SOME CONVERGENCE RESULTS FOR KERNEL-TYPE QUANTILE ESTIMATORS UNDER CENSOR (U) SOUTH CAROLINA UNIV COLUMBIA DEPT OF MATHEMATICS AND STATISTI..
SOME CONVERGENCE RESULTS FOR KERNEL-TYPE QUANTILE ESTIMATORS UNDER CENSORING*

by

Y. L. Lio and W. J. Padgett

Department of Statistics
University of South Carolina
Columbia, SC 29208

University of South Carolina
Statistics Technical Report No. 108
62G05-14

November, 1985

* Research supported by the U.S. Air Force Office of Scientific Research under grant number AFOSR 84-0156 and the U.S. Army Research Office under grant number MIPR ARO 139-85.
ABSTRACT

Based on right-censored data from a lifetime distribution F_0, a kernel-type estimator of the quantile function $Q^0(p)$, defined by

$$Q_n(p) = h_n^{-1} \int_0^{\infty} \tilde{F}_n(t) K\left(\frac{(t-p)}{h_n}\right) dt,$$

is studied. This estimator is smoother than the product-limit quantile function $Q^*(p) = \inf\{t: \tilde{F}_n(t) \geq p\}$, where \tilde{F}_n denotes the product-limit estimator of F_0 from the censored sample.

Under the random censorship model and general conditions on h_n, K, and F_0, asymptotic normality of $Q_n(p)$ and a simpler approximation to it, $Q^*_n(p)$, is shown, and mean square convergence of Q_n is proven. Also, the asymptotic mean equivalence of Q_n and Q^*_n is shown.

The document also covers:
- asymptotic normality
- asymptotic mean equivalence
- mean square convergence
- keywords: probability distribution, kernel function.
1. INTRODUCTION AND PRELIMINARIES

For any probability distribution \(G \), denote the quantile function by

\[Q(p) = G^{-1}(p) = \inf\{x: G(x) \geq p\}, \quad 0 \leq p \leq 1. \]

From a random (uncensored) sample from \(G \), the sample quantile function \(G_n^{-1}(p) = \inf\{x: G_n(x) \geq p\}, \quad 0 \leq p \leq 1 \), has been used to estimate \(Q(p) \), where \(G_n \) denotes the sample distribution function. Csörgő (1983) gave many of the known results concerning \(G_n^{-1}(p) \). Also, Falk (1984) studied the relative deficiency of the sample quantile with respect to kernel-type estimators, and Falk (1985) obtained asymptotic normality for kernel estimators. Yang (1985) obtained some convergence properties of kernel estimators of \(Q(p) \) and gave simulation results comparing kernel-type estimators with other estimators. For arbitrarily right-censored data, Sander (1975) proposed estimation of \(Q(p) \) by the quantile function of the product-limit estimator, and she and Cheng (1984) derived asymptotic properties while Csörgő (1983) presented strong approximation results for that estimator.

For randomly right-censored data, Padgett (1985) proposed a smooth non-parametric estimator of the quantile function, defined by

\[Q_n(p) = h_n^{-1} \int Q_n(t)K((t-p)/h_n) \, dt, \]

where \(Q_n \) denotes the product-limit quantile function and \(K \) is an appropriate kernel function. An approximation to \(Q_n(p) \), denoted by \(Q_n^*(p) \), which is somewhat easier to compute was also studied. The estimator \(Q_n \), mentioned briefly by Parzen (1979), was shown to be strongly consistent, and \(Q_n \) and \(Q_n^* \) were shown to be almost surely asymptotically equivalent. Lio, Padgett, and Yu (1985) obtained an asymptotic normality result for \(Q_n \) and showed that \(Q_n \) and \(Q_n^* \) are asymptotically uniformly mean square equivalent under certain conditions.

In this paper, some further asymptotic normality results for \(Q_n \) and \(Q_n^* \) will be given. Also, their asymptotic mean equivalence and the mean
square convergence of Q_n will be shown. To define these estimators, let X^0_1, \ldots, X^0_n denote the true survival times of n items or individuals that are censored on the right by a sequence U_1, U_2, \ldots, U_n, which in general may be either constants or random variables. It is assumed that the X^0_i's are nonnegative independent identically distributed random variables with common unknown distribution function F_0 and unknown quantile function $Q^0(p) = F(p)^{-1}$.

The observed right-censored data are denoted by the pairs (X_i, Δ_i), $i=1,\ldots,n$, where

$$X_i = \min\{X^0_i, U_i\}, \quad \Delta_i = \begin{cases} 1 & \text{if } X^0_i \leq U_i, \\ 0 & \text{if } X^0_i > U_i. \end{cases}$$

Let (Z_i, Λ_i), $i=1,\ldots,n$, denote the ordered X_i's along with their corresponding Δ_i's. A popular estimator of the survival function $S_0 = 1-F_0$ is the product-limit estimator of Kaplan and Meier (1958), shown to be "self-consistent" by Efron (1967) and defined by

$$\hat{F}_n(t) = \begin{cases} 1, & 0 \leq t \leq Z_1, \\ \Pi_{i=1}^{k-1} \left(\frac{n-i}{n-k} \right)^{\Lambda_i}, & Z_{k-1} < t \leq Z_k, \quad k=2,\ldots,n \\ 0, & t > Z_n. \end{cases}$$

Denote the product-limit estimator of $F_0(t)$ by $\hat{F}_n(t) = 1 - \hat{F}_n(t)$, and let s_j denote the jump of \hat{F}_n at Z_j, that is,

$$s_j = \begin{cases} 1 - \hat{F}_n(Z_2), & j = 1 \\ \hat{F}_n(Z_j) - \hat{F}_n(Z_{j+1}), & j = 2,\ldots,n-1 \\ \hat{F}_n(Z_n), & j = n. \end{cases}$$

Note that $s_j = 0$ if and only if $\Lambda_j = 0$, $j < n$, i.e. whenever Z_j is a censored observation. Also, denote $S_i = \hat{F}_n(Z_{i+1}) - \hat{F}_n(Z_i) = \sum_{j=1}^{i} s_j$, $i=1,\ldots,n$, with $S_0 = 0$, $Z_0 = 0$, and $Z_{n+1} = Z_n + \varepsilon$, for some positive constant ε.
It is natural to estimate ξ_0^p by the product-limit quantile function

$$\hat{Q}_n(p) = \inf\{t: \hat{F}_n(t) \geq p\}.$$ Then the kernel-type estimator $Q_n(p)$ studied by Padgett (1985) is written as

$$Q_n(p) = h_n^{-1} \int_0^1 \hat{Q}_n(t) K((t-p)/h_n) dt$$

$$= h_n^{-1} \sum_{i=1}^n Z_i \int S_{S_i-1} K((t-p)/h_n) dt,$$

for kernel function K and bandwidth sequence $\{h_n\}$. Also, the simpler kernel-type estimator Q_n^* which is an approximation to (1.1) is defined by

$$Q_n^*(p) = h_n^{-1} \sum_{i=1}^n Z_i S_i K((S_i - p)/h_n).$$

For the results here, the random right-censorship model will be assumed; that is, U_1, \ldots, U_n constitute a random sample from a distribution H (usually unknown) and are independent of X_1, \ldots, X_n. The distribution function of each X_i, $i = 1, \ldots, n$, is then $F_i = 1 - (1-F_0)(1-H)$. In addition, some or all of the following conditions will be assumed for the kernel function, bandwidth sequence, and lifetime and censoring distributions:

(h.1) $h_n \to 0$ as $n \to \infty$;

(K.1) $K(x)$ is a bounded probability density function which has finite support, i.e. $K(x) = 0$ for $|x| > c$ for some $c > 0$;

(K.2) K is symmetric about zero;

(K.3) K satisfies a Lipschitz condition, i.e. there exists a constant Γ such that for all x, y,

$$|K(x) - K(y)| \leq \Gamma |x - y|;$$

(F.1) F_0 is continuous with density function f_0.

These conditions are not prohibitive and the conditions on F_0 are similar to conditions required by Cheng (1984).

2. ASYMPTOTIC NORMALITY

Lio, Padgett, and Yu (1985) showed that under conditions (h.1),
(K.1)-(K.2), and (F.1), if the derivative \(f'_0 \) is continuous at \(f^0_p \),
\[f_0(f^0_p) > 0, \quad \text{and} \quad n^h_n \rightarrow 0, \] then for \(0 < p < T \), where \(T < \min(1, T - H^{-1}(p)) \)
with \(T = \sup \{ t : H(F^{-1}_o(t)) < 1 \}, \) \(n^h \{ Q_n(p) - Q(p) \} \rightarrow Z \) in distribution
as \(n \rightarrow \infty \), where \(Z \) is a normally distributed random variable with mean zero
and variance \(\sigma^2_p = (1-p)^2 \int_0^p [1-F(u)]^{-2} dF(u)/f^2_0(f^0_p) \). Here \(F^*_o(u) = P(X_1 \leq u, \Delta_1 = 1) \) is the subdistribution function of the uncensored
observations. The condition \(n^h_n \rightarrow 0 \) can be replaced by \(n^h_n \rightarrow 0 \) by using
a slightly different proof than that of Lio, Padgett, and Yu (1985).

Define \(Q^o(p, h_n) = h^{-1} \int_0^p Q^o(t) K((t-p)/h_n) \) for \(0 \leq p \leq 1 \). An asymptotic
normality result for (1.1) can be obtained without the condition on the rate
of convergence of \(h_n \) to zero by centering with \(Q^o(p, h_n) \) instead of \(Q^o(p) \).
This type of centering seems to be required for asymptotic normality of
\(Q^o_n(p) \).

THEOREM 2.1. Suppose (h.1), (K.1), (K.2), and (F.1) hold and \(f'_0 \) is
continuous at \(f^0_p \) with \(f_0(f^0_p) > 0 \). Then for \(0 < p < T \),
\[n^h \{ Q_n(p) - Q^o(p, h_n) \} \rightarrow Z \) in distribution as \(n \rightarrow \infty \), where \(Z \) is normally
distributed with mean zero and variance \(\sigma^2_p \).

The proof of Theorem 2.1 follows from the following lemma proven by
Lio, Padgett, and Yu (1985) and from Corollary 1 of Cheng (1984).

LEMMA 2.1. Under the conditions of Theorem 2.1
\[\left| \int_0^1 \{ q_n(t) - q_n(p) \} h^{-1}_n K((t-p)/h_n) dt \right| \rightarrow 0 \text{ in probability} \]
as \(n \rightarrow \infty \), where \(q_n(t) = n^h \{ Q_n(t) - Q^o(t) \} \) denotes the product-limit quantile
process.

The asymptotic normality of (1.2) follows from Theorem 2.1 and the next
LEMMA 2.2. In addition to the conditions of Theorem 2.1, suppose (K.3) holds and $E(X^{2}) < \infty$. Then as $n \to \infty$,

$$\sup_{0 \leq p \leq T} n[Q_{n}^{*}(p) - Q_{n}(p)]^{2} \to 0 \text{ in probability,}$$

provided $h_{n}^{-4} \log \log n/n \to 0$.

PROOF. For $0 \leq p \leq T$, when $s_{i} > 0$, i.e. when Z_{i} is uncensored, let S_{i}^{*} be an interior point of the interval (S_{i-1}, S_{i}) with probability one so that

$$s_{i}^{*} \left(\frac{S_{i}^{*} - p}{h_{n}} \right) = \int_{S_{i-1}}^{S_{i}^{*}} \left(\frac{t - p}{h_{n}} \right) dt \text{ a.s.}$$

Let I_{A} be the indicator function of the set A and let i^{*} be the smallest $i \leq n$ such that $S_{i+1} - T > h_{n}c$, where c is the constant in (K.1). If no such i exists, then let $i^{*} = n$. By (K.3),

$$n[Q_{n}^{*}(p) - Q_{n}(p)]^{2} I_{[0,T]}(p)$$

$$\leq nh_{n}^{-2} \left\{ \sum_{i=1}^{n} Z_{i}s_{i} \left[K \left(\frac{S_{i}^{*} - p}{h_{n}} \right) - \left(\frac{S_{i}^{*} - p}{h_{n}} \right) \right] I_{[0,T]}(p)I_{[S_{i}^{*} - h_{n}c, 1]}(p) \right\}^{2}$$

$$\leq \Gamma^{2} nh_{n}^{-4} \sum_{i=1}^{n} Z_{i}s_{i}^{3} n I_{[0,i^{*}]}(1)$$

$$\leq \Gamma^{2} h_{n}^{-4} 2 \sup_{0 \leq \tau \leq \tau_{F_{n}}} \left| P_{n}(x) - P_{0}(x) \right| I_{[0, \tau^{*}]}(1)$$

where $\tau_{F_{n}} = \sup \{ t : F_{n}(t) < 1 \}$.

From Sander (1975), for $i \leq i^{*}$, $0 \leq ns_{i} \leq [1 - H(F_{n}^{-1}(T))]^{-1} + o_{p}(1)$,
where $o_p(1)$ denotes a term converging to zero in probability as $n \to \infty$. By the results of Földes and Rejtö (1981),

$$\sup_{0 \leq x \leq T} \left| F_n(x) - F_0(x) \right| = O((\log \log n/n)^{1/2})$$

with probability one, and by a proof similar to that for Theorem 4.1 of Mauro (1985),

$$\sum_{i=1}^{n} Z_i \delta F_n(Z_i) \to E(X^2)$$

in probability. Therefore,

$$n[Q_n^*(p) - Q_n^0(p)] I_{[0,T]}(p) = O_p(h_n^{-2} (\log \log n/n)^{1/2})$$

completing the proof.

The following result for asymptotic normality of Q_n^* is therefore obtained.

Theorem 2.2. Under the same conditions as in Lemma 2.2, for $0 < p < T$,

$$n \frac{[Q_n^*(p) - Q_n^0(p)]}{F_n(1)} \to Z$$

as $n \to \infty$, where Z is a normally distributed random variable with mean zero and variance σ^2_p.

3. Asymptotic Mean Equivalence of Q_n and Q_n^*

It is shown in this section that Q_n and Q_n^* are equivalent in the mean and mean squared convergence sense. First, it is proven that $Q_n^*(p) - Q_n^0(p)$ converges to zero in the mean uniformly in p for certain choices of h_n.

For any distribution function G, define $T_G = \sup(t: G(t) < 1)$.

Theorem 3.1. Assume that (h.1), (K.1) and (K.3) hold, H and F_0 are continuous with $E|X^0| < \infty$, and $T_{F_0} \leq T_H \leq \infty$. Let Ψ be such a function on $[0,1-F(T^*)]$ that $\Psi(x) \geq x$, $\Psi(x) \to \Psi(0) = 0$ as $x \to 0^+$, and $1 - F_0(t) \leq \Psi(1 - F(t))$ for $t \in (T^*, T_{F_0})$, where T^* is arbitrary with $T^* < T_{F_0}$. Then

$$E[|Q_n^*(p) - Q_n^0(p)|] = O(\Phi(d(\log \log n/n)^{1/2})h_n^{-2})$$

where $d > 1$ is some constant.
PROOF. As in the proof of Lemma 2.2, using condition (K.3), with probability one

\[|Q_n^*(p) - Q_n(p)| \leq h_n^{-1} \sum_{i=1}^{n} Z_i s_i |K\left(\frac{S_i - p}{h_n}\right) - K\left(\frac{S_i}{h_n}\right)| \]

\[\leq h_n^{-2} \sum_{i=1}^{n} Z_i s_i^2. \tag{3.1} \]

By continuity of \(F_0 \) and using the definitions of \(S_1 \) and \(s_1 \), (3.1) is less than or equal to

\[\sum_{t=T_n^{-2}}^{T_F} \int_0^{\frac{T_F}{T_n}} x d\tilde{F}_n(x) \sup_{0 \leq t \leq T_F} |\tilde{F}_n(t) - F_0(t)|. \]

Thus, by Corollary 2(v) of Csörgő and Horváth (1983) and Theorem 3.1 of Mauro (1985), the conclusion of the theorem follows.

Under similar conditions to those of Theorem 3.1, the asymptotic mean square equivalence of \(Q_n \) and \(Q_n^* \) can be obtained for some useful choices of the bandwidth sequence \(\{h_n\} \).

THEOREM 3.2. Suppose that the conditions of Theorem 3.1 hold, replacing \(E[X^2] < \infty \) by \(E(X^{2\alpha}) < \infty \). Then

\[E[(Q_n^*(p) - Q_n(p))^2] = O\left[\varphi^2 (d(\log \log n)^{\frac{\alpha}{2}} h_n^{-4}\right]. \]

PROOF. By an argument similar to the proof of Theorem 3.1, with probability one

\[(Q_n^*(p) - Q_n(p))^2 \leq 4T_n^{-4} \sum_{t=T_n^{-2}}^{T_F} \int_0^{\frac{T_F}{T_n}} x^2 d\tilde{F}_n(x) \sup_{0 \leq t \leq T_F} |\tilde{F}_n(t) - F_0(t)|^2. \]
Again, the conclusion follows from Corollary 2(v) of Csörgő and Horváth (1983) and Theorem 3.1 of Mauro (1985).

From Theorems 3.1 and 3.2, if $\phi(d(\log \log n/2n)h_n^{-2}) \to 0$ as $n \to \infty$, then $Q_n^*(p)$ and $Q_n(p)$ are asymptotically equivalent in the mean. If ϕ is chosen so that $\phi(x) = (x/k)^{1/(1+\gamma)}$, for some $0 < k \leq 1$ and $\gamma \geq 0$, as in example (1) of Csörgő and Horváth (1983, p. 416), then (for $\gamma = 0$ and $k = 1$) the condition above becomes $(\log \log n/n)h_n^{1/2} \to 0$, which is satisfied by $h_n = Dn^{-b}$ for $0 < b < \frac{1}{4}$ and some positive constant D, for example.

4. MEAN SQUARE CONVERGENCE

The following theorem yields the mean square convergence of $Q_n(p)$ to $Q^0(p)$ for appropriate choices of h_n. Also, combining Theorem 3.2 with Theorem 4.1 below gives conditions under which $Q_n^*(p)$ converges in mean square to $Q^0(p)$.

THEOREM 4.1. Let p_0 be such that $0 < p_0 < \min \{1, \frac{T}{H(f_0)}\}$. Suppose (h.1) and (K.1) hold, f_o is differentiable on some neighborhood of f_0, f_0 is continuous at f_0 with $f_0'(f_0) > 0$, and $E(X^{04}) < \infty$. Then for $0 < p < p_0$,

$\mathbb{E}([Q_n(p) - Q^0(p)]^2) \leq g(n, h_n)$, where $g(n, h_n) = o(h_n^2) + o(h_n^{1/2}) + o(h_n^{1/4}) + o(h_n^{1/3}) + o(n^{-1/4}(\log n)^{3/4}) + o(n^{-1/6}(\log n)^{5/6}) + o(n^{-1/4}(c_1^2(1-p)^2 + c_2(1-p)h_n + c_3h_n^2))$ for some positive constants c_1, c_2, and c_3.

It should be noted that an example of a bandwidth sequence $\{h_n\}$ which will give $g(n, h_n) \to 0$ as $n \to \infty$ is $h_n = c_n n^{-\delta}$, $0 < \delta < 5/2$, where $c_n > 0$ is bounded by some positive constant D.

The proof of Theorem 4.1 is obtained from the following three lemmas.
LEMMA 4.1. Suppose (K.1) holds, F_0 is differentiable on some neighborhood of ξ_p with $f_0(\xi_p^0) > 0$. Then

$$\left(\int_{-c}^{c} [Q^0(p+h_nu) - Q^0(p)] K(u) du \right)^2 = o(h_n^2).$$

PROOF. By the conditions on F_0 and f_0, there exists a neighborhood $A(p)$ of ξ_p^0 so that $A = \sup_{t \in A(p)} [f_0(Q^0(t))]^{-1} < \infty$. Hence, by condition (K.1), the conclusion of the lemma follows.

LEMMA 4.2. Under the conditions of Theorem 4.1,

$$|E(\int_{-c}^{c} [\tilde{Q}_n(p+h_nu) - Q^0(p+h_nu)] K(u) du)| \leq O(h_n^{-5/4}) + O((\log n/n)^{3/4}).$$

PROOF. Let U_n denote the product-limit (PL) quantile process (Csorgo, 1983, Eq. (8.1.18), p. 118), and for each n choose $\varepsilon_n = (\log n/n)^{1/2}$. Define the events $A_n = \{ \sup_{-c \leq u \leq c} |U_n(p+h_nu) - (p+h_nu)| > \varepsilon_n \}$. By Cheng (1984), for large n, $P[A_n] = O(n^{-5/2}).$

Write $E(\int_{-c}^{c} [\tilde{Q}_n(p+h_nu) - Q^0(p+h_nu)] K(u) du) = E_1 + E_2$, where

$$E_1 = E(\int_{-c}^{c} [Q^0(U_n(p+h_nu) - Q^0(p+h_nu)] K(u) du \cdot I_{A_n})$$

and

$$E_2 = E(\int_{-c}^{c} [Q^0(U_n(p+h_nu)) - Q^0(p+h_nu)] K(u) du \cdot I_{A_n^c}).$$

Using the H"older inequality,

$$|E_1| \leq (E(\int_{-c}^{c} Q^0(U_n(p+h_nu)) K(u) du)^2 P[A_n])^{1/2} \leq (\sup_{u} K(u) n^{-5/2} E[h_n^{-1} \int_{-c}^{c} Q^2(t) dt])^{1/2}.$$

Thus, by Theorem 3.1 of Mauro (1985), $|E_1| = O(h_n^{-5/4}).$

Now, for E_2, using Taylor's expansion, there exists a ξ between $U_n(p+h_nu)$ and $p+h_nu$ such that

$$|E_2| = |E(\int_{-c}^{c} [U_n(p+h_nu) - (p+h_nu)] K(u) du [f_0(Q^0(\xi))]^{-1} I_{A_n^c})|$$

$$= |E(\int_{-c}^{c} [f_0(Q^0(\xi))]^{-1} [U_n(p+h_nu) - (p+h_nu)] K(u) du)|.$$
\[+ \frac{n^{-\gamma}}{n} (p + h_u) \int_K(u) \, du \cdot I_n \]
\[- \int_{-c}^c \left[\frac{\varepsilon_0 (Q^0 (\xi))}{I_n} \right]^{-1} n^{-\gamma} \frac{\alpha_n (p + h_u)}{I_n} \int_K(u) \, du \cdot I_n \]

where \(\alpha_n \) denotes the uniform PL empirical process (Csörgő, 1983, p. 117). For \(n \) sufficiently large, \(|1/\varepsilon_0 (Q^0 (\xi))| \leq A \), where \(A \) is defined in the proof of Lemma 4.1, and by Cheng's (1984) Theorem 2, for large \(n \),

\[\sup_{c \leq u \leq c} |U_n (p + h_u) - (p + h_u) + n^{-\gamma} \alpha_n (p + h_u)| \]
\[= O((\log n/n)^{3/4}). \tag{4.1} \]

Next,

\[\left| \frac{\varepsilon_0 (Q^0 (\xi))}{I_n} \right|^{-1} n^{-\gamma} \langle \alpha_n (p + h_u) \rangle \int_K(u) \, du \cdot I_n \]
\[\leq n^{-\gamma} A \left| \frac{\varepsilon_0 (Q^0 (\xi))}{I_n} \right|^{-1} n^{-\gamma} \left| \frac{\alpha_n (p + h_u, n) \int_K(u) \, du \cdot I_n}{A_n} \right| \]
\[+ n^{-\gamma} \left| \frac{\varepsilon_0 (Q^0 (\xi))}{I_n} \right|^{-1} n^{-\gamma} \left| \frac{\alpha_n (p + h_u, n) \int_K(u) \, du \cdot I_n}{A_n} \right| \]
\[\leq 0((\log n/n)^{3/4}) \]

where \(K^* (t, s) \) denotes the generalized Kiefer process (Csörgő, 1983, p. 118). By Theorem 8.1.1 of Csörgő (1983) (or Burke, Csörgő, and Horváth, 1981),

\[\sup_{c \leq u \leq c} |\alpha (p + h_u) - n^{-\gamma} K^* (p + h_u, n)| \xrightarrow{a.s.} 0(n^{-1/3} (\log n)^{5/2}). \tag{4.3} \]

Therefore, from (4.1)-(4.3), for large \(n \),

\[\left| E_2 \right| \leq E_2 \left| \left[U_n (p + h_u) - (p + h_u) + n^{-\gamma} \alpha_n (p + h_u) \right] \int_K(u) \, du \right| \]
\[+ n^{-\gamma} \left| \frac{\varepsilon_0 (Q^0 (\xi))}{I_n} \right|^{-1} n^{-\gamma} \left| \frac{\alpha_n (p + h_u, n) \int_K(u) \, du \cdot I_n}{A_n} \right| \]
\[+ 0(n^{-1/3} (\log n)^{5/2}) n^{-\gamma} \]
\[\leq 0((\log n/n)^{3/4}) + 0(n^{-5/6} (\log n)^{5/2}) \]
\[= 0((\log n/n)^{3/4}), \]

since \(E_2 \int_{-c}^c n^{-\gamma} |K^* (p + h_u, n) | \int_K(u) \, du \leq \), and the proof is completed.

Lemma 4.3. Suppose the conditions of Theorem 4.1 hold. Then
\begin{align*}
E\left[\left(\int_{-c}^{c} (\hat{Q}_n(p+h_n u) - Q_0(p+h_n u)) K(u) \, du \right)^2 \right] \\
\leq 0(n^{-5/6} (\log n)^{5/2}) + O(h_n^{\frac{1}{6} - 5/4}) \\
+ O(n^{-1/4}(c_1(1-p)^2 + c_2(1-p)h_n + c_3h_n^2)).
\end{align*}

Proof. As in the proof of Lemma 4.2, write

\[E\left[\left(\int_{-c}^{c} (\hat{Q}_n(p+h_n u) - Q_0(p+h_n u)) K(u) \, du \right)^2 \right] = E_3 + E_4, \]

where

\[E_3 = E\left[\left(\int_{-c}^{c} (\hat{Q}_n(p+h_n u) - Q_0(p+h_n u)) K(u) \, du \right)^2 I_{A_n^c} \right] \]

and

\[E_4 = E\left[\left(\int_{-c}^{c} (\hat{Q}_n(p+h_n u) - Q_0(p+h_n u)) K(u) \, du \right)^2 I_{A_n} \right]. \]

Now,

\[|E_4| \leq E\left[\left(\int_{-c}^{c} \hat{Q}_n^2(p+h_n u) K(u) \, du \right)^2 I_{A_n} \right] \]

\begin{align*}
&\leq \left(E\left[\left(\int_{-c}^{c} \hat{Q}_n^2(p+h_n u) K(u) \, du \right)^2 \right] \cdot P(A_n) \right)^{1/2} \\
&\leq \left(E\left[\left(\int_{-c}^{c} \hat{Q}_n^2(p+h_n u) K(u) \, du \right)^2 \right] \right)^{1/2} n^{-5/4} \\
&\leq [\sup_u K(u)]^{1/2} \left(h_n^{-1} E[Q_n^4(t) \, dt] \right)^{1/2} n^{-5/4} \\
&\leq O(h_n^{-5/4}). \tag{4.4}
\end{align*}

by Hölder's inequality and Mauro's (1985) Theorem 3.1.

Next, using the Taylor expansion as in the proof of Lemma 4.2,

\[|E_3| \leq \left| E\left[\left(\int_{-c}^{c} (f_0(Q_0(E)))^{-1}(U_n(p+h_n u) - (p+h_n u) \\
+ n^{-2\alpha_n}(p+h_n u) K(u) \, du \right)^2 \right] \right| \\
+ |E\left[\left(\int_{-c}^{c} (f_0(Q_0(E)))^{-1} n^{-2\alpha_n}(p+h_n u) K(u) \, du \right)^2 \right] | \\
+ 2 |E\left[\int_{-c}^{c} (f_0(Q_0(E)))^{-1}(U_n(p+h_n u) - (p+h_n u) \\
+ n^{-2\alpha_n}(p+h_n u) K(u) \, du \right] | \\
\times \int_{-c}^{c} (f_0(Q_0(E)))^{-1} n^{-2\alpha_n}(p+h_n u) K(u) \, du | \\
= E_{31} + E_{32} + E_{33}. \]

Now, as in the proof of Lemma 4.2,

\[|E_{31}| \leq \left(O(\log n/n)^{3/4} \right)^2 = O((\log n/n)^{3/2}). \]
Also,

\[E_{32} \leq n^{-k} \left| E \left(\int_{-c}^{c} f_{\alpha}(u) K(u) du \right)^{-1} \alpha_{n} (p+h_n u) \right| \]

\[\leq n^{-k} |E(\int_{-c}^{c} f_{\alpha}(u) K(u) du)^2| \]

\[+ n^{-k} |E(\int_{-c}^{c} (f_{\alpha}(u) K(u))^{-1} n^{-h_k} \alpha_{n} (p+h_n u) K(u) du)^2| \]

\[+ n^{-k} |E(\int_{-c}^{c} (f_{\alpha}(u) K(u))^{-1} \alpha_{n} (p+h_n u) K(u) du|^2 \]

\[- n^{-h_k} K(p+h_n u, n) K(u) du \]

\[\times \int_{-c}^{c} (f_{\alpha}(u) K(u))^{-1} n^{-h_k} K(p+h_n u, n) K(u) du \]

\[\leq n^{-k} |E(\int_{-c}^{c} (f_{\alpha}(u) K(u))^{-1} \alpha_{n} (p+h_n u) K(u) du|^2 \]

\[+ 2n^{-h_k} \left[\int_{-c}^{c} (f_{\alpha}(u) K(u))^{-1} n^{-h_k} K(p+h_n u, n) K(u) du \right]^2 \]

Since \(n^{-h_k} K(t, n) \) is a Gaussian process in \(t \), the last expectation in (4.5) is finite, and by Fubini's theorem and section 8.2 of Csoergő (1983), for \(n \) sufficiently large,

\[E(\int_{-c}^{c} n^{-1} K^2(p+h_n u, n) K(u) du) \]

\[= \int_{-c}^{c} (1-(p+h_n u))^2 \left(\int_{0}^{p+h_n u} \frac{dx}{(1-x)^2(1-H(0^+(x)))} \right) K(u) du \]

\[\leq \left[\int_{0}^{p} \frac{dx}{(1-x)^2(1-H(0^+(x)))} \right] \int_{-c}^{c} (1-p)^2 K(u) du \]

\[+ 2(1-p) h_n \int_{0}^{p} K(u) du + 2 \int_{0}^{p} K(u) du \]

Therefore, from (4.6) and condition (K.1), (4.5) yields for appropriate constants \(c_1, c_2, \) and \(c_3 \)

\[|E_{32}| \leq (n^{-7/2} (\log n)^{5/2}) + n^{-k} [c_1 (1-p)^2 + c_2 (1-p) h_n + c_3 h_n^2] \]

Similarly, since \(|E(\int_{-c}^{c} f_{\alpha}(u) K(u) du) - \alpha_{n} (p+h_n u) K(u) du| \leq \]

\[|E_{33}| \leq (n^{-5/6} (\log n)^{5/2}) \]

Therefore, combining these results for \(E_3 \),

\[E(\int_{-c}^{c} (Q_{n}(p+h_n u) - Q_{n}(p+h_n u)) K(u) du)^2 \]

\[\leq 0(h_n^{-5/4} + 0((\log n/n)^{3/2}) + 0(n^{-7/2} (\log n)^{-5/2}) \]

\[+ 0(n^{-5/6} (\log n)^{5/2}) \]
= o(h^{-5}n^{-3/4}) + o(n^{-5/6}(\log n)^{5/2})
+ o(n^{-5/4}[c_1(1-p)^2 + c_2(1-p)h_n + c_3h^2_n]),
completing the proof.

The proof of Theorem 4.1 is then obtained from Lemmas 4.1-4.3 by
writing, for sufficiently large n,

\[E([\hat{Q}_n(p) - Q^0(p)]^2) \]
\[= E([\int_{-\infty}^c (\hat{Q}_n(p+h_n u) - Q^0(p+h_n u))K(u)du]^2) \]
\[+ [\int_{-\infty}^c (Q^0(p+h_n u) - Q^0(p))K(u)du]^2 \]
\[+ 2\int_{-\infty}^c [Q^0(p+h_n u) - Q^0(p)]K(u)du \times E(\int_{-\infty}^c \hat{Q}_n(p+h_n u) - Q^0(p+h_n u)K(u)du). \]

It should be noted that the conditions of Theorem 4.1, as well as those
of the other theorems in this paper, are not restrictive and are similar to
conditions for results for right-censored data obtained by previous authors.
See Chapter 8 of Csörgö (1983) for various references and Cheng (1984),
for example.
REFERENCES

Based on right-censored data from a lifetime distribution F_0, a kernel-type estimator of the quantile function $Q_0^*(p)$, defined by $Q_0^*(p) = h^{-1} \int_0^h Q_0(t)K((t-p)/h)dt$, is studied. This estimator is smoother than the product-limit quantile function $Q_n^*(p) = \inf\{t: F_n(t) \geq p\}$, where F_n denotes the product-limit estimator of F_0 from the censored sample. Under the random censorship model and general conditions on h_n, K, and F_0, asymptotic normality of $Q_n^*(p)$ and a simpler approximation to it, $Q_n^*(p)$, is shown, and mean square convergence of Q_n is proven. Also, the asymptotic mean equivalence of Q_n and Q_n^* is shown.