MARINE CORPS
AIR STATION
IWAKUNI
FLEET MOORINGS
UNDERWATER
INSPECTION
REPORT

SEPTEMBER 1983

OCEAN ENGINEERING
AND CONSTRUCTION PROJECT OFFICE
CHESAPEAKE DIVISION
NAVAL FACILITIES ENGINEERING COMMAND
WASHINGTON, D.C. 20374

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited

FPO-1-83(26)

86 4 22 087
Marine Corps Air Station Iwakuni Fleet Moorings Underwater Inspection Report

13a. TYPE OF REPORT: TASK

14. DATE OF REP. (YYMMDD): 1983-09

15. PAGES: FROM 37 TO

16. SUPPLEMENTARY NOTATION

17. COSATI CODES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if nec.)

Fleet moorings, Mooring inspection, Underwater Inspection, Marine Corps Air Station Iwakuni

19. ABSTRACT (Continue on reverse if necessary & identify by block number)

This report contains the results of the inspection of the fleet moorings located near the Marine Corps Air Station, Iwakuni, Japan. A CHESNAVFACENGCOM assigned Engineer-in-Charge and divers from Underwater Construction Team Two conducted the inspection from 7-10 May 1983.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT: SAME AS RPT.

21. ABSTRACT SECURITY CLASSIFICATION: Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL: Jacqueline B. Riley

22b. TELEPHONE: 202-433-3881

22c. OFFICE SYMBOL: DD FORM 1473, 84MAR

SECURITY CLASSIFICATION: Unclassified
Of the five moorings inspected, one was considered to be in good condition and satisfactory for continued use. Two were found to be in fair condition and still satisfactory for continued use. One was found to be in poor condition, and was out of service. Specific comments concerning the current condition of each of the moorings and recommendations for corrective actions are contained herein.
Abstract

This report contains the results of the inspection of the fleet moorings located near the Marine Corps Air Station, Iwakuni, Japan. A CHESNAVFACENGCOM-assigned Engineer-in-Charge and divers from Underwater Construction Team Two conducted the inspection from 7-10 May 1983.

Of the five moorings inspected, one was considered to be in good condition and satisfactory for continued use. Two were found to be in fair condition and still satisfactory for continued use. One was found to be in poor condition, and one was out of service. Specific comments concerning the current condition of each of the moorings and recommendations for corrective actions are contained herein.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 General Mooring History</td>
<td>1</td>
</tr>
<tr>
<td>2.0 INSPECTION PROCEDURES</td>
<td>1</td>
</tr>
<tr>
<td>2.1 Inspection Objectives</td>
<td>1</td>
</tr>
<tr>
<td>2.2 Buoy</td>
<td>5</td>
</tr>
<tr>
<td>2.3 Riser</td>
<td>6</td>
</tr>
<tr>
<td>2.4 Ground Legs</td>
<td>6</td>
</tr>
<tr>
<td>2.5 Sinker</td>
<td>6</td>
</tr>
<tr>
<td>2.6 Anchors</td>
<td>6</td>
</tr>
<tr>
<td>3.0 INSPECTION SUMMARY</td>
<td>6</td>
</tr>
<tr>
<td>4.0 MOORING INSPECTION COMMENTS AND RECOMMENDATIONS</td>
<td>7</td>
</tr>
<tr>
<td>Annex</td>
<td></td>
</tr>
<tr>
<td>A FLEET MOORING INSPECTION RESULTS</td>
<td>A-1</td>
</tr>
<tr>
<td>B PHOTOGRAPHS</td>
<td>B-1</td>
</tr>
<tr>
<td>C REFERENCES</td>
<td>C-1</td>
</tr>
</tbody>
</table>
MCAS IWAKUNI FLEET MOORING INSPECTION REPORT

1.0 INTRODUCTION

1.1 Background. Under the COMNAVFACENGCOM Fleet Mooring Maintenance (FMM) Program, CHESNAVFACENGCOM has been assigned the responsibility to plan and conduct periodic diver inspections of all fleet moorings worldwide. In carrying out this responsibility, CHESNAVFACENGCOM designated an Engineer-in-Charge (EIC) to provide inspection planning and onsite technical direction for the underwater inspection of fleet moorings located at the Marine Corps Air Station Iwakuni, Japan. The actual underwater portion of the inspection was performed by divers of Underwater Construction Team Two (UCT-2). The inspection was conducted 7-10 May 1983.

1.2 General Mooring History. MCAS Iwakuni normally operates and maintains five F-class fleet moorings. One of these moorings, however, is currently out of service. Buoy B-1 and part of its riser chain have been disconnected from the remainder of the riser and the mooring ground tackle and are temporarily positioned in the inner harbor pending the completion of dredging operations. The geographical location of Iwakuni and its fleet moorings are shown in Figures 1 and 2.

The remaining four moorings are utilized as fuel tanker moorings. Each is of Japanese design and consists of an 8-foot-diameter drum-type buoy, a riser chain, a 15,000-pound concrete sinker at the base of the riser, three ground legs, and three 10,000-pound anchors. Figure 2 is a schematic drawing which indicates the general composition of this type of mooring. All four of the operational moorings are in relatively shallow (25-50 feet) water.

A POL pier is scheduled for construction with an estimated completion date in early FY 86. At that time, MCAS Iwakuni plans to remove all operational fleet moorings from service.

2.0 INSPECTION PROCEDURES

2.1 Inspection Objectives. The purpose of the mooring inspections was to determine the general physical condition of the buoys and chain assemblies and, when
Figure 1. Geographical Location of Iwakuni
FIGURE 2. GEOGRAPHIC LOCATIONS OF MCAS IWAKUNI FLEET MOORINGS
FIGURE 3. SCHEMATIC DRAWING OF A TYPICAL MCAS IWAKUNI MOORING
possible, to verify or update existing as-built and maintenance records. Divers inspected only a portion of the submerged buoy hull and chain assemblies in order to compile a general description of the mooring's condition. The existence of fairly consistent measurements during this inspection provides a good indication of the mooring's overall condition. It should be kept in mind that periodic underwater inspections are intended as an expedient and relatively inexpensive supplement to accurate maintenance records. As such, they cannot fully substitute for a complete inspection involving recovery of the mooring and the measurement and evaluation of each component.

Chain wire diameter measurements are used to evaluate the condition of a mooring. After cleaning to bare metal, a selective sampling of the wire diameter of chain links and connecting hardware was taken in order to determine the amount of deterioration due to corrosion and wear. "Single link" measurements were taken where chain was slack, to detect corrosion loss. "Double link" measurements were taken where two links connect under tension to detect the combined effects of corrosion and wear. Chain links and other components which measured 90 percent or greater of original wire diameter are considered to be in "good" condition; measurement between 80 percent and 90 percent of original diameter is considered "fair" condition and is cause for the mooring to be downgraded in classification; any measurement less than 80 percent is considered "poor" and is cause for the mooring to be declared unsatisfactory for fleet use. When a mooring is constructed from oversized chain, a measurement between 80 and 90 percent of the original wire size results in a mooring being considered in "fair condition" but no downgrading is required if the worn chain is still larger than required.

Standard underwater inspection procedures do not call for the inspection of any part of the mooring which has been buried. Ground legs and risers were observed only to the point at which they became buried; no attempt was made to locate and inspect anchors or other mooring materials which were not readily visible.

2.2 Buoy

2.2.1 Buoy Topside. The buoy was inspected to determine its general condition. The buoy markings were checked for conformance to those noted in applicable charts. The diameter and freeboard of the buoy were recorded. Physical damage such as holes, dents, or listing were noted. The fiberglass coatings were inspected for cracks, wear, peeling, or rust-bleeding.
The buoy fenders and chafing rails were checked for integrity and secure connection to the buoy. Buoy top jewelry was measured with calipers to find the overall outside dimensions and areas of most severe reduction in wire size.

2.2.2 **Buoy Lower Portion.** Divers inspected the buoy below the waterline. The thickness of marine growth was recorded, two 1-foot-square areas were selected and cleared of growth without damaging the fiberglass, and the condition of the fiberglass was noted.

2.3 **Riser.** To determine chain wear, each riser chain was inspected by taking three consecutive double link measurements, using calipers, at both ends and at the center of the riser. To determine original chain size, divers measured the length of a chain link and took single link caliper measurements of its wire diameter.

2.4 **Ground Legs.** Except for Mooring B-6, where a short section of each of its three ground legs was observed, all ground legs were buried in the bottom. The exposed sections of these legs were visually inspected, and single link caliper measurements of their wire diameter were taken.

2.5 **Sinker.** When visible, the hairpin of each sinker was inspected for wear and measured with calipers. The concrete around the hairpin was checked for spalling.

2.6 **Anchors.** No anchors were sighted during the course of the inspection.

3.0 **INSPECTION SUMMARY**

An in-depth discussion of the inspection results is presented in Annex A. Annex B contains photographs, and Annex C contains a copy of the preliminary report of the results of the inspection.

The data gathered during the inspection indicates the following:

- Considering their rating and use as F-class moorings, all of these moorings consist of oversized chain and accessories.
- None of the MCAS Iwakuni fleet moorings are cathodically protected.
The buoy and 12 feet of riser chain of Mooring B-1 have been disconnected from the remainder of this mooring's riser and its ground tackle. This mooring is not in service.

Mooring B-3's buoy rides very low in the water and has a list of about 20 degrees. In addition, the overall exterior of the buoy is in relatively poor condition.

Buoy B-4 has a very low freeboard with its top fender partially submerged. The buoy has a 15-20 degree list. The buoy's fiberglass coating is peeling off and the hull is badly rusted.

The swivel in the riser of mooring B-6 is worn to approximately 60 percent of its original 2-inch wire diameter.

Table I summarizes the inspected condition of each mooring.

4.0 MOORING INSPECTION COMMENTS AND RECOMMENDATIONS

As a result of an analysis of the inspection data, the following comments/recommendations are considered pertinent:

- To reduce corrosion and wear, buoy B-1 and its attached section of riser chain should be removed from the water and stored ashore pending a decision on its future use as an operational fleet mooring.

- Buoys B-3 and B-4 should be removed from the water at the earliest practical time and the cause of their lists determined and repaired. In addition, the exteriors of both buoys should be refurbished.

- Mooring B-5 is in satisfactory condition for continued use as a class F mooring.

- The swivel in the riser of mooring B-6 should be replaced as soon as possible. Until this can be accomplished, this mooring is unsatisfactory for fleet use as an F-class mooring.
TABLE 1

INSPECTION SUMMARY

<table>
<thead>
<tr>
<th>MOORING NUMBER</th>
<th>REPORTED CLASS</th>
<th>CONDITION</th>
<th>REMARKS</th>
<th>CURRENT STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td></td>
<td>✓</td>
<td>Out of service. Recommend recovery and storage ashore.</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>✓</td>
<td></td>
<td>Recommend repair buoy at earliest practical time. Worn riser still satisfactory for class F</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>✓</td>
<td></td>
<td>Recommend repair buoy at earliest practical time. Still satisfactory for class F mooring.</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td></td>
<td>✓</td>
<td>Satisfactory for continued use as a class F mooring.</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>✓</td>
<td></td>
<td>Swivel worn to 60%. Recommend overhaul</td>
</tr>
</tbody>
</table>
ANNEX A

MOORING INSPECTION RESULTS
INSPECTION RESULTS
MOORING B-1

General

This mooring is not in service. The buoy and part of the riser chain were moved from the mooring's normal location (east-southeast of the south breakwater) to a position close to the Surface Division's Boat House in the inner harbor. This geographical position is temporary pending completion of dredging operations in the outer harbor.

Buoy

This is a drum-type buoy with a 10-foot diameter and a hawsepipe. The buoy top and the topside jewelry are in good condition. The buoy side plating is striped with orange paint. The buoy is maintained in place by a wire rope attached to it and a small concrete clump lying on the bottom.

Riser

Only 12 feet of riser chain is attached to the buoy. A double link measurement of the lower two links and a single link measurement of the bottom link were both greater than 90 percent of the required 1 1/4-inch diameter for a class F mooring. Location of the remainder of the riser and the ground legs is not known.

Ground Legs/Sinker/Anchors

Not visible for inspection.

Recommendation

The mooring buoy and its 12 feet of riser chain should be removed from the water and placed ashore for storage until the remainder of the mooring components can be recovered from the bottom, and the entire mooring either overhauled or permanently removed from service.
<table>
<thead>
<tr>
<th>COMPONENTS</th>
<th>BUOY HARDWARE</th>
<th>NEAR BUOY</th>
<th>NEAR GROUND RING</th>
<th>GROUND LEG NO. A</th>
<th>GROUND LEG NO. B</th>
<th>GROUND LEG NO. C</th>
<th>GROUND LEG NO. D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2" END LINK</td>
<td>2-1/2" SHACKLE</td>
<td>3-1/4" SHACKLE</td>
<td>RISER</td>
<td>MIDDLE</td>
<td>UPPER END</td>
<td>MIDDLE</td>
<td>ENTERS BOTTOM</td>
</tr>
<tr>
<td>NI</td>
<td>EST</td>
<td>SINGL','=',$%+</td>
<td>DOUBLE LINK</td>
<td>%+</td>
<td>%+</td>
<td>%+</td>
<td>%+</td>
</tr>
<tr>
<td>NEW</td>
<td>SINGL','=',$%+</td>
<td>DOUBLE LINK</td>
<td>%+</td>
<td>%+</td>
<td>%+</td>
<td>%+</td>
<td>%+</td>
</tr>
<tr>
<td>D</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
</tbody>
</table>

COMMENT:
-ozy 12" of riser attached to body bottom, blueest, anchors missing and probably buried.
- Body held in place by wire clump, location marked with red flag.
INSPECTION RESULTS
MOORING B-3

Buoy

This is a Japanese-built 8-foot diameter buoy with a hawsepipe. The buoy rides low in the water (little freeboard) and has about a 20-degree list. Due to this list, part of the fender is underwater. Most of the paint has been chipped off the galvanized pipe chafing rail, its connections are badly rusted, and the pipe contains numerous dents. The top hardware is rusted and scaling. The buoy is fiberglass coated, but beneath this coating the side plating is badly rusted. The rubbing casting appears to be in satisfactory condition. The bottom of the buoy is heavily encrusted with marine growth.

Riser

The original size of the riser chain (2 1/2 inches) is oversized for a class F mooring, which only requires 1 1/4-inch-diameter chain. All caliper double link measurements revealed that the riser chain is 80 percent or larger than its original wire size. The chain is covered with a heavy marine growth from the bottom of the buoy to a depth of about 45 feet. Between that depth and the bottom (52 feet), the chain is free of marine growth but is covered with rust.

Ground Legs/Sinker/Anchors

Not visible for inspection.

Recommendations

A measurement between 80 and 90 percent of any mooring component is normally cause for a mooring to be downgraded to the next lower class of mooring. However, in the case of mooring B-3, the double link measurements of even the more badly worn chain links (4 1/4 inches) are almost 2 inches larger than the 2 1/2-inch double link measurement of the 1 1/4-inch-diameter chain required for an F-class mooring. Therefore, this mooring should still be capable of withstanding F-class mooring loads.
Due to low freeboard and list, it would appear that Buoy B-3 may be leaking and taking on water. In addition, the overall external condition of the buoy is poor. The buoy should be recovered at the earliest possible time, the cause of its low freeboard and list determined and repaired, and the buoy refurbished as required.
<table>
<thead>
<tr>
<th>COMPONENTS</th>
<th>NI</th>
<th>NEW</th>
<th>SINGLE LINK %</th>
<th>DOUBLE LINK %</th>
<th>D</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUOY HARDWARE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 1/4" SHACKLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RISER CHAIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEAR BUOY</td>
<td></td>
<td>2 1/2"</td>
<td>4 1/4"</td>
<td>4 1/2"</td>
<td>4 1/2"</td>
<td>√√ √</td>
</tr>
<tr>
<td>MIDDLE</td>
<td></td>
<td>4 3/4"</td>
<td>4 1/4"</td>
<td>4 1/2"</td>
<td>4 1/2"</td>
<td>√√ √</td>
</tr>
<tr>
<td>NEAR GHD RG</td>
<td></td>
<td>4 1/2"</td>
<td>4 1/4"</td>
<td>4 1/2"</td>
<td>4 1/2"</td>
<td>√√ √</td>
</tr>
<tr>
<td>GROUNDING RISER</td>
<td></td>
<td>4 1/2"</td>
<td>4 1/4"</td>
<td>4 1/2"</td>
<td>4 1/2"</td>
<td>√√√</td>
</tr>
<tr>
<td>GROUND LEG NO. A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPPER END</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIDDLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENTERS BOTTOM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GROUND LEG NO. B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPPER END</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIDDLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENTERS BOTTOM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GROUND LEG NO. C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPPER END</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIDDLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENTERS BOTTOM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GROUND LEG NO. D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DATE: 9 May 83 ENGINEER IN CHARGE: JONES DIVERS: MILLER/SAKA/COTTELLESSA
INSPECTION RESULTS
MOORING B-4

Buoy

This is an 8 foot-diameter Japanese-built drum buoy with a hawsepipe. The buoy is riding extremely low in the water and has a 15-20 degree list. The fender is partially submerged. The topside hardware, galvanized pipe chafing rail, and hawsepipe are all severely rusted. The fiberglass coating is badly chipped and is peeling from the buoy. The bottom of the buoy has a heavy coating of marine growth.

Riser

The length of a riser link was measured to be 13 inches, which would indicate that the original wire size of the chain was 2 1/8 inches. Double link measurements of the riser were all greater than 90 percent of the estimated original wire size. In addition, this chain is oversized for an F-class mooring (1 1/4-inch). The riser is covered with an extremely heavy marine growth. The last link of the riser is attached to a half-buried swivel by a detachable link. About 15 feet from the swivel, the divers observed and measured 2 1/8-inch-diameter chain links emerging from the mud, running on the surface for about 5 feet and then reentering the mud. It is not known whether this is a portion of the riser or ground leg chain.

Ground Legs/Sinker/Anchors

Not visible for inspection.

Recommendations

The inspected portions of this mooring are in satisfactory condition and there is no reason why this mooring cannot continue to be used as a class F mooring. However, due to low freeboard and list, it would appear that Buoy B-4 may be taking on water. In addition, the overall external condition of the buoy is poor. The buoy should be recovered at the earliest possible time, the cause of its low freeboard and list determined and repaired, and the buoy refurbished as required.
<table>
<thead>
<tr>
<th>COMPONENTS</th>
<th>NI</th>
<th>NEW EST.</th>
<th>SINGLE LINK %</th>
<th>DOUBLE LINK %</th>
<th>D</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUOY HARDWARE</td>
<td>N1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ABOUT AN 8' DIAMETER BUOY RIDING</td>
</tr>
<tr>
<td>3 1/4" SHACKLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LOW IN WATER, FEUDER PARTIALLY</td>
</tr>
<tr>
<td>RISER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SUBMERGED DUE 15-20° LIST, SEVERELY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RUSTED HARDWARE, CHAFING RAIL, AND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HANSEPIPE, FIBERGLASS PEELING, HEAVY</td>
</tr>
<tr>
<td>RISER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GROWTH ON BOTTOM OF BUOY,</td>
</tr>
<tr>
<td>NEAR BUOY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HEAVY GROWTH ON CHAIN, 13" LINKS.</td>
</tr>
<tr>
<td>MIDDLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8' GROWTH ON BOTTOM OF BUOY.</td>
</tr>
<tr>
<td>NEAR GRD RG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35' LAST RISER LINK ATTACHED TO SWIVEL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(HALF BURIED IN MUD) BY A DETACHABLE LINK.</td>
</tr>
<tr>
<td>GROUND RING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GROUND LEG NO. A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ABOUT 5' OF 2 1/8" CHAIN OBSERVED OUT OF MUD</td>
</tr>
<tr>
<td>GROUND LEG NO. B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ABOUT 5' OF 2 1/8" CHAIN OBSERVED OUT OF MUD</td>
</tr>
<tr>
<td>GROUND LEG NO. C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GROUND LEG NO. D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DATE: 9 MAY 83 ENGINEER IN CHARGE: JONES
DIVERS: MILLER / SAKA / COTTELLESA
INSPECTION RESULTS
MOORING B-5

Buoy

This is an 8-foot-diameter Japanese-built drum-type buoy with a hawsepipe. The buoy is fiberglass coated, has a galvanized pipe chafing rail and a fender near the top of the buoy. There is a light coating of rust on the top of the buoy while the buoy hardware is moderately rusted.

Riser

The length of a riser link was measured to be 13 1/2 inches which would indicate that the original wire size of the chain was 2 1/4 inches. Double link measurements of the riser were all greater than 90 percent of the estimated original wire size. This chain is oversized for a class-F mooring (1 1/4-inch). The riser is covered with an extremely heavy coating of marine growth between the buoy bottom and a depth of 38 feet. From this point to the bottom (46 feet) the chain is free of growth but rusted. About 20 feet of riser chain is visible on the bottom before it enters the mud.

Chain Legs/Sinker/Anchors

Not visible for inspection.

Recommendation

This mooring is in satisfactory condition for continued use as a class F mooring.
Components Condition

<table>
<thead>
<tr>
<th>Components</th>
<th>Condition</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buoy Hardware</td>
<td></td>
<td>About 8" diameter buoy, fiberglass</td>
</tr>
<tr>
<td>1 3/4" Shackle</td>
<td></td>
<td>OK, pipechafing rail/feeder OK.</td>
</tr>
<tr>
<td>3 3/4" Shackle</td>
<td></td>
<td>Some rust on top, hardware</td>
</tr>
<tr>
<td>Riser</td>
<td>D.L. Measurement</td>
<td>Rusty</td>
</tr>
<tr>
<td>Near Buoy</td>
<td>2 1/4" 4 3/4" 4 3/4" 4 1/4"</td>
<td><10' Extremely heavy growth bottom</td>
</tr>
<tr>
<td>Middle</td>
<td>4 1/2" 4 3/4" 4 1/4"</td>
<td>20' Of buoy to 38' depth, chain clean but</td>
</tr>
<tr>
<td>Near Grd RG</td>
<td>4 1/2" 4 3/4" 4 1/4"</td>
<td>46' Rusty from there to bottom</td>
</tr>
<tr>
<td>Ground Ring A</td>
<td></td>
<td>Twenty feet of riser on bottom</td>
</tr>
<tr>
<td>Upper End</td>
<td></td>
<td>Before chain enters mud, 13 1/2" link lengths,</td>
</tr>
<tr>
<td>Middle</td>
<td></td>
<td>Legs/sinker/anchors buried</td>
</tr>
<tr>
<td>Enters Bottom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground Leg No. B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper End</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enters Bottom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper End</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enters Bottom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground Leg No. C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper End</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enters Bottom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground Leg No. D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper End</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enters Bottom</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Date: 7 May 83 **Engineer in Charge:** Jones **Divers:** Miller/Sako
INSPECTION RESULTS
MOORING B-6

Buoy

This is a Japanese-built drum-type buoy with a hawsepipe. It is fiberglass coated and has a galvanized pipe chafing rail. This rail and the buoy's top deck have no rust. A fender is located at the very top of the buoy. The buoy has about a 10-degree list and its hull, below the waterline, shows some signs of rust bleeding. Overall, the buoy is in good condition.

Riser

About 20 feet down the riser chain from the buoy, the divers noted a swivel. This swivel was measured and found to be about 60 percent of its original 2-inch wire diameter. The length of a riser link above the swivel was measured to be 13 1/2 inches, which indicated that the upper portion of the riser was originally 2 1/4-inch chain. The length of a link in the 5 feet of riser in the water column below the swivel measured 12 3/4 inches, indicating that the lower portion of the riser was originally 2 1/8 inches in diameter. Both portions of the riser chain in the water column are oversized for an F class mooring (1 1/4-inch), and both sections measured 80 percent or larger of their original estimated wire diameters.

The riser reaches the bottom at a depth of 25 feet and about 75 feet of it rests on the bottom before its last link is attached with a shackle to the hairpin of a sinker. As depicted in Figure A-1, the on-bottom segment of the riser chain is comprised of three different wire sizes of chain.

Sinker

The 15,000-pound concrete sinker is partially buried in the bottom. Five 2 1/2-inch shackles are attached to its hairpin. One attaches the riser, three attach ground legs, and the fifth is a spare.
- Buoy has 10° list
- Swivel 20' below surface. Bottom at 25'.
- 2 1/8" riser chain runs 20' to a shackle.
- 45' of 2 3/16" chain to 10' ball.
- 5' of 2 1/2" riser chain to sinker.
- Three legs attached to sinker.
- 10' each leg visible before entering bottom.

Figure A-1. Schematic Drawing of Mooring B-6
Ground Legs

The upper 10 feet of the three ground legs was visible before the legs entered the bottom. The observed portions of these legs appeared to be in satisfactory condition.

Anchors

Not visible for inspection.

Recommendation

The weakest component in this mooring is the riser swivel which measures about 60 percent of its original 2-inch wire diameter. Although the diameter of the remaining steel in this swivel is satisfactory for use in a class F mooring, the number of cyclical loads this swivel has been subjected to and the condition of the internal structure of the steel remaining in its wear zones is unknown. Recommend that this swivel be replaced at the earliest possible time. In the interim, this mooring should not be used.
Components

<table>
<thead>
<tr>
<th>COMPONENTS</th>
<th>NI</th>
<th>NEW</th>
<th>SINGLE LINK %</th>
<th>DOUBLE LINK %</th>
<th>D</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUOY HARDWARE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Feuher at the very top of the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Buoy, fiberglass coated, pipe</td>
</tr>
<tr>
<td>1 1/2" SHACKLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chafing rail/top deck clean-no</td>
</tr>
<tr>
<td>3 3/4" SHACKLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rust. Buoy has ≥ 10° list. Some rust</td>
</tr>
<tr>
<td>RISER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bleeding below waterline</td>
</tr>
<tr>
<td>NEAR BUOY</td>
<td></td>
<td></td>
<td>2 3/4" 4 3/8" 4 3/8"</td>
<td>V V V V</td>
<td>≤10'</td>
<td></td>
</tr>
<tr>
<td>MIDDLE</td>
<td></td>
<td></td>
<td>3/4" 4" 4 1/8"</td>
<td>V V V</td>
<td>20'</td>
<td>Swivel at 20' worn to about 60% of</td>
</tr>
<tr>
<td>NEAR GRID RG</td>
<td></td>
<td></td>
<td>2 3/8" 3 3/8" 3 3/8"</td>
<td>V V V V V V V V V V</td>
<td>20'</td>
<td>Original 2" size</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMMENT</th>
<th>25'</th>
<th>Riser runs on bottom ≥ 75'</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-L</td>
<td></td>
<td>1ST 15' 2" size chain</td>
</tr>
<tr>
<td>GROUND LEG NO. A</td>
<td></td>
<td>2ND 45' 2 3/4" size chain</td>
</tr>
<tr>
<td>UPPER END</td>
<td></td>
<td>3RD 10' 1' ball</td>
</tr>
<tr>
<td>MIDDLE</td>
<td></td>
<td>4TH 5' 2 1/2" size chain</td>
</tr>
<tr>
<td>ENTERS BOTTOM</td>
<td></td>
<td>THEN SHACKLED TO CLUMP, FOUR</td>
</tr>
<tr>
<td>GROUND LEG NO. B</td>
<td></td>
<td>ADDITIONAL SHACKLES ATTACHED TO</td>
</tr>
<tr>
<td>UPPER END</td>
<td></td>
<td>CLUMP, THREE ATTACHED TO LEGS ONE SPARE</td>
</tr>
<tr>
<td>MIDDLE</td>
<td></td>
<td>ABOUT TEN FEET EACH LEG VISIBLE</td>
</tr>
<tr>
<td>ENTERS BOTTOM</td>
<td></td>
<td>BEFORE CHAIN ENTERS BOTTOM</td>
</tr>
</tbody>
</table>

DATE 9 May 83 **ENGINEER IN CHARGE:** JONES **DIVERS:** MILLER / COTTELLESSA
ANNEX B

PHOTOGRAPHS
Buoy B-1 in its Temporary Location

Buoy B-3. Note Chafing Rail/Upper Hawse Pipe Rust, Heavy Marine Growth, and Low Freeboard
Mooring B-3. Rust on Riser Chain Near the Mud Line

Extremely Low Freeboard of Buoy B-4
Buoy B-4. Note Rusted Chafing Rail and Upper Hawse Pipe

Mooring B-6. Worn Swivel and End Link in Riser Chain
ANNEX C

REFERENCES
FROM: CHESNAVFACENGCOM WASHINGTON DC
TO: MCAS IWAKUNI JA
INFO COMNAVFACENGCOM ALEXANDRIA VA
PACNAVFACENGCOM PEARL HARBOR HI

UNCLAS //N11000//
SUBJ: FLEET MOORING INSPECTION

1. AS DISCUSSED IN A MEETING BETWEEN MR. HIRAO (IWAKUNI) AND
MR. T. JONES (CHESNAVFACENGCOM) ON 10 MAY 1983, A CHESNAVFACENGCOM/
UCT TWO UNDERWATER INSPECTION OF THE FIVE MOORINGS AT IWAKUNI WAS
CONDUCTED DURING THE PERIOD 8-10 MAY 1983. THIS IS A PRELIMINARY
REPORT OF THE INSPECTION RESULTS TO PROVIDE AN ALERT TO SEVERAL
SIGNIFICANT FINDINGS:

A. MOORING B-5: OVERSIZED CHAIN FOUND TO BE WORN TO BETWEEN
60 AND 90 PERCENT OF ORIGINAL SIZE. FAIR CONDITION. NO ACTION
NECESSARY.

B. MOORING B-4: BUOY HEAVILY RUSTED, FIBERGLASS PEELING. BUOY
LOW IN WATER WITH A LIST. CHAIN IN GOOD CONDITION. RECOMMEND
REPLACE OR REFURBISH BUOY.
C. MOORING B-3: BUOY VERY LOW IN WATER. LISTING 25 DEGREES. CHAIN IN FAIR CONDITION. RECOMMEND REPLACE OR REFURBISH BUOY.

D. MOORING B-6: SWIVEL IN RISER WORN TO APPROXIMATELY 60 PERCENT OR ORIGINAL SIZE. RECOMMEND OVERHAUL.

E. MOORING B-1: RISER CHAIN DISCONNECTED FROM GROUND CHAIN AT 12-FOOT DEPTH, APPARENTLY BY CONSTRUCTION/DREDGING CONTRACTOR WORKING IN AREA. ASSUME LOCATION OF GROUND LEGS IS KNOWN. RECOMMEND RECOVERING MOORING TO BE REINSTALLED AFTER DREDGING IS COMPLETE IF STILL NEEDED.

2. ANTICIPATE DISTRIBUTION OF DETAILED INSPECTION REPORT IN AUGUST 1983.

3. CHESNAVFACENGCOM POINT OF CONTACT IS MR. T. JONES AT (202) 433-3881 OR AUTOVON 288-3881.
1. As part of the COMNAV FACENGCOM Fleet Mooring Maintenance (FMt) Program, CHESNAVFACENGCOM, with Diver Support for UCT Two, plans to conduct an underwater inspection of the 5 moorings at MCAS, IWAKUNI during May 83. Available data indicates 1 Class E mooring, water depth unknown, and 4 Class F moorings in 22-40 feet of water. Inspection will result in specific condition analyses and recommendations for mooring and will enhance programing of funds for fleet mooring material support.

2. THE FLEET MOORING INSPECTION TEAM WILL CONSIST OF A CHESDIV ENGINEER-IN-CHARGE (EIC) AND A DET FROM UCT TWO. IN ORDER TO PREPARE A DETAILED INSPECTION PLAN, THE FOLLOWING INFORMATION IS REQUIRED PER MOORING:
 A. Maintenance history - when installed, when inspected, when overhauled, last reported condition, etc.
 B. Copies of mooring design calculations and drawings.
 C. Copies of "as-built" materials list.
 D. Facility map showing location of all moorings with specific locations for those currently in use.
 E. Anticipated mooring usage during the inspection period - types of ships.
 F. Planned repairs and overhauls - particularly those before this inspection.
 G. Types and classes of ships using mooring.
 H. Whether cathodic protection systems are installed and type of materials utilized.

3. REQUEST MCAS, IWAKUNI MAIL ABOVE INFORMATION AS SOON AS POSSIBLE

OLVR: CHESNAVFACENGCOM WASHINGTON DC(9)...ORIG

RTD: 000-000/COPY: 0009
TO CHESNAVFACENGCOM (CODE FPO-1C7), BLDG. 212, WASHINGTON NAVY YARD, WASHINGTON, DC 20374.

4. ADDITIONALLY, REQUEST MCAS, INAKUNI REPLY BY MESSAGE WITH THE ABOVE INFORMATION EXCEPT FOR DRAWINGS AND MAPS BY 21 APRIL 1983. REGRET LATENESS OF THIS REQUEST. MCAS EFFORT TO PREPARE INFO WILL BE BE GREATLY APPRECIATED AND WILL SIGNIFICANTLY ENHANCE THE ACCURATE DOCUMENTATION OF CURRENT MOORING CONDITIONS AS WELL AS THE PROCUREMENT OF NEW FLEET MOORING MATERIALS.

5. CHESNAVFACENGCOM POINT OF CONTACT IS MR. JAMES MCLAUGLIN AT AUTOVON 288-3881 OR (202) 433-3881.
UNCLASSIFIED

210331Z AUG 82

CU CINCPACFLT PEARL HARBOR HI

CU CINCPAC PEARL HARBOR HI

COMNAVSEASYSCOM WASHINGTON DC
COMNAVELEXSYSCOM WASHINGTON DC
CMH ARLINGTON VA
COMNAVLOGPAC PEARL HARBOR HI
COMSUBPAC PEARL HARBOR HI
COMTHIRDFLT
COMMARCORBASESPAC CAMP H M SMITH HI
COMNAVFOJAPAN YOKOSUKA JA
COMUSNAVPHIL SUBIC BAY RP
PACKNAVACENGCOM PEARL HARBOR HI
CHESSNAVFACENGCOM WASHINGTON DC
OICC SUEASTPAC MANILA RP
OICC FAR EAST YOKOSUKA JA
PM C PEARL HARBOR HI
PM C SUBIC BAY RP
PM C SAN DIEGO CA
COC THREL ONE NCR PORT HUENEME CA
UCT TRO
NAVOCEANSSYSCEN SAN DIEGO CA
KSD SUBIC BAY RP
MCAS Iwakuni JA
NAYUSEAWARENGSTA KEYPORT WA
NAVAG LUALUALEI HI
SUBASE BANGOR WA
NAVPHIBASE CORONADO SAN DIEGO CA
NAVSHIPPREPAC GUAM
NAVSTA SAN DIEGO CA
NAVSHIPYD PEARL HARBOR HI
SUBASE PEARL HARBOR HI

SUBJ: UCT THRU FY93 EMPLOYMENT TASKING

RTD: 000-000/COPIES: 0000

114776/235

C-6
A. CINCPACFLT PEARL HARBOR HI 260654Z JUN 82

1. REF A REQUESTED NOMINATIONS OF PROJECTS FOR UCT TWO ACCOMPLISHMENT FY83-85. FROM THE RESPONSES TO REF A THE FOLLOWING PROJECTS ARE TASKED FOR ACCOMPLISHMENT IN FY83:
 A. CENTREVILLE BEACH (CLASSIFIED)
 B. ARCTIC WEST (CLASSIFIED)
 C. BARKING SANDS, HI, CABLE LANDING AND REPAIRS
 D. WPNS TA SEAL BEACH, DEMOLISH ANAHEIM BAY BRIDGE
 E. NSD SUBIC, PILE REPAIR POL PIER
 F. NSD SUBIC, PILE REPAIR MARINE TERMINAL PIER PHASE 1 (REPAIR ALL SEVERE AND MAJOR DAMAGE)
 G. NAVSHIPREPFA C SUBIC, INSPECT ALAVA WHARF
 H. FLEET MOORING INSPECTION - PACIFIC DATA BASE (PEARL HARBOR HI, GUAM, YOKOSUKA, INAKUNI, SASEBO, INDIAN ISLAND WA, BREMERTON WA)
 I. NAVMAG LUALUALEI, INSPECT AMMO PIERS 1-5
 J. UNDERWATER INSPECTION PROGRAM (NSC SAN DIEGO)
 K. SUBASE, BANGOR WA, UNDERWATER INSPECTION
 L. TRIRREFFAC BANGOR WA, UNDERWATER MSF RANGE REPAIR
 M. DEGAUSSING RANGE SURVEY, SAN FRANCISCO CA
 N. NAVPHIBASE COHONADO SAN DIEGO CA, PIER INSPECTIONS

2. THE FOLLOWING PROJECTS ARE TASKED AS FILL IN WORK FOR FY83:
 A. UNDERWATER INSPECTION PROGRAM (NAVSTA PEARL HARBOR)
 B. NAVUSEA-WAKE-NAVSTA KEYPORT WA, INDIAN IS PHASE TWO MOORING
 C. NSD GUAM, REPAIRS TO SIERRA WHARF GUAM. REQUIRES COORDINATION WITH ON SITE NMCB FOR ACCOMPLISHMENT.

THE FOLLOWING PROJECTS ARE TENTATIVELY TASKED FOR ACCOMPLISHMENT
 AS INDICATED:
 A. FY-84
 (1) ARCTIC WEST (CLASSIFIED)
 (2) NAVSHIPREPFA GUAM, REPAIRS TO LIMA WHARF
 (3) FLEET MOORING INSPECTION - PACIFIC DATA BASE 9SUBIC BAY, NSP DIEGO GARCIA, PHC SAN DIEGO, NAVSTA SAN DIEGO, WPNS TA SEAL BEACH, NAVSTA LONG BEACH)
 (4) NSD SUBIC, WATERFRONT FACILITIES INSPECTION
 (5) NSD SUBIC, MONOBODY FUEL LINE REPAIRS
 (6) DEGAUSSING RANGE SAN FRANCISCO, RANGE INSTALLATION
 (7) UNDERWATER INSPECTION PROGRAM CNAVSHIPY PEARL HARBOR, NSP PEARL HARBOR, SUBASE PEARL HARBOR)
 (8) SCARF REPAIR/INSPECTION
 (9) BARKING SANDS, UNDERWATER RANGE REPAIRS
 (10) NSD SUBIC, PILE REPAIR MARINE TERMINAL PIER PHASE 2

14776/235 2 OF 3 M1 0308 235/23:21Z 210331Z AUG 82 CINCPACFLT PEARL HARBOR HI
B. FY-85

1. ARCTIC ABLE (CLASSIFIED)
2. BAKING SANDS UNDERWATER RANGE WORK
3. FLEET HOISTING INSPECTION - PACIFIC WESTERN BAY
 HARBOR HI, GUAM, JAPAN, PUGET SOUND WA
4. UNDERWATER INSPECTION PROGRAM (HARE ISLAND WA)
5. SUBBASE FOR PILE DRIVING AND TOPSIDE ZONE, WITH
 WATER SUPPORT

(Repair to moderate and minor damage)
END
FILMED
6-86
DTIC