Compatibilizing Effect of Random or Block Copolymer Added to Binary Mixture of Homopolymers

by

D. Rigby, J. L. Lin, and R. J. Roe

Accepted for Publication in Macromolecules

Department of Materials Science and Metallurgical Engineering University of Cincinnati Cincinnati, Ohio 45221-0012

August 1, 1985

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
Title: Compatibilizing Effect of Random or Block Copolymer Added to Binary Mixture of Homopolymers

Authors: D. Rigby, J. L. Lin, and R. J. Roe

Performing Organization: University of Cincinnati, Cincinnati, Ohio 45221

Contract or Grant Number: N00014-85-K-0245

Report Date: August 1, 1985

Number of Pages: 24

Distribution Statement: Approved for public release; distribution unlimited.

Key Words: Polymer Blend, Compatibilizer, Random Copolymer, Polystyrene, Polybutadiene

Abstract: When copolymer A-B is added to the mixture of homopolymer A and homopolymer B, the compatibility between the two homopolymers is enhanced under certain conditions. Analysis, based on the Flory-Huggins free energy of mixing, gives the specific conditions under which the critical, spinodal or binodal temperature of the ternary mixture is expected to be lowered linearly with the amount of the added copolymer. Experimental measurements were performed.
on the changes in the cloud point of the mixtures of polystyrene and polybutadiene to which varying amounts of styrene/butadiene random or diblock copolymer were added. The results agree with the theoretical expectation. From quantitative analysis of the cloud point depression, the temperature coefficient of the interaction energy density between styrene and butadiene polymers is determined. The temperature coefficient is found to give an excellent agreement with the value previously determined by a curve fitting procedure applied to the cloud point curves of binary mixtures.
INTRODUCTION

Incompatibility between two homopolymers A and B arises, as is well known, from the fact that the very small gain in the entropy of mixing is usually not sufficient to overcome the unfavorable enthalpic interaction between the different types of segments. Enhancement in the degree of compatibility between the homopolymers can be sought by addition of a third component which reduces the number of unfavorable contacts between the segments of the two polymers. Addition of a mutual solvent usually results in such beneficial effect. It will be more useful if a similar enhancement of compatibility can be achieved by addition of a polymeric component. An A-B copolymer would be a natural candidate for such a purpose. In this work we investigate the effectiveness of a styrene-butadiene random copolymer or block copolymer as a compatibilizing agent when added to the mixture of polystyrene and polybutadiene.

First we examine some theoretical consequences that can be predicted on the basis of the Flory-Huggins free energy of mixing with regard to the compatibilizing effect of the copolymer. It is shown that under certain conditions the spinodal, the binodal, and the critical temperatures of the ternary mixture are expected to decrease linearly with the amount of the added copolymer. The specific conditions, constraining the relative amounts of the two homopolymers or the composition of the copolymer, differ depending on whether we want to achieve linear depression of the spinodal, the binodal, or the critical temperature. Next we report on the experimental measurement on the lowering of cloud
points of a series of mixtures of polystyrene and polybutadiene, to which small amounts of styrene-butadiene random copolymers were added. The experimental data are in excellent agreement with theoretical expectation. Quantitative analysis of the data leads to the determination of the temperature coefficient of the polymer-polymer interaction energy density Λ which agrees well with that previously determined. Finally we compare the relative effectiveness of random and block copolymers as compatibilizing agents.

THEORETICAL ANALYSIS

For mixtures containing only polymeric components, the mean field theory is expected2 to provide an adequate framework for analysis of phase relations. In particular, we have earlier1 shown that mixtures of homopolymers and copolymers containing styrene and butadiene monomers can be described satisfactorily in terms of the Flory-Huggins free energy of mixing.

For the ternary system being considered here, the free energy of mixing, ΔG_M, per unit volume of the mixture can be written as

$$\frac{\Delta G_M}{RT} = \sum_{i=1}^{3} \frac{\phi_i}{V_i} \ln \phi_i + \sum_{i>j}^{3} \frac{\Lambda_{ij}}{RT} \phi_i \phi_j$$

(1)

where Λ_{ij} is the polymer-polymer interaction energy density, V_i is the molar volume, and ϕ_i is the volume fraction. We identify the components 1 and 2 with the homopolymers A and B and component 3 with the copolymer A-B. If the volume fractions of
monomers A and B in the copolymer are equal to \(f_1 \) and \(f_2 \) respectively, the \(\Lambda_{ij} \)'s can be written\(^1\) as

\[
\begin{align*}
\Lambda_{12} &= \Lambda \\
\Lambda_{13} &= \Lambda f_2^2 \\
\Lambda_{23} &= \Lambda f_1^2
\end{align*}
\]

(2)

and equation (1) is simplified to

\[
\frac{\Delta G_M}{RT} = \Sigma \frac{\phi_i}{V_1} \ln \phi_i + \frac{\Lambda}{RT} \left(\phi_1 \phi_2 + f_1^2 \phi_2 \phi_3 + f_2^2 \phi_1 \phi_3 \right)
\]

(3)

The interaction energy density \(\Lambda \) is related to the usual \(\chi \) parameter by

\[
\Lambda = RT \chi / V_{\text{ref}}
\]

(4)

where \(V_{\text{ref}} \) is some reference volume, usually taken equal to the molar volume of a segment. The advantage of using \(\Lambda \) over \(\chi \) has previously\(^1,3\) been pointed out. In the following analysis we assume \(\Lambda \) to be independent of the composition of the mixture. This is a good approximation for the styrene-butadiene system\(^1\) being considered here and is probably so also for many other polymer-polymer systems. \(\Lambda \) is moderately temperature-dependent as is shown by our previous results\(^1\) and by the results to be given below.

Before considering the binodals obtainable from equation (3), we first consider the spinodals and the critical points which are more amenable to analysis. The spinodals are given by the condition\(^12,13\)
U \equiv \begin{vmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{vmatrix} = 0 \quad (5)

where

\[G_{ij} = \frac{\partial^2}{\partial \phi_i \partial \phi_j} \left(\frac{\Delta G_M}{RT} \right) \quad (6) \]

The critical point is required to satisfy equation (5) as well as the following condition \cite{12, 13}

\[U_{cr} \equiv \begin{vmatrix} \Delta U/\partial \phi_1 & \Delta U/\partial \phi_2 \\ G_{21} & G_{22} \end{vmatrix} = 0 \quad (7) \]

Substituting equation (3) into equations (5) and (7) we find

\[U = Q_1Q_2 + Q_1Q_3 + Q_2Q_3 - (2\Lambda/RT)(Q_1f_1^2 + Q_2f_2^2 + Q_3^2) \quad (8) \]

and

\[U_{cr} = -V_1Q_1^2(Q_2 + Q_3 - f_1^2 \cdot 2\Lambda/RT)^2 \]
\[+ V_2Q_2(Q_3 + f_1f_2 \cdot 2\Lambda/RT)(Q_1 + Q_3 - f_2^2 \cdot 2\Lambda/RT) \]
\[+ V_3Q_3^2(Q_1 + Q_2 - 2\Lambda/RT)(Q_2 - f_1 \cdot 2\Lambda/RT) \quad (9) \]

where

\[Q_1 = 1/V_1\phi_1 \]

a) Spinodal.

We are interested in knowing how the spinodal temperature changes as we add more of the copolymer to the mixture. Let \(\phi_1^0 \) and \(\phi_2^0 \) represent the volume fractions of the homopolymers before the addition of the copolymer. In any ternary mixture, then, \(\phi_1 \)
is equal to $\phi_1^0(1-\phi_3)$.

When the composition of the initial binary mixture satisfies the special condition

$$\phi_1^0 V_1 / f_1 = \phi_2^0 V_2 / f_2$$ \hspace{1cm} (10)$$

the spinodal equation (8) gives a particularly simple solution

$$2A/RT = 1/f_1 V_2 \phi_2^0 (1-\phi_3) = 1/f_2 V_1 \phi_1^0 (1-\phi_3),$$ \hspace{1cm} (11)$$

or

$$T/A = (T_0/A_0) (1-\phi_3)$$ \hspace{1cm} (12)$$

where T_0 is the spinodal temperature of the initial binary mixture of composition (ϕ_1^0, ϕ_2^0) and A_0 is the value of A at T_0. Equation (12) means that, if one initially chooses the composition of the homopolymer mixture to satisfy equation (10), then, as more copolymer is added the spinodal temperature decreases linearly with ϕ_3 (provided, of course, that A varies only moderately with temperature, as is probably true with most polymer pairs).

When the relative amounts $(\phi_1^0$ and $\phi_2^0)$ of the homopolymers differ greatly from those required by equation (10), the spinodal temperature decreases less rapidly with added copolymer, or may even increase initially, and then goes through a maximum. To illustrate this, the solution of $U = 0$, with U given by equation (8), is plotted numerically in Figure 1 for the case of $V_1 = V_2 = V$, $V_3 = 10V$, $f_1 = f_2$, and various values of ϕ_1^0. In Figure 2 the isothermal spinodal curves in the ternary phase diagram are plotted for several values of VA/RT. Here, point A
denotes the composition \((\phi_1^0, \phi_2^0) \) which satisfies the condition (10), and point B denotes the composition beyond which the added copolymer leads to initial increase in the spinodal temperature. Point B is given in general by

\[
\frac{1}{V_3} = \frac{f_1^2}{\phi_1^0 V_1} + \frac{f_2^2}{\phi_2^0 V_2} - \frac{1}{\phi_1^0 V_1 + \phi_2^0 V_2}
\]
(13)

In Figure 2, the straight line joining a point on the 1-2 axis with the apex 3 is the composition line which is traversed as we add copolymers. It is when this line cuts an isothermal spinodal curve twice that the spinodal temperature initially increases and then goes through a maximum as more copolymer is added. Equation (13) shows that, as the volume \(V_3 \) of the copolymer is increased, the point B is pushed away from the pure homopolymer. In other words, when the size of the copolymer is made larger, the range of composition \((\phi_1^0, \phi_2^0) \) in which the added copolymer leads to monotonic decrease in the spinodal temperature becomes smaller.

b) Critical Point.

For a critical point, equations (8) and (9) have to be satisfied simultaneously. As shown above, for the homopolymer composition satisfying equation (10), equation (8) for the spinodal leads to a very simple solution (11). When equation (11) is substituted into equation (9), it is seen that equation (9) is satisfied only if
\[\phi_1 \sqrt{\gamma} = \phi_2 \sqrt{\gamma} \]

which, in view of equation (10), implies also that

\[\sqrt{\gamma_1} / f_1 = \sqrt{\gamma_2} / f_2. \]

The conditions specified by equations (14) and (15) suggest the following interesting consequence. Suppose one starts with a binary homopolymer mixture at the critical composition, which is given by equation (14). One then chooses a copolymer in which the composition of monomers is related to the homopolymer sizes according to equation (15). Then the ternary mixture formed by addition of this copolymer, irrespective of the amount of the copolymer added, undergoes a phase separation at some temperature which is at once the spinodal, binodal and critical point. As more of the copolymer is added, the critical temperature decreases linearly with the volume fraction of the copolymer in accordance with equation (12).

c) Binodal.

The free energy expression is much more difficult to solve for binodals analytically. Solutions were obtained by Scott\(^4\) and Leibler\(^5\) for the very special case of

\[V_1 = V_2; \quad f_1 = f_2 \]

Because of the symmetry, it is at once expected that when the ternary mixture separates into two phases, the compositions of the coexisting phases formed are given by
\[\phi_1 = \phi_2; \quad \phi_2 = \phi_1; \quad \phi_3 = \phi_3 \]

(17)

Using the condition that the chemical potentials of the coexisting phases should be equal, and substituting equation (17) in the resulting expression, it can be shown that the binodal temperature is given by

\[T = \frac{\Delta V}{2R}(\phi_1 - \phi_2)/\ln(\phi_1/\phi_2) \]

(18)

Since both \(\phi_1 \) and \(\phi_2 \) decrease with increasing \(\phi_3 \) as \(\phi_1 = \phi_0^0(1-\phi_3) \), it is clear that the binodal temperature also follows equation (12) and decreases linearly with increasing \(\phi_3 \).

It should be noted that the condition (16) for the linear decrease in binodal temperature is, in a sense, more general than the corresponding condition (10) for the spinodal and is realized irrespective of the composition \(\phi_0^0, \phi_0^0 \) of the initial homopolymer binary mixture.

Leibler\(^5\) has demonstrated that when the amount of the copolymer exceeds a certain limit, the ternary mixture, on lowering the temperature, may separate into three, rather than two, coexisting phases. When this happens, equation (18) is not valid and the binodal temperature no longer decreases linearly according to equation (12). According to Leibler, the ternary phase diagram, for a system satisfying the condition (16), contains a three phase region when

\[T < \frac{\Delta V}{2R}(2V_1/V_3 + 1) \]

(19)

Thus, as more of the copolymer is added to the mixture of
homopolymers, the binodal temperature will decrease linearly with \(\phi_3 \), until the temperature indicated by equation (19) is reached; thereafter the decrease in the binodal temperature is much less than indicated by the linear law, equation (12). From equation (19) it is seen that this threshold temperature of three phase formation rises as the molar volume \(V_3 \) of the copolymer molecule increases. In other words, copolymer molecules of larger chain lengths are less effective as compatibilizing agent, in agreement with what one might have expected intuitively.

The fact that three phase formation eventually intervenes with sufficient amounts of added copolymer can readily be understood if we look at the plots in Figure 1 once again. There it is seen that the spinodal temperature, in general, decreases with \(\phi_3 \) but, depending on the value of \(\phi_1^0 \) and \(\phi_2^0 \), it decreases initially rather slowly or it goes through a maximum before it starts its descent. The binodal temperature is always higher than the spinodal initially when \(\phi_3 \) is equal to zero (except, of course, for \(\phi_1^0 = 0.5 \), satisfying the critical condition), but decreases linearly with \(\phi_3 \). With increasing \(\phi_3 \), the descent in the spinodal is thus slower than the descent in the binodal and eventually a point is reached where the spinodal temperature becomes higher than the binodal. The contradiction of spinodal being higher than binodal is eliminated by the intervention of three coexisting phases.

EXPERIMENTAL SECTION

Molecular weight data for the polymers used are given in Table 1. The polystyrene homopolymer was an anionically-
polymerized sample obtained from Pressure Chemical Co. The polybutadiene was sample CDS-B-3 obtained from the Goodyear Chemical Company. According to the manufacturer, the latter contains 53% trans, 41% cis, and 6% vinyl unsaturation.

The characterization data of the copolymer samples, comprising three random copolymers and one diblock copolymer, are also listed in Table 1. The random copolymer designated R50/50 and the block copolymer designated B50/50 were anionically polymerized, and were kindly prepared for our use by Dr. H. L. Hsieh of Philips Petroleum Company. Random copolymer SPP45 was obtained from Scientific Polymer Products Ltd., and is believed to have been prepared by radical polymerization. Finally, random copolymer RF50/50 was prepared in this laboratory by free-radical polymerization using a mixture of benzene and ethylbenzene as solvent.

The method used to determine the cloud points of the mixtures has been described in detail elsewhere. Briefly, the various components are thoroughly mixed under vacuum in glass tubes which are then sealed. The sample is then mounted within a furnace whose temperature can be accurately controlled, and light from a He/Ne laser is passed through the sample. The cloud temperature is first determined approximately and then the temperature of the furnace is cycled between limits a few degrees above and below this temperature. In order to avoid spurious undercooling effects we have defined the cloud temperature as the temperature at which the mixture just becomes clear on heating.
The method normally employed for mixing the samples involved weighing the individual components into the sample tubes, giving a total of ca 0.3 g polymer, and then mixing mechanically under vacuum using a magnetically-activated stirrer placed within the sample tube, whilst heating to ca 200°C in a silicone oil bath. However, in the case of sample SPP45, in view of its high molecular weight, the individual components were first dissolved and mixed in toluene, which was then evaporated before completing the mixing process under vacuum in the usual manner.

RESULTS AND DISCUSSION

Cloud temperatures were determined for the mixtures containing equal weights of polystyrene and polybutadiene ($\phi_{PS}/\phi_{PBD} = 0.84$) and varying amounts of one of the four copolymers. The cloud point data obtained are plotted in Figure 3 against volume fraction ϕ_3 of added copolymer. The solid points in this figure were obtained with the random copolymers and the open points with the block copolymer.

Although all the random copolymers produce an almost linear decrease in cloud point, it is apparent that addition of the very high molecular weight sample SPP45 results in only a very slight lowering of cloud point. In contrast, the two other random copolymer samples produce a much more pronounced lowering of cloud point, and in this respect the two samples behave almost identically, despite differences of ~40% in M_w and a factor of more than two in M_n, and despite the difference in the monomer composition: $f_S/f_{BD} = 0.92$ (by volume at 120°C) for sample R50/50 and 0.72 for sample RF50/50.
Equation (12) predicts that, if \(\Lambda \) were independent of temperature, \(T_b \) would decrease linearly with \(\phi_3 \) and extrapolate to 0K for \(\phi_3 + 1 \). Although in Figure 3 the data obtained with the two lower molecular weight copolymers exhibit good linearity, the rate of decrease with \(\phi_3 \) is less than expected. This discrepancy can be ascribed to the temperature-dependence of \(\Lambda \). Our previous study\(^1\) has shown that \(\Lambda \) for polystyrene/polybutadiene system has a moderate dependency on temperature, and one can, in the first approximation, write as

\[
\Lambda = \lambda_0 + \lambda_T T
\] \hspace{1cm} (20)

Substitution of equation (20) into equation (12) then gives

\[
\frac{(1-\phi_3)}{T_b} = \frac{1}{T_{b,0}} + \left(\frac{\lambda_T}{\lambda_0} \right) \phi_3
\] \hspace{1cm} (21)

Figure 4 gives the plot of \(\frac{(1-\phi_3)}{T_b} \) against \(\phi_3 \), as suggested by equation (21), for the data obtained with sample R50/50 and RF50/50. A good straight line can be drawn through the data points with the exception of the point at \(\phi_3 = 0.49 \) (and perhaps at \(\phi_3 = 0.35 \)).

From the slope in Figure 4 we determine \(\frac{\lambda_T}{\lambda_0} \) to be \(-1.28 \times 10^{-3} \) K\(^{-1}\). The \(\Lambda \) values were previously determined by applying a curve fitting procedure to the cloud point curves of binary mixtures, and the average of nine separate determinations gave

\[
\Lambda = 0.718 \pm 0.051 - (0.0021 \pm 0.00045)(T^0\text{C} - 150^\circ\text{C})
\] \hspace{1cm} (22)

where \(\Lambda \) is in cal/cm\(^3\), and the error limits are standard
deviations. From equation (22), λ_T/λ_0 (λ_0 being the value of Λ at $T = 0K$) is calculated to be $(-1.31 \pm 0.32) \times 10^{-3}$ K$^{-1}$. Thus the values of λ_T/λ_0 determined by the two methods show an excellent agreement, which testifies to the validity of the present procedure.

As a method of determining the temperature coefficient of the interaction parameter, the present approach is potentially simpler than the one relying on the analysis of the shape of cloud point curves. In the systems we studied, the homopolymer molar volume V_{PS} and V_{PBD} are not exactly equal to each other and the composition of the copolymers also deviates appreciably from 50/50 (in volume). The seemingly satisfactory value of λ_T value obtained in this work despite these deviations from the ideal symmetry requirements suggests the robustness and practicality of the present procedure. The shape of cloud point curves is affected by the polydispersity of the polymers involved. Our numerical study on the effect of polydispersity6 shows that the cloud point curves will become flatter as the polydispersity increases, and the temperature coefficient of Λ determined from the analysis of the curve shape will be in error unless the polymers involved are of narrow molecular weight distribution. The present method, in contrast, is expected to give good values of the temperature coefficient of Λ even when the polymers involved are polydisperse.

The point corresponding to $\phi_3 = 0.49$, which lies somewhat below the straight line in Figure 4, has a value of $T_b/T_{b,0}$ equal to 0.739, whilst that at $\phi_3 = 0.35$ which lies only slightly below
the line has $T_b/T_{b,0} = 0.801$. If one calculates the value of $T_b/T_{b,0}$ at which a three phase region is expected to appear, using $V_3 = 15000$ and $V_1 = V_2 = 2290 \text{ cm}^3/\text{mole}$ in equation (19), then one obtains $T/T_0 = 0.77$. Thus the phase diagram at the cloud temperature for $\phi_3 = 0.49$ is predicted to contain a three phase region, whilst that at $\phi_3 = 0.35$ lies somewhere near the borderline, and, as such, the rather high value of T_b at $\phi_3 = 0.49$ may reflect experimentally the presence of a three phase region.

The fact that the highest molecular weight copolymer, sample SPP45, fails to function as a compatibilizer can also be explained on the same basis. Equation (19) predicts that for a copolymer having a molecular weight in the range 2.3×10^5 to 3.2×10^5 will cause a separation into three coexisting phases when $T_b/T_{b,0} = 0.98$ or lower. According to equation (12), this condition is expected to be reached when ϕ_3 is equal to 0.02. In Figure 3, the first point obtained with SPP45 is at $\phi_3 = 0.019$, where the observed T_b is already much higher than predicted, suggesting that the three phase separation may have already intervened at this point. Despite such minor discrepancy, it seems reasonable to ascribe the failure of sample SPP45 to function as a compatibilizer to its high molecular weight and the consequent inducement of three phase separation.

For the polystyrene-polybutadiene blends considered here, the interaction energy density Λ remains positive at all temperatures, and the compatibility is achieved only by virtue of
low molecular weight even in the presence of the copolymer. The theoretical analysis given in this work should, however, be useful also in dealing with the blends of high molecular weight polymers that are normally compatible but develop incompatibility at high temperatures. The change-over from a compatibility to an incompatibility in such blends arises from the change in Λ from a negative to a positive value as a result of increased disparity in the free volumes of the pure polymers accompanying the temperature rise. The detrimental effect of the positive interaction parameter, irrespective of its origin, however, can be mitigated by the presence of a copolymer of intermediate composition. Our theoretical analysis should apply to such cases also, as long as the composition dependence of the value of Λ is so small as to be neglected. In particular, equation (12) remains valid, and as the volume fraction ϕ_3 of the copolymer is increased, the ratio T/Λ decreases. Because of the rapid rise in Λ with increasing temperature (usually much faster than T) around the temperature range where Λ changes its sign, the decrease in the ratio T/Λ actually demands that the temperature be increased. In other words, the binodal temperature (or the spinodal or critical temperature, as the case may be) is raised and the temperature range of compatibility is enlarged by the addition of copolymer.

Finally, we consider the results obtained on adding block copolymer to the polystyrene/polybutadiene mixture, depicted by the dotted line in Figure 3. Although the compositions and molecular weights of samples B50/50 and R50/50 closely resemble
each other (see Table 1), one observes markedly different behavior in the case of the block copolymer, as T_b at first decreases slightly before passing through a shallow minimum at about 6% copolymer and then rising again. At larger copolymer contents (>21%) the mixture becomes optically clear at all temperatures above room temperature.

The behavior of the mixtures containing a relatively large amount of block copolymer can be explained readily by recalling the results we obtained previously7,8 for the phase diagram of mixtures of a block copolymer with a homopolymer. The block copolymer, having a regular structure consisting of segregated microdomains of styrene and butadiene segments, is capable of dissolving appreciable amounts of low molecular weight polystyrene and polybutadiene in their respective domains. The mixture then remains optically clear as long as the size of the microdomains remain much smaller than the wavelength of light. With increasing amount of the added homopolymers, however, the solubility limit of the latter is eventually reached and a macroscopic phase separation ensues, leading to a turbid mixture. This point was probably reached in our system when the volume fraction of the combined homopolymers was about 80%. The situation prevailing at even lower concentration of the block copolymer is much less clear at this moment, and requires further study for full explanation. We may, however, add the following speculative comments. The solubility of the block copolymer either in the mixed polystyrene/polybutadiene phase or in the demixed phases consisting predominantly of polystyrene or
polybutadiene is probably very small. Thus the block copolymer possesses very little capability of lowering the binodal or spinodal temperatures. The block copolymer molecules locate themselves predominantly at the boundary between phases, thus lowering the surface free energy and reducing the phase-separated domain sizes. The presence of block copolymer can thus promote the reduction in the turbidity of the mixture, without in fact enhancing the compatibility between the two homopolymers. The efficacy of block copolymers in promoting the compatibility of homopolymer mixture was reported in the past, but such results have to be interpreted to mean an enhancement of "apparent" or "optical" compatibility, in contrast to the thermodynamic compatibility with which we are concerned here. In this regard it should also be mentioned that, when the molecular weight of the block copolymer is sufficiently small so as to make it remain disordered (i.e., without microdomain segregation), then it behaves essentially the same as the corresponding random copolymer and exhibits a compatibilizing effect, as the results obtained by Gallot et al. indicate.

ACKNOWLEDGMENT

This work was supported in part by the Office of Naval Research.
REFERENCES

<table>
<thead>
<tr>
<th>Sample</th>
<th>Remarks</th>
<th>Styrene Content</th>
<th>M_W</th>
<th>M_W/M_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS</td>
<td>polystyrene</td>
<td>100%</td>
<td>1900</td>
<td>1.06</td>
</tr>
<tr>
<td>PBD</td>
<td>polybutadiene</td>
<td>0</td>
<td>2650</td>
<td>1.13</td>
</tr>
<tr>
<td>R50/50</td>
<td>random copolymer</td>
<td>52.5</td>
<td>25000</td>
<td>1.04</td>
</tr>
<tr>
<td>B50/50</td>
<td>diblock copolymer</td>
<td>52.2</td>
<td>26000</td>
<td>1.04</td>
</tr>
<tr>
<td>RF50/50</td>
<td>random copolymer</td>
<td>46.7</td>
<td>16300</td>
<td>1.55</td>
</tr>
<tr>
<td>SPP45</td>
<td>random copolymer</td>
<td>45</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

* $[\eta] = 2.51$ dl/g at 30°C in toluene. The M_W calculated from $[\eta]$ range from 2.3×10^5 to 3.2×10^5, depending on the several Mark–Houwink constants reported for SBR rubber.
LEGEND TO FIGURES

Figure 1. Spinodal temperature T against volume fraction ϕ_3 of added copolymer, calculated for the system homopolymer A, homopolymer B, and random copolymer AB with $V_1 = V_2$, $V_3 = 10V_1$, $f_1 = f_2$ and the initial volume fraction ϕ_1^0 of homopolymer A as indicated.

Figure 2. Spinodal isotherms calculated for the ternary mixture with $V_1 = V_2$, $V_3 = 10V_1$, $f_1 = f_2$. Indicated with the curves are the values of AV/RT. The straight line connecting a point on the 1-2 axis with the apex 3 is the composition line which is traversed as we add the copolymer. When the initial composition of the homopolymers is to the right of point B, the addition of the copolymer lowers the spinodal temperature, whereas when it is to the left of B, the spinodal temperature goes through a maximum before decreasing.

Figure 3. Cloud temperatures obtained with mixtures containing equal weights of polystyrene (M_w 1900) and polybutadiene (M_w 2650) and varying amounts of copolymers. Filled circles: random copolymer R50/50 (M_w 25000); filled squares: random copolymer RF50/50 (M_w 16300); filled diamonds: random copolymer SPP45 ($M_w \geq 2.3 \times 10^5$); open squares: diblock copolymer B50/50 (M_w 26000).

Figure 4. The cloud temperature data, obtained with the two lower molecular weight copolymers R50/50 and RF50/50 and shown in Figure 3, are replotted here in the form of $(1 - \phi_3)/T_b$ against ϕ_3. The slope gives the temperature coefficient of the interaction energy density Λ.

20
<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>2</th>
<th>Dr. David Young</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 413</td>
<td></td>
<td>Code 334</td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
<td>NORDA</td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td></td>
<td>NSTL, Mississippi 39529</td>
</tr>
<tr>
<td>Dr. Bernard Douda</td>
<td>1</td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td></td>
<td>Attn: Dr. A. B. Amster</td>
</tr>
<tr>
<td>Code 5042</td>
<td></td>
<td>Chemistry Division</td>
</tr>
<tr>
<td>Crane, Indiana 47522</td>
<td></td>
<td>China Lake, California 93555</td>
</tr>
<tr>
<td>Commander, Naval Air Systems Command</td>
<td>1</td>
<td>Scientific Advisor</td>
</tr>
<tr>
<td>Attn: Code 310C (H. Rosenwasser)</td>
<td></td>
<td>Commandant of the Marine Corps</td>
</tr>
<tr>
<td>Washington, D.C. 20360</td>
<td></td>
<td>Code RD-1</td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
<td>U.S. Army Research Office</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko</td>
<td></td>
<td>Attn: CRD-AA-IP</td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td></td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>12</td>
<td>Research Triangle Park, NC 27709</td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td></td>
<td>Mr. John Boyle</td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td></td>
<td>Materials Branch</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>Naval Ship Engineering Center</td>
</tr>
<tr>
<td>Attn: Dr. G. Bosmajian</td>
<td></td>
<td>Philadelphia, Pennsylvania 19112</td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
<td>Naval Ocean Systems Center</td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td></td>
<td>Attn: Dr. S. Yamamoto</td>
</tr>
<tr>
<td>Dr. William Tolles</td>
<td>1</td>
<td>Marine Sciences Division</td>
</tr>
<tr>
<td>Superintendent</td>
<td></td>
<td>San Diego, California 91232</td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td></td>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
<td>Washington, D.C. 20375</td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 356A

Naval Surface Weapons Center
Attn: Dr. J. M. Augl, Dr. B. Hartman
White Oak
Silver Spring, Maryland 20910

Professor Hatsuo Ishida
Department of Macromolecular Science
Case Western Reserve University
Cleveland, Ohio 44106

Dr. Robert E. Cohen
Chemical Engineering Department
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. R. S. Porter
Department of Polymer Science
and Engineering
University of Massachusetts
Amherst, Massachusetts 01002

Professor A. Heeger
Department of Chemistry
University of California
Santa Barbara, California 93106

Dr. T. J. Reinhart, Jr., Chief
Nonmetallic Materials Division
Department of the Air Force
Air Force Materials Laboratory (AFSC)
Wright-Patterson AFB, Ohio 45433

Professor J. Lando
Department of Macromolecular Science
Case Western Reserve University
Cleveland, Ohio 44106

Professor C. Chung
Department of Materials Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

Professor J. T. Koberstein
Department of Chemical Engineering
Princeton University
Princeton, New Jersey 08544

Professor J. K. Gillham
Department of Chemistry
Princeton University
Princeton, New Jersey 08540

Professor R. S. Roe
Department of Materials Science
and Metallurgical Engineering
University of Cincinnati
Cincinnati, Ohio 45221

Professor L. H. Sperling
Department of Chemical Engineering
Lehigh University
Bethlehem, Pennsylvania 18015

Professor Brian Newman
Department of Mechanics and
Materials Science
Rutgers University
Piscataway, New Jersey 08854

Dr. Adolf Amster
Chemistry Division
Naval Weapons Center
China Lake, California 93555

Dr. Stuart L. Cooper
Department of Chemical Engineering
University of Wisconsin
Madison, Wisconsin 53706

Professor D. Grubb
Department of Materials Science
and Engineering
Cornell University
Ithaca, New York 14853

Dr. D. B. Cotts
SRI International
333 Ravenswood Avenue
Menlo Park, California 94205

PLASTEC
DRSMC-SCM-O(D), Bldg 351 N
Armament Research & Development
Center
Dover, New Jersey 07801