td>943</td>
<td></td>
<td></td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td>944</td>
<td></td>
<td>GMT</td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td>4.3.1.6</td>
<td>Lab</td>
<td>945</td>
<td>Receiver Lab (cont'd)</td>
<td>6:1</td>
</tr>
<tr>
<td>946</td>
<td></td>
<td></td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td>947</td>
<td></td>
<td></td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td>948</td>
<td></td>
<td></td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td>949</td>
<td></td>
<td></td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td>4.3.2.3</td>
<td>Lab</td>
<td>950</td>
<td>Adapter Indicator Lab</td>
<td>6:1</td>
</tr>
<tr>
<td>951</td>
<td></td>
<td></td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td>Class</td>
<td>952</td>
<td>CMT</td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td>4.3.2.3</td>
<td>Lab</td>
<td>953</td>
<td>Adapter Indicator Lab (cont'd)</td>
<td>6:1</td>
</tr>
<tr>
<td>954</td>
<td></td>
<td></td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td>955</td>
<td></td>
<td></td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td>Lab</td>
<td>956</td>
<td></td>
<td>Overall Systems Labs</td>
<td>6:1</td>
</tr>
<tr>
<td>957</td>
<td></td>
<td></td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td>958</td>
<td></td>
<td></td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td>959</td>
<td></td>
<td></td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td>960</td>
<td></td>
<td></td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td>Lab</td>
<td>961</td>
<td></td>
<td>Overall Systems Lab (cont'd)</td>
<td>6:1</td>
</tr>
<tr>
<td>962</td>
<td></td>
<td></td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td>963</td>
<td></td>
<td></td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td>964</td>
<td></td>
<td></td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td>965</td>
<td></td>
<td></td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td>966</td>
<td></td>
<td></td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td>967</td>
<td></td>
<td></td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td>Class</td>
<td>968</td>
<td>CMT</td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td>Class</td>
<td>969</td>
<td>Area Review</td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td>970</td>
<td></td>
<td></td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td>971</td>
<td></td>
<td></td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td>4.3.1 - 4.3.2</td>
<td>Class</td>
<td>972</td>
<td>Written Exam (Rcvr)</td>
<td>20:1</td>
</tr>
<tr>
<td>973</td>
<td></td>
<td></td>
<td></td>
<td>20:1</td>
</tr>
<tr>
<td>974</td>
<td></td>
<td></td>
<td></td>
<td>20:1</td>
</tr>
</tbody>
</table>
Table 2 (Continued)

<table>
<thead>
<tr>
<th>TOPIC NO.</th>
<th>TYPE</th>
<th>PERIOD</th>
<th>TOPIC</th>
<th>RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class</td>
<td>976</td>
<td>GMT</td>
<td>20:1</td>
</tr>
<tr>
<td>4.3.1 - 4.3.2</td>
<td>Lab</td>
<td>977</td>
<td>Performance Test (Rcvr)</td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>978</td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>979</td>
<td></td>
<td>6:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>980</td>
<td></td>
<td>6:1</td>
</tr>
</tbody>
</table>

Course Exams

The three tests used for this project were administered at hour 809 (Power), 889 (Transmitter), and 972 (Receiver). Two forms of each of the tests were available for use. Table 3 summarizes the characteristics of each of the tests. The tests are quite variable in quality and some have fairly low reliabilities. Each of the tests was constructed by selecting the items from an item pool that had been developed for each content area. A description of the item pool for each of the course content areas is given in Table 4. Since the items were sampled from the item pool with replacement, the test forms frequently had items in common and not all items in the pool were used. Therefore, the number of items available for calibration using item response theory models was less than the total number of items in the pool. The fifth column of the table indicates the number of items available for calibration and the sixth column gives the sample size for calibration. For tests A22 and A23, the sample sizes varied for the items within the pool because of overlap in the tests.
Table 3
Characteristics of Course Examinations

<table>
<thead>
<tr>
<th>Examination</th>
<th>Number of Items</th>
<th>\bar{X}</th>
<th>SD</th>
<th>KR-20</th>
<th>\bar{p}</th>
<th>$\bar{r}_{pt.bis}$</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>A211</td>
<td>43</td>
<td>34.12</td>
<td>5.34</td>
<td>.83</td>
<td>.79</td>
<td>.38</td>
<td>497</td>
</tr>
<tr>
<td>A212</td>
<td>44</td>
<td>32.15</td>
<td>3.41</td>
<td>.51</td>
<td>.73</td>
<td>.13</td>
<td>428</td>
</tr>
<tr>
<td>A221</td>
<td>30</td>
<td>23.88</td>
<td>4.05</td>
<td>.76</td>
<td>.80</td>
<td>.32</td>
<td>515</td>
</tr>
<tr>
<td>A222</td>
<td>30</td>
<td>25.83</td>
<td>2.30</td>
<td>.50</td>
<td>.86</td>
<td>.12</td>
<td>415</td>
</tr>
<tr>
<td>A231</td>
<td>30</td>
<td>24.24</td>
<td>2.80</td>
<td>.52</td>
<td>.81</td>
<td>.12</td>
<td>448</td>
</tr>
<tr>
<td>A232</td>
<td>30</td>
<td>23.67</td>
<td>2.79</td>
<td>.49</td>
<td>.79</td>
<td>.13</td>
<td>410</td>
</tr>
</tbody>
</table>

Note: The first two digits of the examination code indicate the course component and the last digit indicates the form.
System Design

Hardware

The system design for the computerized adaptive testing project at Great Lakes was predicated on several assumptions. They were:

1. Each testing station should be capable of functioning as a stand-alone test administrator for reasons of system reliability.

2. The results of a test would have to be accumulated for a class so that class reports and item analyses could be generated.

3. The system should be able to administer different tests to different students.
In order to meet the assumptions with equipment that was available at the start of the project, a hierarchical computer structure was designed. The system had three levels: (1) the testing stations, (2) midlevel computers for collecting results from eight testing stations and sending them to a central processor, and (3) a large, top level computer that would compile data and generate the reports. This configuration is shown schematically in Figure 1.

Each testing station consisted of an Ohio Scientific Challenger computer with two floppy disk drives and the OS 65U V1.3 operating system and a Hazeltime 1420 terminal. The terminals were located in carrels in a testing room. The computers were located in a separate room that was under the control of the instructional staff.

Eight of the testing stations were connected to each midlevel computer. This computer was also an Ohio Scientific Challenger computer with two floppy disk drives and the OS 65U V1.3 operating system. Although four midlevel computers were in place at Great Lakes, only 22 testing stations were available. Thus, the full 32 testing station capacity of the system was not realized.

The four midlevel computers transmitted test results to the top level computer. This computer was an Ohio Scientific C-3B microprocessor with 48K random disk and a 74 megabyte (formatted) Winchester hard disk. The computer also had two floppy disk drives and a tape backup. Two of these computers were purchased for the project. One served as a backup for the other to insure system reliability. The two top level computers also allowed for potential expansion to 64 testing stations.
Figure 1
Computer System
Hierarchical Structure

Top Level

Midlevel Computer

Midlevel Computer

Midlevel Computer

Midlevel Computer

Testing Computer

Terminal

Terminal

Terminal

Terminal

Terminal

Terminal

Terminal

Terminal
Software

Two test administration programs were developed to run on the system. The first was a program that administered a fixed set of test items to each examinee with a randomly selected order. That is, each examinee received the same set of test items, but the order of the items was randomly determined for each individual. This program was to be used at the initiation of computerized testing to collect data addressing the issue of whether items function the same when administered on a computer screen as when administered in paper-and-pencil form. The fixed set of items administered by the computer was the same item set used on the regular paper-and-pencil tests.

The second administration program developed during the project was for the adaptive administration of the course tests. This program was based on the one-parameter logistic (Rasch) item characteristic curve model. This model was selected as a result of a research study that will be described later in this report.

Adaptive testing procedures require algorithms for selecting items, for estimating ability, and for terminating the testing session. The program produced for this project used maximum information item selection, maximum likelihood ability estimation, and a sequential probability ratio test (Reckase, 1983) for the pass/fail decision to terminate testing. Since the maximum likelihood estimation procedure cannot compute ability estimates until both correct and incorrect responses have been obtained, a fixed stepsize, up-and-down procedure was used to obtain ability estimates before both types of responses were available.

After the final ability estimate was obtained for each examinee, the item response theory theta estimate was converted to an estimated true-score based
on the entire item pool for that test. The estimated true score was the score reported to both the examinee and the instructor.

Both of the test administration programs were written in Ohio Scientific BASIC for use with the OS 65U V1.3 operating system. They both accessed item pools stored on floppy disks at the testing station computers.

System software for the communications among computers was also developed as part of the project. Personnel from the Naval Education and Training Program Development Center Detachment at Great Lakes assisted with the development of this software. This set of programs accumulated test results from the testing stations and stored them on the hard disk at the top level computers. Other software developed on the project was used to generate reports for the instructor using this information.

The computer system used for administering the test at Great Lakes was described in several professional papers during the life of the project. The references for these papers are given below.

Research Projects

The studies were performed as part of this research project. They involved the use of item information needed to select the appropriate item.
response theory model for use with the item pools available for the project, (b) a study to determine the effect of mode of test administration (paper-and-pencil or computer) on the operation of the test items, and (c) a survey of the attitudes of trainees toward taking tests on a computer.

The results of the first study, on the appropriate item response theory model for adaptive testing using the radar technician item pool, were reported in a technical report and a convention paper. The references for the report and paper are given below.

This study used a two-stage evaluation plan to compare the ability estimates yielded by computerized adaptive testing procedures based on the one parameter logistic (1PL) and the three parameter logistic models (3PL). The first stage of the study used real data, while the second stage used simulated data. In the first stage, response data for 3000 examinees were obtained for the 40 items on a form of the ACT Assessment Mathematics Usage Test. The first 2000 cases were used to obtain item parameter estimates for both models. Using these estimates, 1PL and 3PL tailored tests were simulated using the response data for the remaining 1000 cases. Both computerized adaptive testing procedures employed maximum likelihood ability estimates and maximum information item selection. The sets of ability estimates obtained from the two procedures were then compared.
In the second stage of the study, response data for 3000 cases were simulated using the 3PL item parameter estimates from the first stage as true parameters. True abilities were selected for the simulation from the standard normal distribution. The first 2000 cases of the generated data were used for the IPL and 3PL calibration of the items, and the remaining 1000 cases were used to simulate IPL and 3PL adaptive tests. The ability estimates obtained from the two procedures were compared to each other and the true ability parameters.

The results of both stages of the study indicated that the IPL and 3PL adaptive tests yielded highly correlated ability estimates, and there was not apparent advantage in terms of ability estimation to using one of the models over the other. Because the IPL procedure was less expensive to use, it was the recommended model for this application.

The result of the second study, on the effect of mode of test administration, was reported in a convention paper. The reference for the paper is given below.

technique to determine which items had difficulty parameter estimates that did not fall along a simple linear function.

Of the 86 items analyzed, 26 were found to exhibit significant differences in performance related to administrative medium. Eleven items were found to be harder when administered on the computer screen, and 15 were found to be easier. No obvious reasons could be determined for the differences. Several hypotheses, such as the differences being related to amount of verbal material in an item or item format were eliminated. Further work needs to be done to determine the cause of the "mode effect".

The third research study carried out as part of this project was a survey of the attitudes of trainees at Great Lakes toward the administration of tests by computer. A sample of 136 trainees was administered an attitude survey immediately following the administration of a test to them by computer. A copy of the survey is included in an appendix to this report. The distribution of responses to the 23 items in the survey is presented in Table 5.
Table 5
Distribution of Responses
to the computerized Testing Survey

<table>
<thead>
<tr>
<th>Item</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>124</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>75</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>118</td>
</tr>
<tr>
<td>11</td>
<td>115</td>
</tr>
<tr>
<td>12</td>
<td>21</td>
</tr>
<tr>
<td>13</td>
<td>135</td>
</tr>
<tr>
<td>14</td>
<td>56</td>
</tr>
<tr>
<td>15</td>
<td>26</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>54</td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>32</td>
</tr>
<tr>
<td>21</td>
<td>85</td>
</tr>
<tr>
<td>22</td>
<td>93</td>
</tr>
<tr>
<td>23</td>
<td>12</td>
</tr>
</tbody>
</table>
The responses generally show that the trainees had no difficulty taking
the test on the computer and, in fact, 62% indicated that they "enjoyed" the
computerized test. They felt that the instructions to the test were clear and
that the pacing of the test was not too fast (the items were untimed),
although they indicated that taking the test on the computer was faster than
for a paper-and-pencil test. There was little indication of problems with
reading the terminal screen or with eye fatigue. The trainees had no
difficulty finding the proper keys on the terminal keyboard. The only
negative comment concerned examinees being unable to go back to questions once
they were off the screen. Sixty-eight percent indicated that they were
bothered by being unable to go back to previous items. Overall, the trainees
had no difficulty with the computerized test administration.

Summary and Conclusions

This report describes the computerized testing system that was
implemented in conjunction with the Radar Technician Training Course at the
Naval Training Center at Great Lakes, Illinois and the research that was
performed using the system. The system was a multilevel, microprocessor-based
computer network with each testing station capable of operating as a stand-
alone test administration system. The system was used to administer tests in
a sequential, fixed length format for the purpose of gaining information on
the effect of mode of administration on test items.

Although software was developed for an adaptive administration of test
items, the system was never used for adaptive testing because of reported
hardware failures. These failures were particularly vexing because the
project, and maintenance was difficult to obtain. The computer system used is now obsolete and cannot be obtained through any source. The hardware problems emphasize the need for developing a computerized testing system using hardware from a well established manufacturer.

Despite the hardware difficulties, the project did demonstrate that the system design was viable and that microcomputers could be used to administer achievement tests in an instructional program environment. The survey research showed that the trainees had no difficulty taking the test on the computer terminals. The research on model selection showed that, for the small item pools available for this course, a one-parameter logistic based testing procedure would perform adequately.

One research finding from this project indicated that some caution should be exercised when implementing computerized testing. It was found that some test items performed differently when administered on a terminal screen than when administered on a paper-and-pencil test. Further research is needed to determine the kinds of items that are affected by mode of administration and whether the effect will make the item easier or harder than the paper-and-pencil form.

Overall, this project has shown that computerized testing can be effectively used, but that system reliability should be a major factor in the development of such a system. With the recent advances in microcomputer hardware, widespread implementation of computerized testing in support of instruction can soon be expected.
References

Appendix

Computerized Testing
Evaluative Survey
PLEASE COMPLETE THE FORM BELOW AND RETURN IT TO THE TEST ADMINISTRATOR BEFORE LEAVING THE TESTING ROOM.

NAME ___________________________ LAST __________ FIRST __________ MIDDLE INITIAL __________
(Please Print)

SOCIAL SECURITY NUMBER _____ - _____ - _____

DATE _____________________________

CLASS NUMBER ___________________ SHIFT ___________________
QUESTIONNAIRE

We are interested in your reactions to this new form of testing. Your answers to these questions will provide useful information about this testing process. Please read each question carefully before responding.

CIRCLE THE LETTER OF THE APPROPRIATE ANSWER TO EACH ITEM.

1. I have used a computer...
 a. never before.
 b. once or twice.
 c. occasionally.
 d. frequently.

2. I have used a typewriter...
 a. never before.
 b. once or twice.
 c. occasionally.
 d. frequently.

3. If you needed assistance, was the test administrator helpful?
 a. yes
 b. no
 c. I did not need assistance

4. The test questions appeared on the screen...
 a. too quickly.
 b. too slowly.
 c. at about the right speed.
5. Overall, the computerized test was...
 a. more difficult than a paper-and-pencil test.
 b. easier than a paper-and-pencil test.
 c. about as difficult as a paper-and-pencil test.

6. The computerized test was...
 a. faster than a paper-and-pencil test.
 b. slower than a paper-and-pencil test.
 c. about the same as a paper-and-pencil test.

7. I could read the test questions on the screen...
 a. with great difficulty.
 b. with some difficulty.
 c. easily.
 d. very easily.

8. The test was confusing...
 a. only during the instructions.
 b. only when answering questions.
 c. during both instructions and answering questions.
 d. not at all.

9. My eyes felt tired...
 a. frequently.
 b. occasionally.
 c. once or twice.
 d. not at all.
10. How clear do you feel the computerized instructions were?
 a. Very clear - I had no trouble at all with them
 b. Clear enough, in general - but could be improved
 c. Unclear in places or in part
 d. Very unclear and confusing

11. Did you have enough time to give your answers?
 a. I didn't feel rushed or pressured at all
 b. I felt a little rushed and could have used more time
 c. I felt rushed and pressured for time

12. What is your opinion of the difficulty level of the questions?
 a. They were too difficult
 b. They were about right
 c. They were too easy

13. I understood the test administrator's instructions and introduction to the test.
 a. Agree
 b. Disagree
 c. Undecided

14. I did not need the test administrator's instructions in order to take the test.
 a. Agree
 b. Disagree
 c. Undecided
15. I did not need the computerized instructions in order to take the test.
 a. Agree
 b. Disagree
 c. Undecided

16. I had difficulty in locating the proper keys on the keyboard.
 a. Agree
 b. Disagree
 c. Undecided

17. I had difficulty in pressing in right keys.
 a. Agree
 b. Disagree
 c. Undecided

18. I felt uneasy about taking the test on a computer.
 a. Agree
 b. Disagree
 c. Undecided

19. The noise from the computer bothered me while I was taking the test.
 a. Agree
 b. Disagree
 c. Undecided

20. Computerized testing is more impersonal than paper and pencil testing.
 a. Agree
 b. Disagree
 c. Undecided
21. I enjoyed taking the test on a computer.
 a. Agree
 b. Disagree
 c. Undecided

22. I was bothered by not being able to change my answers at the end of the test.
 a. Agree
 b. Disagree
 c. Undecided

23. My eyes were tired by the end of the test.
 a. Agree
 b. Disagree
 c. Undecided
American College Testing Programs/Reckase

Personnel Analysis Division,
AF/MPXA
5C260, The Pentagon
Washington, DC 20370

Air Force Human Resources Lab
AFHRL/MPD
Prooks AFB, TX 78235

Dr. Earl A. Allulisi
HQ, AFHRL (AFSC)
Prooks AFB, TX 78235

Dr. Erling B. Andersen
Department of Statistics
Studiestraede 6
1455 Copenhagen
DENMARK

Dr. Philip Arabie
University of Illinois
Department of Psychology
607 E. Daniel St.
Champaign, IL 61820

Technical Director, ARI
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Eva L. Baker
UCLA Center for the Study
of Evaluation
145 Moore Hall
University of California
Los Angeles, CA 90024

Dr. Isaac Pejar
Educational Testing Service
Princeton, NJ 08540

Dr. Menucha Pirenbaum
School of Education
Tel Aviv University
Tel Aviv, Ramat Aviv 69978
ISRAEL

Dr. Arthur S. Blaiwes
Code N711
Naval Training Equipment Center
Orlando, FL 32812

Dr. R. Darrell Pock
University of Chicago
Department of Education
Chicago, IL 60617

Cdt. Arnold Bohrer
Sectie Psychologisch Onderzoek
Rekruterings-En Selectiecentrum
Kwartier Koningen Astrid
Pruijnstraat
1120 Brussels, BELGIUM

Dr. Robert Prenneman
American College Testing
Programs
P. O. Box 168
Iowa City, IA 52242

Dr. Patricia A. Butler
NIE Mail Stop 1806
1200 19th St., NW
Washington, DC 20208

Mr. James W. Carey
Commandant (G-PTE)
U.S. Coast Guard
2100 Second Street, S.W.
Washington, DC 20593

Dr. James Carlson
American College Testing
Program
P.O. Box 169
Iowa City, IA 52242

Dr. John R. Carroll
400 Elliott Pk.
Chapel Hill, NC 27514

Dr. Robert Carroll
NAVOP 0187
Washington, DC 20370

Dr. Norman Cliff
Department of Psychology
Univ. of So. California
University Park
Los Angeles, CA 90007
American College Testing Programs/Reckase

Dr. Carl H. Frederiksen
McGill University
3700 McTavish Street
Montreal, Quebec H3A 1Y2
CANADA

Dr. Robert D. Gibbons
University of Illinois-Chicago
P.O. Box 6998
Chicago, IL 60680

Dr. Janice Gifford
University of Massachusetts
School of Education
Amherst, MA 01002

Dr. Robert Glaser
Learning Research
& Development Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15260

Dr. Bert Green
Johns Hopkins University
Department of Psychology
Charles & 34th Street
Baltimore, MD 21218

Dr. Ronald K. Hambleton
Prof. of Education & Psychology
University of Massachusetts
at Amherst
Hills House
Amherst, MA 01002

Ms. Rebecca Hetter
Navy Personnel R&D Center
Code 62
San Diego, CA 92152

Dr. Paul W. Holland
Educational Testing Service
Rosedale Road
Princeton, NJ 08541

Prof. Lutz F. Hornke
Universität Düsseldorf
Erziehungswissenschaftliches
Universitäts-Institut
Düsseldorf 1
WEST GERMANY

Dr. Paul Horst
677 G Street, #184
Chula Vista, CA 90010

Mr. Dick Hoshaw
NAVOP-135
Arlington Annex
Room 2924
Washington, DC 20250

Dr. Lloyd Humphreys
University of Illinois
Department of Psychology
602 East Daniel Street
Champaign, IL 61820

Dr. Steven Hunka
Department of Education
University of Alberta
Edmonton, Alberta
CANADA

Dr. Huynh Huynh
College of Education
Univ. of South Carolina
Columbia, SC 29208

Dr. Robert Jannarone
Department of Psychology
University of South Carolina
Columbia, SC 29208

Dr. Douglas H. Jones
Advanced Statistical Technologies Corporation
10 Trafalgar Court
Lawrenceville, NJ 08648

Dr. G. Gage Kingsbury
Portland Public Schools
Research and Evaluation Department
501 North Dixon Street
P. O. Box 7107
Portland, OR 97209-3107

Dr. William Koch
University of Texas-Austin
Measurement and Evaluation Center
Austin, TX 78712
Director,
Manpower Support and
Readiness Program
Center for Naval Analysis
2000 North Beauregard Street
Alexandria, VA 22311

Dr. Stanley Collyer
Office of Naval Technology
Code 222
800 N. Quincy Street
Arlington, VA 22217-5000

Dr. Hans Crombag
University of Leyden
Education Research Center
Dr. Horst Melam
2324 EM Leyden
The NETHERLANDS

CTR/McGraw-Hill Library
2500 Garden Road
Monterey, CA 93940

Dr. Dattprasad Divgi
Center for Naval Analysis
4401 Ford Avenue
P.O. Box 1626P
Alexandria, VA 22302-026P

Dr. Hei-Ki Dong
Bill Foundation
400 Roosevelt Road
Building C, Suite 206
Glen Ellyn, IL 60137

Defense Technical
Information Center
Cameron Station, Bldg 5
Alexandria, VA 22314
Attn: TC
(12 Copies)

Dr. Stephen Dunbar
Lindquist Center
for Measurement
University of Iowa
Iowa City, IA 52242

Dr. James A. Farley
Air Force Human Resources Lab
Brooks AFB, TX 78235

Dr. Kent Eaton
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22311

Dr. John M. Eddins
University of Illinois
252 Engineering Research Laboratory
107 South Mathews Street
Urbana, IL 61801

Dr. Susan Embretson
University of Kansas
Psychology Department
Lawrence, KS 66045

ERIC Facility-Acquisitions
4877 Rugby Avenue
Bethesda, MD 20014

Dr. Benjamin A. Fairbairn
Performance Metrics, Inc.
5225 Calleghan
Suite 225
San Antonio, TX 78228

Dr. Leonard Feldt
Lindquist Center
for Measurement
University of Iowa
Iowa City, IA 52242

Dr. Richard L. Ferguson
American College Testing Program
P.O. Box 164P
Iowa City, IA 52240

Dr. Gerhard Fischer
Liebigasse 5/3
A 1010 Vienna
AUSTRIA

Prof. Donald Fitzgerald
University of New England
Department of Psychology
Armidale, New South Wales 2351
AUSTRALIA

Mr. Paul Foley
Navy Personnel R&D Center
San Diego, CA 92152
American College Testing Programs/Reckase

Dr. Leonard Kroeker
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Michael Levine
Educational Psychology
210 Education Bldg.
University of Illinois
Champaign, IL 61801

Dr. Charles Lewis
Faculteit Sociale Wetenschappen
Rijksuniversiteit Groningen
Oude Boteringestraat 22
9712GC Groningen
The NETHERLANDS

Dr. Robert Linn
College of Education
University of Illinois
Urbana, IL 61801

Dr. Robert Lockman
Center for Naval Analysis
4801 Ford Avenue
P.O. Box 16268
Alexandria, VA 22302-0268

Dr. Frederic M. Lord
Educational Testing Service
Princeton, NJ 08541

Dr. James Lumsden
Department of Psychology
University of Western Australia
Nedlands W.A. 6009
AUSTRALIA

Dr. William L. Maloy
Chief of Naval Education and Training
Naval Air Station
Pensacola, FL 32508

Dr. Roy Marcus
Stop IEF
Educational Testing Service
Princeton, NJ 08541

Dr. Joseph Martin
Army Research Institute
5558 Eisenhower Blvd.
Alexandria, VA 22312

Dr. James McBride
Psychological Corporation
c/o Harcourt, Brace,
Javanovich Inc.
1250 West 6th Street
San Diego, CA 92101

Dr. Clarence McCormick
HQ, MEPCOM
MEPCT-P
2500 Green Pay Road
North Chicago, IL 60064

Mr. Robert McKinley
University of Toledo
Department of Educational Psychology
Toledo, OH 43606

Dr. Barbara Means
Human Resources
Research Organization
1100 South Washington
Alexandria, VA 22314

Dr. Robert Mislevy
Educational Testing Service
Princeton, NJ 08541

Headquarters, Marine Corps
Code MPT-20
Washington, DC 20380

Dr. W. Alan Nicewander
University of Oklahoma
Department of Psychology
Oklahoma City, OK 73109

Dr. William F. Nordbrock
FMC-ADCO Box 25
APO, NY 09710

Dr. Melvin R. Novick
355 Lindquist Center for Measurement
University of Iowa
Iowa City, IA 52242

Director, Manpower and Personnel Laboratory,
NPRDC (Code 06)
San Diego, CA 92152
American College Testing Programs/Reckase

Library, NPRDC
Code P201L
San Diego, CA 92152

Commenting Officer,
Naval Research Laboratory
Code 2677
Washington, DC 20370

Dr. James Olson
WICAT, Inc.
1975 South State Street
Orem, UT 84057

Office of Naval Research,
Code 117QR
800 N. Quincy Street
Arlington, VA 22217-5000

Dr. Judith Orasanu
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22337

Wayne M. Patience
American Council on Education
GED Testing Service, Suite 20
One Dupont Circle, NW
Washington, DC 20036

Dr. James Paulson
Department of Psychology
Portland State University
P.O. Box 751
Portland, OR 97207

Dr. Roger Penneil
Air Force Human Resources Laboratory
Lowry AFB, CO 80220

Dr. Mark D. Reckase
ACT
P.O. Box 162
Towson, MD 21205

Dr. Malcolm Bee
AFHRL/MP
Brooks AFB, TX 78235

Dr. Carl Ross
CHET-PDCC
Building 90
Great Lakes NTC, IL 60043

Dr. J. Ryan
Department of Education
University of South Carolina
Columbia, SC 29208

Dr. Fumiko Samejima
Department of Psychology
University of Tennessee
Knoxville, TN 37916

Mr. Drew Sands
NPRDC Code 62
San Diego, CA 92152

Dr. Robert Sasmor
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22337

Dr. Mary Schratz
Navy Personnel R&D Center
San Diego, CA 92152

Dr. W. Steve Sellman
NASD(MRAPL)
28290 The Pentagon
Washington, DC 20379

Dr. Kazuo Shigematsu
7-9-21 Kugenuma-Kaigan
Fujusawa 253
JAPAN

Dr. William Sims
Center for Naval Analysis
1801 Ford Avenue
P.O. Box 10258
Alexandria, VA 22312-0258
American College Testing Programs/Reckase

Dr. H. Wallace Sinniko
Manpower Research
and Advisory Services
Smithsonian Institution
201 North Pitt Street
Alexandria, VA 22314

Dr. Richard Foreman
Naval Personnel R&D Center
San Diego, CA 92152

Dr. Paul Speckman
University of Missouri
Department of Statistics
Columbia, MO 65201

Dr. Martha Stocking
Educational Testing Service
Princeton, NJ 08541

Dr. Peter Stoloff
Center for Naval Analysis
200 North Pershing Street
Alexandria, VA 22311

Dr. William Stout
University of Illinois
Department of Mathematics
Urbana, IL 61801

Dr. Bill Dickland
ARMY
Arlington, VA 22203

Dr. Richard Exner
Evaluation and Research
School of Education
University of Massachusetts
Amherst, MA 01003

Dr. Paul A. Benson
Center for the Study of Urban Education
City University of New York
New York, NY 10031

Dr. Maurice Tatsuoka
220 Education Bldg
1210 S. Sixth St.
Champaign, IL 61820

Dr. David Thissen
Department of Psychology
University of Kansas
Lawrence, KS 66045

Mr. Gary Thomasen
University of Illinois
Educational Psychology
Champaign, IL 61820

Dr. Robert Tsutakawa
The Fred Hutchinson Cancer Research Center
Division of Public Health Sci.
1124 Columbia Street
Seattle, WA 98104

Dr. Ledyard Tucker
University of Illinois
Department of Psychology
607 E. Daniel Street
Champaign, IL 61820

Dr. Vern W. Hurry
Personnel R&D Center
Office of Personnel Management
1900 C. Street, NW
Washington, DC 20415

Dr. David Vale
Assessment Systems Corp.
2222 University Avenue
Suite 310
St. Paul, MN 55101

Dr. Frick Vicino
Naval Personnel R&D Center
San Diego, CA 92152

Dr. Howard Hainer
Division of Psychological Studies
Educational Testing Service
Princeton, NJ 08541
American College Testing Programs/Reckase

Dr. Ming-Mei Wang
Lindquist Center for Measurement
University of Iowa
Iowa City, IA 52242

Mr. Thomas A. Warm
Coast Guard Institute
P. O. Substation 18
Oklahoma City, OK 73149

Dr. Brinn Waters
Program Manager
Manpower Analysis Program
HumRRO
1100 S. Washington St.
Alexandria, VA 22314

Dr. David J. Weiss
NE60 Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455

Dr. Ronald A. Weitzman
NPS, Code 54Wz
Monterey, CA 92152

Major John Welsh
AFHRL/MOAN
Brooks AFB, TX 78235

Dr. Rand R. Wilcox
University of Southern California
Department of Psychology
Los Angeles, CA 90007

German Military Representative
ATTN: Wolfgang Wildgrube
Straitkranzteam
D-5300 Bonn 2
4000 Brandywine Street, NW
Washington, DC 20016

Dr. Bruce Williams
Department of Educational Psychology
University of Illinois
Urbana, IL 61801

Dr. Hilda Wing
Army Research Institute
5001 Eisenhower Ave.
Alexandria, VA 22333

Dr. Martin F. Wiskoff
Navy Personnel R & D Center
San Diego, CA 92152

Mr. John H. Wolfe
Navy Personnel R&D Center
San Diego, CA 92152

Dr. George Wong
Biostatistics Laboratory
Memorial Sloan-Kettering Cancer Center
1275 York Avenue
New York, NY 10021

Dr. Wendy Yen
CTB/McGraw Hill
Del Monte Research Park
Monterey, CA 93940
END
FILMED

6-86

DTIC