CHARGE-DENSITY WAVES OBSERVED WITH A TUNNELING MICROSCOPE (U) CALIFORNIA UNIV SANTA BARBARA DEPT OF PHYSICS R V COLEMAN ET AL. 01 JUL 85 N00014-78-C-0011 UNCLASSIFIED
OFFICE OF NAVAL RESEARCH

Contract N00014-78-C-0011

Task No. 056-673/112384 (410)

by

and Paul K. Hansma

in the

Physical Review Letters

University of California
Department of Physics
Santa Barbara, CA 93106

July 1, 1985

Reproduction in whole or in part is permitted for any purpose of
the United States Government

"This document has been approved for public release and sale: its distribution is unlimited"
Charge-Density Waves Observed with a Tunneling Microscope

R.V. Coleman, B. Drake, P.K. Hansma, G. Slough

Department of Physics
University of California
Santa Barbara, CA 93106

Department of the Navy
Office of Naval Research
Arlington, VA 22217

July 1, 1985

Chargedensity waves on cleaved surfaces of 1T-TaS$_2$, appeared at 77K as hexagonal arrays of mounds with spacings of 3.500.3\(\sigma\) where \(\sigma = 3.346\) is the lattice spacing of the 1T-TaS$_2$. In contrast, cleaved surfaces of 2H-TaSe$_2$ at 77 K showed only atoms. The tunneling microscope was operated under liquid nitrogen with a Pt(0.9\text{\textmu}m)/Ir(0.2\text{\textmu}m) tip for both types of samples.
Tunneling microscopy is evolving into an important tool for surface analysis. Milestones in this evolution have included profiling grating surfaces, observing steps on atom high, detailing the atomic positions in semiconductor reconstructions, demonstrating small scale variations in the superconducting energy gap at the surface of a thin film, observing single atoms in a close-packed layer, and spectroscopic imaging. The above results were obtained with tunneling microscopes operating in vacuum.

Here we report the first results obtained with a tunneling microscope operating submerged in liquid nitrogen and show that charge-density waves can be observed directly. The liquid nitrogen was used to cool the sample below the charge-density wave transitions in layer structure compounds and provided damping for mechanical vibrations.

The tunneling microscope was a hybrid between IBM Zurich designs and squeezeable electron tunneling junctions. The x-y translator was cut from a 3 x 3 x 0.635cm block of C5400 lead titanate lead zirconate piezoelectric material. The z translator was a half circular bimorph made from two laminated, 15cm radius half disks of C5800 lead titanate lead zirconate piezoelectric material glued together with epoxy. The z translator was supported about the x-y translator with three tungsten spacers near the edges and warped down in the center at 38A/V to bring the sample near the Pt0.8Ir0.2 tip.

The microscope was submerged in a dewar of liquid nitrogen and supported by a spring. The dewar was in turn supported by three rubber tubes from the ceiling. Details of the construction and operation of the microscope will be presented elsewhere.

Figure 1(a) shows individual atoms on a cleaved 2H-TaS2 surface. It is a photograph of a storage oscilloscope screen. The horizontal deflection is 6.6A/division times the x motion across the sample. The vertical deflection is 6.6A/division times the y motion across the sample plus 18A/division times the...
z motion giving a pseudo three dimensional image. Crude calibrations were obtained by calculation based on the manufacturer's values for d_{31}, E_{31} and c_{33} followed by extrapolation to 77K using another manufacturer's data for similar materials. A refined calibration for x and y motion, +20X higher, was obtained by assuming that these were indeed atoms with the spacing given by Wilson and Yoffe: 17 3.36A. This refined calibration was used for measuring the wavelength of the charge-density waves. A refined calibration for the z motion is not yet available.

Figure 1(b) shows charge-density waves on a cleaved surface of 1T-TaS$_2$. A hexagonal array of bumps is clearly visible with a lattice spacing, $\lambda_{CDW}=3.5 \pm 0.3a_0$, where $a_0 = 3.36A$. 17. The apparent height of the bumps is of order 4A, in contrast to of order 0.3A for the atoms in 2H-TaSe$_2$, (although, as mentioned above, the calibration of the z-axis is only approximate).

Photographs were taken with different scan rates and at different magnifications. At higher scan rates, >15Hz, the amplitude of the bumps was reduced. At lower scan rates, <5 Hz, its overall shape was the same but random noise and drift were more troublesome. Thus we obtained the best results at the fastest scan rates at which the tip could track the surface, 10Hz. Photographs at different magnifications were taken; the ones selected for this paper were a compromise to allow seeing the atoms and the charge density waves at the same magnification. In all, approximately 30 photographs of atoms on three different samples of 2H-TaSe$_2$ and 20 photographs of charge-density waves on three different samples of 1T-TaS$_2$ have been obtained. No clear photographs of atoms on 1T-TaS$_2$ or charge-density waves on 2H-TaSe$_2$ have been obtained.

1T-TaS$_2$ and 2H-TaSe$_2$ both show superlattices due to charge-density wave formation and at 77K the λ_{CDW} are commensurate in both crystals. In 1T-TaS$_2$ the CDW forms at high temperatures (~600K) oriented along three equivalent a-axis directions with $\lambda_{CDW} = 1.6a_0 = 1.6a_0$. 10.19. This gives a triple CDW lattice which is incommensurate with the crystal lattice. At 350K there is a first order transition where the triple CDW rotates to approximately 11° away from the a-axis in an attempt to become commensurate. Finally near 200K another first order transition occurs in which the triple CDW becomes commensurate with a rotation of 13.9° from the a-axis and $\lambda_{CDW} = \sqrt{3}a_0$. In the low temperature commensurate phase, the unit cell is triclinic and contains 13 formula units, so that the full superlattice is $\sqrt{3}a_0 \times \sqrt{3}a_0 \times c_0$.

In 20 2H-TaSe$_2$ an incommensurate triple CDW forms in a second-order (or nearly second-order) transition at 122.3K followed by a first order transition near 90K below which the CDW superlattice is commensurate with $\lambda_{CDW} = 3a_0$. The superlattice is then $3a_0 \times 3a_0 \times c_0$ resulting from the superposition of 3 CDW's.

The formation of the CDW's is accompanied by a periodic structural distortion in which the atomic displacements are on the order of 0.1 to 0.25A. The CDW transitions are driven by Fermi surface instabilities 21 with wave vectors near k_F and result in substantial gapping of the high temperature Fermi surface. This can result in almost complete annihilation of the Fermi surface area or in a substantial rearrangement of the Fermi surface geometry.

In the case of 1T-TaS$_2$ the gapping of the Fermi surface results in an extremely low carrier concentration in the commensurate state and at the lowest temperatures the resistivity rises indicating either semiconducting 22 behavior or some type of metal-insulator transition 23. (See Fig. 2). The band calculations of Myron and Freeman 24 showed that in the commensurate phase nesting occurred over substantial regions of the Fermi surface consistent with a large reduction of Fermi surface area in the CDW phase. If an activated conductivity is assumed the activation energy derived from Arrhenius plots of ρ/T versus T between 50 and 150K is 0.5meV although a single energy gap does not suffice at all temperatures. X-ray photoelectron spectroscopy 25 of the Ta 4f core levels also showed that the CDW amplitude in 1T-TaS$_2$ was extremely large at low temperatures, on the order of one electron per atom. The CDW transitions in 1T-TaS$_2$ produce large changes in
the resistivity parallel to the layers as shown in Fig. 2. All of these observations suggest that a large fraction of the conduction electrons have condensed into the CDW phase at 77K.

In contrast to IT-TaS$_2$ the 2H-TaSe$_2$ resistivity parallel to the layers as also shown in Fig. 2 shows only a small anomaly at the CDW transition (120K) and the resistivity remains metallic down to the lowest temperatures. The Fermi surface is gapped by the CDW, but this results in substantial rearrangement of the Fermi surface due to band folding rather than annihilation. A large number of normal electrons remain below the CDW transition. Wilson26 in a band folding model attempted to identify the parts of the 2H-TaSe$_2$ Fermi surface affected by the CDW. Details of the CDW structure and phase in 2H-TaSe$_2$ have also been given by Wilson27 and Wilson and Vincent.28

DeHaas van Alphen29 and Shubnikov de Haas30 experiments on 2H-TaSe$_2$ show up to 11 frequencies in the range 1 to 65mc. The angular dependence of these frequencies can be fit to undulating cylinders running parallel to the c-axis consistent with the two dimensional character of these layer compound Fermi surfaces. Doran and Woolley31 have presented detailed calculations of the band structure density of states and total band structure energy of the 2H phase in the 3 x 3 CDW state. They find six doubly degenerate electron cylinders and their calculated density of states is similar to that calculated for the normal high temperature phase. In both cases the Fermi energy lies just above the main peak suggesting that the peak is an important feature in the CDW stabilizing. Although the details of this peak vary with CDW amplitude the magnitude of the DOS at the Fermi level does not seem to vary substantially from that of the high temperature phase.

The tunneling microscopy results reported here clearly reflect the large differences in the CDW condensate that exist between IT-TaS$_2$ and 2H-TaSe$_2$. The local tunneling density of states in the case of IT-TaS$_2$ appears to be dominated by the CDW condensate structure while in 2H-TaSe$_2$ the presence of a large number of normal electrons below the CDW transition causes the local tunneling density of states to be predominately modulated at the lattice period of 3.43A.

A detailed microscopic model of how the CDW condensate contributes to the local tunneling density of states needs to be developed. The tunneling directions in these experiments are predominately perpendicular to the layers while the group velocities of the electrons are predominately parallel to the layers. This may introduce some directional anisotropy into the problem as well as the need to consider anisotropy in the CDW gap structure in any detailed analysis. Nevertheless the results have shown that the tunneling microscope is highly sensitive to details of the charge-density wave transition in representative layer compounds. In addition the ability to produce highly perfect surfaces by cleaving makes the transition metal dichalcogenides ideal specimens for tunneling microscopy. The characteristic of layer structures has also been used to advantage in molecular beam diffraction by Boato et al.33 They used helium beam diffraction to observe satellite peaks corresponding to the surface corrugation effects due to charge-density waves in IT-TaS$_2$. Experiments are under way on a number of other phases and compounds which exhibit CDW transitions in order to further characterize the ability of tunneling microscopy to detect charge-density wave structure.

Acknowledgements

We are indebted to G. Blinc, S. Chiang, J. Clarke, S. Elrod, R. Feenstra, J.A. Golovchenko, R. Jaklevic, W.J. Kaiser, C. Quate, and H. Kohler for sharing freely their experience in building tunneling microscopes. We thank V. Celli, I.P. Batra, N. Garcia and P. Hammann for helpful conversations on theory, S. Alexander, H. Cullen, J. Schauer and R. Sonnenfeld for their practical advice and W. Mcintire for help with data analysis. This work was supported in part by the Office of Naval Research and Department of Energy Grant No. DE-FG05-85ER45072.
References

1. R. Young, Phys. Today 26, 42 (1971)
14. Channel Industries, Santa Barbara, CA.
15. "Piezoelectric Technology Data for Designers", Verntron, Bedford, Ohio
16. C5400 is similar to PZT4; C5400 is similar to PZT8 according to H. Gallen of Channel Industries.
19. C.B. Scraba, P.M. Williams, and G.S. Parce, Phil. Mag. 11, 255 (1975)
Figure Captions

1. a) Atoms on a cleaved surface of $2H-TaSe_2$. The image was obtained in 5 sec at a scan rate of 10Hz. The applied voltage was ≈50mV and the tunneling current was 2nA.

b) Charge-density waves on a cleaned surface of $1T-TaS_2$. The magnification and scan rate were the same as above. The applied voltage was ≈50mV and the tunneling current was 5.5nA.

2. The resistivity of $1T-TaS_2$ and $2H-TaSe_2$ measured parallel to the layers versus temperature. The resistivity of $1T-TaS_2$ shows much larger anomalies at the CDW phase changes than observed in $2H-TaSe_2$. $1T-TaSe_2$ shows a two part incommensurate to commensurate transition with discontinuous resistance changes at 350 and 200K with an initial CDW onset at ≈600K. $2H-TaSe_2$ has an initial CDW onset at 120K with lock-in at 190K and a very weak resistance anomaly.
<table>
<thead>
<tr>
<th>No. Copies</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research</td>
<td>2</td>
</tr>
<tr>
<td>Attn: Code 413</td>
<td></td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td></td>
</tr>
<tr>
<td>Dr. Bernard Douda</td>
<td>1</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td></td>
</tr>
<tr>
<td>Code 5042</td>
<td></td>
</tr>
<tr>
<td>Crane, Indiana 47522</td>
<td></td>
</tr>
<tr>
<td>Commander, Naval Air Systems</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Code 310C (H. Rosenwasser)</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20360</td>
<td></td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko</td>
<td></td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td></td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>12</td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td></td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td></td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. G. Bosmajian</td>
<td></td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td></td>
</tr>
<tr>
<td>Dr. William Tolles</td>
<td>1</td>
</tr>
<tr>
<td>Superintendent</td>
<td></td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td></td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20375</td>
<td></td>
</tr>
</tbody>
</table>