Dynamic Orientation Studies of Polymers

Richard S. Stein

Polymer Research Institute
LGRC, Rm. 701, University of Massachusetts
Amherst, MA 01003

U. S. Army Research Office
Post Office Box 12211
Research Triangle Park, NC 27709

The view, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

Static and dynamic x-ray diffraction, small angle x-ray scattering, small angle light scattering, birefringence, and infrared dichroism studies have been carried out on crystalline polymers (mostly polyethylenes) and their blends. Preliminary small angle neutron scattering studies of their orientation have been made.
THE VIEW, OPINIONS AND/OR FINDINGS CONTAINED IN THIS REPORT ARE THOSE OF THE AUTHOR AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION, POLICY OR DECISION, UNLESS SO DESIGNATED BY OTHER DOCUMENTATION.
DYNAMIC ORIENTATION STUDIES OF POLYMERS

FINAL REPORT
Richard S. Stein
February 2, 1986

U.S. ARMY RESEARCH OFFICE
CONTRACT: SAA29-82-K0010

UNIVERSITY OF MASSACHUSETTS

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED
INTRODUCTION

The purpose of this investigation was to carry out dynamic wide angle x-ray diffraction (WAXD), small angle x-ray scattering (SAXS), dynamic birefringence, dynamic small angle light scattering (SALS), and dynamic infrared dichroism (IRD) on various types of polyethylene and their blends. These goals were accomplished and have led to several important research publications, as described below.

SUMMARY

The technique of dynamic small angle x-ray scattering was developed in which the x-ray scattering could be observed as a sample was subjected to oscillatory strain. This was done, using a stroboscopic signal averaging technique, at the National Center for Small Angle Scattering Research at the Oak Ridge National Laboratory. It was possible to observe the dynamic opening and closing of voids as well as the orientation of crystalline lamellae.

Wide angle x-ray diffraction was used to study crystal orientation of radiation crosslinked polyethylene samples which were crystallized from the oriented melt. At low melt orientations, the a-crystal axis was found to orient parallel to the stretch direction, whereas with increasing melt orientation, one progressed to a state of c-axis orientation. A degree of crosslinking - melt orientation superposition principle was discovered in which corresponding states of crystal orientation occurred at corresponding states of melt orientation. Morphological transitions of these samples were studied using the small angle light scattering technique.

The use of the two-dimensional optical multichannel analyzer (OMA) was developed for the quantitative studies of SALS during crystallization and deformation. Techniques for calibration and for data processing were developed. A principal use for this device was in the study of blends of linear low density polyethylene (LLDPE) with high density polyethylene (HDPE) and with conventional low density polyethylene (LDPE). The SALS studies were accompanied by WAXD, SAXS and raman longitudinal acoustic mode (LAM) spectroscopy. It was concluded that LLDPE co-crystallized with HDPE but not with LDPE. However in the latter case, both species reside in the same spherulites. A two-step crystallization occurs where the LLDPE crystallizes first, forming volume filling spherulites. The LDPE the crystallized by a secondary process within the already formed spherulites. These two stages may be readily followed with the OMA.

Dynamic mechanical properties and dynamic birefringence studies were carried out on the above blends. Because of the differing morphological role of the two components of the LLDPE/LDPE blends, they were found to contribute to these measurements in a non-equivalent manner. The properties were dominated by the LLDPE component which formed the "backbone" of the spherulites. It is notable that this reinforcing effect of the LLDPE occurs even when it is present at only 10% concentration. This illustrates a relatively new and important concept in the understanding of polymer morphology - where a small amount of a crystallizable component in a blend can influence the morphology of a major component, and thus have a major influence on properties.

Another application of this principle deals with the use of nucleating agents to...
control crystal morphology. The SALS technique, using the OMA, was applied to the
study of the nucleation of polypropylene (PP) and LLDPE by the soluble organic
nucleant, dibenzidyl sorbitol (DBS). It was found that the DBS not only served to
nucleate more spherulites and hence, decrease their size, but also changed the
internal arrangement of crystals within the spherulites. This observation indicates
the possibility of inducing major property changes with small amounts of nucleant.

The OMA was also used to study the spherulite deformation process. Quantitative
Hv, Vv, and Hh polarized light scattering data were obtained for uniaxially deformed
PE and PP samples. Data revealed not only information about the change in spherulite
shape, but also details about the way in which the crystals within the spherulites
rearranged. Results were fitted to parameters in models involving such parameters
was shown that the deformation modes of PE and PP were quite different. An affine
model for internal spherulite deformation was shown to be inadequate, and good
progress was made in developing a non-affine model.

The above technique has the advantage that data acquisition is fast, so that
measurements may be extended to dynamic studies. Thus, the completed work "opens
doors" for new studies for which alternative support is being sought.

Another novel technique pioneered during this study was the use of small angle
neutron scattering (SANS) for the study of chain deformation. Such studies were
carried out on polystyrene (PS) and PE, where it was found that the molecular
extension of high MW PS is affine but that for PE is not. A paper is being prepared
considering proposed models for the latter situation. These measurements also are
leading to appreciable additional studies of chain extension in crystalline polymers
for which support (ONR) has been approved. They also point the way to future dynamic
studies which will permit "molecular level" rheology of crystalline polymers.
D. P. Lefebvre and R. S. Stein,
"Study of the Light-Scattering Pattern of Deformed Low-Density Polyethylene,"
in preparation

D. P. Lefebvre and R. S. Stein,
"Study of the Light-Scattering Pattern of Deformed Isotactic Polypropylene,"
in preparation

P. Forgacs and R. S. Stein,
"A Theory for a-Axis Orientation in Polyethylene Crystallized in the Oriented State,"
in preparation

P. Forgacs and R. S. Stein,
"Crystallization in Oriented Polymers: Relationships Between the Orientation Functions in the Crystalline Phase, in the Amorphous Phase, and in the Molten Precursor,"
in preparation

P. Forgacs, P. Young and R. S. Stein,
"Dependence of Crystalline Orientation and Morphology of Radiation Crosslinked Linear Low-Density Polyethylene on the Amorphous Orientation Prior to Crystallization,"
in preparation

S. Hu, T. Kyu and R. S. Stein,
"Characterization and Properties of Polyethylene Blends: II--Linear Low-Density With Conventional Low-Density Polyethylene,"
J. Polymer Sci., in press

S. Hu, T. Kyu and R. S. Stein,
"Characterization and Properties of Polyethylene Blends: I--Linear Low-Density With High-Density Polyethylene,"
J. Polymer Sci., in press

K. Baba and R. S. Stein,
"Rheo-Optical and Mechanical Studies of the Crystallization and Orientation of Ethylene-Propylene Copolymers,"

R. J. Tabar, P. Leitte-James and R. S. Stein,
"Quantitative Small-Angle Light Scattering Studies of the Melting of Poly(ethylene Terephthalate),"

R. J. Tabar, R. S. Stein, and D. E. Rose,
The Effect of Spherulite Truncation on Small-Angle Light Scattering,
R. S. Stein
"Neutron Scattering from Polymers in the "Nineties"
Neutron Scattering in the "Nineties, Int. Atomic Energy Agency,
Vienna CH-46/42 335-348 (1985)

R. S. Stein,
"Frontiers of Materials in Research in Polymeric Materials",
PROC. UNIV. TEXAS MATERIALS SYMPOSIUM, H. Steinfrink, H.L. Marcus,

R. S. Stein and C. C. Han,
"Neutron Scattering From Polymers,

R. S. Stein,
"Recent Advances in Rheo-Optical Studies of Polymers in the Solid State,"

T. Sun, T. Kyu, J. Sheng, D. Lefebure, R. S. Stein and R. S. Porter,
"Optical Characterization of Solid-State Co-Extruded PET,"

S. N. Barg, R. S. Stein, T. K. Su, R. J. Tabar and A. Misra,
"Light-Scattering Studies of Nucleation of Polypropylene,"
KINETICS OF AGRREGATION AND RELATION, F. Family and D. P. Landau

T. P. Russell, D. P. Anderson, R. S. Stein, C. R. Desper, J. J. Beres and N. S. Schneider,
"Rheo-Optical Investigation of the Transition Behavior of Polyphosphazenes,"

P. Young, T. Kyu, S. Suehiro, J. S. Lin and R. S. Stein,
"Dynamic Small-Angle X-Ray Scattering From Crystalline Polymers,"

R. S. Stein and G. P. Hadziimomou,
"Recent Advances in the Use of Scattering for the Study of Solid Polymers,"
POLYMER CHARACTERIZATION, C. D. Craver (ed.), American Chemical

R. J. Cembrola, T. Kyu and R. S. Stein,
"Dynamic X-Ray Diffraction Studies of High-Density Polyethylene,"

Y. K. Mang, D. A. Waldman, J. E. Lesch, R. S. Stein
and S. L. Hsu,
"Raman Spectroscopic Study of Highly Deformed Polyethylene,"
R. J. Tabar and R. S. Stein,
"A Two-Dimensional Position-Sensitive Detector for Small-Angle Light-Scattering,"

R. S. Stein,
"Small-Angle Light-Scattering from the Polymeric Solid State,"
STATIC AND DYNAMIC PROPERTIES OF THE POLYMERIC SOLID STATE, R. A.

R. S. Stein,
"Optical, X-Ray and Neutron Scattering Studies of Polymer Morphology,"

R. J. Tabar, A. Wasiak, S. D. Hong, T. Yuasa, and R. S. Stein,

PARTICIPATING SCIENTIFIC PERSONNEL

<table>
<thead>
<tr>
<th>NAME</th>
<th>PRESENT LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richard S. Stein, PI</td>
<td>Professor, University of Massachusetts</td>
</tr>
<tr>
<td>Dennis Lafebure, PD</td>
<td>Industry, FRANCE</td>
</tr>
<tr>
<td>Peter Forgacs, PD</td>
<td>Atomic Energy Comm., HUNGARY</td>
</tr>
<tr>
<td>Ping Young, GS</td>
<td>PhD, UMASS, Industry, US</td>
</tr>
<tr>
<td>Shi-Ru Hu, VS</td>
<td>Academia Sinica, PRC</td>
</tr>
<tr>
<td>Thein Kyu, PD</td>
<td>Asst. Prof., U. Akron</td>
</tr>
<tr>
<td>Kenichi Baba, VS</td>
<td>Industry, JAPAN</td>
</tr>
<tr>
<td>Ronald Tabar, GS</td>
<td>Industry, US</td>
</tr>
<tr>
<td>Patrecia Leitte-James, PD</td>
<td>Industry, US</td>
</tr>
<tr>
<td>D. Rose, UG</td>
<td>Grad. School, US</td>
</tr>
<tr>
<td>Jin Sheng, VS</td>
<td>Academia Sinica, PRC</td>
</tr>
<tr>
<td>Satya Garg, PD</td>
<td>Gov't. Lab, US</td>
</tr>
<tr>
<td>Ashok Misra, GS, PD</td>
<td>PhD., UMASS, Assoc. Prof., INDIA</td>
</tr>
<tr>
<td>Thomas Russell, GS</td>
<td>PhD., UMASS, Industry, US</td>
</tr>
<tr>
<td>David Anderson, GS</td>
<td>PhD., UMASS, Gov't. Lab., US</td>
</tr>
<tr>
<td>Shoji Suehiro, PD</td>
<td>Asst. Prof., JAPAN</td>
</tr>
<tr>
<td>Georges Hadziioannou, PD</td>
<td>Industry, US</td>
</tr>
<tr>
<td>Robert Cembrola, GS</td>
<td>PhD., UMASS, Industry, US</td>
</tr>
<tr>
<td>Andrej Wasiak, PD</td>
<td>Academy of Science, POLAND</td>
</tr>
<tr>
<td>Su Don Hong, GS</td>
<td>PhD., UMASS, Gov't. Lab., US</td>
</tr>
<tr>
<td>Cameron Huffman, GS</td>
<td>PhD., UMASS, Industry, US</td>
</tr>
</tbody>
</table>

CODE:
PI Principal Investigator (UMASS Faculty)
GS Graduate Student
PD Post-Doctoral Fellow
VS Visiting Scientist
UG Undergraduate
END

FILMED

4-86

DTIC