LIGHT SCATTERING FROM A DEEP METALLIC GRATING (U) STATE

UNIV. OF NEW YORK AT BUFFALO DEPT. OF CHEMISTRY

AGASSI ET AL. APR 86 UBUFFALO/DC/86/TR-7

UNCLASSIFIED

ML 20/6
Light Scattering from a Deep Metallic Grating

by

Dan Agassi and Thomas F. George

Prepared for Publication

in

AIP Conference Proceedings

Departments of Chemistry and Physics
State University of New York at Buffalo
Buffalo, New York 14260

April 1986

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
The conditions under which the Rayleigh hypothesis is exact and the convergence properties of the Rayleigh expansion are considered. The identification of the cause of the deficiency of this expansion suggests an alternative dressed expansion with presumably simpler convergence properties. This proposition is checked for a sinusoidal grating (SG), for which convergence is found for an arbitrary value of \(\theta = 2\pi g/d \), where \(g \) and \(d \) denote the height and periodicity of the SG, respectively. The dressed expansion is used to analyze the surface plasmon dispersion and local field enhancement distribution pertaining to the SG in the limit as \(\theta \) goes to infinity. The dispersion relation is comprised of two bands. The local field enhancement predicts stronger fields at the bottoms of the troughs than at the peaks of the SG.
LIGHT SCATTERING FROM A DEEP METALLIC GRATING

Dan Agassi
Naval Surface Weapons Center, Silver Spring, Maryland 20910

Thomas F. George
Departments of Chemistry and Physics, State University of New York
Buffalo, New York 14260

ABSTRACT

The conditions under which the Rayleigh hypothesis is exact and the convergence properties of the Rayleigh expansion are considered. The identification of the cause of the deficiency of this expansion suggests an alternative "dressed" expansion with presumably simpler convergence properties. This proposition is checked for a sinusoidal grating (SG), for which convergence is found for an arbitrary value of $\beta = 2\pi g/d$, where g and d denote the height and periodicity of the SG, respectively. The dressed expansion is used to analyze the surface plasmon dispersion and local field enhancement distribution pertaining to the SG in the limit as β goes to infinity. The dispersion relation is comprised of two bands. The local field enhancement predicts stronger fields at the bottoms of the troughs than at the peaks of the SG.

INTRODUCTION

Light scattering from a grating is a well-developed subject in classical optics. The underlying, well-known physical process is (elastic) Bragg scattering, i.e., the exchange of surface-parallel momentum between the grating and the incident light by an amount nk, where $n = 0, \pm 1, \pm 2, \ldots$ and the grating momentum is $k = 2\pi d$. All notations are defined in Fig. 1. It is, however, important to realize that, barring a few recent studies, most of the work pertains to the restricted physical domain of shallow gratings where $\beta = 2\pi g/d < 1$. Light scattering from such gratings is...
qualitatively different from that pertaining to deep gratings, i.e., when $\beta \gg 1$. In the former case, the grating can exchange only a limited number of k_G quanta, i.e., $n - \Theta(1)$. Consequently, the scattered light is comprised of a dominant specular and a few Bragg components. On the other hand, for deep gratings, $n - \Theta(\beta) \gg 1$ (see below). Hence, the scattered light is comprised of many, equally important and strongly interfering Bragg components, which gives the scattered light a new qualitative character. The theoretical description of the deep grating domain is at the focus of this paper.

RAYLEIGH EXPANSION AND HYPOTHESIS

The Rayleigh expansion provides a framework to the shallow grating work and a starting point to our analysis. It results from the underlying symmetry of the grating: Since it is invariant under translations $x \rightarrow x+nd$, where n is any integer, the Floquet-Bloch theorem implies that the electromagnetic field $\Psi(x,z)$ has the property $\Psi(x+nd,z) = \exp[ik_Hd]\Psi(x,z)$ where k_H is a surface-parallel (Fig. 1) momentum label. Consequently, the Fourier series expansion of the fields in a "unit cell" $0 \leq x \leq d$ (the z-dependence is determined from the wave equation) suffices to describe the field throughout the xz-plane. When the proper boundary conditions at infinity and the vector character are incorporated, the ensuing p-wave expansion is the Rayleigh expansion:

$$\tilde{E}_a(x,z) = \sum_{l=-\infty}^{\infty} \left[C_a(\xi)\tilde{E}_a,-(\xi)e^{i[k_a x - W_a(\xi)z]} + A_a(\xi)\tilde{E}_a,+(\xi)e^{i[k_a x + W_a(\xi)z]} \right],$$

where

$$k_a = \sqrt{\epsilon a k}, \quad k = \omega/c, \quad k_G = 2\pi/d, \quad \beta = gkG, \quad W_a(\xi) = [k^2(\alpha)-k^2]/2, \quad k_\perp = k + \xi k_G, \quad \Re(W_\parallel),\Im(W_\parallel) \geq 0,$$

$$\tilde{E}_a,\pm(\xi) = \frac{1}{k(\alpha)} [k_\perp \hat{s} \pm W_a(\xi)\hat{z}], \quad \hat{s} = \hat{x} \times \hat{z}. \quad (2)$$

In (2), \hat{x} and \hat{z} are unit vectors in the x- and z-directions (Fig. 1), and α denotes a domain in the xz-plane with a constant dielectric constant ϵ_a. Once a convenient partition of the xz-plane into domains has been chosen, the coefficients C_a, A_a are determined by matching the boundary conditions across the domain boundaries. To avoid mathematical pitfalls in the subsequent discussion, we confine ourselves henceforth to gratings such that the fields are non-singular everywhere.

The Rayleigh hypothesis can now be introduced in terms of expansions (1). For example, the grating in Fig. 1 calls for four expansions (1) while the Rayleigh hypothesis asserts that only two
are needed since the expansions in domains "a" and "b" are identical and likewise for domains "c" and "d". By matching the boundary conditions across the \((z=g)\)-plane, we conclude that the hypothesis is exact for gratings whose profile is expressible in terms of a finite Fourier series. For other gratings, the Rayleigh hypothesis may, or may not be exact.

DRESSED RAYLEIGH EXPANSION

Attempts to apply the Rayleigh expansion to deep-grating calculations indicate its divergence for \(\beta > 0.6\) (sinusoidal gratings). This situation has motivated the introduction of alternative schemes in the quest to enlarge the \(\beta\)-range accessible for calculations. Our approach is to expose the origin of the instability of (1) when \(\beta \gg 1\), which then naturally leads to an alternative expansion (see (2)) with excellent convergence properties.

For the grating in Fig. 1, the expansion in domain "0", which combines domains "a" and "b", is

\[
\hat{E}_0(x,z) = \hat{E}_{in} + \sum_{i=-\infty}^{\infty} A_0(\ell)\hat{P}_{0,+}(\ell)e^{i[k_0x + W_0(\ell)z]},
\]

Disregarding the uninteresting phase \(\exp(ikx)\) and geometrical factor \(\hat{P}_{0,+}(\ell)\) in (3), the \(|\ell|\to\infty\) behavior is

\[
A_0(\ell)e^{iW_0(\ell)z} \to A_0(\ell)e^{-k_0|\ell|z}.
\]

Consequently, at the bottom of a trough, where \(-g \leq z \leq 0\), the \(z\)-dependent factor in (4) diverges exponentially. Therefore, to render the total field \(\hat{E}_0(x,z)\) finite, the exact \(A_0(\ell)\) must converge at least as \(\exp(-|\ell|)\). Hence for \(z < 0\), (3) is a sum of energy terms, most of which are products of exponentially large factors times exponentially small numbers. The calculated \(A_0(\ell)\), however, always entail an error which, when multiplied by \(\exp(\beta|\ell|)\), yields large errors in \(\hat{E}_0(x,z)\). Thus, (3) is intrinsically unstable as a scheme for \(\beta \gg 1\) (many \(|\ell|\)'s) calculations.

This deficiency is easily remedied by rewriting (4) as

\[
A_0(\ell)e^{iW_0(\ell)z} = a_0(\ell)e^{iW_0(\ell)(z+g)}
\]

where \(a_0(\ell) = A_0(\ell)\exp(-iW_0(\ell)z)\). By construction the RHS of (5) always converges for \(z+g > 0\), and when \(z+g = 0\), the \(a_0(\ell)\) converge to render, by assumption, a finite \(\hat{E}_0(x,z)\) on the grating's surface. Therefore, by transcribing (1) into the "dressed" expansion, as defined by the transformation (5), a major flaw in (1) is eliminated.
The convergence of the dressed expansion can be explicitly demonstrated for a sinusoidal metallic grating. Lack of space does not allow us to outline the analysis. The results are that the dressed expansion converges for an arbitrary large β, and the number of significant components in the dressed expansion is on the order $N \approx 48$. This analysis also explains why the (bare) Rayleigh expansion diverges for $\beta \geq 0.6$.

SURFACE PLASMON (SP) DISPERSION RELATION IN THE $0 - \omega$ LIMIT

As an application of the dressed expansion, we consider the SP dispersion relation in the $0 - \omega$ limit for a sinusoidal grating. Lack of space allows us only quote the result:

\[
\frac{[3k^2(0) + k^2(1)][k^2(0) + 3k^2(1)]}{3[k^2(0) + k^2(1)]^2} \sin[L(\alpha+\gamma)]\sin[\frac{\alpha+\gamma}{2}] - \sin[L(\alpha-\gamma)]\sin[\frac{\alpha-\gamma}{2}]^2,
\]

\[
= \left(\frac{\sin[L(\alpha+\gamma)]\sin[\frac{\alpha+\gamma}{2}] + \sin[L(\alpha-\gamma)]\sin[\frac{\alpha-\gamma}{2}]}{\sin[L(\alpha+\gamma)]\sin[\frac{\alpha+\gamma}{2}] - \sin[L(\alpha-\gamma)]\sin[\frac{\alpha-\gamma}{2}]^2}\right),
\]

where $k(1) = k\sqrt{1_1}$ from Eq. (1), $\gamma = 2\pi k/k_G$, and

\[
\alpha = \frac{\omega}{k_G}[-(k^2(0) + k^2(1))]^{1/2},
\]

and $L - \Theta(\beta) \gg 1$, the precise value of which is immaterial.

The analysis of (6) is straightforward: The LHS is a smooth function of $x = k/k_0$, where $k_0 = \omega/c$ and ω is the (volume) plasmon frequency. At $x = 0$ it is unity, decreasing monotonically to $-\omega$ at $x = 1/2$ and subsequently increasing and becoming positive for $x > \sqrt{3}/2$. The RHS of (6), on the other hand, is rapidly oscillating with frequency $-1/\beta$ and amplitude $-\beta$. Furthermore, since α (Eq. (7)) is real for $x < 1/2$ and imaginary for $x > 1/2$, the RHS of (6) is positive and negative, respectively. Consequently, (6) has a large number of solutions ($\Theta(\beta)$) in the domains $0 \leq x \leq 1/2$ and $\sqrt{2}/2 \leq x \leq \sqrt{3}/2$. The frequency band gap between these two bands is hence $\Delta\omega/\omega = (\sqrt{2}-1)/2$. This outcome is in keeping with the known behavior for $\beta \gg 1$.

In summary, we have exposed the reason for the poor convergence of the Rayleigh expansion when $\beta \gg 1$, and introduced an alternative expansion -- the dressed expansion -- which has allegedly very good convergence properties. This premise is explicitly demonstrated for a sinusoidal grating. We have also discussed the surface plasmon dispersion relation in the $0 - \omega$ limit, where we find that the branches tend to cluster into two bands separated by $\Delta\omega/\omega = (\sqrt{2}-1)/2$.
ACKNOWLEDGMENTS

This research was supported by the Office of Naval Research and the Air Force Office of Scientific Research (AFSC), the United States Air Force, under Contract F49620-86-C-009.

REFERENCES

7. See the paper by S. R. J. Brueck in this Conference Proceedings for a discussion of experimental work on deep gratings.
TECHNICAL REPORT DISTRIBUTION LIST, GEN

<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>2</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 413</td>
<td></td>
<td></td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. Bernard Douda</th>
<th>1</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Weapons Support Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code 5042</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crane, Indiana 47522</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commander, Naval Air Systems Command</th>
<th>1</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 310C (H. Rosenwasser)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20360</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Naval Civil Engineering Laboratory</th>
<th>1</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Dr. R. W. Drisko</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Defense Technical Information Center</th>
<th>12</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building 5, Cameron Station</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DTNSRDC</th>
<th>1</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Dr. G. Bosmajian</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. William Tolles</th>
<th>1</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superintendent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20375</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. David Young</th>
<th>1</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code 334</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORDA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSTL, Mississippi 39529</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Naval Weapons Center	1	Copies
Attn: Dr. Ron Atkins		
Chemistry Division		
China Lake, California 93555		

Scientific Advisor	1	Copies
Commandant of the Marine Corps		
Attn: Dr. Ron Atkins		
Code RD-1		
Washington, D.C. 20380		

U.S. Army Research Office	1	Copies
Attn: CRD-AA-IP		
P.O. Box 12211		
Research Triangle Park, NC 27709		

Mr. John Boyle	1	Copies
Materials Branch		
Naval Ship Engineering Center		
Philadelphia, Pennsylvania 19112		

Naval Ocean Systems Center	1	Copies
Attn: Dr. S. Yamamoto		
Marine Sciences Division		
San Diego, California 91232		

Dr. David L. Nelson	1	Copies
Chemistry Division		
Office of Naval Research		
800 North Quincy Street		
Arlington, Virginia 22217		
Dr. G. A. Somorjai
Department of Chemistry
University of California
Berkeley, California 94720

Dr. J. Murday
Naval Research Laboratory
Surf. face Chemistry Division (6170)
455 Overlook Avenue, S.W.
Washington, D.C. 20375

Dr. J. B. Hudson
Materials Division
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Theodore E. Madey
Surface Chemistry Section
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234

Dr. J. E. Demuth
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. M. G. Lagally
Department of Metallurgical and Mining Engineering
University of Wisconsin
Madison, Wisconsin 53706

Dr. R. P. Van Duyne
Chemistry Department
Northwestern University
Evanston, Illinois 60637

Dr. J. M. White
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. D. E. Harrison
Department of Physics
Naval Postgraduate School
Monterey, California 93940

Dr. W. Kohn
Department of Physics
University of California, San Diego
La Jolla, California 92037

Dr. R. L. Park
Director, Center of Materials Research
University of Maryland
College Park, Maryland 20742

Dr. W. T. Peria
Electrical Engineering Department
University of Minnesota
Minneapolis, Minnesota 55455

Dr. Keith H. Johnson
Department of Metallurgy and Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. S. Sibener
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Arnold Green
Quantum Surface Dynamics Branch
Code 3817
Naval Weapons Center
China Lake, California 93555

Dr. A. Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02912

Dr. S. L. Bernasek
Department of Chemistry
Princeton University
Princeton, New Jersey 08544

Dr. P. Lund
Department of Chemistry
Howard University
Washington, D.C. 20059
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. F. Carter
Code 6132
Naval Research Laboratory
Washington, D.C. 20375

Dr. Richard Colton
Code 6112
Naval Research Laboratory
Washington, D.C. 20375

Dr. Dan Pierce
National Bureau of Standards
Optical Physics Division
Washington, D.C. 20234

Dr. R. Stanley Williams
Department of Chemistry
University of California
Los Angeles, California 90024

Dr. R. P. Messmer
Materials Characterization Lab.
General Electric Company
Schenectady, New York 22217

Dr. Robert Gomer
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Ronald Lee
R301
Naval Surface Weapons Center
White Oak
Silver Spring, Maryland 20910

Dr. Paul Schoen
Code 5570
Naval Research Laboratory
Washington, D.C. 20375

Dr. John T. Yates
Department of Chemistry
University of Pittsburgh
Pittsburgh, Pennsylvania 15260

Dr. Richard Greene
Code 5230
Naval Research Laboratory
Washington, D.C. 20375

Dr. L. Kesmodel
Department of Physics
Indiana University
Bloomington, Indiana 47403

Dr. K. C. Janda
California Institute of Technology
Division of Chemistry and Chemical Engineering
Pasadena, California 91125

Dr. E. A. Irene
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Martin Fleischmann
Department of Chemistry
Southampton University
Southampton S09 5NH
Hampshire, England

Dr. John W. Wilkins
Cornell University
Laboratory of Atomic and Solid State Physics
Ithaca, New York 14853

Dr. Richard Smardzewski
Code 6130
Naval Research Laboratory
Washington, D.C. 20375

Dr. H. Tachikawa
Chemistry Department
Jackson State University
Jackson, Mississippi 39217
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. R. G. Wallis
Department of Physics
University of California
Irvine, California 92664

Dr. R. W. Plummer
Department of Physics
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. D. Ramaker
Chemistry Department
George Washington University
Washington, D.C. 20052

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 41106

Dr. J. C. Hemminger
Chemistry Department
University of California
Irvine, California 92717

Dr. N. Winograd
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Dr. T. F. George
Chemistry Department
University of Rochester
Rochester, New York 14627

Dr. Roald Hoffmann
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. G. Rubloff
IBM
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. A. Steckl
Department of Electrical and Systems Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Horia Metiu
Chemistry Department
University of California
Santa Barbara, California 93106

Dr. G. H. Morrison
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. W. Goddard
Division of Chemistry
California Institute of Technology
Pasadena, California 91125

Dr. P. Hansma
Physics Department
University of California
Santa Barbara, California 93106

Dr. J. T. Keiser
Department of Chemistry
University of Richmond
Richmond, Virginia 23173

Dr. J. Baldeschwieler
California Institute of Technology
Division of Chemistry
Pasadena, California 91125
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. J. E. Jensen
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. W. Knauer
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. J. H. Weaver
Department of Chemical Engineering
and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. C. B. Harris
Department of Chemistry
University of California
Berkeley, California 94720

Dr. W. Goddard
Division of Chemistry
California Institute of Technology
Pasadena, California 91125

Dr. F. Kutzler
Department of Chemistry
Box 5055
Tennessee Technological University
Cookesville, Tennessee 38501

Dr. A. Reisman
Microelectronics Center of North Carolina
Research Triangle Park, North Carolina
27709

Dr. D. DiLella
Chemistry Department
George Washington University
Washington D.C. 20052

Dr. M. Grunze
Laboratory for Surface Science and Technology
University of Maine
Orono, Maine 04469

Dr. R. Reeves
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. J. Butler
Naval Research Laboratory
Code 6115
Washington D.C. 20375

Dr. L. Interante
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Irvin Heard
Chemistry and Physics Department
Lincoln University
Lincoln University, Pennsylvania 19352

Dr. K.J. Klaubunde
Department of Chemistry
Kansas State University
Manhattan, Kansas 66506
END

FILMED

5-86

DTIC