TRANSIENT EXCITATION OF ANHARMONIC ADSPECIES BY PULSED LASER RADIATION (U) STATE UNIV OF NEW YORK AT BUFFALO DEPT OF CHEMISTRY J T LIN ET AL APR 86 UNCLASSIFIED UBUFFALO/DC/86/TR-6 N00014-86-F0043 F/G 20/5 NL
The excitation of anharmonic adspecies by pulsed laser radiation is investigated theoretically in the transient regimes. New features include the optimum values of pulse duration and detuning and the oscillatory behavior of the time-dependent excitation caused by the anharmonicity.
Transient Excitation of Anharmonic Adspecies by Pulsed Laser Radiation
by
J. T. Lin, Xi-Yi Huang and Thomas F. George
Prepared for Publication
in
AIP Conference Proceedings

Departments of Chemistry and Physics
State University of New York at Buffalo
Buffalo, New York 14260

April 1986

Reproduction in whole or in part is permitted for any purpose
of the United States Government.

This document has been approved for public release and sale;
its distribution is unlimited.
TRANSIENT EXCITATION OF ANHARMONIC ADSPECIES
BY PULSED LASER RADIATION

J. T. Lin
Litton Laser Systems, P. O. Box 7300, Orlando, Florida 32854

Xi-Yi Huang
Department of Chemistry, University of Rochester
Rochester, New York 14627

Thomas F. George
Departments of Chemistry and Physics, State University of New York
Buffalo, New York 14260

ABSTRACT

The excitation of anharmonic adspecies by pulsed laser radiation is investigated theoretically in the transient regimes. New features include the optimum values of pulse duration and detuning and the oscillatory behavior of the time-dependent excitation caused by the anharmonicity.

INTRODUCTION AND ANALYTICAL RESULTS

Laser excitation of adspecies has been extensively studied in the past several years. Such studies, however, have been limited to steady-state excitations and/or adiabatic processes where the laser duration is much longer than the dipole dephasing time. In the present paper, we show an analysis in the transient regimes where new features given by the pulse duration, detuning and anharmonicity are studied both analytically and numerically. The key equations describing the laser excitation of adspecies are given by:

\[
\begin{align*}
\frac{d\mathbf{a}}{dt} &= -(i\Delta_{\text{eff}} + \frac{\gamma_1 + \gamma_2}{2}) \mathbf{a} - i\mathbf{V}(t) , \\
\frac{dN}{dt} &= i\mathbf{V}(t) (\mathbf{a} - \mathbf{a}^\dagger) - \gamma_1 (N - N_0) , \\
\Delta_{\text{eff}} &= \Delta - 2e^*N .
\end{align*}
\]

Here, \(\mathbf{a} \) and \(\mathbf{a}^\dagger \) are the dipole operators of the active mode, where \(N \equiv \langle a^\dagger a \rangle \), \(\gamma_1 \) and \(\gamma_2 \) are damping factors defined by the inverse of the energy \((T_1)\) and the phase \((T_2)\) relaxation time, respectively, and \(\mathbf{V}(t) \) is the excitation source term proportional to the laser electric field. The initial phonon-bath excitation is given by \(N_0 \), and the nonlinear effects due to the anharmonicity \((e^*) \) are given by Eq. (3), where \(\Delta \) is the laser detuning for the harmonic case. We shall consider a Gaussian laser profile with pulse duration \(t_p \).
Analytical results are available only for the harmonic cases ($\epsilon^* = 0$), where the excitations at three regimes are found:

I. Steady-state ($\tau_p >> T_{1,2}$): $N_{s.s.} = I(t)$ (laser intensity).

II. Adiabatic-state ($T_1 > \tau_p >> T_2$): $N(t) = \phi$ (laser energy).

III. Transient-state ($\tau_p < T_{1,2}$): $N(t) = \tau_p \phi$.

NUMERICAL RESULTS

The role of pulse duration is shown in Fig. 1 for $\gamma_1 = \gamma_2 = 1$ and $\Delta = \epsilon^* = 0$. It is seen that, for a given laser energy, there is an optimum pulse duration and the behavior of the excitations is consistent with the analytical results in the various regimes. The effects of changing the detuning are shown in Fig 2 for $\gamma_1 = \gamma_2 = \epsilon^* = \tau_p = 1$, and the excitations at various anharmonicities are shown in Fig. 3 for $\Delta = 20$. We note that for a given anharmonicity (detuning), an optimum detuning (anharmonicity) is found accordingly. These features may be realized by the fact that maximal excitation is achieved when the detuning is compensated by the anharmonic excitation term ($2\epsilon^*N$), such that the effective detuning (Δ_{eff}) is suppressed. Furthermore, the significant oscillatory behavior, which is absent in Fig. 1 for the harmonic resonance cases, is found in Fig. 3.

As a concluding remark, we note that the effects caused by an increase in the substrate temperature may be included by introducing a temperature-dependent phonon-bath through N_0 in Eq. (2). Numerical results based upon Eqs. (1)-(3) combined with a heat diffusion equation will be shown elsewhere.

Fig. 1. Harmonic cases with $\tau_p = (A) 0.2$, (B) 1, (C) 2 and (D) 5.

Fig. 2. Anharmonic cases with $\Delta = (A) 0.5$, (B) 1.0 and (C) 1.5.
Fig. 3. Oscillatory features for $\varepsilon^\alpha = (A) 0$, (B) 20, (C) 50 and (D) 80.

ACKNOWLEDGMENTS

This research was supported by Air Force Office of Scientific Research (AFSC), the United States Air Force, under Contract F49620-86-C-009, and the Office of Naval Research.

REFERENCES

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research</td>
<td>Dr. David Young</td>
</tr>
<tr>
<td>Attn: Code 413</td>
<td>Code 334</td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td>NORDA</td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td>NSTL, Mississippi 39529</td>
</tr>
<tr>
<td>Dr. Bernard Douda</td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td>Attn: Dr. Ron Atkins</td>
</tr>
<tr>
<td>Code 5042</td>
<td>Chemistry Division</td>
</tr>
<tr>
<td>Crane, Indiana 47522</td>
<td>China Lake, California 93555</td>
</tr>
<tr>
<td>Commander, Naval Air Systems Command</td>
<td>Scientific Advisor</td>
</tr>
<tr>
<td>Attn: Code 310C (H. Rosenwasser)</td>
<td>Commandant of the Marine Corps</td>
</tr>
<tr>
<td>Washington, D.C. 20360</td>
<td>Code RD-1</td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>Washington, D.C. 20380</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko</td>
<td></td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td>U.S. Army Research Office</td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>Attn: CRD-AA-IP</td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td>Research Triangle Park, NC 27709</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>Mr. John Boyle</td>
</tr>
<tr>
<td>Attn: Dr. G. Bosmajian</td>
<td>Materials Branch</td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td>Naval Ship Engineering Center</td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td>Philadelphia, Pennsylvania 19112</td>
</tr>
<tr>
<td>Dr. William Tolles</td>
<td>Naval Ocean Systems Center</td>
</tr>
<tr>
<td>Superintendent</td>
<td>Attn: Dr. S. Yamamoto</td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td>Marine Sciences Division</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td>San Diego, California 91232</td>
</tr>
<tr>
<td>Washington, D.C. 20375</td>
<td>Dr. David L. Nelson</td>
</tr>
<tr>
<td></td>
<td>Chemistry Division</td>
</tr>
<tr>
<td></td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td></td>
<td>800 North Quincy Street</td>
</tr>
<tr>
<td></td>
<td>Arlington, Virginia 22217</td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. G. A. Somorjai
Department of Chemistry
University of California
Berkeley, California 94720

Dr. W. Kohn
Department of Physics
University of California, San Diego
La Jolla, California 92037

Dr. J. Murday
Naval Research Laboratory
Surface Chemistry Division (6170)
455 Overlook Avenue, S.W.
Washington, D.C. 20375

Dr. R. L. Park
Director, Center of Materials Research
University of Maryland
College Park, Maryland 20742

Dr. J. B. Hudson
Materials Division
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. W. T. Peria
Electrical Engineering Department
University of Minnesota
Minneapolis, Minnesota 55455

Dr. Theodore E. Madey
Surface Chemistry Section
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234

Dr. Keith H. Johnson
Department of Metallurgy and Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. J. E. Demuth
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. S. Sibener
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. M. G. Lagally
Department of Metallurgical and Mining Engineering
University of Wisconsin
Madison, Wisconsin 53706

Dr. Arnold Green
Quantum Surface Dynamics Branch
Code 3817
Naval Weapons Center
China Lake, California 93555

Dr. R. P. Van Duyne
Chemistry Department
Northwestern University
Evanston, Illinois 60637

Dr. A. Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02912

Dr. J. M. White
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. S. L. Bernasek
Department of Chemistry
Princeton University
Princeton, New Jersey 08544

Dr. D. E. Harrison
Department of Physics
Naval Postgraduate School
Monterey, California 93940

Dr. P. Lund
Department of Chemistry
Howard University
Washington, D.C. 20059
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. F. Carter
Code 6132
Naval Research Laboratory
Washington, D.C. 20375

Dr. Richard Colton
Code 6112
Naval Research Laboratory
Washington, D.C. 20375

Dr. Dan Pierce
National Bureau of Standards
Optical Physics Division
Washington, D.C. 20234

Dr. R. Stanley Williams
Department of Chemistry
University of California
Los Angeles, California 90024

Dr. R. P. Messmer
Materials Characterization Lab.
General Electric Company
Schenectady, New York 22217

Dr. Robert Gomer
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Ronald Lee
R301
Naval Surface Weapons Center
White Oak
Silver Spring, Maryland 20910

Dr. Paul Schoen
Code 5570
Naval Research Laboratory
Washington, D.C. 20375

Dr. John T. Yates
Department of Chemistry
University of Pittsburgh
Pittsburgh, Pennsylvania 15260

Dr. Richard Greene
Code 5230
Naval Research Laboratory
Washington, D.C. 20375

Dr. L. Kesmodel
Department of Physics
Indiana University
Bloomington, Indiana 47403

Dr. K. C. Janda
California Institute of Technology
Division of Chemistry and Chemical Engineering
Pasadena, California 91125

Dr. E. A. Irene
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Martin Fleischmann
Department of Chemistry
Southampton University
Southampton 509 5NH
Hampshire, England

Dr. John W. Wilkins
Cornell University
Laboratory of Atomic and Solid State Physics
Ithaca, New York 14853

Dr. Richard Smardzewski
Code 6130
Naval Research Laboratory
Washington, D.C. 20375

Dr. H. Tachikawa
Chemistry Department
Jackson State University
Jackson, Mississippi 39217
ABSTRACT DISTRIBUTION LIST, 056/625/629

Dr. R. G. Wallis
Department of Physics
University of California
Irvine, California 92664

Dr. D. Ramaker
Chemistry Department
George Washington University
Washington, D.C. 20052

Dr. J. C. Hemminger
Chemistry Department
University of California
Irvine, California 92717

Dr. T. F. George
Chemistry Department
University of Rochester
Rochester, New York 14627

Dr. G. Rubloff
IBM
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. Horia Metiu
Chemistry Department
University of California
Santa Barbara, California 93106

Dr. W. Goddard
Division of Chemistry
California Institute of Technology
Pasadena, California 91125

Dr. J. T. Keiser
Department of Chemistry
University of Richmond
Richmond, Virginia 23173

Dr. R. W. Plummer
Department of Physics
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 44106

Dr. N. Winograd
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Dr. Roald Hoffmann
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. A. Steckl
Department of Electrical and Systems Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. G. H. Morrison
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. P. Hansma
Physics Department
University of California
Santa Barbara, California 93106

Dr. J. Baldeschwieler
California Institute of Technology
Division of Chemistry
Pasadena, California 91125
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. J. E. Jensen
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. J. H. Weaver
Department of Chemical Engineering
and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. W. Goddard
Division of Chemistry
California Institute of Technology
Pasadena, California 91125

Dr. A. Reisman
Microelectronics Center of North Carolina
Research Triangle Park, North Carolina 27709

Dr. M. Grunze
Laboratory for Surface Science and Technology
University of Maine
Orono, Maine 04469

Dr. J. Butler
Naval Research Laboratory
Code 6115
Washington D.C. 20375

Dr. L. Interante
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Irvin Heard
Chemistry and Physics Department
Lincoln University
Lincoln University, Pennsylvania 19352

Dr. K.J. Klaubunde
Department of Chemistry
Kansas State University
Manhattan, Kansas 66506
END

DTIC

5-86