METHACRYLAMIDE COPOLYMER RESISTS FOR ELECTRON BEAM LITHOGRAPHY

Y. M. N. Namaste, S. K. Obendorf, and F. Rodriguez

Prepared for presentation at the
Santa Clara Symposium on Microlithography
Conference 631: Advances in Resist Technology and Processing III
Society of Photo-Optical Instrumentation Engineers
Santa Clara, CA, March 9-14, 1986

Olin Hall, Cornell University
School of Chemical Engineering
Ithaca, NY 14853

Reproduction in whole or in part is permitted for
any purpose of the United States Government

*This document has been approved for public release
and sale; its distribution is unlimited
Methacrylamide copolymer resists for electron beam lithography

Y.K.N. Namasté, S.K. Obendorf, F. Rodriguez

Department of Textiles and Apparel, Department of Chemical Engineering
Cornell University, Ithaca, New York 14853

Abstract

Polymethacrylamide (PMAAm) and copolymers of MAAm with methyl methacrylate were synthesized and evaluated for their applicability to electron beam lithography. The sensitivity of PMAAm has previously been reported as less than 1 \(\mu \)C/cm\(^2\), with thermal stability at temperatures up to 330°C. Despite these claims, further lithographic evaluation of this resist system is apparently absent from the literature. This research was conducted to further investigate the lithographic performance of these resists and to determine their sensitivity using current definitions.

Using PMAAm homopolymer (Mw = 8.1 x 10\(^3\)), with a 15 minute prebake at 200°C, the lithographic results were much poorer than expected. Patterns exposed to doses of 10 \(\mu \)C/cm\(^2\) or lower could not be developed using water as the developing solvent. Forced developing with Na\(_2\)SiO\(_4\) solution (pH-10) developed lower doses than water, but much greater thinning was observed. An unexposed thinning of 10% occurred when developing exposures of 15 \(\mu \)C/cm\(^2\) with water, and 40 \(\mu \)C/cm\(^2\) with Na\(_2\)SiO\(_4\) solution (20 KV). Swelling of the unexposed polymer and some adhesion problems were observed.

The high sensitivity previously reported for PMAAm\(^1\) cannot be attributed solely to chain scission efficiency (G\(s\)), which has been reported to be only 1.5 times that of PMMA\(^1\) (G\(s\) determined by \(\gamma \)-irradiation). An induction period in the dissolution of unexposed polymer has also been suggested as contributing to the sensitivity of this resist. In the present work, dissolution induction periods were observed with laser interferometry for the unexposed films, but the magnitude of these induction periods could not account for a large enhancement of sensitivity. Imide crosslink formation may have been responsible for the previously reported sensitivity of PMAAm\(^1\). In the present work, imide formation was not observed, either after prebaking coated wafers at 180 to 240°C or heating of polymer solutions for 7 hours at 80°C. Apparently, the conditions for useful formation of imide are difficult to reproduce.

Because of the problems encountered with the PMAAm homopolymer during lithography, a series of MMA-MAAm copolymers were synthesized and evaluated as potential resists. These copolymers eliminated the problems of swelling and poor solubility of the homopolymer, but sensitivity enhancement over that of PMMA was minimal.

Introduction

The search continues for a highly sensitive positive electron beam resist. Many researchers are presently working toward the goal of producing a resist with sensitivity in the 1 \(\mu \)C/cm\(^2\) range, which concurrently exhibits good thermal stability and reactive ion etch resistance.

Several years ago, workers in Japan reported on polymethacrylamide (PMAAm) as a positive electron resist. They reported a sensitivity of about 0.5 \(\mu \)C/cm\(^2\) at an accelerating voltage of 20 KV and thermal stability at temperatures up to 330°C. Although this work is referenced in numerous review articles, there is apparently no further work reported on this resist since the original work was completed. This is surprising, given the excellent sensitivity originally reported.

In the present work, methacrylamide polymers are synthesized and evaluated with the intention of reproducing previous sensitometry and then improving on the resist system by evaluating similar polymers and copolymers of methacrylamide. The factors influencing the sensitivity were investigated, including chain-scission efficiency, prebake conditions, developing systems, and dissolution induction periods.

Experimental

Polymethacrylamide (PMAAm) homopolymers and methacrylamide - methyl methacrylate copolymers (MAAm-MMA) were synthesized by free-radical polymerization, initiated with potassium persulfate. The polymerizations were carried out in mixtures of water and
Title
Methacrylamide Copolymer Resists for Electron Beam Lithography

Authors
Y.M.N. Namaste, S.K. Obendorf, and F. Rodriguez

Type of Report
Technical Report

Period Covered
February 28, 1986

Distribution Statement

Security Classification
Unclassified

Key Words
Poly(methacrylamide), Microlithography, Electron beam resist, Methacrylamide copolymer

Abstract

Poly(methacrylamide) (PMAAm) and copolymers of MAAm with methyl methacrylate were synthesized and evaluated for their applicability to electron beam lithography. The sensitivity of PMAAm has previously been reported as less than 1 uC/cm², with thermal stability at temperatures up to 330°C. Despite these claims, further lithographic evaluation of this resist system is apparently absent from the literature. This research was conducted to further investigate the lithographic performance of these resists and to determine their sensitivity using current definitions.
Using PMAAm homopolymer (Mw = 8.1 x 10^6), with a 15 minute prebake at 200°C, the lithographic results were much poorer than expected. Patterns exposed to doses of 10 μC/cm² or lower could not be developed using water as the developing solvent. Forced developing with Na₂SiO₃ solution (pH = 10) developed lower doses than water, but much greater thinning was observed. An unexposed thinning of 10% occurred when developing exposures of 15 μC/cm² with water, and 40 μC/cm² with Na₂SiO₃ solution (20 KV). Swelling of the unexposed polymer and some adhesion problems were observed.

The high sensitivity previously reported for PMAAm cannot be attributed solely to chain scission efficiency (Gs), which has been reported to be only 1.5 times that of PMMA (Gs determined by γ-irradiation). An induction period in the dissolution of unexposed polymer has also been suggested as contributing to the sensitivity of this result. In the present work, dissolution induction periods were observed with laser interferometry for the unexposed films, but the magnitude of these induction periods could not account for a large enhancement of sensitivity. Imide crosslink formation may have been responsible for the previously reported sensitivity of PMAAm. In the present work, dissolution induction periods were observed with laser interferometry for the unexposed films, but the magnitude of these induction periods could not account for a large enhancement of sensitivity. Imide crosslink formation may have been responsible for the previously reported sensitivity of PMAAm. In the present work, imide formation was not observed, either after prebaking coated wafers at 180 to 240°C or heating of polymer solutions for 7 hours at 80°C. Apparently, the conditions for useful formation of imide are difficult to reproduce.

Because of the problems encountered with the PMAAm homopolymer during lithography, a series of MMA-MAAm copolymers were synthesized and evaluated as potential resists. These copolymers eliminated the problems of swelling and poor solubility of the homopolymer, but sensitivity enhancement over that of PMMA was minimal.

REFERENCES
Table I - Polymer synthesis

<table>
<thead>
<tr>
<th>Polymer</th>
<th>MAAm (g)</th>
<th>MMA (g)</th>
<th>Water (ml)</th>
<th>Acetone (ml)</th>
<th>Initiator (g)</th>
<th>Temperature (°C)</th>
<th>Time (hrs.)</th>
<th>Recovery (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMAAm (low MW)</td>
<td>25</td>
<td>--</td>
<td>45</td>
<td>130</td>
<td>0.05</td>
<td>60</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>PMAAm (high MW)</td>
<td>25</td>
<td>--</td>
<td>22.5</td>
<td>65</td>
<td>0.018</td>
<td>55</td>
<td>7</td>
<td>17</td>
</tr>
<tr>
<td>P(MMA-co-21% MAAm)</td>
<td>7</td>
<td>18</td>
<td>22.5</td>
<td>65</td>
<td>0.018</td>
<td>55</td>
<td>2</td>
<td>2.8</td>
</tr>
<tr>
<td>P(MMA-co-40% MAAm)</td>
<td>15</td>
<td>10</td>
<td>22.5</td>
<td>65</td>
<td>0.018</td>
<td>55</td>
<td>2.25</td>
<td>4.1</td>
</tr>
<tr>
<td>P(MMA-co-71% MAAm)</td>
<td>20</td>
<td>5</td>
<td>22.5</td>
<td>65</td>
<td>0.016</td>
<td>55</td>
<td>1</td>
<td>1.6</td>
</tr>
</tbody>
</table>

acetone. Details of the polymerizations are listed in Table I. Two molecular weights of the PMAAm homopolymer were synthesized, and three compositions of the MAAm-MMA copolymers were synthesized. The homopolymers synthesized are soluble in formamide, and in aqueous solutions of acetic acid and urea. The calculated compositions and measured intrinsic viscosities of the MAAm-MMA copolymers are presented in Table II. The copolymer compositions have been confirmed using IR spectroscopy.

Table II - Copolymer compositions and viscosities

<table>
<thead>
<tr>
<th>Mol. Fraction MAam (calculated)</th>
<th>Intrinsic Viscosity [n], dl/g 30°C</th>
<th>Solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>2.5</td>
<td>Acetic acid (glacial)</td>
</tr>
<tr>
<td>0.71</td>
<td>2.8</td>
<td>Acetic acid (0.707 wt. fraction)</td>
</tr>
<tr>
<td>0.49</td>
<td>3.1</td>
<td>Acetic acid (glacial)</td>
</tr>
<tr>
<td>0.21</td>
<td>0.7</td>
<td>Chloroform</td>
</tr>
</tbody>
</table>

Intrinsic viscosities of the PMAAm homopolymers, determined in 8 M urea at 30°C, are 0.405 and 0.90 dl/g. Using a relationship reported by Titkova for 8 M urea, these viscosities correspond to weight-average molecular weights (Mw) of 2.3 x 10^6 and 8.1 x 10^6. The higher molecular weight PMAAm is not soluble in water at any temperature. The lower molecular weight PMAAm is soluble in water only when heated to 90°C, but this polymer reprecipitates upon cooling. In the present work, the best solvent identified for the homopolymer is a 40% aqueous solution of acetic acid, which is used for casting the homopolymer films.

Matsuda and coworkers reported on a PMAAm polymer that is soluble in water at elevated temperatures and does not reprecipitate upon cooling. The intrinsic viscosity of this polymer is reported to be 1.25 dl/g in water at 30°C. Using a relationship reported for polyacrylamide, the authors calculated a viscosity average molecular weight (Mv) of 2.4 x 10^6.

Titkova reported that PMAAm with Mw < 6.8 x 10^6 is soluble in water at 25°C, and that PMAAm with 6.8 x 10^6 < Mw < 6.0 x 10^6 is soluble in water at 80-90°C, "the process being reversible," and PMAAm with Mw above 6.0 x 10^6 is insoluble in water at any temperature. The results of the present work agree with those of Titkova: The polymer synthesized with Mw = 2.3 x 10^6 fits into the second category, being soluble in water above 80°C, and the polymer with Mw = 6.1 x 10^6 fits into the third category delineated by Titkova."
Insoluble in water at any temperature. However, the polymer synthesized by Matsuda and co-workers with a reported molecular weight (Mw) of 2.4×10^6 would not be expected to remain dissolved in water when cooled to room temperature, based on the work of Titkova.

Infrared spectra of the PMAAm homopolymer and copolymers were measured with a Perkin-Elmer 683 IR Spectrophotometer. Approximately 1 µm thick films of the resists were spin-coated onto 3-in. diameter silicon wafers, and transmission through the resist and wafer was measured using a blank wafer in the reference beam. Differential scanning calorimetry was conducted with a Perkin-Elmer DSC-4, with a scanning rate of 10°C/min. in a nitrogen atmosphere.

For lithographic evaluations, films of each resist material were spin-coated onto 3-in. diameter silicon wafers. A solution of 40% acetic acid was used for casting the PMAAm homopolymer and the 71% MAAm copolymer of MAA. The 49% NAAm copolymer was cast from glacial acetic acid, and the 21% NAAm copolymer from 2-ethoxyethanol (cellosolve). PMMA (for reference) was cast from chlorobenzene. The copolymer films were prebaked at 200°C for 15 minutes. The PMAAm homopolymer was prebaked at 180, 200, 220, and 240°C for 15 minutes for an analysis of the effect of prebake conditions on lithographic performance. Film thicknesses were measured with a Tencor alpha step.

Lithographic test patterns were produced with a Cambridge EBHF-II-150 using an accelerating voltage of 20 KV. Contrast and thinning were determined by measuring film thicknesses after developing 20 µm wide lines exposed at a series of 16 doses. Developing was conducted in stagnant solutions, terminated with an appropriate non-solvent, followed by drying with a stream of nitrogen. A 15 minute postbake at 150°C was used.

Dissolution rates were measured using a laser interferometer film thickness monitor (LIFTH) for preliminary optimization of developing systems prior to lithographic evaluation. LIFTH was also used to study prebake effects on the PMAAm homopolymer by observing solubility rate ratios and swelling behavior. Dissolution induction periods were also observed with laser interferometry.

Results

The PMAAm homopolymers synthesized are not soluble in water at room temperature, and therefore films are cast from solutions in 40% acetic acid in water. In this respect, the procedures used in the present work differ from the previous work of Matsuda and co-workers, who used only water for casting the PMAAm films.

Under all experimental conditions, swelling of lithographic patterns was observed for the high molecular weight (Mw = 8.1 x 10^6) homopolymer, which limited the resolution of the lithographic patterns to about 1 µm (Figure 1). Swelling was not alleviated by altering the developer pH, or by increasing the prebake temperature. The lower molecular weight PMAAm homopolymer (Mw = 2.4 x 10^6) also exhibits severe swelling as well as adhesion problems.

![Figure 1](image.png)

Figure 1. SEM photomicrograph of lithographic patterns written in PMAAm homopolymer. Electron dose is 20 µC/cm², and the developer is Na₂SiO₃ solution (pH = 10). The film has been prebaked at 220°C for 15 minutes.
Figures 2 and 3. Thinning and contrast curves for PMAAm and PMMA homopolymers, respectively. The thinning behavior of PMAAm depends greatly on the developer. Using a 220°C prebake and developing with pure water, 10% of the unexposed background was developed in order to completely develop a 20 μm wide line exposed at 15 μC/cm² (Figure 2). Because of the limited solubility in water, resist exposed at doses lower than 10 μC/cm² is not developed with pure water, regardless of developing time. Increasing developing time does not develop lower doses, but only increases thinning of the unexposed film, presumably by extraction of lower molecular weight fractions of the polymer. A rough calculation of final molecular weight after exposure to 10 μC/cm² of 20 KeV electrons yields a final molecular weight within an order of magnitude of the threshold molecular weight for solubility in water at room temperature (Mw ≈ 6.8 x 10⁴) reported by Titkova, et al.²

Dilute aqueous solutions of sodium silicate (Na₂SiO₃) are forced developers for the PMAAm resist, and do not exhibit a solubility limit as observed with water, as even the unexposed resist is soluble in these solutions. Thinning occurs to a much greater extent with sodium silicate solutions than with water. Ten percent thinning occurs for development of patterns exposed at 40 μC/cm², using a sodium silicate solution with a pH of 10 (Figure 2). This thinning behavior in the forced developing regime does not represent any improvement over that exhibited by PMMA.²

Adequate contrast is obtained when developing PMAAm with pure water. A contrast (γ) of 2.0 is measured when developing patterns exposed to a dose of 13 μC/cm² in water for 0.5 minute (Figure 3). Increasing developing time reduces the contrast and does not develop patterns exposed at lower doses (Figure 3).

Using prebake temperatures in the range of 180 to 240°C, no significant differences in lithographic performance are observed. Swelling occurs when using any of these prebake temperatures, and the contrast is practically independent of prebake temperature. Prebake temperature, over the experimental range, does not affect the solubility limit experienced with aqueous developing, nor the degree of thinning by forced developing with sodium silicate solutions.
Previous workers reported a sensitivity of 0.6 μC/cm² for PMAAm with an initial molecular weight (Mw) of 2.4 x 10⁶ using a 15 minute prebake at 200°C and an accelerating voltage of 20 kV. Although the criterion for sensitivity determination was not published, this is clearly a greater sensitivity than that determined in the present work. What factors could be responsible for the high sensitivity previously reported for PMAAm? The chain scission efficiency (Gs), determined with gamma irradiation, has been reported to be 2.05, or about 1.5 times that of PMMA. This modest increase in G-scission could not be responsible for the nearly 100-fold increase in sensitivity over that of PMMA.

It has been proposed that the sensitivity of this resist may be enhanced by an induction time during dissolution. Using a laser interferometer film thickness monitor (LIFTM),1 induction periods are observed during dissolution of unexposed films of PHAAm and the MAAm-MMA copolymer containing 21% MAAm. The copolymer provides an excellent example of an induction period when seen as the initial flat portion of the intensity curve that occurs before the characteristic sinusoidal output created by the interference pattern during dissolution (Figure 4). The observed induction periods are not strongly affected by exposure to vacuum or aging. In the case of the PHAAm homopolymer, the induction period is actually a period of severe swelling, occurring prior to dissolution. Since these induction periods are absent during dissolution of the exposed films, the phenomena would tend to increase the solubility rate differential between exposed and unexposed polymer, thus increasing the sensitivity. However, the magnitude of these induction periods is such that about 0.05 μm of exposed resist (20 μC/cm²) would be expected to dissolve during the induction period of the unexposed resist. The magnitude of this effect would not account for the high sensitivity reported for PMMA resist. The concurrent swelling of the unexposed PHAAm homopolymer also limits any contribution of the induction period to enhancement of sensitivity for that system.

![Figure 4](Image)

Figure 4. Dissolution induction period exhibited with poly(MMA-21% MAAm).

The most likely cause of the previously attained sensitivity reported by Matsuda and co-workers' is the formation of intermolecular imide crosslinks. It was reported that 62% imidization occurred after heating a 7% aqueous solution of PHAAm for 7 hours at 60°C or 80°C.1 Imide formation was also reported for prebaking on the wafer at 200-250°C.1 Crosslinking has been shown to enhance sensitivity by increasing the initial molecular weight of resists and reducing thinning of unexposed resist. Presumably because of the imide bridges, the highly selective aqueous developing systems were able to develop the relatively large exposed areas without much concurrent thinning of the unexposed resist. Under the experimental conditions of the present work, however, conversion of the amide to imide is not observed. After heating an aqueous solution of the low molecular weight PHAAm (Mw = 2.4 x 10⁶) for 7 hours at 80°C, infrared spectral analyses do not indicate the formation of imide. Also, imidization is not detected after prebaking PHAAm on silicon wafers at 180 to 240°C. Imide formation with PHAAm apparently is difficult to control. This difficulty has been encountered with other crosslinking resist systems and severely limits the process latitude of a resist system. Further work to reproduce and control the imidization reactions of PHAAm would be useful.
Because of the various difficulties encountered with the PMAAm homopolymer, a series of copolymers with ethyl methacrylate were synthesized. Copolymers of MAAs with styrene, barium acrylate and methyl methacrylate have been studied previously, but the compositions of these were limited to copolymers containing at least 90% methacrylamide. Dissolution rate measurements with the MMA-MAAm copolymers using laser interferometry indicated that the greatest solubility rate ratios were exhibited by the copolymer containing approximately 21 mol % MAAs. In contrast to the MAAs homopolymer, this copolymer did not exhibit severe swelling problems when writing 1 µm patterns. Using a 15 minute prebake at 200°C and developing with 2-ethoxyethanol, adequate contrast (γ = 2.1 at 20 µC/cm²) is observed with this copolymer (Figure 5). Unfortunately, this copolymer resist is subject to considerable thinning and in this way is only a marginal improvement over PMMA (Figure 6).

Conclusions

The sensitivity of the PMAAm homopolymer resist is about 15 µC/cm², where sensitivity is defined as the incident electron dose that can be completely developed with less than 10% thinning of unexposed resist. This sensitivity has been observed using prebake temperatures ranging from 180 to 240°C and an accelerating voltage of 20 KV. Patterns exposed at doses less than 10 µC/cm² could not be developed with water, but dilute solutions of sodium silicate developed lower doses (with extensive thinning). Swelling and adhesion problems limited the resolution of the PMAAm resist. The previously reported high sensitivity of PMAAm was most likely due to the formation of imide crosslinks. Such imide formation is not observed in the present work. Imide formation is difficult to control with this resist system, which seriously limits the process latitude of the resist.

Acknowledgment

The authors thank the Office of Naval Research for funding this research.
References

<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>2</th>
<th>Dr. David Young</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 413</td>
<td></td>
<td>Code 334</td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
<td>NORDA</td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td></td>
<td>NSTL, Mississippi 39529</td>
</tr>
<tr>
<td>Dr. Bernard Douda</td>
<td>1</td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td></td>
<td>Attn: Dr. Ron Atkins</td>
</tr>
<tr>
<td>Code 5042</td>
<td></td>
<td>Chemistry Division</td>
</tr>
<tr>
<td>Crane, Indiana 47522</td>
<td></td>
<td>China Lake, California 93555</td>
</tr>
<tr>
<td>Commander, Naval Air Systems Command</td>
<td>1</td>
<td>Scientific Advisor</td>
</tr>
<tr>
<td>Attn: Code 310C (H. Rosenwasser)</td>
<td></td>
<td>Commandant of the Marine Corps</td>
</tr>
<tr>
<td>Washington, D.C. 20360</td>
<td></td>
<td>Code RD-1</td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
<td>U.S. Army Research Office</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko</td>
<td></td>
<td>Attn: CRD-AA-IP</td>
</tr>
<tr>
<td>Port Huenem e, California 93401</td>
<td></td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>12</td>
<td>Research Triangle Park, NC 27709</td>
</tr>
<tr>
<td>Attn: Dr. G. Bosmajian</td>
<td></td>
<td>Mr. John Boyle</td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
<td>Materials Branch</td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td></td>
<td>Naval Ship Engineering Center</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>Philadelphia, Pennsylvania 19112</td>
</tr>
<tr>
<td>Attn: Dr. S. Yamamoto</td>
<td></td>
<td>Naval Ocean Systems Center</td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
<td>Attn: Dr. G. Bosmajian</td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td></td>
<td>Marine Sciences Division</td>
</tr>
<tr>
<td>Dr. William Toiles</td>
<td>1</td>
<td>San Diego, California 91232</td>
</tr>
<tr>
<td>Superintendent</td>
<td></td>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td></td>
<td>Washington, D.C. 20375</td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 356A

Naval Surface Weapons Center
Attn: Dr. J. M. Augl, Dr. B. Hartman
White Oak
Silver Spring, Maryland 20910

Professor Hatsuo Ishida
Department of Macromolecular Science
Case Western Reserve University
Cleveland, Ohio 44106

Professor J. K. Gillham
Department of Chemistry
Princeton University
Princeton, New Jersey 08540

Professor R. S. Roe
Department of Materials Science and Metallurgical Engineering
University of Cincinnati
Cincinnati, Ohio 45221

Dr. Robert E. Cohen
Chemical Engineering Department
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. R. S. Porter
Department of Polymer Science and Engineering
University of Massachusetts
Amherst, Massachusetts 01002

Professor L. H. Sperling
Department of Chemical Engineering
Lehigh University
Bethlehem, Pennsylvania 18015

Professor Brian Newman
Department of Mechanics and Materials Science
Rutgers University
Piscataway, New Jersey 08854

Dr. R. S. Porter
Chemical Engineering Department
Case Western Reserve University and Engineering
Cleveland, Ohio 44106

Dr. C. E. Hoyle
Department of Polymer Science
University of Southern Mississippi
Hattiesburg, Mississippi 39406

Professor A. Heeger
Department of Chemistry
University of California
Santa Barbara, California 93106

Dr. Stuart L. Cooper
Department of Chemical Engineering
University of Wisconsin
Madison, Wisconsin 53706

Professor J. Lando
Department of Macromolecular Science
Case Western Reserve University
Cleveland, Ohio 44106

Professor D. Grubb
Department of Materials Science and Engineering
Cornell University
Ithaca, New York 14853

Professor C. Chung
Department of Materials Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. D. B. Cotts
SRI International
333 Ravenswood Avenue
Menlo Park, California 94205

Professor J. T. Koberstein
Department of Chemical Engineering
Princeton University
Princeton, New Jersey 08544

PLASTEC
DRSMC-SCM-O(D), Bldg 351 N
Armament Research & Development Center
Dover, New Jersey 07801

Professor J. H. Magill
Department of Metallurgical and Materials Engineering
University of Pittsburgh
Pittsburgh, Pennsylvania 15261

Professor C. H. Wang
Department of Chemistry
University of Utah
Salt Lake City, Utah 84112
END

FILMED

4-86

DTIC