A PROBABILISTIC MODEL FOR DIAGNOSING MISCONCEPTIONS BY A PATTERN CLASSIFICATION APPROACH

KIKUMI K. TATSUOKA

Approved for public release; distribution unlimited. Reproduction in whole or in part permitted for any purpose of the United States Government.

This research was sponsored by the Personnel and Training Research Program, Psychological Sciences Division, Office of Naval Research, under Contract No. N00014-82-K-0604. Contract Authority Identification Number NR 150-495.

RESEARCH REPORT 83-4-ONR MAY 1983

University of Illinois at Urbana-Champaign
Copies of this report may be requested from:

Kikumi K. Tatsuoka
252 ERL
103 S. Mathews St.
University of Illinois
Urbana, IL 61801
A probabilistic model for diagnosing misconceptions by a pattern classification approach

Kikumi K. Tatsuoka

Computer-based Education Research Laboratory
103 S. Mathews, Rm. 252 ERL, U of Illinois
Urbana, IL 61801

Personnel and Training Research Programs
Office of Naval Research (Code 442)
Arlington, VA 22217

The purpose of this study is to introduce a probabilistic approach to classify and diagnose erroneous rules of operation resulting from a variety of misconceptions ("bugs") in a procedural domain of arithmetic. The model contrasts the deterministic approach which has commonly been
used in the field of artificial intelligence and shows an advantage in treating the variability of errors in responses. Item response theory (IRT) turned out to be a useful model in integrating the theory of cognitive processes with educational practice. In this paper, erroneous rules of operation in signed-number subtraction problems are represented as points in a geometric space by utilizing IRT. We named this space "rule space." This approach seems promising in assessing the state of knowledge as reflected by erroneous rules and in utilizing the information obtained from behaviors of bugs into educational evaluation.
Acknowledgement

This research was sponsored by the Personnel and Training Research Program, Psychological Sciences Division, Office of Naval Research, under contract No. N00014-79-C-0752.

Several of the analyses presented in this report were performed on the PLATO® system. The PLATO® system is a development of the University of Illinois, and PLATO® is a service mark of Control Data Corporation.

The author would like to gratefully acknowledge and thank several people in her staff for their help. First, Maurice Tatsuoka, who gave much editorial help and engaged in many useful discussions with the author. Robert Baillie wrote all the computer programs used in this report. Gerard Chevalaz did data analysis and Louise Brodie typed the manuscript and prepared some of the figures.
This study introduces a model, utilizing item response theory, for dealing with various rules that students use in solving problems. Siegler (1976, 1978) developed a rule assessment method for handling choice data -- he used this method in the context of cognitive development in the balance scale. Anderson (1974, 1981) developed a functional measurement methodology to research the assessment of algebraic integration rules. Wilkening and Anderson (1982) compared the two methods (Siegler's binary decision tree method and Anderson's functional method) and discussed their advantages and disadvantages. Wilkening and Anderson state that the binary decision tree methodology does not resolve the underlying problem of lack of an error theory to handle response variability. The functional measurement method allows for unreliability or variability in the responses and allows analysis of variance to assess a goodness of fit measure between rules and data. It seems, however, that both the methods are more suitable for investigating a basic foundation of knowledge structure and development rather than for conducting evaluative studies on performance data.

This study will introduce a measurement model using item response theory (IRT) for dealing with the misconceptions committed by many students. Although the purpose of the model is neither to discover an unknown source of misconception from responses nor to represent knowledge structure like the binary decision tree method, it has the capability of diagnosing many erroneous rules. The primary purpose of the model is to establish an interface between cognitive processes and psychometrics.
It is useful to know the transitional behavior of error types which may be due to a change of instructional methods, advancement of learning stages, or the stability and persistence of particular misconceptions. Such knowledge can help to evaluate instruction, measure the outcome of learning and obtain diagnostic information for designing remedial instruction which should be particular to the type of misconception. The model should be able to express various aspects of misconceptions quantitatively so that they can be statistically related to other measures like motivation or creativity.

First the model, which is named "rule space," will be introduced. The rule space is formulated by using IRT models so as to facilitate probabilistic treatments for "behaviors" of misconceptions. An index measuring "usualness" of responses will also be briefly described because it is used as one of the coordinates of rule space. Secondly, rule space will be illustrated with signed-number arithmetic data and the responses generated from various erroneous rules will be shown as points in the rule space. Then we will discuss a technique for assessing rules used inconsistently by a student due to "slips" or the instability of his/her misconceptions. Using pattern classification techniques (Fukunaga, 1972) to determine the student's latent state of knowledge (Tatsuoka & Tatsuoka, 1981) or to find his/her misconception(s) seems very useful when taking the variability of errors into account.
Rule Space

All erroneous rules of operation in signed-number arithmetic (that have already been discovered) can be expressed as points in a geometric space called "rule space." In other words, rule space is a geometric representation of the rules used by students. Before the formulation of the rule space is presented, the extended caution index (which measures the degree of anomaly in response patterns) will be briefly introduced.

Extended Caution Index (ECI)

A group of extended caution indices, which provides information from patterns of responses to test items not contained in the total score, was introduced by Tatsuoka and Linn (1981, 1983). Similar indices based on IRT (Wright & Stone, 1977; Levine & Rubin, 1979) were introduced as identifiers of "guessing, sleeping, fumbling and plodding" (Wright & Stone, 1977, p. 110) or "so atypical...that his or her aptitude test score fails to be a completely appropriate measure" (Levine & Rubin, 1979, p. 269). Statistical properties of the ECIs have been investigated by Tatsuoka and Tatsuoka (1982). The raw ECIs are standardized (SECIs) by subtracting their conditional expectations then dividing them by their conditional standard error. By so doing, SECIs provide values comparable at two different levels of person parameters.

The values of the ECIs are calculated by first constructing two matrices; one is a binary score matrix \(y_{ij} \), \(i=1,\ldots,N, j=1,\ldots,n \) where \(N \) is the number of students and \(n \) is the number of items in a test. The other is a probability matrix with elements \(P_{ij} \), which values of a logistic function with one, two or three parameters, defined as
where c_i is the guessing parameter, a_j is the item discriminating power, b_j is the item difficulty, and θ_i is person i's ability or achievement level (Lord & Novick, 1968; Lord, 1980).

In practice, the estimated P_{ij} obtained by substituting a_j, b_j, c_j and θ_i by their estimated item and person parameters in the logistic function can be used. One of the ECIs, ECI4, is defined as an index reflecting anomaly of an actual response pattern at a given level of ability θ_i. It is the complement of the ratio of two covariances: the numerator is the covariance of the ith row vector, y_i, of (y_{ij}) and the ith row, P_i, of the probability matrix (P_{ij}); the denominator is the covariance of the column-mean vector of $G = (G_1, G_2, \ldots, G_n)$, and the ith row vector P_i, both of (P_{ij}). That is,

$$ECI4 = 1 - \frac{\text{cov}(y_i, P_i)}{\text{cov}(G, P_i)}$$

where

$$G_{.j} = \frac{1}{N} \sum_{i=1}^{N} P_{ij}$$

The conditional expectation and variance of ECI4 are given by

$$E(ECI4|\theta_i) = 1 - \frac{\text{Var}(P_i)}{\text{cov}(G, P_i)}$$

$$\text{var}(ECI4|\theta_i) = \frac{2\psi_{ij}(P_{ij} - T_i)^2}{n^2 \text{cov}^2(G, P_i)}$$

Thus, the standardized ECI4 is given by
\[EC14_z = \frac{n \cdot \text{cov}(P_i - y_i, P_i)}{\sum_{j=1}^{n} \sum_{k=1}^{n} (P_k - T_i)^2} \]

where \(T_i = \frac{1}{n} \sum_{j=1}^{n} P_{ij} \), the raw-mean vector of \((P_{ij})\) and
\(\sigma_{ij}^2 = P_{ij}(1 - P_{ij}) \), variance of item \(j \) at the level \(i \).

Tatsuoka and Tatsuoka (1982) showed empirically that the

standardized \(EC14 \) (\(SEC14 \)) has an appropriate normal distribution. This is
not surprising because \(EC14 \) is a weighted arithmetic mean of \(P_{ij} \), \(j=1, 2, \ldots, n \), while the appropriateness measures developed by Levine and
Rubin (1979) and Drasgow (1982), correspond to a geometric mean of \(P_{ij} \).
Both the extreme tails of the distribution correspond to more unusual
response patterns while the points in the middle indicate the usual,
typical response patterns. Harnisch and Tatsuoka (1983) examined
empirically the relationship between \(SEC14 \)s and total scores, finding
that \(SEC14 \) correlates nearly zero with the total scores, both linearly
and curvilinearly.

Component scoring: decomposing the regular scoring procedure of
"right" or "wrong" into finer components

Many erroneous rules in arithmetic can produce the right answer for
a given item (Van Lehn, 1982; Birenbaum & Tatsuoka, 1984; Tatsuoka &
Tatsuoka, 1982, 1983; Davis 1980). For example, the item \(-16 - (-4)\) can have
the right answer by the following three erroneous rules: (1) always
subtracting the two numbers and taking the sign of the number with the
larger absolute value; (2) changing the minus operation sign to
addition, misunderstanding the parentheses as the bars of absolute value
and then applying the right rule for addition; (3) converting the
subtraction to an addition problem by changing the sign of the second
number, then subtracting the smaller absolute value from the larger absolute value and taking the sign of the first number to the answer. These three erroneous rules, which are committed by a substantial number of seventh graders (Birenbaum & Tatsuoka, 1983), produce the right answer for all subtraction problems in which the first number has the larger absolute value. But if we give a second item 4 - (-16), then rule (1) produces -12 and rules (2) and (3) yield the answers of +20 and +12, respectively. Therefore, if we select an appropriate set of items, each rule would correspond to a unique set of responses to those items. It is not always true, however, that the traditional scoring of “right” or “wrong” for responses to the items produces a unique set of binary response patterns corresponding to each rule.

Tatsuoka and Baillie (1982) pointed out that there are several erroneous rules whose response patterns by the traditional scoring procedure are identical but which can be distinguished by decomposing the unit of the answer into finer components. Tatsuoka and Tatsuoka (1981) listed the response patterns of 45 erroneous rules in signed-number arithmetic also obtained from the regular scoring procedure. Some of the 45 binary patterns of 16 items are identical although the descriptions of the erroneous rules which produced these identical patterns are not. There is no way to distinguish two such different rules just by looking at their binary response patterns.

However, all the erroneous rules discovered so far in signed-number addition and subtraction problems can be expressed uniquely as sets of the binary response patterns resulting from the component scoring procedure obtained by decomposing the regular scoring procedure into
finer components -- e.g., the sign part of the answer for a given item and the absolute value part of the answer in signed-number problems, or, for a fraction problem, the three components (whole number, numerator and denominator) of the answer. The regular response patterns are elementwise products of the component response patterns. Table I describes this procedure with four examples of signed-number subtraction.

Hereafter we will use this new scoring method, the component scoring procedure, in this study. Even though the rationale of component scoring is based on a signed-number study, it may be generalized to other domains of arithmetic or mathematics.

Rule space: True score and SECI for component response patterns

Remember that each student's regular response pattern obtained by regular scoring is decomposed into component response patterns so that his/her responses to the test items are now represented by component response patterns. The Euclidean space determined by the four variables, T_1^u, T_1^s, SECI$_i^a$ and SECI$_i^s$ will be called "rule space" hereafter. For example, the four rules of Table I are expressed as four points in the rule space.

Lord and Novick (1968) and Lord (1980) defined test characteristic function (or test response curve) as the average of n item response curves (or item characteristic functions) and denoted by $T(\theta)$. That is,

$$T(\theta) = \frac{1}{n} \sum_{j=1}^{n} p_j(\theta)$$
Table 1
The Binary Response Patterns of Three Different Scorings Generated by Four Rules

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-3 - (-7) = +4</td>
<td>-4</td>
<td>0 0 1</td>
<td>+4</td>
<td>1 1 1</td>
<td>+4</td>
<td>1 1 1</td>
<td>+4</td>
<td>1 1 1</td>
</tr>
<tr>
<td>-2 - 8 = -10</td>
<td>+6</td>
<td>0 0 0</td>
<td>+6</td>
<td>0 0 0</td>
<td>+6</td>
<td>0 0 0</td>
<td>-10</td>
<td>0 0 0</td>
</tr>
<tr>
<td>5 - (-12) = +17</td>
<td>-7</td>
<td>0 0 0</td>
<td>+7</td>
<td>0 1 0</td>
<td>+17</td>
<td>1 1 1</td>
<td>-7</td>
<td>0 0 0</td>
</tr>
<tr>
<td>-11 + 8 = -19</td>
<td>-3</td>
<td>0 1 0</td>
<td>+3</td>
<td>0 0 0</td>
<td>-19</td>
<td>1 1 1</td>
<td>-19</td>
<td>1 1 1</td>
</tr>
<tr>
<td>9 - 4 = +5</td>
<td>+5</td>
<td>1 1 1</td>
<td>+5</td>
<td>1 1 1</td>
<td>+5</td>
<td>1 1 1</td>
<td>+5</td>
<td>1 1 1</td>
</tr>
<tr>
<td>-15 - (-9) = -6</td>
<td>-6</td>
<td>1 1 1</td>
<td>+6</td>
<td>0 0 1</td>
<td>-6</td>
<td>1 1 1</td>
<td>-6</td>
<td>1 1 1</td>
</tr>
<tr>
<td>-13 - 5 = -18</td>
<td>-8</td>
<td>0 1 0</td>
<td>+8</td>
<td>0 0 0</td>
<td>-8</td>
<td>0 1 0</td>
<td>-18</td>
<td>1 1 1</td>
</tr>
<tr>
<td>8 - (-16) = +14</td>
<td>+2</td>
<td>0 1 0</td>
<td>+2</td>
<td>0 1 0</td>
<td>+14</td>
<td>1 1 1</td>
<td>+2</td>
<td>0 1 0</td>
</tr>
<tr>
<td>-5 +11 = -16</td>
<td>+6</td>
<td>0 0 0</td>
<td>+6</td>
<td>0 0 0</td>
<td>-16</td>
<td>1 1 1</td>
<td>-16</td>
<td>1 1 1</td>
</tr>
<tr>
<td>1 - 10 = -9</td>
<td>+9</td>
<td>0 0 1</td>
<td>+9</td>
<td>0 0 1</td>
<td>-9</td>
<td>1 1 1</td>
<td>-9</td>
<td>1 1 1</td>
</tr>
</tbody>
</table>

Rule 16: The student subtracts the smaller absolute values from the larger absolute value and takes the sign of the number with the larger absolute value in his/her answer.

Rule 32: The two numbers are always subtracted as seen in Rule 16 but the + sign is always taken in the answers.

Rule 12: The student converts -2 - 8 and -13 - 5 into -2 + 8 and -13 + 5, respectively, but the other eight items are converted to addition problems correctly. Then the right addition rule is used to answer them.

Rule 46: The student has a strange idea about the parentheses. Converts operation sign, -, to +, first. Then he/she follows the rule: if the signs of the two numbers are minus, then change the sign of the second number to a +; if the signs of the two numbers are not alike, then the sign of the second number becomes a minus.

R Regular Scores
S Sign-Component Scores
A Absolute-Value-Component-Scores
Suppose $a_{1j}, b_{1j}, j=1,2,...,n$ be item parameters of the logistic model estimated by the maximum likelihood procedure obtained from absolute value component patterns and $a_{2j}, b_{2j}, j=1,2,...,n$ be item parameters estimated from sign components patterns. In other words, two binary data matrices, (y_{1ij}^a) and (y_{1ij}^s) which are obtained by component scoring procedures, are used to estimate the item parameter and for calculating $SECl_i^a$ and T_i^a (or $T(\theta_i)$ of the two components for each subject i. Thus, each subject's two component response patterns correspond to two ordered pairs: $(T_i^a, SECl_i^a)$ for the absolute value and $(T_i^s, SECl_i^s)$ for sign. Table 2 provides these ordered pairs for the four rules given in Table 1.

Insert Table 2 about here

An illustration of rule space with signed-number subtraction problem data.

A 40-item free-response test that comprises four parallel subtests of 10 items each in signed-number subtraction problems was administered to 172 eighth graders at a local junior high school (referred to as "Test 6" hereafter; more tests to be introduced later). The traditional scoring of right or wrong answers was decomposed into a two-component scoring procedure for the absolute-value and sign parts of the responses. Thus, the signs of the responses to the 40 items were scored right or wrong and so were the absolute values. The two component-response patterns are subjected separately to the estimation of item and person parameters of the two-parameter logistic model. The item parameters estimated by the maximum likelihood procedure are listed in Appendices I and II. Twenty complete erroneous rules that are often observed (at least 3 different students used them) are selected for this
Table 2

The Values of \((T_{11}^a, SECl_{11}^a)\) and \((T_{11}^s, SECl_{11}^s)\), the Ordered Pairs of True Score and Standardized Extended Caution Index for the Four Rules given in Table 1

<table>
<thead>
<tr>
<th>Rules</th>
<th>(T_{11}^a)</th>
<th>(SECl_{11}^a)</th>
<th>(T_{11}^s)</th>
<th>(SECl_{11}^s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule 16</td>
<td>.2966</td>
<td>-3.1570</td>
<td>.4488</td>
<td>-3.2816</td>
</tr>
<tr>
<td>Rule 32</td>
<td>.2966</td>
<td>-3.1570</td>
<td>.4555</td>
<td>2.4860</td>
</tr>
<tr>
<td>Rule 12</td>
<td>.7522</td>
<td>-2.6485</td>
<td>.8791</td>
<td>.2196</td>
</tr>
<tr>
<td>Rule 46</td>
<td>.7644</td>
<td>.0833</td>
<td>.8227</td>
<td>1.6241</td>
</tr>
</tbody>
</table>
study (Tatsuoka & Tatsuoka, 1981) and their component values of the rule space are calculated and listed in Appendix III.

These values of T^3_i, T^S_i, $SECi^3_i$ and $SECi^S_i$ for all students in the dataset as well as those for the twenty erroneous rules (Tatsuoka & Tatsuoka, 1981) are mapped into the rule space. Figure 1 shows a subspace whose coordinates are T^3_i and T^S_i. As has been mentioned earlier, a rule space is defined as a geometric representation of the rules (including the right rule and inconsistent application of two or more rules) used by the students.

Insert Figure 1 about here

Twenty small circles (o) in Figure 1 represent twenty different erroneous rules while the plus signs (+) stand for the student’s responses to the 40 items. If the student responds to the 40 items by applying one of the twenty erroneous rules consistently, then his/her point should coincide with the circle representing the rule. There are two such points "O" in Figure 1. Most points do not show overlap, but some real responses are located in the vicinity of a rule.

Tatsuoka and Baillie (1982) generated data which simulate responses resulting from inconsistent application of a rule. One or two out of the 40 items do not follow a given erroneous rule and thus the component response patterns do not completely match the patterns produced by the erroneous rule. Twenty sets of simulation data based on the twenty different rules were generated and plotted on the space spanned by both the component true scores in Figure 2. Rules 16, 32, 12 and 46 and their simulated responses which cluster around corresponding rules are not separated well from each other in Figure 2. As can be seen in
Figure 1: Plot of True Score for Absolute Value Component Against Sign Component, Real Data ('+') and Erroneous Rules ('0').
Figure 1, Rules 16 and 32, and 12 and 46 are already very close, respectively.

But, when plotted in terms of the sign true score against the standardized ECI4s obtained from the sign-component scores, four distinctly different clusters are formed in this space as shown in Figure 3a. In a similar figure, Figure 3b, the absolute value true score is plotted against the ECI4a, showing rules 12 and 46 distinctly separated.

It is apparent that the values of ECIs are capable of separating response patterns that have very close true scores or the same total scores.

Pattern Classification

In the previous section, Figure 3 showed the four erroneous rules (described in Table 1) and the non-consistent responses neighboring each of them forming four distinctly different clusters. By calculating a linear classification functions for each of the four clusters and setting the boundaries to divide the four regions, it is possible to classify the misconception underlying a new response by examining the region in which the new response falls -- with some probability of misclassification, of course. This is the traditional procedure for pattern classification and recognition problems to determine the category to which a new stimulus belongs (Fukunaga, 1972). Thus, we have transformed our problem, diagnosing an individual students' misconceptions, into a classification problem. Tatsuoka and Baillie have developed a computer program named SIGNBUG for diagnosing erroneous rules in signed-number arithmetic tests, but the logic of the algorithm
Figure 2: Plot of the Sign True Score Against Absolute Value for the Four Clusters Around Rules 12, 16, 32 and 46 in Figure 3.
Figure 3a: Plot of the Clusters Around Rules 12, 16, 32 and 46 in Figure 2, Sign True Score Against SEC_1^s.
Figure 3b: Plot of the Clusters Around Rules 12, 16, 32 and 46 in Figure 2, Absolute Value True Score Against SECI.
is deterministic; therefore, if a student responds to an item without using a specific rule, then SIGNBUG cannot determine the rule.

As shown in Figures 2 and 3, the component response patterns yielded by using an erroneous rule consistently for the test items and the responses resulting from random "slips" of one or two items form a cluster; this is a nice feature of the rule space. An error theory that can handle response variability becomes applicable to our model. Since all erroneous rules that have been discovered so far in signed number arithmetic are represented by their unique component response patterns of absolute value and sign, these rules correspond to different ordered pairs of \((T^a_k, SECl^a_k)\) and of \((T^s_k, SECl^s_k)\), \(k=1,...,K\). If each cluster of the erroneous rules could be separated from the rest of the clusters by a hyperplane in the four dimensional rule space of signed-number subtraction problems, then diagnosis of the responses resulting from random "slips" around a rule will be given by examining in which region (divided by the hyperplanes) the responses fall. This approach often is called "pattern classification." With the probabilistic approach of rule space and pattern classification it is possible to remedy the weakness of the deterministic approach taken in SIGNBUG without losing its strength.

In this paper, the classification boundaries of 20 clusters neighboring the 20 erroneous rules of signed-number subtraction problems are shown. The list of the 20 rules plotted in Figure 4 and their descriptions are given elsewhere (Tatsuoka & Tatsuoka, 1981), and Figure 5 shows the 20 clusters around the 20 rules. A stepwise discriminant analysis (SPSS) was used to determine the classification functions and Table 3 summarizes the results.
Nineteen of the rules are perfectly classified, without any error of classification, and only rule (45) has one out of the 31 samples misclassified. Four independent variables -- absolute value, and sign true scores, and SECI4 for absolute value and signs -- were used in the analysis.

Data Analysis

Changes of responses over time for individual students. The 40-item open-ended test for subtraction problems of signed number arithmetic was administered four times to the students in a local junior high school in 1981. The first test was administered before instruction on the subject was given to the eighth graders and is referred to as "Test 3." The instruction (lessons) were written on the computer-based education system (PLATO) at the University of Illinois. The lessons are each almost one hour long. Two different instructional methods -- one based on the number line and the other, which relies heavily on verbal ability, using the postman stories (Davis, 1964) -- are given to two randomly selected groups. We will refer to the number line group as Group 1 and the postman group as Group 2 hereafter.

The second test (Test 4) was administered after the students completed the two PLATO lessons. Subsequently, a regular class teaching subtraction skills was held. The teachers adopted a method using verbal rules (described in Birenbaum & Tatsuoka, 1980; Tatsuoka, 1981) and drilled the students for two weeks. Although they referred to the number line method in a systematic way, they did not mention the postman stories at all. After two weeks of classroom instruction, the third test (Test 5) was
Figure 4: Twenty Erroneous Rules of Signed-Number Subtraction Problems
Figure 5: Twenty Clusters of the Responses Neighboring the Twenty Rules
Table 3

Classification Matrix: Number of Cases Classified into Group and Percent Correct

<table>
<thead>
<tr>
<th>Rule</th>
<th>Correct</th>
<th>3</th>
<th>6</th>
<th>7</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>21</th>
<th>22</th>
<th>25</th>
<th>30</th>
<th>32</th>
<th>34</th>
<th>37</th>
<th>38</th>
<th>45</th>
<th>46</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>100</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>100</td>
<td>0</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>100</td>
<td>0</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>100</td>
<td>0</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>100</td>
<td>0</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>100</td>
<td>0</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>37</td>
<td>100</td>
<td>0</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>38</td>
<td>100</td>
<td>0</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>45</td>
<td>96.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>46</td>
<td>100</td>
<td>0</td>
<td>31</td>
</tr>
</tbody>
</table>

Total | 99.8 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 30 | 31
administered. The fourth test (Test 6) was given after the students completed multiplication and division of signed numbers. Test 6 was mentioned earlier.

Since the 40-item test is composed of four parallel subtests of ten items, the comparison of errors committed by the student across the four subtests can be carried out by plotting the responses to the ten items four times in the rule space obtained by the 10-item subtest. That is, the student's responses to the 40 items yield 4 points, each of which corresponds to one of the four parallel subtests. Table 4 shows the component values of the rules space for two students A and B. \(T_{A1}, T_{A2}, T_{A3} \) and \(T_{A4} \) are obtained by averaging estimated logistic probabilities \(P_j(\theta_A) \) over 10 items in each subtest,

\[
T_{AK} = \frac{1}{10} \sum_{j=1}^{10} P_j(\theta_A), \quad K=1,2
\]

\(ECI_{4A1-4} \) are calculated by using 10 items in each subtest. Thus, four sets of two ordered pairs are obtained from Student A’s responses to the four parallel subtests. Note that the coordinates of the plots in Figure 1 are based on 40 items, but the coordinates of the points in Figure 6 are obtained from 10 items. Student A studied the number line method (Group 1) and student B studied the postman stories (Group 2). Their performances on the four subtests are shown in Table 4. Interpretation of the changes made by Students A and B across the four subtests, over the four different stages of learning designated by Tests 3 through 6 are summarized in Appendix IV. Their rule space representations are given in Figures 6 and 7.
Table 4
The Performances by Students A and B on the Four Subtests of Tests 3, 4, 5, and 6

<table>
<thead>
<tr>
<th>Subtest 1</th>
<th>Subtest 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 3</td>
<td>Test 4</td>
</tr>
<tr>
<td>Item</td>
<td>A</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>1. -6 (-8)</td>
<td>2</td>
</tr>
<tr>
<td>2. -7 -9</td>
<td>2</td>
</tr>
<tr>
<td>4. 1 (-10)</td>
<td>-9</td>
</tr>
<tr>
<td>6. -12 +3</td>
<td>-9</td>
</tr>
<tr>
<td>7. 8 -6</td>
<td>2</td>
</tr>
<tr>
<td>8. -16 (-7)</td>
<td>-9</td>
</tr>
<tr>
<td>9. -12 -3</td>
<td>-9</td>
</tr>
<tr>
<td>12. 9 (-7)</td>
<td>2</td>
</tr>
<tr>
<td>16 2 -11</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subtest 3</th>
<th>Subtest 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 3</td>
<td>Test 4</td>
</tr>
<tr>
<td>Item</td>
<td>A</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>33. -3 (-3)</td>
<td>-2</td>
</tr>
<tr>
<td>34. -4 -6</td>
<td>2</td>
</tr>
<tr>
<td>36. 5 (-7)</td>
<td>2</td>
</tr>
<tr>
<td>39. 4 -2</td>
<td>2</td>
</tr>
<tr>
<td>40. -11 (-2)</td>
<td>-9</td>
</tr>
<tr>
<td>41. -13 -4</td>
<td>-9</td>
</tr>
<tr>
<td>44. 10 (-1)</td>
<td>9</td>
</tr>
<tr>
<td>45. -7 +9</td>
<td>2</td>
</tr>
<tr>
<td>48. 7 -16</td>
<td>9</td>
</tr>
</tbody>
</table>

(cont.)
Table 4 (cont.)

<table>
<thead>
<tr>
<th>Subtest 1</th>
<th>Subtest 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 5</td>
<td>Test 6</td>
</tr>
<tr>
<td>Item</td>
<td>A</td>
</tr>
<tr>
<td>-----------</td>
<td>----</td>
</tr>
<tr>
<td>1. -3 - (-7)</td>
<td>4</td>
</tr>
<tr>
<td>2. -2 - 3</td>
<td>-10</td>
</tr>
<tr>
<td>4. 5 - (-12)</td>
<td>17</td>
</tr>
<tr>
<td>6. -11 - +8</td>
<td>-19</td>
</tr>
<tr>
<td>7. 9 - 4</td>
<td>5</td>
</tr>
<tr>
<td>8. -15 - (-9)</td>
<td>-6</td>
</tr>
<tr>
<td>9. -13 - 5</td>
<td>-18</td>
</tr>
<tr>
<td>12. 8 - (-6)</td>
<td>14</td>
</tr>
<tr>
<td>13. -5 - +11</td>
<td>-16</td>
</tr>
<tr>
<td>16. 1 - 10</td>
<td>-9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subtest 3</th>
<th>Subtest 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 5</td>
<td>Test 6</td>
</tr>
<tr>
<td>Item</td>
<td>A</td>
</tr>
<tr>
<td>-----------</td>
<td>----</td>
</tr>
<tr>
<td>33. -2 - (-8)</td>
<td>6</td>
</tr>
<tr>
<td>34. -3 - 9</td>
<td>-12</td>
</tr>
<tr>
<td>36. 4 - (-9)</td>
<td>13</td>
</tr>
<tr>
<td>38. -11 - +7</td>
<td>-18</td>
</tr>
<tr>
<td>39. 8 - 5</td>
<td>3</td>
</tr>
<tr>
<td>40. -13 - (-4)</td>
<td>-9</td>
</tr>
<tr>
<td>41. -15 - 3</td>
<td>-18</td>
</tr>
<tr>
<td>44. 11 - (-1)</td>
<td>12</td>
</tr>
<tr>
<td>45. -6 - +8</td>
<td>-2</td>
</tr>
<tr>
<td>48. 5 - 13</td>
<td>-8</td>
</tr>
</tbody>
</table>
Figure 6: Plot of Student A's Performance Over Tests 3, 4, 5, and 6, Numbered 1, 2, 3, and 4, respectively
The progress shown by student A over the four tests is normal because his average points obtained on the four subtests (marked by "o") in each of the four tests (Tests 3 through 6) gradually moved toward the top-right corner of Figure 6. The use of the right rule is designated by the point (1,1) at the top right corner. Variation of the four points in a test is due to the variability of responses as well to sampling errors. Since each wave of subtests consists of ten carefully chosen parallel items, if performance on the test is perfectly consistent over the four subsets, then the estimated parameter should be identical for 4 parallel items. But actual data used for estimating the item and person parameters by the maximum likelihood procedure of the two parameter logistic model was not so. Therefore, the four points of the four tests do not coincide perfectly as a single point. For example, student A produced identical responses for the first wave of subtests in Tests 3 and 4. Yet, the points that appeared in Figure 4 are slightly different. Also, the performances on the second, third and fourth subtests of the first test are identical, committing the same erroneous rules, but the points designating these responses are slightly different; l_2, l_3, and l_4 as shown in the figure.

Student B mastered the computational skills fairly well after he studied the PLATO lessons (postman stories). After the class, however, his performance was affected by the different teaching methods and he displayed confusion when converting subtraction operations into addition operation. The postman-stories approach does not teach the steps in converting subtraction to addition in a step-by-step fashion as the teacher's verbal rules do. Thus his errors (diagnosed by our computer
program SIGNBUG) clearly showed that he did carry out newly converted addition problems correctly (the verbal rule is first to change the operation sign of "-" to "+", and then to change the sign of the second number), but incorrectly converted subtraction into addition problems.

Changes of responses at different points in time

Figures 8 through 11 are plots of the responses made by all students who took Tests 4 through 6. The coordinates of the plots in the figures are the true scores (Lord and Novick, 1968) of the two components scores, absolute values and signs. The trend of changes in the points of the four tests is clear: As the stages of learning advance toward mastery of the right rule, the cluster moves toward the right top corner [(1,1) represents the use of the right rule] of the space spanned by two component true scores. The points from Test 5 in Figure 9 cluster most closely to the point (1,1), the right rule.

Insert Figures 8, 9, 10 & 11 about here

But the points from Test 6 in Figure 11 are no longer clustering as closely to the top right corner of the space as the points of Test 5 are. Learning new materials (i.e., multiplication and division of signed numbers) after the completion of the subtraction unit affected the performances on Test 6.

Summary and Discussion

This study introduced a probabilistic model utilizing item response theory for dealing with a variety of misconceptions. The model can be used for evaluating the transition behavior of error types, advancement of learning stages, or the stability and persistence of particular misconceptions. Moreover, it can be used for relating the
Figure 8: Plotting of All Students Participating in the Experiments (Test 3, Postman Stories "o" and Number Line Groups "+").
Figure 10: Plotting of All Students Participating in the Experiments (Test 5, Postman Stories "o" and Number Line Groups "+").
Figure 11: Plotting of All Students Participating in the Experiments (Test 6, Postman Stories "o" and Number Line Group "4").
"behaviors" of errors to other criterion measures such as creativity, anxiety and motivation.

One of several personal indices based on item response theory was used to formulate "rule space" which is a geometric representation of erroneous rules of operation. The index in question, EC14, which is used primarily for detecting aberrant response patterns, has proved to be effective for separating clusters of response patterns from one another.

Each cluster comprises the response patterns yielded by some rule and its "slips" -- due to partially consistent application of that rule. The model enables us to apply pattern classification techniques to distinguish a cluster of response patterns around an erroneous rule from other clusters. Thus, the probability of misclassification should be obtainable. However, rigorous investigation along this line is left for subsequent investigation.

The examples in this study only suggest how the rule space approach works and the results of further statistical analyses are not discussed.
Appendix I

Values of Discriminating Index \(\hat{a} \)s, Difficulties \(\hat{b} \)s Obtained from Test 6,

Subtraction Problems: Absolute Value Scoring

<table>
<thead>
<tr>
<th>Item</th>
<th>(\hat{a})</th>
<th>(\hat{b})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.277</td>
<td>-.729</td>
<td>17</td>
<td>.574</td>
<td>-1.925</td>
<td>33</td>
<td>.592</td>
<td>-2.160</td>
<td>49</td>
<td>.464</td>
<td>-2.280</td>
</tr>
<tr>
<td>2</td>
<td>1.099</td>
<td>-.830</td>
<td>18</td>
<td>.962</td>
<td>-.660</td>
<td>34</td>
<td>1.416</td>
<td>-.439</td>
<td>50</td>
<td>1.697</td>
<td>-.556</td>
</tr>
<tr>
<td>4</td>
<td>1.309</td>
<td>-.579</td>
<td>20</td>
<td>1.420</td>
<td>-.635</td>
<td>36</td>
<td>1.481</td>
<td>-.454</td>
<td>52</td>
<td>1.959</td>
<td>-.524</td>
</tr>
<tr>
<td>6</td>
<td>.989</td>
<td>-.779</td>
<td>22</td>
<td>2.524</td>
<td>-.429</td>
<td>38</td>
<td>2.327</td>
<td>-.592</td>
<td>54</td>
<td>1.620</td>
<td>-.656</td>
</tr>
<tr>
<td>7</td>
<td>-.574</td>
<td>-1.992</td>
<td>23</td>
<td>.486</td>
<td>-2.352</td>
<td>39</td>
<td>.619</td>
<td>-1.582</td>
<td>55</td>
<td>.652</td>
<td>-1.812</td>
</tr>
<tr>
<td>9</td>
<td>1.248</td>
<td>-.475</td>
<td>25</td>
<td>2.031</td>
<td>-.413</td>
<td>41</td>
<td>1.281</td>
<td>-.522</td>
<td>57</td>
<td>1.449</td>
<td>-.407</td>
</tr>
<tr>
<td>12</td>
<td>1.277</td>
<td>-.581</td>
<td>28</td>
<td>1.476</td>
<td>-.917</td>
<td>44</td>
<td>1.409</td>
<td>-.667</td>
<td>60</td>
<td>1.471</td>
<td>-.684</td>
</tr>
<tr>
<td>13</td>
<td>2.042</td>
<td>-.660</td>
<td>29</td>
<td>1.934</td>
<td>-.642</td>
<td>45</td>
<td>1.389</td>
<td>-.703</td>
<td>61</td>
<td>1.514</td>
<td>-.738</td>
</tr>
<tr>
<td>16</td>
<td>.609</td>
<td>-1.718</td>
<td>32</td>
<td>.666</td>
<td>-1.664</td>
<td>48</td>
<td>.446</td>
<td>-1.726</td>
<td>64</td>
<td>.442</td>
<td>-1.932</td>
</tr>
</tbody>
</table>
Appendix II

Values of Discriminating Index \hat{a}s, and Difficulties \hat{b}s

Obtained from Test 6, Subtraction Problems: Sign Scoring

<table>
<thead>
<tr>
<th>Item</th>
<th>\hat{a}</th>
<th>\hat{b}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1.172</td>
<td>-1.099</td>
<td>17.</td>
<td>1.280</td>
<td>-1.115</td>
<td>33.</td>
<td>1.202</td>
<td>-.974</td>
<td>49.</td>
<td>1.356</td>
<td>-.913</td>
<td>2.</td>
<td>.661</td>
<td>-1.251</td>
</tr>
<tr>
<td>2.</td>
<td>.661</td>
<td>-1.251</td>
<td>18.</td>
<td>.987</td>
<td>-.867</td>
<td>34.</td>
<td>1.231</td>
<td>-.855</td>
<td>50.</td>
<td>1.255</td>
<td>-.851</td>
<td>4.</td>
<td>2.259</td>
<td>-1.080</td>
</tr>
<tr>
<td>4.</td>
<td>2.259</td>
<td>-1.080</td>
<td>20.</td>
<td>2.031</td>
<td>-1.052</td>
<td>36.</td>
<td>1.739</td>
<td>-.924</td>
<td>52.</td>
<td>1.762</td>
<td>-.786</td>
<td>6.</td>
<td>.646</td>
<td>-2.494</td>
</tr>
</tbody>
</table>
Appendix III

Coordinates of the 20 Erroneous Rules in the Rule Space for a 40-item Signed-Number Subtraction Test

<table>
<thead>
<tr>
<th>Rule</th>
<th>Component</th>
<th>True Scores</th>
<th>SECI</th>
<th>Response Patterns</th>
<th>Component*</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>absolute</td>
<td>0.7084</td>
<td>3.3315</td>
<td>0101101011</td>
<td>-0.3550</td>
</tr>
<tr>
<td></td>
<td>sign</td>
<td>0.7510</td>
<td>1.3322</td>
<td>0101111111</td>
<td>-0.5516</td>
</tr>
<tr>
<td>6</td>
<td>absolute</td>
<td>0.4761</td>
<td>2.9877</td>
<td>0100101001</td>
<td>-0.8889</td>
</tr>
<tr>
<td></td>
<td>sign</td>
<td>0.6486</td>
<td>-1.234</td>
<td>0101111101</td>
<td>-0.8726</td>
</tr>
<tr>
<td>7</td>
<td>absolute</td>
<td>0.3987</td>
<td>6.3432</td>
<td>0100001000</td>
<td>-1.1116</td>
</tr>
<tr>
<td></td>
<td>sign</td>
<td>0.5291</td>
<td>-2.331</td>
<td>0101111100</td>
<td>-1.1657</td>
</tr>
<tr>
<td>11</td>
<td>absolute</td>
<td>0.6837</td>
<td>0.6837</td>
<td>0101101011</td>
<td>-0.4124</td>
</tr>
<tr>
<td></td>
<td>sign</td>
<td>0.7843</td>
<td>2.6399</td>
<td>1011111111</td>
<td>-0.4322</td>
</tr>
<tr>
<td>12</td>
<td>absolute</td>
<td>0.7522</td>
<td>-2.6485</td>
<td>1011111111</td>
<td>-0.2459</td>
</tr>
<tr>
<td></td>
<td>sign</td>
<td>0.8791</td>
<td>2.196</td>
<td>1011111111</td>
<td>0.0117</td>
</tr>
<tr>
<td>13</td>
<td>absolute</td>
<td>0.4488</td>
<td>1.5525</td>
<td>1010010100</td>
<td>-0.9617</td>
</tr>
<tr>
<td></td>
<td>sign</td>
<td>0.6818</td>
<td>-2.7285</td>
<td>1011111111</td>
<td>-0.7733</td>
</tr>
<tr>
<td>15</td>
<td>absolute</td>
<td>0.6591</td>
<td>3.0325</td>
<td>1100101100</td>
<td>-0.4681</td>
</tr>
<tr>
<td></td>
<td>sign</td>
<td>0.7836</td>
<td>-2.4379</td>
<td>1111111111</td>
<td>-0.4349</td>
</tr>
<tr>
<td>16</td>
<td>absolute</td>
<td>0.2966</td>
<td>-3.1570</td>
<td>1000110001</td>
<td>-1.5288</td>
</tr>
<tr>
<td></td>
<td>sign</td>
<td>0.4488</td>
<td>-3.2816</td>
<td>0001111111</td>
<td>-1.4754</td>
</tr>
<tr>
<td>17</td>
<td>absolute</td>
<td>0.2966</td>
<td>-3.1570</td>
<td>1000110001</td>
<td>-1.5288</td>
</tr>
<tr>
<td></td>
<td>sign</td>
<td>0.6818</td>
<td>-2.7285</td>
<td>1011111111</td>
<td>-0.7733</td>
</tr>
<tr>
<td>18</td>
<td>absolute</td>
<td>0.2966</td>
<td>-3.1570</td>
<td>1000110001</td>
<td>-1.5288</td>
</tr>
<tr>
<td></td>
<td>sign</td>
<td>0.8791</td>
<td>2.196</td>
<td>1011111111</td>
<td>0.0117</td>
</tr>
<tr>
<td>21</td>
<td>absolute</td>
<td>0.8338</td>
<td>3.4064</td>
<td>0110010011</td>
<td>0.0051</td>
</tr>
<tr>
<td></td>
<td>sign</td>
<td>0.6584</td>
<td>3.9372</td>
<td>0101010111</td>
<td>-0.8436</td>
</tr>
<tr>
<td>22</td>
<td>absolute</td>
<td>0.2966</td>
<td>-3.1570</td>
<td>1000110001</td>
<td>-1.5288</td>
</tr>
<tr>
<td></td>
<td>sign</td>
<td>0.6584</td>
<td>3.9372</td>
<td>0101010111</td>
<td>-0.8436</td>
</tr>
<tr>
<td>25</td>
<td>absolute</td>
<td>0.2006</td>
<td>0.8670</td>
<td>0000100000</td>
<td>-2.2077</td>
</tr>
<tr>
<td></td>
<td>sign</td>
<td>0.5457</td>
<td>-1.4002</td>
<td>0001111111</td>
<td>-1.1738</td>
</tr>
<tr>
<td>30</td>
<td>absolute</td>
<td>0.2966</td>
<td>-3.1570</td>
<td>1000110001</td>
<td>-1.5288</td>
</tr>
<tr>
<td></td>
<td>sign</td>
<td>0.7664</td>
<td>-1.5839</td>
<td>0111111111</td>
<td>-0.4978</td>
</tr>
<tr>
<td>32</td>
<td>absolute</td>
<td>0.2966</td>
<td>-3.1570</td>
<td>1000110001</td>
<td>-1.5288</td>
</tr>
<tr>
<td></td>
<td>sign</td>
<td>0.4555</td>
<td>2.4860</td>
<td>1010010100</td>
<td>-1.4534</td>
</tr>
<tr>
<td>34</td>
<td>absolute</td>
<td>0.4488</td>
<td>1.5525</td>
<td>1010010100</td>
<td>-0.9617</td>
</tr>
<tr>
<td></td>
<td>sign</td>
<td>0.7664</td>
<td>-1.5839</td>
<td>0111111111</td>
<td>-0.4978</td>
</tr>
<tr>
<td>37</td>
<td>absolute</td>
<td>0.4891</td>
<td>1.5936</td>
<td>1010010010</td>
<td>-0.8558</td>
</tr>
<tr>
<td></td>
<td>sign</td>
<td>0.3837</td>
<td>0.8349</td>
<td>0100110000</td>
<td>-1.7053</td>
</tr>
<tr>
<td>38</td>
<td>absolute</td>
<td>0.7084</td>
<td>3.3315</td>
<td>0101101011</td>
<td>-0.3550</td>
</tr>
<tr>
<td></td>
<td>sign</td>
<td>0.4488</td>
<td>-3.2816</td>
<td>0001111110</td>
<td>-1.4754</td>
</tr>
<tr>
<td>45</td>
<td>absolute</td>
<td>0.2966</td>
<td>-3.1570</td>
<td>1000110001</td>
<td>-1.5288</td>
</tr>
<tr>
<td></td>
<td>sign</td>
<td>0.5186</td>
<td>-1.7692</td>
<td>1001101100</td>
<td>-1.2549</td>
</tr>
<tr>
<td>46</td>
<td>absolute</td>
<td>0.7644</td>
<td>0.0833</td>
<td>1101111111</td>
<td>-2.2133</td>
</tr>
<tr>
<td></td>
<td>sign</td>
<td>0.8727</td>
<td>1.6241</td>
<td>1101111111</td>
<td>-0.0265</td>
</tr>
</tbody>
</table>

*Since the test consists of four parallel tests (i.e., each task has four parallel items), the response patterns of the first ten items are given here.
Appendix IV

Stories of Student A and B's performances on the Four Different Learning Stages

Student A

Pretest (Test 3): He studied the number line method written the PLATO system for about an hour in January, 1980 when he was in the seventh grade. He had not been exposed to any kind of instruction related to signed numbers before. In September of 1980, he took a 64-item signed number test along with 40 other eighth graders before a revised version of the number line lesson on the PLATO system was given. His diagnosed rules are as follows:

Subtest 1 -- His rule for taking an absolute value in the answer was to always subtract the smaller number from the larger number. His rule for taking a sign in the answer was to take the sign of the larger number. However, his application of the rule is only consistent to items 2, 4, 6, 7, 8, 9, 12, 13 and 16, as shown in Table 2.

Subtest 2 -- His application of the rule described above became consistent to all the items in a test.

Subtest 3 -- His rule was the same as that used in Subtest 2

Subtest 4 -- His rule was the same as that used in Subtest 2

The test after the PLATO lesson (1 hour) was given (Test 4):
Test 4 was administered to Student A after he studied a number line lesson on the PLATO system.

Subtest 1 -- He still subtracted the smaller number from the larger number and took the sign of the larger number for the items described in Subtest 1 of the pretest (items 2, 4, 6, 7, 8, 9, 12, 13 and 16).

Subtest 2 -- He used basically the same rule but applied it to different subsets of items for both the sign and the absolute value operations.

Subtest 3 -- He suddenly changed his rule to a new one. If the first number was smaller in absolute value, he subtracted the smaller number from the larger number. If the first number was larger in absolute value, then he added the two numbers. He used this rule for 8 items (all except for the L-S and S-L types). His performance of the sign operation was inconsistent and undetermined.

Subtest 4 -- His rule changed again. This time he changed the operation sign "-" to "+" and applied the right addition rule to items having explicit signs in the second number.
The tests after 2 weeks of classroom instruction was administered (Test 5):

Classroom instruction started with an explanation of the concept of the number line. After students mastered the addition skills based on the number line method, the teachers switched their instruction to the use of verbal rules (Birenbaum & Tatsuoka, 1980; Chaiklin, 1982). Therefore, subtraction problems are taught by the use of the verbal rules.

Subtest 1 -- He learned to use the right rule.
Subtest 2 -- He applied the right rule consistently for taking the absolute value to the items having explicit signs in the second numbers. He used the correct sign for all items.
Subtest 3 -- In the second subtest, he used the right rule consistently when taking the signs in the answers for all items. Taking the absolute values was done correctly for a subset of the items (items with parentheses and L-S, S-L types).
Subtest 4 -- He used the right rule for all items.

The test after 2 weeks of classroom instruction was completed (Test 6):

Subtest 1 -- He used the right rule for all items except #12.
Subtest 2 -- He applied the right rule successfully to all the items.
Subtest 3 -- The result was the same as in Subtest 2.
Subtest 4 -- He used the right rule for a subset of items, except items 50 and 56.

Student A's performances are plotted into Figure 6.

Student B

Pretest (Test 3): She studied postman stories written on the PLATO system for about an hour in January 1980. She had not been exposed to any kind of instruction related to signed numbers. At the beginning of the 1980-81 fiscal year she took a 64-item signed-number test along with 40 other eighth graders before the revised version of postman stories was given to her class. Her diagnosed rules are as follows:

Subtest 1 -- Her rule for taking an absolute value in the answer was undetermined. The signs of her answers for the items which don't have parentheses are yielded by the right rule. The random nature of her answers suggest she was not sure what she should do with the parentheses.
Subtest 2 -- Her rule for taking an absolute value in the answer was undetermined. She used the right rule for items whose signs of the second number were not explicitly written (hidden sign).

Subtest 3 -- Her rule for taking an absolute value in the answer was again undetermined. For the sign part, she changed her rule and completed the subtraction operation by disregarding the step of changing the sign of the second number. Thus, she changed the sign of the operation "-" to "+" and applied the right rule for addition problems to the newly converted addition problems. However, her rule was not applied consistently for the items having hidden signs in the second number.

Subtest 4 -- Her performance was identical to her performance on Subtest 3.

The test given after 1 hour PLATO lesson was studied (Test 4):

Subtest 1 -- She applied the right rule to the items with parentheses and L-S, S-L types.

Subtest 2 -- She used the right rule for taking an absolute value and obtained the right answers for the items with the parentheses and L-S, S-L types. But the rule for taking signs to the answers was not consistent so the rule was undetermined.

Subtest 3 -- She answered all 10 items with the right rule.

Subtest 4 -- She used the right rule for nine items except for -L - (-S) type. Her error is due to mistyping a sign in the answer.

The test after the classroom instruction (2 weeks) was given (Test 5):

Subtest 1 -- Her rule regressed. She did not change the sign of the second number at all. Instead, she changed the operation sign "-" to "+" and consistently applied the right rule for items having explicit signs in the second number.

Subtest 2 -- She used the same rule described above. But the rule of taking an absolute value in the answer was not consistent but her sign operation was consistent for the items whose signs were explicit in the second number.

Subtest 4 -- Her performance was identical to the performances on Subtest 3.

The test given after multiplication and division of signed numbers (Test 6): She applied the right rule repeatedly over the four subtests and answered correctly for all 40 items in the test. This student's performance is shown in Figure 7.
References

Tatsuoka, K. K., & Baillie, R. SIGNBUG: An error diagnostic computer program for signed-number arithmetic on the PLATO® system, 1982a.

Tatsuoka, K. K., & Baillie R. Rule space, the product space of two score components in signed-number subtraction: An approach to dealing with inconsistent use of erroneous rules (Research Report 82-3). Urbana, Ill.: University of Illinois, Computer-based Education Research Laboratory, 1982b.

Tatsuoka, K. K., & Tatsuoka, M. M. Spotting erroneous rules of operation by the individual consistency index (Research Report 81-4-ONR). Urbana, Ill.: University of Illinois, Computer-based Education Research Laboratory, 1981.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Title/Office</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dr. Ed Aiken</td>
<td>Navy Personnel R&D Center</td>
<td>San Diego, CA 92152</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Arthur Bachrach</td>
<td>Environmental Stress Program Cntr.</td>
<td>Naval Medical Research Institute Bethesda, MD 20014</td>
</tr>
<tr>
<td>1</td>
<td>Meryl Baker</td>
<td>NPRDC</td>
<td>San Diego, CA 92152</td>
</tr>
<tr>
<td>1</td>
<td>Liaison Scientist</td>
<td>ONR, Branch Office</td>
<td>Box 39, FPO New York, NY 09510</td>
</tr>
<tr>
<td>1</td>
<td>Lt. Alexander Bory</td>
<td>Applied Psychology Measurement Division</td>
<td>NAMRL NAS Pensacola, FL 32508</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Robert Breaux</td>
<td>NACTRAEQUIPCEN</td>
<td>Orlando, FL 32813</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Robert Carroll</td>
<td>NAVOP 115</td>
<td>Washington, DC 20370</td>
</tr>
<tr>
<td>1</td>
<td>Chief of Naval Education Liaison Office</td>
<td>Air Force Human Resource Lab Operations Training Division Williams AFB, AZ 85224</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Dr. Stanley Collyer</td>
<td>Office of Naval Technology</td>
<td>800 N. Quincy St. Arlington, VA 22217</td>
</tr>
<tr>
<td>1</td>
<td>CDR Mike Curran</td>
<td>Office of Naval Research</td>
<td>800 N. Quincy St. Code 270 Arlington, VA 22217</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Tom Duffy</td>
<td>Navy Personnel R&D Center</td>
<td>San Diego, CA 92152</td>
</tr>
<tr>
<td>1</td>
<td>Mike Durmeyer</td>
<td>Instructional Program Development Building 90 NET-PDCD Great Lakes NTC, IL 60088</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Dr. Richard Elster</td>
<td>Department of Admin. Scie.</td>
<td>Naval Postgraduate School Monterey, CA 93940</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Pat Federico</td>
<td>Navy Personnel R&D Center</td>
<td>Code P13 San Diego, CA 92152</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Cathy Fernandes</td>
<td>Navy Personnel R&D Center</td>
<td>San Diego, CA 92152</td>
</tr>
<tr>
<td>1</td>
<td>Dr. John Ford</td>
<td>Navy Personnel R&D Center</td>
<td>San Diego, CA 92152</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Jim Hollan</td>
<td>Navy Personnel R&D Center</td>
<td>Code 14 San Diego, CA 92152</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Ed Hutchins</td>
<td>Navy Personnel R&D Center</td>
<td>San Diego, CA 92152</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Norman Kerr</td>
<td>Chief of Naval Technical Training</td>
<td>Naval Air Station Memphis (75) Millington, TN 38054</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Peter Kincaid</td>
<td>Training Analysis & Eval. Group</td>
<td>Department of Navy Orlando, FL 32813</td>
</tr>
<tr>
<td>1</td>
<td>R. W. King</td>
<td>Director, Naval Ed. & Training</td>
<td>Department of the Navy Orlando, FL 32813</td>
</tr>
</tbody>
</table>
1 Dr. Leonard Kroeker
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. William L. Maloy (02)
Principal Civilian Advisor for
Education and Training
Naval Training Command, Code 00A
Pensacola, FL 32508

1 Dr. Kneale Marshall
Naval Post Graduate School
Monterey, CA 93940

1 Dr. James McBride
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. William Montague
Navy Personnel R&D Center
Code P13
San Diego, CA 92152

1 Dr. William Nordbrook
1032 Fairlawn
Libertyville, IL 60048

6 Personnel & Training Research Programs
(442 PT)
Office of Naval Research
Arlington, VA 22217

1 Special Asst. for Ed &
Training (OP-01E)
Rm. 2705 Arlington Annex
Washington, DC 20370

1 Lt. Frank C. Petho, MSC, USN, Ph.D.
CNET (N-432)
NAS
Pensacola, FL 32508

1 Dr. Bernard Rimland (01C)
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Carl Ross
CNET-PDCD
Building 90
Great Lakes NTC, IL 60088

1 Dr. Worth Scanland, Director
CNET (N-5)
NAS
Pensacola, FL 32508

1 Dr. Robert Smith
ONR
OP-987H
Washington, DC 20350

1 Dr. Alfred F. Smode
Training Analysis & Ev. Grp.
(TAEG)
Dept. of the Navy
Orlando, FL 32813

1 Dr. Richard Sorensen
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Frederick Steinheiser
CNO-OP115
Navy Annex
Arlington, VA 20370

1 Brad Symson
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Frank Vicino
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Edward Wegman
ONR (Code 415&P)
800 N. Quincy St.
Arlington, VA 22217

1 Dr. Ronald Weitzman
Code 54 WZ
Dpt. of Admin. Sci.
U.S. Naval Postgrad. Schl.
Monterey, CA 93940

1 Dr. Douglas Wetzel
Code 12
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Martin F. Wiskoff
Navy Personnel R&D Center
San Diego, CA 92152
1 Mr. John H. W'Dfe
Code P310
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Wallace Wulfeck, III
Navy Personnel R&D Center
San Diego, CA 92152

Army

1 Technical Director
Army Res. Inst.
5001 Eisenhower Ave.
Alexandria, VA 22333

1 James Baker
Army Res. Inst.
5001 Eisenhower Ave.
Alexandria, VA 22333

1 Dr. Kent Eaton
Army Research Institute
5001 Eisenhower Blvd.
Alexandria, VA 22333

1 Dr. Beatrice Farr
Army Res. Inst.
5001 Eisenhower Ave.
Alexandria, VA 22333

1 Dr. Myron Fischl
Army Res. Inst.
5001 Eisenhower Ave.
Alexandria, VA 22333

1 Dr. Milton S. Katz
Training Tech. Area
Army Res. Inst.
5001 Eisenhower Ave.
Alexandria, VA 22333

1 Dr. Harold F. O'Neil, Jr.
Army Res. Inst.
5001 Eisenhower Ave.
Alexandria, VA 22333

1 Mr. Robert Ross
Army Res. Inst.
5001 Eisenhower Ave.
Alexandria, VA 22333

1 Dr. Robert Sasmor
Army Res. Inst.
5001 Eisenhower Ave.
Alexandria, VA 22333

1 Dr. Joyce Shields
ARI
5001 Eisenhower Ave.
Alexandria, VA 22333

1 Dr. Hilda Wing
ARI
5001 Eisenhower Ave.
Alexandria, VA 22333

Air Force

1 AF Human Resources Lab.
AFHRL/MPD
Brooks AFB, TX 78235

1 Technical Documents Center
AF Human Resources Lab
WPAFB, OH 45433

1 AF Office of Sci. Res.
Life Sciences Directorate, NL
Bolling AFB
Washington DC 20332

1 Air University Library
AUL/LSE 76/443
Maxwell AFB, AL 36112

1 Dr. Earl A. Alluisi
HQ, AFHRL (AFSC)
Brooks AFB, TX 78235

1 Mr. Raymond E. Christal
AFHRL/PMO
Brooks AFB, TX 78235

1 Dr. Alfred R. Fregly
AFOSR/NL
Bolling AFB, DC 20332

1 Dr. Genevieve Haddad
Program Manager
Life Sciences Directorate
AFOSR
Bolling AFB, Washington, DC 20332
<table>
<thead>
<tr>
<th>#</th>
<th>Contact</th>
<th>Address</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dr. T. M. Longridge</td>
<td>AFHRL/OTE, Williams AFB, AZ</td>
<td>85224</td>
</tr>
<tr>
<td>2</td>
<td>Dr. Roger Pennell</td>
<td>AF Human Resources Lab, Lowry AFB, CA</td>
<td>80230</td>
</tr>
<tr>
<td>3</td>
<td>Dr. Malcolm Ree</td>
<td>AFHRL/MP, Brooks AFB, TX</td>
<td>78235</td>
</tr>
<tr>
<td>4</td>
<td>Dr. Patricia A. Butler</td>
<td>NIE-BRN Bldg., Stop #7, 1200 19th St. NW, Washington, DC</td>
<td>20208</td>
</tr>
<tr>
<td>5</td>
<td>Dr. Susan Chipman</td>
<td>Learning & Development, NIE, 1200 19th St. NW, Washington, DC</td>
<td>20208</td>
</tr>
<tr>
<td>6</td>
<td>Dr. Arthur Melmed</td>
<td>724 Brown, US Department of Education, Washington, DC</td>
<td>20208</td>
</tr>
<tr>
<td>7</td>
<td>Dr. Andrew R. Molnar</td>
<td>Sci. Ed. Dev. & Res. NSF, Washington, DC</td>
<td>20550</td>
</tr>
<tr>
<td>8</td>
<td>H. William Greenup</td>
<td>Education Advisor (EO31), Education Center, MCDEC, Quantico, VA</td>
<td>22134</td>
</tr>
<tr>
<td>9</td>
<td>Director, Off. of Manpwr Util. HQ, Marine Corps (MPU), BCB, Bldg. 2009, Quantico, VA</td>
<td>22134</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Dr. Vern W. Urry</td>
<td>Personnel R&D Center, Office of Personn. Mngmnt. 1900 E St. NW, Washington, DC</td>
<td>20415</td>
</tr>
<tr>
<td>11</td>
<td>Thomas A. Warm</td>
<td>Coast Guard Inst., P.O. Substation 18, Oklahoma City, OK</td>
<td>73169</td>
</tr>
<tr>
<td>12</td>
<td>Frank Withrow</td>
<td>US office of Ed. 400 Maryland Ave. SW, Washington, DC</td>
<td>20202</td>
</tr>
<tr>
<td>13</td>
<td>Major Frank Yohannan, USMC</td>
<td>Headquarter, Marine Corps (Code MPI-20), Washington, DC</td>
<td>20380</td>
</tr>
<tr>
<td>14</td>
<td>Dr. Joseph L. Young, Dir.</td>
<td>Memory & Cognitive Processes NSF, Washington, DC</td>
<td>20550</td>
</tr>
<tr>
<td>15</td>
<td>Dr. A.L. Slafkosky</td>
<td>Scientific Advisor (Code RD-1) HQ, Marine Corps, Washington, DC</td>
<td>20380</td>
</tr>
<tr>
<td>16</td>
<td>Defense Technical Information Center</td>
<td>Cameron Station, Bldg 5, Alexandria, VA</td>
<td>22314 Attn:TC</td>
</tr>
</tbody>
</table>
1 Dr. Craig I. Fields
Advanced Research Projects Agency
1400 Wilson Blvd.
Arlington, VA 22209

1 Dr. Patricia Baggett
Dept. of Psych.
University of Colorado
Boulder, CO 80309

1 Dr. William Graham
Testing Directorate
MEPCOM/MEPCT-P
Ft. Sheridan, IL 60037

1 Mr. Avron Barr
Department of Computer Science
Stanford University
Stanford, CA 94305

1 Jerry Lehnus
HQ MEPCOM
Attn. MEPCT-P
Fort Sheridan, IL 60037

1 Dr. Issac Bejar
Educational Testing Serv.
Princeton, NJ 08450

1 Military Assistant for
Training and Personnel Tech.
Office of the Under Secretary
of Defense for Res. & Eng.
Room 3D129, The Pentagon
Washington, DC 20301

1 Dr. Menucha Birenbaum
School of Ed.
Tel Aviv University
Ramat Aviv - Box 39040
Tel Aviv 69978
ISRAEL

1 Dr. Wayne Sellman
Office of the Asstnt. Sec.
of Defense (MRA & L)
Room 2B269, The Pentagon
Washington, DC 20301

1 Dr. Werner Birke
DezWP im Streitkraefteamt
Postfach 20 50 03
D-5300 Bonn 2
WEST GERMANY

1 Major Jack Thorpe
DARPA
1400 Wilson Blvd.
Arlington, VA 22209

1 Dr. Darrel Bock
Dept. of Ed.
University of Chicago
Chicago, IL 60637

1 Dr. Walter Bogan
4615 N. Park Ave, no. 1611
Chevy Chase, MD 20015

1 Dr. James Algina
University of Florida
Gainsville, FL 32611

1 Dr. Robert Brennan
American College Testing Programs
P.O. Box 168
Iowa City, IA 52240

1 Dr. John R. Anderson
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213

1 Dr. John S. Brown
XEROX Palo Alto Res. Cnt.
3333 Coyote Rd.
Palo Alto, CA 94304

1 Dr. Thomas Anderson
CSR
174 Children's Res. Lab.
51 Gerty Drive
Champaign, IL 61820

1 Dr. Leigh Burstein
Dept. of Education
University of California
Los Angeles, CA 90024
Dr. Victor Fields
Dept. of Psychology
Montgomery College
Rockville, MD 20850

Dr. Gerhard Fischer
Liebiggasse 5/3
A 1010 Vienna
AUSTRIA

Dr. Donald Fitzgerald
University of New England
Armidale, N. S. Wales 2351
AUSTRALIA

Dr. Dexter Fletcher
WICAT Research Inst.
1875 S. State St.
Orem, UT 22333

Dr. John Frederiksen
Bolt Beranek & Newman
50 Moulton St.
Cambridge, MA 02138

Dr. Paul Games
403D Carpenter
University Park, PA 16802

Dr. Janice Gifford
University of Massachusetts
School of Education
Amherst, MA 01002

Dr. Robert Glaser
LRDC
University of Pittsburgh
3939 O'Hara St.
Pittsburgh, PA 15213

Dr. Bert Green
John Hopkins University
Dept. of Psychology
Charles & 34th St.
Baltimore, MD 21218

Dr. James Greeno
LRDC
3939 O'Hara St.
Pittsburgh, PA 15213

Dr. Ron Hambleton
School of Education
University of Massachusetts
Amherst, MA 01002

Dr. Delwyn Harnisch
ICBD
University of Illinois
51 Gerty Drive
Champaign, IL 61801

Dr. Kristina Hooper
Clark Kerr Hall
University of Calif.
Santa Cruz, CA 95060

Dr. Paul Holtzman
Decision Systems
MFI
100 S. Wacker Drive
Chicago, IL 60606

Dr. Lloyd Humphreys
421 Psychology
University of Illinois
Champaign, IL 61820

Prof. Raimo Konttinen or Library
Institute for Ed Research
University of Jyvaskyla
40100 Jyvaskyla
FINLAND

Library
HumRRO/Western Division
27857 Berwick Drive
Carmel, CA 93921

Dr. Steven Hunka
Dept. of Education
University of Alberta
Edmonton, Alberta
CANADA

Dr. Earl Hunt
Dept. of Psychology
University of Washington
Seattle, WA 98105
1 Dr. Drew Malizio
American Counc. on Ed.
No. 1 Pont Circle, #20
Washington, DC 20036

1 Dr. Gary Marco
Stop 31-E
Educational Testing Service
Princeton, NJ 08540

1 Dr. Scott Maxwell
Dpt. of Psych.
Univ. of Houston
Houston, TX 77004

1 Dr. David McArthur
CSE 145 Moor Hall
UCLA
Los Angeles, CA 90024

1 Dr. Samuel T. Mayo
Loyola U. of Chicago
820 N. Michigan Av.
Chicago, IL 60611

1 Mr. Robert McKinley
American College Testing
P.O. Box 168
Iowa City, IA 52243

1 Dr. Erik McWilliams
Science Ed. Dev. & Res.
National Science Foundation
Washington, DC 20550

1 Dr. Peter Mich
Ed Psych
Enderis Hall 719
University of Wisconsin
P.O. Box 413
Milwaukee, WI 53201

1 Dr. Robert Mislevy
711 Illinois St.
Geneva, IL 60134

1 Dr. Allen Munro
Behvr. Tech. Lab.
1845 Elena Ave. 4th floor
Redondo Beach, CA 90277

1 Dr. Alan Nicewander
University of Oklahoma
Department of Psychology
Oklahoma City, OK 73069

1 Dr. Anthony J. Nitko
School of Ed.
Division of Ed. Studies
University of Pittsburgh
5C03 Forbes Quadrangle
Pittsburgh, PA 15260

1 Dr. Donald A. Norman
Dpt. of Psych. C-009
Univ. of Calif.
La Jolla, CA 92039

1 Dr. James Olson
WICAT, Inc.
1875 S. State St.
Orem, UT 84057

1 Dr. Jesse Orlansky
Inst. for Defense Analyses
400 Army Navy Drive
Arlington, VA 22202

1 Dr. Seymour A. Papert
MIT
Artific. Intelli. Lab.
545 Technology Square
Cambridge, MA 02139

1 Wayne M. Patience
American Council on Education
GED Testing Service, suite 20
One Dupont Circle, NW
Washington, DC 20036

1 Dr. James A. Paulson
Portland State University
P.O. Box 751
Portland, OR 97207

1 Dr. James Pellegrino
Univ. of Calif.
Dpt. of Psych.
Santa Barbara, CA 93106
1	Dr. Martha Polson
1	Dept. of Psych.
1	Campus Box 346
1	University of Colorado
1	Boulder, CO 80309
1	Dr. Peter Posner
1	Dept. of Psych.
1	Univ. of Oregon
1	Eugene, OR 97403
1	Dr. Peter Polson
1	Dept. of Psych.
1	University of Colorado
1	Boulder, CO 80309
1	Dr. Diane M. Ramsey-Klee
1	R-K Res. & System Design
1	3947 Ridgemont Dr.
1	Malibu, CA 90265
1	Minrat M. L. Rauch
1	P II 4
1	Bundesministerium der
1	Verteidigung
1	Postfach 1328
1	D-53 Bonn I
1	GERMANY
1	Dr. Mark D. Reckase
1	Ed Psych Dept.
1	University of Missouri
1	4 Hill Hall
1	Columbia, MO 65211
1	Dr. Lauren Resnick
1	LRDC
1	University of Pittsburgh
1	3939 O'Hara St.
1	Pittsburgh, PA 15213
1	Dr. Thomas Reynolds
1	University of Texas
1	Marketing Department
1	P.O. Box 688
1	Richardson, TX 75080
1	Dr. Andrew M. Rose
1	American Inst. for Res.
1	1055 Thomas Jefferson St. NW
1	Washington, DC 20007
1	Dr. Leonard L. Rosenbuam
1	Dept. of Psychology
1	Montgomery College
1	Rockville, MD 20850
1	Dr. Ernst Z. Rothkopf
1	Bell Laboratories
1	600 Mountain Ave.
1	Murray Hill, NJ 07974
1	Dr. Lawrence Rudner
1	403 Elm Ave.
1	Takoma Park, MD 20012
1	Dr. David Rumelhart
1	Cntr. for Human Info.
1	Univ. of Calif.
1	La Jolla, CA 92093
1	Dr. J. Ryan
1	Dept. of Ed.
1	University of S. Carolina
1	Columbia, SC 29208
1	Dr. Fumiko Samejima
1	Dept. of Psychology
1	U. of Tennessee
1	Knoxville, TN 37916
1	Dr. Walter Schneider
1	Psychology Department
1	603 E. Daniel
1	Champaign, IL 61820
1	Dr. Alan Schoenfeld
1	Dpt. of Mathematics
1	Hamilton College
1	Clinton, NY 13323
1	Lowell Schoer
1	Psychological & Quantitative Foun.
1	College of Education
1	University of Iowa
1	Iowa City, IA 52242
1	Dr. Robert J. Seidel
1	Instr. Tech. Group
1	HUMMRRO
1	300 N. Washington St.
1	Alexandria, VA 22314
1 Dr. John Serber
University of Wisconsin
Dept. of Ed Psych
Milwaukee, WI 53201

1 Dr. Albert Stevens
Bolt Beranek & Newman, Inc.
50 Moulton St.
Cambridge, MA 02138

1 Dr. Shigemasu
University of Tohoku
Dept. of Ed Psych
Kawachi, Sendai 980
JAPAN

1 Dr. David E. Stone
Hazeltine Corp.
7680 Old Springhouse Rd.
McLean, VA 22102

1 Dr. Edwin Shirkey
Dept. of Psychology
University of Centl Florida
Orlando, FL 32816

1 Dr. Patrick Suppes
Stanford University
Stanford, CA 94305

1 Dr. William Sims
Center for Naval Analysis
200 N. Beauregard St.
Alexandria, VA 22311

1 Dr. Hariharan Swaminathan
Lab. of Psychom. & Evl. Res.
School of Ed.
University of Massachusetts
Amherst, MA 01003

1 Dr. Richard Snow
Dept. of Psychology
U. of Kansas
Lawrence, KS 66044

1 Dr. Wallace Sinaiko
Program Director
Manpower Res. & Advl.
Smithsonian Institution
801 N. Pitt St.
Alexandria, VA 22314

1 Dr. Brad Symson
Code P310
Navy Personnel R&D Cntr
San Diego, CA 92152

1 Dr. Kathryn T. Spoehr
Psychology Dpt.
Brown University
Providence, RI 02912

1 Dr. David Thissen
Dept. of Psychology
University of S. California
Behav. Tech. Labs
1845 S. Elena Ave.
Redondo Beach, CA 90277

1 Dr. Robert Sternberg
Dept. of Psychology
Yale University
Box 11A, Yale Station
New Haven, CT 06520

1 Dr. Perry Thorndyke
The Rand Corp.
1700 Main St.
Santa Monica, CA 90406

1 Dr. Robert Tsutakawa
Dept. of Statistics
University of Missouri
Columbia, MO 65201

1 Dr. V. Uppuluri
Union Carbide Corp.
Nuclear Division
P.O. Box Y
Oak Ridge, TN 37830
Dr. David Vale
Assessment Systems Corp.
2233 University Ave.
Suite 310
St. Paul, MN 55114

Dr. Steven Wise
Dept. of Guid. & Ed Psych
S. Illinois University
Carbondale, IL 62901

Dr. Kurt VanLehn
Xerox PARC
3333 Coyote Hill Rd.
Palo Alto, CA 94304

Dr. Wendy Yen
CTB/McGraw Hill
Del Monte Research Park
Monterey, CA 93940

Dr. Howard Wainer
Division of Psychological Studies
Ed. Testing Service
Princeton, NJ 08540

Dr. Michael Waller
Dpt. of Educational Psych
University of Wisconsin
Milwaukee, WI 53201

Dr. Brian Waters
HumRRO
300 N. Washington St.
Alexandria, VA 22314

Dr. David Weiss
N660 Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455

Dr. Keith Wescourt
Perceptronics, Inc.
545 Middlefield Rd. Suite 140
Menlo Park, CA 94205

P.O. White
Dept. of Psychology
Institute of Psychiatry
DeCrespigry Park
London SE5 8AF
ENGLAND

Dr. Rand R. Wilcox
University of S. California
Dpt. of Psychology
Los Angeles, CA 90007

Wolfgang Wildgrube
Streitdrafteamt
Box 20 50 03
D-5300 Bonn 2
WES. GERMANY