Mount Zircon Reservoir Dam

NATIONAL PROGRAM FOR INSPECTION OF NON-FEDERAL DAMS

U.S. ARMY CORPS OF ENGINEERS
NEW ENGLAND DIVISION

The dam is an earth embankment dam about 900 ft. long and 55 ft. high. The dam has a stone masonry spillway and concrete gate house inlet structure. The dam is judged to be in good condition. It is maintained well and no major modifications are deemed necessary to assure the long-term safety of the structure. It is based as intermediate in size with a hazard potential of significant.
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
Honorable Joseph E. Brennan
Governor of the State of Maine
State Capitol
Augusta, Maine 04330

Dear Governor Brennan:

I am forwarding to you a copy of the Mount Zircon Reservoir Dam Phase I Inspection Report, which was prepared under the National Program for Inspection of Non-Federal Dams. This report is presented for your use and is based upon a visual inspection, a review of the past performance and a brief hydrological study of the dam. A brief assessment is included at the beginning of the report. I have approved the report and support the findings and recommendations described in Section 7 and ask that you keep me informed of the actions taken to implement them. This follow-up action is a vitally important part of this program.

A copy of this report has been forwarded to the Department of Agriculture and the Department of Transportation, cooperating agencies for the State of Maine. In addition, a copy of the report has also been furnished the owner, the Rumford Water District, Rumford, Maine 04276, ATTN: Mr. Hector LeCours, Superintendent.

Copies of this report will be made available to the public, upon request, by this office under the Freedom of Information Act. In the case of this report the release date will be thirty days from the date of this letter.

I wish to take this opportunity to thank you and the Department of Agriculture and the Department of Transportation for your cooperation in carrying out this program.

Sincerely yours,

Incl.
As stated

John F. Chandler
Colonel, Corps of Engineers
Division Engineer
MOUNT ZIRCON RESERVOIR DAM
ME-00244

ANDROSCOGGIN RIVER BASIN
RUMFORD, MAINE

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM
NATIONAL DAM INSPECTION PROGRAM

PHASE I INSPECTION REPORT

ME-00244

MT. ZIRCON RESERVOIR DAM

RUMFORD

OXFORD COUNTY, MAINE

ZIRCON BROOK

AUGUST 1, 1978

BRIEF ASSESSMENT

The Mt. Zircon Reservoir Dam is an earth embankment dam about 900 feet in length and 55 feet in height. The dam has a stone masonry spillway and concrete gate house inlet structure. The purpose of the dam is storage of potable water for the town of Rumford.

Based on the visual inspection and the compilation of available data, the dam is judged to be in good condition. It is maintained well and no major modifications are deemed necessary to assure the long-term safety of the structure.

The spillway will pass a 100-year flood event. However, based on its intermediate size and significant hazard classification in accordance with the COE guidelines, the test flood falls between the 1/2 PMF and PMF. The spillway capacity of the dam is approximately 22 percent of the probable maximum flood.

Although no major modifications to the dam appear necessary several operating and maintenance procedures as outlined in Section 7.3a, should be implemented within 24 months after receipt of this report by the owner. Items of particular importance are 1) regrading of the dam crest, 2) harvesting of trees on the downstream slope and 3) the development of a plan for around-the-clock surveillance during periods of high anticipated run-off and for a formal warning system to be used in the event of an emergency.

EDWARD C. JORDAN CO., INC.

Stanley E. Walker, P.E.
Project Manager
This Phase I Inspection Report on Mount Zircon Reservoir Dam has been reviewed by the undersigned Review Board members. In our opinion, the reported findings, conclusions, and recommendations are consistent with the Recommended Guidelines for Safety Inspection of Dams, and with good engineering judgment and practice, and is hereby submitted for approval.

RICHARD F. DOHERTY, MEMBER
Water Control Branch
Engineering Division

JOSEPH A. MCELROY, MEMBER
Foundation & Materials Branch
Engineering Division

CARNEY M. TERZIAN, CHAIRMAN
Chief, Structural Section
Design Branch
Engineering Division

APPROVAL RECOMMENDED:

JOE B. FRYAR
Chief, Engineering Division
This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established guidelines, the spillway test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a
measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>LETTER OF TRANSMITTAL</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRIEF ASSESSMENT</td>
<td>ii</td>
</tr>
<tr>
<td>REVIEW BOARD SIGNATURE SHEET</td>
<td>iii</td>
</tr>
<tr>
<td>PREFACE</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>OVERVIEW PHOTOGRAPH</td>
<td>vii</td>
</tr>
<tr>
<td>LOCATION MAP</td>
<td>viii</td>
</tr>
</tbody>
</table>

SECTION 1 - PROJECT INFORMATION

1.1 GENERAL .. 1
1.2 DESCRIPTION OF PROJECT 1
1.3 PERTINENT DATA 3

SECTION 2 - ENGINEERING DATA

2.1 DESIGN .. 7
2.2 CONSTRUCTION 7
2.3 OPERATION 7
2.4 EVALUATION 7

SECTION 3 - VISUAL INSPECTION

3.1 FINDINGS .. 9
3.2 EVALUATION 11

SECTION 4 - OPERATING PROCEDURES

4.1 PROCEDURES 12
4.2 MAINTENANCE OF DAM 12
4.3 MAINTENANCE OF OPERATING FACILITIES 12
4.4 DESCRIPTION OF ANY WARNING SYSTEM IN EFFECT 12
4.5 EVALUATION 13

V
TABLE OF CONTENTS (continued)

SECTION 5 - HYDRAULIC/HYDROLOGIC

5.1 EVALUATION OF FEATURES................................. 14

SECTION 6 - STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY............... 16

SECTION 7 - ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES

7.1 DAM ASSESSMENT.. 17
7.2 RECOMMENDATIONS... 17
7.3 REMEDIAL MEASURES...................................... 17
7.4 ALTERNATIVES... 18

APPENDICES

A FIELD INSPECTION NOTES
B ENGINEERING DATA
C PHOTOGRAPHS
D HYDROLOGIC AND HYDRAULIC DETERMINATIONS
E INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS
4.5 EVALUATION

The dam is in good repair and regular maintenance is done. No formal warning system is in effect for either high water or structural distress.
SECTION 4
OPERATING PROCEDURES

4.1 PROCEDURES
The reservoir is operated as a water supply reservoir with a 16-inch diameter gravity service main. There is a 24-inch diameter outlet gate which has not been used since about 1960, and it was not operated during the visual inspection because there was concern that it would not close. Generally, every year the reservoir fills from spring snow melt and overflows the spillway. As summer approaches, the reservoir water surface elevation goes down below spillway crest. Provision for flashboards exists, but they reportedly were only used once during a 2 to 3 year dry period in the 1950's. Flashboards are not presently used.

4.2 MAINTENANCE OF DAM
Grass mowing is done on the crest of the dam frequently. Brush cutting and tree pruning is done periodically or as-needed. Other maintenance, such as work on the gate house or spillway, is done on an as-needed basis. Burrowing animals are exterminated and burrows are filled, when discovered. Reportedly a forester inspects the trees on the downstream slope and recommends necessary action.

4.3 MAINTENANCE OF OPERATING FACILITIES
The gate valves in the gate house are operated as needed. The valves and valve stems are below normal water level and no regular maintenance is done. The 24-inch diameter gate valve on the blow-off line is reportedly no longer used. Concern was expressed by the operator regarding the possibility of not being able to close the 24-inch valve once it was opened.

4.4 DESCRIPTION OF ANY WARNING SYSTEM IN EFFECT
No warning system is known to be in effect.
Mechanical equipment at the dam consists of gate valves and manual operating equipment, and a hoist for moving the screens in the gate house. The hoist was operated and is in good condition. The gate valves were not operated, but except for the 24-inch blow-off line, the gate valves are operational and are used as necessary for water supply.

d. Reservoir Area. The outlet from Mount Zircon Reservoir is controlled by Mount Zircon Reservoir Dam which is an earth embankment with a concrete core and mortared stone spillway. Although there was no evidence of siltation near the dam, upstream areas near the inlet of Zircon Brook had about 2 feet of silt buildup, as shown in photograph 7.

e. Downstream Channel. The downstream channel is formed by a manmade channel which leads from the spillway at the dam to the natural channel about 1000 feet downstream of the dam. Both the manmade and natural channels have a steep gradient (5 to 10 percent) and are rocky.

3.2 EVALUATION

Based on the visual inspection, the dam appears to be in good structural condition. As outlined in Section 7, some maintenance of the facility should be undertaken.
(e) Several groundhog burrows were observed near the crest of the dam on the downstream slope. No recent activity was evidenced.

(f) The downstream slope of the dam is wooded with pine trees. Surface cover consists of a sparse growth of ferns and brush in a surface of forest duff and pine needles.

(g) The stone masonry spillway is in generally good condition, however the sidewalls have tipped toward the center of the spillway. A small stone lined cavity exists in the outlet channel. The masonry has been pointed but some cracks exist.

(h) The 24-inch blow-off pipe is in good condition and true to line and grade.

(i) A mineral spring exists below the toe of the dam near the blow-off outlet. Very little or no flow was occurring at the time of inspection.

(2) Hydraulics - At the time of the visual inspection, the reservoir was at approximately elevation 836.5 feet, about 3.5 feet below spillway crest. The spillway has provision for flashboards, but reportedly flashboards have not been used since 1950 when they were used for 2 or 3 years during a very dry period. The 24-inch diameter gated outlet was not operated because it had not been operated for many years, and there was concern that it would not shut.

c. Appurtenant Structures. The gate house is an appurtenant structure to the dam. It is constructed of reinforced concrete. Some spalling of the concrete has occurred near the water level. Generally the structure is in good condition. The service bridge to the gate house appears to be in good condition structurally but the deck planking is rotted.
SECTION 3
VISUAL INSPECTION

3.1 FINDINGS

a. General. The dam is an embankment structure situated in a narrow valley between Thurston Mountain and Little Mount Zircon. The dam has a stone masonry spillway located in the west abutment and a concrete gate house, water supply inlet structure. The dam appears to be generally in very good condition.

b. Dam.

(1) Structural - The dam is an earth embankment structure with a stone masonry spillway. The visual inspection of the dam resulted in the following major findings:

(a) No evidence of general settlement of the embankment was found. Wheel traffic on the dam crest has, however, caused local depressions. Some settlement has occurred behind the walls of the spillway.

(b) The embankment slopes appear true to design line and grade. No evidence of major slope instability was found. Some minor surficial sloughing has occurred along the toe of the dam near Station 5+50.

(c) Some moderate downslope creep of the riprap slope protection has occurred east of the service bridge below normal pool level.

(d) Very minor seepage (total estimated accumulative volume of 5 gpm) is occurring along the toe of the dam from Station 3+50 to 6+00. No piping, 'nails or erosion was found, however.
b. **Adequacy.** The available engineering data includes plans and specifications, which together with the results of visual inspection appear adequate for Phase I assessment.

c. **Validity.** The physical dimensions of the various elements of the dam were measured during the field inspection and were found to be in reasonable conformance with the available drawings.
SECTION 2
ENGINEERING DATA

2.1 DESIGN

Design drawings were prepared for the Mt. Zircon Reservoir Dam by Metcalf and Eddy, Consulting Civil Engineers (July 17, 1912). A second set of design drawings from which the dam was constructed, similar to the first, were prepared by E. Worthington, Engineer (February 20, 1913). Copies of these drawings are included in Appendix B with a copy of the "Specifications Contract and Bond" for the project. No design computations are, however, available.

2.2 CONSTRUCTION

Construction of the dam was started in April 1913, and completed on August 17, 1914. The basin was first filled to the overflow spillway on February 25, 1915. Construction history is referenced in Appendix B-5.

2.3 OPERATION

The reservoir is operated as a water supply reservoir with a 16-inch diameter gravity service main. There is a 24-inch diameter outlet gate which has not been used since about 1960, and it was not operated during the visual inspection because there was concern that it would not close. Generally, every year the reservoir fills from spring snow melt and overflows the spillway. As summer approaches, the reservoir water surface elevation goes down below spillway crest. Provision for flashboards exists, but they reportedly were only used once during a 2 to 3 year dry period in the 1950's. Flashboards are not presently used.

2.4 EVALUATION

a. Availability. Design drawings, contract documents, photographs, and construction reports are available at the Rumford Water District Office.
i. Spillway.

Type - Stone masonry, broad crested weir.

Length - The spillway is 38.5 feet wide at the crest and 39.4 feet wide at a level 2.4 feet above the crest.

Crest Elevation - The crest elevation is 840 (msl).

Gates - The spillway is not gated, however, drill holes for flashboard rods exist.

Upstream Channel - The upstream channel is lined with concrete and stone. It slopes gently from the spillway crest to the pond water level.

Downstream Channel - The downstream channel is a stone (paved) channel about 40 feet wide sloping at 6 percent or greater.

j. Regulating Outlet.

Invert - The invert of the regulated outlet is approximately 791.8 (msl) at the gate house.

Size - The outlet pipe is 24-inch diameter.

Description - The outlet pipe runs from an inlet box in the reservoir through the gate house and outlets at the downstream toe of the dam.

Control Mechanism - The control mechanism is a 24-inch diameter gate valve.
f. Reservoir Surface. The following are estimated water surface areas for Mount Zircon Reservoir:

<table>
<thead>
<tr>
<th>ITEM</th>
<th>SURFACE AREA (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top of Dam/Flood-Control Pool</td>
<td>22.2</td>
</tr>
<tr>
<td>Water Supply Pool/Spillway Crest</td>
<td>18.2</td>
</tr>
</tbody>
</table>

g. Dam.

Type - The Mount Zircon Reservoir Dam is an earth embankment structure with a concrete core.

Length - It is approximately 900 feet in length.

Height - The top of the dam is approximately 55 feet above the old streambed.

Top Width - The top width is 10 feet.

Side Slopes - The upstream and downstream slopes are approximately 1.75 horizontal to 1 vertical.

Zoning - The dam was designed with three zones; 1) the upstream zone was to consist of hard pan or gravel mixed with hard pan or clay, 2) the central zone was to consist of reinforced concrete, and 3) the downstream zone was to consist of similar material to the upstream zone except that clear loam or sandy loam could be used.

Impervious Core - A reinforced concrete core was placed in the dam.

Cutoff - The core wall was to be continued down to "ledge or impervious substratum."

Grout Curtain - None.

h. Diversion and Regulating Tunnel. Not applicable.
c. Elevation. The following is a table of pertinent elevations at the Mount Zircon Reservoir Dam site:

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>ELEVATION ABOVE MSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top of Dam</td>
<td>845.0</td>
</tr>
<tr>
<td>Maximum Pool-Design Surcharge</td>
<td>Unknown</td>
</tr>
<tr>
<td>Full Flood Control Pool</td>
<td>845.0</td>
</tr>
<tr>
<td>Water Supply Pool</td>
<td>840.0</td>
</tr>
<tr>
<td>Spillway Crest</td>
<td>840.0</td>
</tr>
<tr>
<td>Diversion Tunnel Invert</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Streambed at Centerline of Dam</td>
<td>791.0</td>
</tr>
<tr>
<td>Maximum Tailwater</td>
<td>Unknown</td>
</tr>
<tr>
<td>Test Flood Elevation (PMF)</td>
<td>846.0</td>
</tr>
</tbody>
</table>

d. Reservoir. The length of the recreation pool and flood control pool is listed below:

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>LENGTH (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Supply Pool</td>
<td>1650</td>
</tr>
<tr>
<td>Flood Control Pool</td>
<td>1850</td>
</tr>
</tbody>
</table>

e. Storage. The storage values listed below were taken from a 1915 after construction report by E. Worthington:

<table>
<thead>
<tr>
<th>ITEM</th>
<th>STORAGE (acre-feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Supply Pool</td>
<td>307</td>
</tr>
<tr>
<td>Flood Control Pool/Top of Dam</td>
<td>439</td>
</tr>
</tbody>
</table>
i. Normal Operating Procedure. The reservoir is operated as a water supply reservoir with a 16-inch diameter gravity service main. There is a 24 inch diameter outlet gate which has not been used since about 1960, and it was not operated during the visual inspection because there was concern that it would not close. Generally, every year the reservoir fills from spring snow melt and overflows the spillway. As summer approaches, the reservoir water surface elevation goes down below spillway crest. Provision for flashboards exists, but they reportedly were only used once during a 2 to 3 year dry period in the 1950's. Flashboards are not presently used.

1.3 PERTINENT DATA

a. Drainage Areas. The drainage area above Mount Zircon Reservoir Dam is about 2.6 square miles, of which Mount Zircon Reservoir's area is approximately 18.2 acres. The watershed has a rolling topography varying in elevation from about 790 feet to about 2200 feet.

b. Discharge at Damsite. There is one gate which is 24 inches in diameter. The upstream invert is about elevation 791.7 feet, and the downstream invert is about elevation 790.0 feet. The following are pertinent discharges:

(1) Maximum known flood (1927) at dam site was about 660 cfs at elevation 843.4.

(2) Ungated spillway capacity (total spillway capacity) at the top of the dam is 1130 cfs at elevation 845.0.

(3) Ungated spillway capacity at test flood (PMF) elevation is about 1500 cfs at elevation 846.0.

(4) Gated spillway capacity is not applicable.

(5) Total project discharge at test flood (PMF) elevation is approximately 5200 cfs at elevation 846.0 (crest of dam at elevation 845.0).
is about one-half mile south of the Androscoggin River and about 3.5 miles southwest of Rumford N 44°-30', W 70°-34'.

b. Description of Dam and Appurtenances. The Mt. Zircon Reservoir Dam is an earth embankment dam approximately 900 feet long and about 55 feet in height. It has a concrete core-wall and a stone masonry spillway. The control outlet is a concrete gate house and inlet structure.

c. Size Classification. Based on height of the impoundment, 55 feet, the Mount Zircon Reservoir Dam is classified as an intermediate sized dam (a range of 40 to 100 feet). The storage capacity at full spillway is about 439 acre-feet.

d. Hazard Classification. In the event of failure of the Mount Zircon Reservoir Dam, 3 residences, including a farm, would very likely be damaged, and there would be a chance for the loss of lives. Thus the Mount Zircon Reservoir Dam is classified as having a significant hazard potential.

e. Ownership. The dam was originally constructed for the Rumford and Mexico Water District. The present owner is the Rumford Water District, Rumford, Maine.

f. Operator. The operator of the Mt. Zircon Reservoir Dam is Mr. Hector LeCours, Superintendent, Rumford Water District, Rumford, Maine, 04276. Telephone Number 1-207-364-8531

g. Purpose of Dam. The purpose of the dam is storage of a potable water supply for the town of Rumford, Maine.

h. Design and Construction History. The design of the Mt. Zircon Reservoir Dam was completed by E. Worthington, Engineer, in February 1913. Construction of the dam was completed by James M. McGregor (Contractor) on August 17, 1914 and the basin was first full on February 25, 1915. Modifications were made to the spillway about 1928.
PHASE I INSPECTION REPORT
MOUNT ZIRCON RESERVOIR DAM
SECTION 1
PROJECT INFORMATION

1.1 GENERAL

a. Authority. Public Law 92-367, August 8, 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a National Program of dam inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. Edward C. Jordan Co., Inc. has been retained by the New England Division to inspect and report on selected dams in the State of Maine. Authorization and notice to proceed were issued to Edward C. Jordan Co., Inc. under a letter of June 20, 1978 from Ralph T. Garver, Colonel, Corps of Engineers. Contract No. DACW33-78-C-0349 has been assigned by the Corps of Engineers for this work.

b. Purpose

(1) To perform technical inspection and evaluation of non-Federal dams to identify conditions which threaten the public safety and thus permit correction in a timely manner by non-Federal interests.

(2) To encourage and prepare the states to initiate quickly effective dam safety programs for non-Federal dams.

(3) To update, verify and complete the National Inventory of Dams.

1.2 DESCRIPTION OF PROJECT

a. Location. The Mt. Zircon Reservoir Dam is located on Zircon Brook in the town of Rumford, Maine. It
MT ZIRCON RESERVOIR DAM
MT ZIRCON RESERVOIR DAM WATERSHED BOUNDARY

ANDROSCOGGIN

RUMFORD

MT ZIRCON RESERVOIR DAM

NATIONAL PROGRAM OF INSPECTION OF NON-FED DAMS
MT ZIRCON RESERVOIR DAM LOCATION MAP
ANDROSCOGGIN RIVER
MAINE

MILTON

PERU
5.1 EVALUATION OF FEATURES

a. Design Data. Two reports concerning the hydraulic and hydrology of the dam were examined. The reports were written by the designer of the dam, E. Worthington. The first report was written in 1915, less than a year after construction had been completed. The second report was written in 1928 and described the condition of the dam at that time.

b. Experience Data. Published hydraulic and hydrologic data for Zircon Brook appears to be entirely lacking, except for the two Worthington reports and records kept at the Rumford Water District of monthly average reservoir water surface elevations. In his 1928 report, Worthington made note of the 1927 flood, which reached an elevation of 843.4 feet or 3.4 feet above spillway crest. It is estimated that this 1927 flood flow amounted to about 660 cfs.

c. Visual Inspection. The outlet of Mount Zircon Reservoir is controlled by Mount Zircon Reservoir Dam which is an earth embankment with a concrete core wall and mortared cut stone spillway. There is a gated 24-inch diameter outlet which is not used. Outflow from the spillway passes into a manmade channel which joins the natural channel about 1000 feet from the dam. Both channels have a steep gradient (5 to 10 percent) and they are rocky with overhanging trees.

d. Overtopping Potential. The hazard potential was determined by examining downstream areas for possible damage. The failure analysis assumes a breaching of the dam at full spillway capacity. "Rule of Thumb" guidance for estimating downstream dam failure hydrographs as described in an attachment to ETL 1110-2-234 was used as an aid in this analysis. In the event of failure of the Mount Zircon Reservoir Dam, there would be an
inundated flood plain about 1000 feet wide at Mount Zircon Road which would possibly damage 3 dwellings. Because of the danger for loss of life in these dwellings, the Mount Zircon Reservoir Dam is classified as having a significant hazard.

Since Mount Zircon Reservoir Dam is classified as having a significant hazard potential, the dam must be analyzed for passing the probable maximum flood. The probable maximum flood (PMF) has been calculated to be about 5400 cfs, according to Corps of Engineers, "Preliminary Guidance for Estimating Maximum Probable Discharges." Consideration of the effect of surcharge storage (according to "Preliminary Guidance for Estimating Maximum Probable Discharges in Phase I Dam Safety Investigations," March 1978, New England Division, Corps of Engineers) reduces the PMF to 5,200 cfs. The PMF would overtop the dam by about 1 foot. The spillway capacity (excluding gated outlet) is about 1130 cfs, which is about 22 percent of the adjusted PMF.
SECTION 6
STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

a. Visual Observation. Based on the visual observations made at the site, the dam appears stable in that no erosion, settlement, horizontal movement or sloughing of slopes is apparent except for some minor downslope creep of the riprap slope protection below normal pool level.

b. Design and Construction Data. The available plans and specification referenced in Appendix B were reviewed and it was found that the structure conforms reasonably to the line and grade of these documents.

c. Operating Records. The Rumford Water District keeps monthly average reservoir water surface elevations.

d. Post Construction Changes. Minor modifications were made to the spillway crest as outlined in a letter to the Rumford and Mexico Water District from Mr. E. Worthington dated September 17, 1928. In 1952, pine trees were planted on the downstream slope of the dam.

e. Seismic Stability. The dam is located in seismic Zone No. 2 and in accordance with recommended Phase I guidelines, does not warrant seismic analysis.
7.1 ASSESSMENT

a. Condition. Based on the visual inspection and compilation of available engineering data, the Mount Zircon Reservoir Dam is assessed to be in good condition. The spillway of the dam will pass approximately a 100-year flood without overtopping. The probable maximum flood (PMF) reduced by the effect of surcharge storage is approximately 5200 cfs. The spillway capacity is about 1200 cfs or 22 percent of the PMF. Overtopping of the dam with resulting erosion and breaching of the dam would likely occur under a probable maximum flood event.

b. Adequacy of Information. Although design plans and specifications for the dam are available, the information is such that the assessment of the condition of the structure must be based primarily on the visual inspection, past operational performance, and engineering judgment.

c. Urgency. The remedial measures outlined in Section 7.3 below should be implemented within 24 months after receipt of this report by the owner.

d. Need for Additional Investigation. Additional investigation is not considered necessary.

7.2 RECOMMENDATIONS

The owner should engage a qualified engineer to evaluate further the hydrology and hydraulics of the watershed and dam, and to design additional spillway capacity if necessary.

7.3 REMEDIAL MEASURES

a. Operating and Maintenance Procedures. The program of regular inspection and maintenance of the dam should be continued and a record of this
program should be kept. The following specific operating and maintenance procedures should be implemented:

1. The stone lined cavity in the outlet channel of the spillway should be refilled with stones and concrete.

2. The masonry spillway walls should be pointed where necessary and the inlet end of the east wall should be relaid.

3. The crest of the dam should be regraded to fill the wheel tracks and other depressions to bring the crest to a uniform grade at elevation 845. Care should be taken to fill all animal burrows. A new turf surface must be established where grading is done.

4. A scheduled program for harvesting the trees on the downstream slope should be undertaken. No brush or ground cover vegetation which would preclude inspection of the slope should be allowed to grow on the slope, and the downstream slope must be protected against erosion.

5. The spalled concrete on the sidewalls of the gate works should be repaired.

6. The condition of the riprap slope protection should be examined at least once each year and whenever the reservoir level is low enough to permit direct observation. Repairs should be scheduled if conditions warrant.

7. The service bridge planking should be repaired.

8. Seepage at the downstream toe of the dam should be monitored and any excess seepage should be noted and corrective measures should be taken as necessary.

9. The 24-inch outlet gate should be repaired to and maintained in operating condition.

10. A program of around-the-clock surveillance should be provided for periods of anticipated high run-off.
10. A plan for a formal warning system which could be used in the event of an emergency should be developed.

11. A periodic inspection of the dam should be made by a qualified engineer at least every five years.

7.4 ALTERNATIVES

Not applicable.
VISUAL INSPECTION CHECKLIST
PARTY ORGANIZATION

PROJECT Mount Zircon Reservoir Dam

DATE August 1, 1978

TIME A.M.

WEATHER Cloudy

W.S. ELEV. 836.5 U.S. 791.0 DN.S.

PARTY:

1. Brian Bisson
2. Stephen Cole
3. John Kimble
4. Ernest Jurick
5. Henry Oatley

PROJECT FEATURE

1. Geotechnical
2. Structural
3. Hydrology/Hydraulics
4. Survey
5. Photography

INSPECTED BY

Stephen Cole
Henry Oatley
Brian Bisson
John Kimble
Ernest Jurick

REMARKS

PROJECT FEATURE

1. Geotechnical
2. Structural
3. Hydrology/Hydraulics
4. Survey
5. Photography

REMARKS

1. Geotechnical
2. Structural
3. Hydrology/Hydraulics
4. Survey
5. Photography

NOTE: See Supplementary Inspection Notes Following Checklist

A-1
INSPECTION CHECKLIST

PROJECT Mount Zircon Reservoir Dam
DATE 8/1/78

PROJECT FEATURE Dam Embankment
NAME Stephen Cole

DISCIPLINE Geotechnical
NAME

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAM EMBANKMENT</td>
<td></td>
</tr>
<tr>
<td>Crest Elevation</td>
<td>Elevation 840.0</td>
</tr>
<tr>
<td>Current Pool Elevation</td>
<td>3.5 feet below spillway crest</td>
</tr>
<tr>
<td>Maximum Impoundment to Date</td>
<td>Unknown</td>
</tr>
<tr>
<td>Surface Cracks</td>
<td>None observed</td>
</tr>
<tr>
<td>Pavement Condition</td>
<td>Turf</td>
</tr>
<tr>
<td>Movement or Settlement of Crest</td>
<td>Local, 6" wheel ruts</td>
</tr>
<tr>
<td>Lateral Movement</td>
<td>None observed</td>
</tr>
<tr>
<td>Vertical Alignment</td>
<td>Okay</td>
</tr>
<tr>
<td>Horizontal Alignment</td>
<td>Okay</td>
</tr>
<tr>
<td>Condition at Abutment and at</td>
<td>Some settlement at spillway walls</td>
</tr>
<tr>
<td>Concrete Structures</td>
<td></td>
</tr>
<tr>
<td>Indications of Movement of</td>
<td>None observed</td>
</tr>
<tr>
<td>Structural Items on Slopes</td>
<td></td>
</tr>
<tr>
<td>Trespassing on Slopes</td>
<td>Woodchuck borrows</td>
</tr>
<tr>
<td>Sloughing or Erosion of Slopes</td>
<td>Some sloughing at Sta. 5+50 toe</td>
</tr>
<tr>
<td>or Abutments</td>
<td></td>
</tr>
<tr>
<td>Vegetation</td>
<td>Trees on embankment, few bushes and ferns</td>
</tr>
</tbody>
</table>

A-2
<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAM ENBANKMENT (cont.)</td>
<td></td>
</tr>
<tr>
<td>Rock Slope Protection - Riprap Failures</td>
<td>Some downslope creep</td>
</tr>
<tr>
<td>Unusual Movement or Cracking at or near Toes</td>
<td>None observed</td>
</tr>
<tr>
<td>Unusual Embankment or Downstream Seepage</td>
<td>Minor seepage btw Sta. 3+50 and 6+00</td>
</tr>
<tr>
<td>Piping or Boils</td>
<td>None observed</td>
</tr>
<tr>
<td>Foundation Drainage Features</td>
<td>None observed</td>
</tr>
<tr>
<td>Toe Drains</td>
<td>None observed</td>
</tr>
<tr>
<td>Instrumentation System</td>
<td>None</td>
</tr>
<tr>
<td>AREA EVALUATED</td>
<td>CONDITION</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>OUTLET WORKS - INTAKE CHANNEL AND</td>
<td></td>
</tr>
<tr>
<td>INTAKE STRUCTURE</td>
<td></td>
</tr>
<tr>
<td>a. Approach Channel</td>
<td></td>
</tr>
<tr>
<td>Slope Conditions</td>
<td>N/A</td>
</tr>
<tr>
<td>Bottom Conditions</td>
<td>Could not observe</td>
</tr>
<tr>
<td>Rock Slides or Falls</td>
<td>None observed</td>
</tr>
<tr>
<td>Log Boom</td>
<td>None</td>
</tr>
<tr>
<td>Debris</td>
<td>None</td>
</tr>
<tr>
<td>Condition of Concrete Lining</td>
<td>N/A</td>
</tr>
<tr>
<td>Drains or Weep Holes</td>
<td>None observed</td>
</tr>
<tr>
<td>b. Intake Structure</td>
<td></td>
</tr>
<tr>
<td>Condition of Concrete</td>
<td>Minor spalling, generally concrete</td>
</tr>
<tr>
<td>Stop Logs and Slots</td>
<td>None</td>
</tr>
</tbody>
</table>
INSPECTION CHECKLIST

PROJECT Mount Zircon Reservoir Dam
DATE 8/1/78

PROJECT FEATURE Outlet Works
NAME Brian Bisson

DISCIPLINE Hydrology/Hydraulics
NAME Stephen Cole

Geotechnical

AREA EVALUATED

OUTLET WORKS - CONTROL TOWER

a. Concrete and Structural
 General Condition Good, minor spalling
 Condition of Joints Good, minor spalling
 Spalling At water line
 Visible Reinforcing None observed
 Rusting or Staining of Concrete None observed
 Any Seepage or Efflorescence None observed
 Joint Alignment Okay
 Unusual Seepage or Leaks in Gate Chamber None observed
 Cracks None observed
 Rusting or Corrosion of Steel None observed

b. Mechanical and Electrical
 Air Vents N/A
 Float Wells N/A
 Gate Hoist N/A
 Elevator N/A

A-5
<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTLET WORKS - CONTROL TOWER (cont.)</td>
<td></td>
</tr>
<tr>
<td>Hydraulic System</td>
<td>N/A</td>
</tr>
<tr>
<td>Service Gates</td>
<td>Good condition</td>
</tr>
<tr>
<td>Emergency Gates</td>
<td>Not operated, could not observe</td>
</tr>
<tr>
<td>Lightning Protection System</td>
<td>N/A</td>
</tr>
<tr>
<td>Emergency Power System</td>
<td>N/A</td>
</tr>
<tr>
<td>Wiring and Lighting System</td>
<td>N/A</td>
</tr>
</tbody>
</table>
INSPECTION CHECKLIST

<table>
<thead>
<tr>
<th>PROJECT</th>
<th>Mt. Zircon Reservoir Dam</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE</td>
<td>8/1/78</td>
</tr>
<tr>
<td>PROJECT FEATURE</td>
<td>Outlet Works</td>
</tr>
<tr>
<td>NAME</td>
<td>Brian Bisson</td>
</tr>
<tr>
<td>DISCIPLINE</td>
<td>Hydrology/Hydraulics</td>
</tr>
<tr>
<td>AREA EVALUATED</td>
<td></td>
</tr>
<tr>
<td>CONDITION</td>
<td></td>
</tr>
</tbody>
</table>

OUTLET WORKS - TRANSITION AND CONDUIT

<table>
<thead>
<tr>
<th>Feature</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Condition of Concrete</td>
<td>Outlet headwall cracked</td>
</tr>
<tr>
<td>Rust or Staining on Concrete</td>
<td>N/A</td>
</tr>
<tr>
<td>Spalling</td>
<td>N/A</td>
</tr>
<tr>
<td>Erosion or Cavitation</td>
<td>None observed</td>
</tr>
<tr>
<td>Cracking</td>
<td>None observed - Steel Pipe</td>
</tr>
<tr>
<td>Alignment of Monoliths</td>
<td>N/A</td>
</tr>
<tr>
<td>Alignment of Joints</td>
<td>Good</td>
</tr>
<tr>
<td>Numbering of Monoliths</td>
<td>N/A</td>
</tr>
</tbody>
</table>
PERIODIC INSPECTION CHECKLIST

PROJECT: Mt. Zircon Reservoir Dam
DATE: 8/1/78

PROJECT FEATURE: Outlet Works
NAME: Stephen Cole

DISCIPLINE: Geotechnical and Hydrology/Hydraulics
NAME: Brian Bisson

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTLET WORKS - OUTLET STRUCTURE AND OUTLET CHANNEL</td>
<td></td>
</tr>
<tr>
<td>General Condition of Concrete</td>
<td>Fair - cracked</td>
</tr>
<tr>
<td>Rust or Staining</td>
<td>None observed</td>
</tr>
<tr>
<td>Spalling</td>
<td>Some at water line</td>
</tr>
<tr>
<td>Erosion or Cavitation</td>
<td>None observed</td>
</tr>
<tr>
<td>Visible Reinforcing</td>
<td>None observed</td>
</tr>
<tr>
<td>Any Seepage or Efflorescence</td>
<td>None observed</td>
</tr>
<tr>
<td>Condition at Joints</td>
<td>N/A</td>
</tr>
<tr>
<td>Drain holes</td>
<td>None observed</td>
</tr>
<tr>
<td>Channel</td>
<td>Stone-lined, good</td>
</tr>
<tr>
<td>Loose Rock or Trees Overhanging Channel</td>
<td>Trees and brush in vicinity of 24-inch drain discharge</td>
</tr>
<tr>
<td>Condition of Discharge Channel</td>
<td>Adequate</td>
</tr>
</tbody>
</table>
APPENDIX B-2

HYDROLOGIC AND HYDRAULIC DATA

Two letter reports concerning the hydrology and hydraulics of Mount Zircon Reservoir Dam were made available by the Rumford Water District. Both reports had been submitted by E. Worthington, Civil and Consulting Engineer, Dedham, Mass. The first report was written in March, 1915, less than a year after the reservoir construction had been completed. The second report was written in September, 1928 and described the condition of the dam at that time. Elevations listed in this report are referenced to USGS mean sea level datum.

1. The drainage area contributing to Mount Zircon Reservoir Dam is about 2.6 square miles. Mount Zircon Reservoir itself has a surface area of approximately 18.2 square miles.

2. The pool elevation of the top of the conservative or normal pool is taken as elevation 840.0 feet.

3. Storage capacity at the top of the normal pool is taken as 307 acre-feet.

4. The elevation of the top of the flood control pool is taken as elevation 845.0 feet.

5. The storage capacity (incremental) of the flood control pool is about 132 acre-feet.

6. The elevation of the maximum design pool is unknown.

7. Surcharge capacity is unknown.

8. There is no freeboard available at the assumed flood control elevation.

9. The elevation of the top of the dam is 845.0 feet.

10. The elevation of the spillway is 840.0 feet, and the length is 38.5 feet. The shape of the spillway is broad crested as shown in Appendix B-1, X-sections.
APPENDIX B-1

GENERAL PROJECT DATA

Two sets of design drawings by Metcalf and Eddy 1912 and by E. Worthington, Engineer 1913 are available at the Rumford Water District Office. Also available are "Specification, Contract, and Bond for Mount Zircon Brook Supply, March 1913," a construction progress report of February 5, 1914, and construction photographs. A copy of the Worthington Drawings are included in this section.
APPENDIX B

ENGINEERING DATA

This appendix lists the engineering data collected either from project records or other sources of data developed as a result of the visual inspection. The contents of this appendix are listed below.

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1</td>
<td>General Project Data</td>
</tr>
<tr>
<td>B-2</td>
<td>Hydrologic and Hydraulic Data</td>
</tr>
<tr>
<td>B-3</td>
<td>Properties of Embankments and Foundation Materials</td>
</tr>
<tr>
<td>B-4</td>
<td>Concrete Properties</td>
</tr>
<tr>
<td>B-5</td>
<td>Construction History</td>
</tr>
<tr>
<td>B-6</td>
<td>Inspection History</td>
</tr>
</tbody>
</table>

B-1
c. Potential Upstream Hazard Areas. There are no structures adjacent to the reservoir which would be affected by probable maximum flood elevations.

d. Watershed Runoff Potential. The watershed is rural with very few changes in development. Mount Zircon Brook has a very steep gradient (5-10 percent) and a small drainage area (2.6 square miles), which lends it a very quick runoff response.

7. DOWNSTREAM CHANNEL

The outlet channel from Mount Zircon Reservoir is man-made for its first 1000 feet where it joins the old Mount Zircon Brook Channel. Both the man-made channel and brook channel have a steep gradient (5-10 percent) and are rocky with overhanging trees.

8. OPERATION AND MAINTENANCE FEATURES

a. Reservoir Regulation Plan. None.

b. Maintenance. The grass on the upper slopes and top of the dam is mowed and well kept. The trees on the downstream slope are reportedly periodically inspected by a forester and the trees are pruned. Brush is periodically cut along the toe of the dam and in the spillway channel. Other required maintenance is done on an as-needed basis, such as work on the service bridge, spillway masonry and gate house.
a. Intake Structure. The intake structure for the 24-inch and service mains could not be visually inspected due to water levels.

b. Operating and Emergency Control Gates. The 24-inch diameter drain was not operated and reportedly has not been operated since about 1960 due to concern by the owner regarding closing of the valve. The 16-inch diameter inlets and main valve are reportedly operated as necessary for water supply.

c. Conduits. The 24-inch diameter drain line was inspected from its outlet end. No leakage was occurring and the pipe was found to be true in line and grade and in good structural condition.

d. Stilling Basin. No provision for preventing erosion was noted below the 24-inch outlet. Rip rap is shown on the drawings but none was observed.

e. Approach and Outlet Channels. The approach is not visible due to water levels. The outlet channel is lined with brush and small trees, as shown in Photograph 3.

f. Drawdown Facilities. The 24-inch diameter outlet gate was not operated during inspection. It has limited capacity (63 cfs) to supplement the spillway.

5. SAFETY AND PERFORMANCE INSTRUMENTATION

None at dam.

6. RESERVOIR

a. Shore Line. No major active or inactive landslide areas on Mount Zircon Reservoir were observed.

b. Sedimentation. The watershed has remained essentially rural. There are no new developments or new sources of sediment loads on the reservoir. However, sediment at least 2 feet in depth covers the southerly shore of the reservoir at the inlet end, as shown in Photograph 7.
said that when new burrows are discovered, they are "bombed" to kill the woodchucks. This method has proven very effective.

d. Drainage Systems. No drainage system outlets were found.

e. Slope Protection. The upstream slope of the dam is protected by rip rap which is in excellent condition. However, some downslope creep of the stones was observed east of the service bridge to the gatehouse when it was exposed by low water on September 21, 1978. The downstream slope is wooded by 6 to 14-inch diameter pine trees. The surface cover consists of forest duff, pine needles with a sparse growth of ferns and brush. No erosion is evident on either slope.

3. SPILLWAY STRUCTURE

The spillway consists of a stone masonry chute located near the west abutment of the dam. The spillway is 38.5 feet wide and 5 feet deep below the crest of the dam. Holes exist in the crest of the spillway for the installation of flashboards rods. See the design drawings and Photographs 4 and 6 for details.

a. Control Gates. None.

b. Unlined Saddle Spillways. None.

c. Approach and Outlet Channels. The approach channel is flat and slopes gently toward the pond. It is clear and unobstructed. The outlet channel has a moderate slope (5-10 percent) and low small brush lines the channel. A large tree has fallen into the channel downstream of the spillway. See Photographs 3, 4 and 6.

d. Stilling Basin. Below the spillway crest is a channel paved with stone which is in good condition. One small cavity was observed. See Photograph 3.

4. OUTLET WORKS

The outlet works consist of a cylindrical concrete gate house structure. See Photograph 2. The outlet consists of a 24-inch diameter drain and 16-inch diameter service main.
g. Seepage or Leakage. No seepage or leakage was observed relative to the concrete or masonry structures.

h. Monolith Joints - Construction Joints. No monolith or construction joints were apparent.

i. Foundation. The foundation at the gatehouse could not be examined due to water levels. The foundation of the spillway is on bedrock and no erosion or distress was noted.

j. Abutments. Not applicable.

2. EMBANKMENT STRUCTURES

a. Settlement. The upstream and downstream slopes and the downstream toe area were examined and no settlement, depressions or sinkholes were noted. The crest of the embankment shows no evidence of generalized settlement, however, some depression has occurred where wheel traffic has passed along the dam crest. These depressions are about 6 inches in depth.

Some settlement has also occurred behind the sidewalls of the spillway. These depressions are about 3 to 6 inches deep and about 1 foot wide.

b. Slope Stability. The upstream slope of the dam is true to line and grade and no evidence of instability was found. The downstream slope of the dam is tree covered (6 to 14 inch diameter pine) with no grass growth. The slope is generally in good shape and shows no signs of instability. There is evidence of some miner surficial sloughing at the toe of the dam at approximately Station 5+50.

c. Seepage. No seepage is evident at the abutments of the dam or on the downstream slope of the dam. Seepage was observed along the toe of the dam from approximately Station 3+50 to 6+00. A mineral spring is present at the 24-inch diameter drain outlet. The volume of seepage was small, estimated total accumulation of only 5 gpm. No piping or erosion was noted. Several groundhog burrows were observed on the downstream slope of the dam near the top. No recent activity was evidenced, however, and the burrows are in elevation above normal pond level. The owner's representative
APPENDIX A
FIELD INSPECTION NOTES

1. CONCRETE AND STONE MASONRY STRUCTURES

The only concrete structure at the dam is the gate house inlet structure. The spillway is constructed of mortar laid stone masonry.

a. Concrete Surfaces. Except for the zone from about elevation 835 to 840 the concrete surface of the gate house is good. Within the zone from elevation 835 to 840, the exterior surface is spalled to a depth of 1 to 3 inches. The area has been previously repaired and since spalled again.

Stone Masonry Surfaces. The surface of the stone masonry in the spillway is in good condition. The masonry has been repointed and the condition of the mortar is generally good.

b. Structural Cracking. No cracking of the concrete gate house was noted. Some cracking of the mortar joints in the spillway was observed.

c. Movement - Horizontal and Vertical Alignment. No movement of the gate house was apparent. The side walls of the masonry spillway have deflected toward the center of the spillway. The top of these walls are out of plumb by 3 to 5 inches at the top.

d. Junctions. The junction of the embankments to the spillway walls shows some subsidance. A 3 to 6 inch deep depression in the embankment about 1 foot wide was observed behind the walls.

e. Drains. None observed.

f. Water Passages. The surfaces of the masonry spillway show no signs of erosion, leakage, or significant structural cracking. One small cavity (stonelined) exists just below the spillway crest.

A-11
INSPECTION CHECKLIST

PROJECT
Mt. Zircon Reservoir Dam
DATE
8/1/78
PROJECT FEATURE
Outlet Works
NAME
Henry Oatley
DISCIPLINE
Structural/Geotechnical
NAME
Stephen Cole

## AREA EVALUATED	CONDITION
OUTLET WORKS - SERVICE BRIDGE

a. Super Structure
- **Bearings**
 Okay
- **Anchor Bolts**
 Okay
- **Bridge Seat**
 Good
- **Longitudinal Members**
 Okay
- **Under Side of Deck**
 Planking rotten
- **Secondary Bracing**
 Okay
- **Deck**
 Poor, planking rotten, some missing
- **Drainage System**
 None
- **Railings**
 Good
- **Expansion Joints**
 N/A
- **Paint**
 Good

b. Abutment & Piers
- **General Condition of Concrete**
 Good
- **Alignment of Abutment**
 Good
- **Approach to Bridge**
 Good
- **Condition of Seat & Backwall**
 Okay
INSPECTION CHECKLIST

PROJECT: Mt. Zircon Reservoir Dam
DATE: 8/1/78
PROJECT FEATURE: Outlet Works
NAME: Brian Bisson
DISCIPLINE: Hydrology/Hydraulics
NAME: Henry Oatley

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlet Works - Spillway Weir, Approach and Discharge Channels</td>
<td></td>
</tr>
<tr>
<td>a. Approach Channel</td>
<td></td>
</tr>
<tr>
<td>General Condition</td>
<td>Unobstructed</td>
</tr>
<tr>
<td>Loose Rock Overhanging Channel</td>
<td>None observed</td>
</tr>
<tr>
<td>Trees Overhanging Channel</td>
<td>Reservoir forms approach channel</td>
</tr>
<tr>
<td>Floor of Approach Channel</td>
<td>Flat, unobstructed</td>
</tr>
<tr>
<td>b. Weir and Training Walls</td>
<td></td>
</tr>
<tr>
<td>General Condition of Masonry</td>
<td>Good - minor movement</td>
</tr>
<tr>
<td>Rust or Staining</td>
<td>None observed</td>
</tr>
<tr>
<td>Spalling</td>
<td>None observed</td>
</tr>
<tr>
<td>Any Visible Reinforcing</td>
<td>None observed</td>
</tr>
<tr>
<td>Any Seepage or Efflorescence</td>
<td>None observed</td>
</tr>
<tr>
<td>Drain Holes</td>
<td>None observed</td>
</tr>
<tr>
<td>c. Discharge Channel</td>
<td></td>
</tr>
<tr>
<td>General Condition</td>
<td>Good</td>
</tr>
<tr>
<td>Loose Rock Overhanging Channel</td>
<td>None observed</td>
</tr>
<tr>
<td>Trees Overhanging Channel</td>
<td>Trees lining channel</td>
</tr>
<tr>
<td>Floor of Channel</td>
<td>Rocky with one large tree felled in channel</td>
</tr>
<tr>
<td>Other Obstructions</td>
<td>None</td>
</tr>
</tbody>
</table>
11. There is one gate which is 24 inches in diameter. The upstream invert is about elevation 791.8 feet, and the downstream invert is about elevation 790.0 feet.

12. There is no emergency spillway.

13. There is provision for flashboards, but none are used.

14. The elevation of the top of the earth embankment dam is about 845.0 feet.

15. There are no identified hydrometeorological gages in the watershed.

16. Mount Zircon Brook has a very steep gradient (about 5 to 10 percent) and flows in a narrow flood plain for most of its length to the Androscoggin River.
APPENDIX B-3

PROPERTIES OF EMBANKMENT AND FOUNDATION MATERIALS

The properties of embankment materials and foundation materials anticipated prior to construction are given in the specifications referenced in Appendix B-1.
APPENDIX B-4

CONCRETE PROPERTIES

The properties of the concrete to be used in the construction of the dam are given in the specifications referenced in Appendix B-1.
APPENDIX B-5

CONSTRUCTION HISTORY

A copy of a construction progress report by Mr. E. Worthington dated March 27, 1915, and copies of construction progress photographs are available at the Rumford Water District Office.
APPENDIX B-6

INSPECTION HISTORY

A post construction inspection and review of the dam was made by Mr. E. Worthington on June 11, 1928. A copy of his report is included in this section.

On February 17, 1978, an inspection was made by Maine Department of Transportation personnel. A copy of their report is attached.
Mr. John P. MacGregor,
Treasurer Rumford & Mexico Water District,
Rumford, Me.

My dear Mr. MacGregor,

On June 11, 1906 I had various levels taken at Mount Zircon
dam and submit the following report.

The following table of data may be well to consider at the
outset.

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of watershed</td>
<td>3.8 square miles</td>
</tr>
<tr>
<td>Area of reservoir</td>
<td>18.2 acres</td>
</tr>
<tr>
<td>Elevation of overflow</td>
<td>845.0</td>
</tr>
<tr>
<td>Elevation of top of dam</td>
<td>845.0</td>
</tr>
<tr>
<td>Elevation summit of Mt. Zircon</td>
<td>2550</td>
</tr>
<tr>
<td>Elevation of Haringway Mountain</td>
<td>1950</td>
</tr>
<tr>
<td>Elevation summit of Bean Mountain</td>
<td>1700</td>
</tr>
<tr>
<td>Average slope of watershed</td>
<td>1000</td>
</tr>
<tr>
<td>Contents of reservoir in one foot of depth at overflow level</td>
<td>1,000,000 cubic feet</td>
</tr>
</tbody>
</table>

One inch of rainfall is 6,000,000 cubic feet on the drainage
basin.

One inch per 24 hours is 70 cubic feet per second on the basin.

The top of the embankments in general was fairly well up to the
original level, but in places slightly over. A line of stakes and
grades was set to which it was considered advisable to bring the to.
Elevation 845.2 was placed in them which is about 2 inches higher
than the original dam. It is assumed that the surface of the dam
always kept to this grade so no sags occur. A slight drop at one
place due to rain washing away the earth is to be avoided. There was
about three feet left of the spillway which had become lower. 3
inches below its original level or to 844.7.

The northeast report to the bridge had dropped 0.82 feet due
to settling, which is of the concrete. This is a collection of concrete on the surface of the deam. The whole pile of concrete at all ends of the dam is a result of the settling. The level of the concrete was originally set at 84.0 feet above sea level, but there were no changes in elevation since then. There is practically no gap in the concrete due to the absence of settlement on the water face. There can be no settlement of the concrete and soil as it is on ledge across most of the dam.

There appeared to be no leakage through the dam as far as could be seen. In the construction of the dam a small spring was discovered near the concrete on the eastern part of the dam, and a pipe was left to prevent its rise in the pressure and collecting water. There is a core wall. The water from this core wall is sent into the dam basin to prevent its rise in the pressure and collecting water. There is a core wall. The spring containing a fairly shallow, the same level, filled over a few inches deep which extends along the length of the concrete. This spring supplies a main stream into the dam basin. The core wall was constructed in 1913, and has not been changed any today. It is 100 feet long, and several hundred feet above the top of the dam. It is composed of stone and gravel, and it has subsided, and there was no change in its character since 1914. At that time the pipe was running into a small pool of red water and it is not doing the same. No measurements were made in 1913 of the amount of flow. In November 1914 about 5000 gallons per day were flowing from the pipe. There is a certain amount of moisture on the dam, and it is found on all dams but it is only been enough to form a growth of grass and vegetation wherever it is damp soil and there seems to be no elevation of the land.

The water of this spring has been investigated. The bottom of this spring has a depth of 2 feet, which is the water. The water level is 4 feet.
experiments made on the flow over dams but the Cornell experiments cover the complete summing up of the tests to date.

The simplest quantity formula is \(Q = C \cdot L \cdot H^{3/2} \) where

\(Q \) = Flow cubic feet per second
\(C \) is a factor depending on shape of dam
\(L \) is length of overflow
\(H \) is height of water in feet.

The Cornell results as cited for their series 42, 43, 44 and 45, of which series 44 is nearest to Mt. Zircon conditions gives a value of \(C \) of 2.64. The following table gives the flows in cubic feet per second for various depths on the spillway at 40 feet in length:

<table>
<thead>
<tr>
<th>Elevation</th>
<th>Depth</th>
<th>Flow C.F.F.</th>
<th>Inches per 24 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>840.0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>840.5</td>
<td>0.5</td>
<td>37</td>
<td>0.5</td>
</tr>
<tr>
<td>841.0</td>
<td>1.0</td>
<td>104</td>
<td>1.5</td>
</tr>
<tr>
<td>841.5</td>
<td>1.5</td>
<td>194</td>
<td>2.8</td>
</tr>
<tr>
<td>842.0</td>
<td>2.0</td>
<td>265</td>
<td>4.4</td>
</tr>
<tr>
<td>842.5</td>
<td>2.5</td>
<td>312</td>
<td>7.8</td>
</tr>
<tr>
<td>843.0</td>
<td>3.0</td>
<td>446</td>
<td>12.1</td>
</tr>
<tr>
<td>843.5</td>
<td>3.5</td>
<td>602</td>
<td>16.4</td>
</tr>
<tr>
<td>844.0</td>
<td>4.0</td>
<td>844</td>
<td>16.9</td>
</tr>
<tr>
<td>844.5</td>
<td>4.5</td>
<td>1008</td>
<td></td>
</tr>
<tr>
<td>845.0</td>
<td>5.0</td>
<td>1180</td>
<td></td>
</tr>
</tbody>
</table>

The rainfall rate of the Vermont flood was the record breaker of Northern New England and at Somers it amounted to 8.77 inches per 24 hours. The storm of 1869 had a greater total fall in southern New England but the flood results in general were no greater. There seems to be evidence that the 1927 Vermont flood produced a runoff rate of 12 inches per day or 0.5 inches per hour over a very small area. At the same time there was a rainfall rate of 0.52 inches per hour which is a rainfall rate of 15 inches per day. This lasted less than six hours at that rate. This would fill your spillway 4.0 feet deep. The absolute limit of your spillway is now a rate of 16 inches runoff per day or 0.07 inches per hour of steady flow. It could stand an hour runoff of 1.6 inches if starting from just
running over and then hold its own at a runoff of 0.67 inches per hour there after.

There are flood marks of debris at Mt. Zircon dam which are at elevation 843.2 to 843.4. This indicates a water line of about 3.4 feet on the spillway during a storm in 1997. This is due to a runoff rate of about 9.5 inches per day and compares with a limit of spillway capacity of about 17 inches per day. The presence of ice on the pond at the time of a flood would seriously interfere with the spillway capacity. Cloud bursts are a summer occurrence and vegetation greatly reduces the runoff rate compared with the rate of rainfall but no exact figures can be quoted for New England.

There are two possibilities for increasing your spillway capacity. You may lengthen it to the westward and it will carry just that much more water. The spillway channel will carry much more water than now comes to it over the overflow. This will need no new plan but you should tear out the present westerly abutment and go back toward the west end of the dam and build on the ledge which you will soon strike, to form a new abutment. The amount of work advisable depends entirely on the amount of ledge you encounter. At the west abutment as now existing, ledge outcrops at 838.0 in places and runs up to the west. You should cut out the soft places in the ledge and cut out a trench in the ledge to get a tight job. If it were not so difficult to get crushed stone or gravel at the dam I would advise shaping this extension in concrete for the sake of tightness. Careful work with stone if the joints are well filled will prevent leaks though this requires care and use of plenty of mortar to make a solid job. A sketch is enclosed to indicate the work to be done.

A second method of increasing the capacity of your spillway is to increase the discharge coefficient. A very slight change in the shape of the spillway will increase the flow materially.
Where the upstream face of a spillway has a gradual slope for the approach of the water, the capacity is greatly increased. A rounding of the upstream edge by a four inch radius will let 10 or 15 percent more water overflow. The most perfectly designed overflow may yield 50 percent more than the one which you now have but cost more than it is worth to install. A suggested rounding by the adding of a block of concrete (about 8 cubic yards) is shown on the sketch and would increase the spillway capacity about 30 percent in the high flows. This avoids lengthening your overflow. This opinion is based on the Cornell experiments, which while not covering exactly the same shape does suggest the probable result.

If you consider that you have the money available, you might well follow both the lengthening and reshaping methods. If you look at the expense largely I would advise the rounding of the approach to the spillway as being cheaper.

I would strongly advise against flashboards. A five foot levee is none too much and automatic falling flashboards form an obstruction to your flow which under ice conditions and sudden thaws can only cause trouble. The next flashboards should not be thought of and removable ones are too far from hand attention.

I add a table of probable spillway capacities if the rounding is made. C is assumed as 3.33.

<table>
<thead>
<tr>
<th>Elevation</th>
<th>Depth</th>
<th>C.F.P.S.</th>
<th>Runoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>440.0</td>
<td>6.0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>440.5</td>
<td>6.5</td>
<td>47</td>
<td>0.7</td>
</tr>
<tr>
<td>441.0</td>
<td>1.0</td>
<td>133</td>
<td>1.9</td>
</tr>
<tr>
<td>441.5</td>
<td>1.5</td>
<td>245</td>
<td>3.5</td>
</tr>
<tr>
<td>442.0</td>
<td>2.0</td>
<td>377</td>
<td>5.4</td>
</tr>
<tr>
<td>442.5</td>
<td>2.5</td>
<td>526</td>
<td>7.5</td>
</tr>
<tr>
<td>443.0</td>
<td>3.0</td>
<td>682</td>
<td>9.9</td>
</tr>
<tr>
<td>443.5</td>
<td>3.5</td>
<td>872</td>
<td>12.5</td>
</tr>
<tr>
<td>444.0</td>
<td>4.0</td>
<td>1063</td>
<td>15.2</td>
</tr>
<tr>
<td>444.5</td>
<td>4.5</td>
<td>1272</td>
<td>18.1</td>
</tr>
<tr>
<td>445.0</td>
<td>5.0</td>
<td>1490</td>
<td>21.3</td>
</tr>
</tbody>
</table>
At any time when it seems as if there was danger to the dam from a great height of water an added outlet can be obtained by opening the 24 inch gate. This pipe is anchored in heavy piers every six feet to withstand the pressure and the vibration in its use. The 24 inch pipe will deliver about 100 cubic feet per second which may help in some cases.

There has been a slight spalling of the concrete at the gate house due to water and ice action. This is not at all serious or unexpected and should cause no leakage. The gate house is over two feet thick at that point. To avoid ice pressure this part should be pointed up and smoothed over with a rich mixture of cement.

Your attention is called to the downstream slope. Wherever there are pockets at the edge of the slope such as those near the spillway and near the 24 inch main where water is held and prevented from running off freely, they should be filled so the surface will be drained. This is to prevent a softening of the bank with a possibility of a slight running of the surface loam. As solid a sort of grass as possible should be kept on the slope to prevent wash as the bank is very steep and would wash easily if a start was made in it. There are no signs as yet of trouble after fourteen years but this is an important detail of maintenance.

In brief, Mr. Zircon dam seems to be in good condition. The spillway would have withstood the Vermont flood under the Vermont conditions but have been severely tried if there had been ice in the pond. It will stand an extreme summer torrent. It can be cheaply brought to a greater degree of safety by reshaping the spillway and this should be done. It can be further improved by lengthening the spillway. Flashboards are too likely to obstruct and limit the flood capacity and are likely to cause great damage. They should not be installed on this northern dam.
-7-

depressions on the downstream edge of the dam should be filled
the top of the dam be graded to 845.2 and maintained at that
ght. The gate house should be smoothed up to avoid ice
ting.

Yours truly,

[Signature]

COPY
INSPECTION REPORT
FOR THE MT. ZIRCON RESERVOIR DAM, RUMFORD

On February 17, 1978, Everett Barnard, Assistant Bridge Maintenance Engineer; Philip J. Libby, Structural Project Design Engineer; Guy Baker, Assistant Soils Engineer; and Charles Norburg, Geologist, met with Mr. Victor LeCours, Superintendent for the Rumford Water District, at his office on Spruce Street. He showed us a photograph album that recorded the construction of the dam in 1914. The pictures showed a concrete core placed in the middle of the earthwork which makes the dam. Mr. LeCours stated that the dam floods 21 acres and has a maximum depth of 47'. The earth borrow was taken from within the flooded areas, thereby increasing the volume of the 108 million gallon reservoir. The dam was designed by Fay, Libby, & Thorndike, Boston, Massachusetts. Mr. LeCours said he would look for general plans of the dam which we might reproduce for our files, these plans to be mailed to me at a later date, however, the photographic record on file at the Water District office, show the progress and construction features of the dam.

An employee was assigned to our party to show us the site. Deep snow required the use of snowmobiles to travel ½ mile from the road to the site.

The dam impounds the flow of Zircon Brook in a reservoir, that covers 21 acres and has a maximum depth of 47' and contains 110+ million gallons. The reservoir has a spillway, that is 5' or 6' lower than the crest of the earthwork, on the west end of the structure. There were grooved spillway walls for stop logs but none were used at this time.

Mr. LeCours said that the flow from the watershed was adequate until extreme dry weather is encountered, at which time the water level will become lower than the spillway. The lowest level on record was about 20' below spillway elevation recorded 1949.

The water shed upstream from the dam is of constant size and the runoff does not exceed the size of the spillway. There is only one stand of buildings within the flood plain of Zircon Brook. This is at least 20' below the reservoir and is also in the area that has leveled itself at the Androscoggin River. The Androscoggin River is large enough so that the flow from Zircon Stream Reservoir will not flood it.

The deep snow prevented any visual indication of seepage at the dam site, but there was no apparent problem and the location does not pose any threat to the downstream area.

Reported by Philip J. Libby
Zircon Reservoir Dam
COUNTY: Oxford

Zircon Brook

VA: Earth Gravity

Water Supply

$: 52

ACRE FT.): 3797

EG BEDROCK: Gray Diotite and Muscovite Gneiss and Schist

This dam is in a moderate damage earthquake area (seismic zone 2) which is considered to present little or no hazard from earthquake. The nearest known earthquake epicenter was over 20 miles distant near Madrid. It was of unknown intensity.

According to a Rumford Water Company official, the dam is placed on bedrock. Bedrock outcrops are reported in the area, but due to a heavy snow cover, they could not be located for identification. No known faults are located at the dam site.

\[Q_1 = 5418 \text{ cfs} \]

Surcharge HT = 6.05 ft, Elev. 846.11 ft

Using C.O.E. Refillage:

Estimating Effect of Surcharge Storage on MAX Prov. Discharge

\[
\text{STOR}_1 = 0.03 \left(\frac{(5280+1)^2}{1 \text{ ft}^2} \right) \frac{100}{9350.44} \left(6.11 + \right)
\]

STOR

\[= 117 \text{ Acre - Feet} \]

\[
\text{STOR}_1 = \frac{117 \text{ Acre - Ft}}{640 \times 2.6} \left(12 \frac{\text{ inches}}{\text{ ft}} \right) = 0.546 \text{ inches}
\]

\[Q_2 = Q_1 \times \left(1 - \frac{\text{STOR}_1}{10} \right) \]

\[Q_2 = 5418 \left(1 - \frac{0.546}{10} \right) = 5176 \text{ cfs} \]

Surcharge HT = 6.05 ft

\[
\text{STOR}_2 = 0.03 \left(\frac{(5280+1)^2}{4350.0} \right) 6.05
\]

\[= 116 \text{ Acre - Ft} \]

STOR AVE = 116.5 Acre - Ft

\[
\text{STOR AVE} = \frac{116.5}{640 \times 12} \left(12 \right) = 0.642 \text{ inches}
\]
<table>
<thead>
<tr>
<th>Elevation above sea level</th>
<th>Net capacity gallons</th>
<th>Net capacity, acre-ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>815.0</td>
<td>7,000,000</td>
<td>21.5</td>
</tr>
<tr>
<td>820.0</td>
<td>17,000,000</td>
<td>52.2</td>
</tr>
<tr>
<td>825.0</td>
<td>31,000,000</td>
<td>95.1</td>
</tr>
<tr>
<td>830.0</td>
<td>49,000,000</td>
<td>150.4</td>
</tr>
<tr>
<td>835.0</td>
<td>72,000,000</td>
<td>225.0</td>
</tr>
<tr>
<td>836.0</td>
<td>77,000,000</td>
<td>230.3</td>
</tr>
<tr>
<td>837.0</td>
<td>82,000,000</td>
<td>251.7</td>
</tr>
<tr>
<td>838.0</td>
<td>87,000,000</td>
<td>262.0</td>
</tr>
<tr>
<td>839.0</td>
<td>93,000,000</td>
<td>273.4</td>
</tr>
<tr>
<td>840.0</td>
<td>100,000,000</td>
<td>306.1</td>
</tr>
<tr>
<td>841.5</td>
<td>110,000,000</td>
<td>374.0</td>
</tr>
<tr>
<td>845.0</td>
<td>249,439.0</td>
<td>999.0</td>
</tr>
</tbody>
</table>

\[V = \left(\frac{27.9}{50.0} \right) \left(\frac{1 \text{ acre}}{43,560 \text{ ft}^2} \right) \times 3.0 \times 10^{-6} \text{ acre} \times \text{ft}^3 \]
LENGTH ADJUSTMENT FOR IMPROVED HYDRAULICS

<table>
<thead>
<tr>
<th>Pipe Diameter in Inches</th>
<th>Roughness Factor n^* for Helical Corr.</th>
<th>Length Adjustment Factor (g^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>.011</td>
<td>.21</td>
</tr>
<tr>
<td>24</td>
<td>.016</td>
<td>.44</td>
</tr>
<tr>
<td>36</td>
<td>.019</td>
<td>.61</td>
</tr>
<tr>
<td>48</td>
<td>.020</td>
<td>.70</td>
</tr>
</tbody>
</table>

Other values of roughness, n^, are applicable to paved pipe, lined pipe and pipe with $B = 1$ in. earthworks. See page 22 for use of above chart for these types of pipe and pipe-arches, use “adjusted length factors” computed per the equation, page 29.
Q for 24" diameter pipe @ elev. 794 ft.

Outlet Control Nomograph:

\[D = 24" \quad L = 150' \quad (appox) \]
\[H = 50' \]
\[Q = 63 \text{ CFS} \]

Inlet Control Nomograph:

\[Q = 375 \text{ CFS} \]

Orifice Equation:

\[Q = CA \sqrt{2gh} \]
\[C = 0.7 \]
\[A = \pi R^2 = \pi (12)^2 \frac{1}{144} = 3.14 \frac{ft^2}{ft^2} \]
\[Q = 32.174 \]
\[h = \text{(water surface) - (elev of pipe)} = 845 - 794 = 51' \]
\[Q = 0.7(3.14) \sqrt{2(32.174)(51)} \]
\[Q = 126 \text{ CFS} \]

Assume pipe is closed.

Q = 63 CFS
\[Q = \frac{C L H^2}{2} \]

<table>
<thead>
<tr>
<th>Week</th>
<th>Surface</th>
<th>+ Basis</th>
<th>2.5</th>
<th>Pipe</th>
<th>Total</th>
<th>(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>840</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>6.3</td>
<td>6.3</td>
<td>366.7</td>
</tr>
<tr>
<td>845</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>6.3</td>
<td>6.3</td>
<td>366.7</td>
</tr>
<tr>
<td>847.5</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>6.3</td>
<td>6.3</td>
<td>366.7</td>
</tr>
<tr>
<td>840</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>6.3</td>
<td>6.3</td>
<td>366.7</td>
</tr>
<tr>
<td>845</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>6.3</td>
<td>6.3</td>
<td>366.7</td>
</tr>
<tr>
<td>847.5</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>6.3</td>
<td>6.3</td>
<td>366.7</td>
</tr>
<tr>
<td>837.5</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>6.3</td>
<td>6.3</td>
<td>366.7</td>
</tr>
<tr>
<td>840</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>6.3</td>
<td>6.3</td>
<td>366.7</td>
</tr>
<tr>
<td>845</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>6.3</td>
<td>6.3</td>
<td>366.7</td>
</tr>
<tr>
<td>847.5</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>6.3</td>
<td>6.3</td>
<td>366.7</td>
</tr>
</tbody>
</table>

\[*C = 0.3, L = 84.5, *C = 2.6, L = 7.6 \]

Total Weir Value exceeds 5418 cfs @ 846.5 ft.
D. A = 2.6 ft^3/s ft^2; \Delta v = 1000 ft^3/mi.

Storage = \left(\frac{0.03}{2.6} \right) (100) + 1 = 2.15'

P_{10} = 26.9 (2.6) (1000)^{0.315} (2.15) = 472,000 cfs

P_{50} = 42.7 (2.6) (1000)^{0.115} (2.15) = 905,000 cfs

P_{100} = 55.9 (2.6) (1000)^{0.254} (2.15) = 1157,000 cfs

P_{25} = 35.6 (2.6) (0.923) (1000)^{0.333} (2.15) = 700,000 cfs

P_{500} = 10 \exp \left(2.67 \log \left(\frac{700}{472} \right) + 10 \log 472 \right)

P_{500} = 1903,000 cfs
\[P_{10} = 26.9 \left(\text{D.A.} \right)^{0.936} \left(\text{m} \right)^{3.15} \left(\text{storage} \right)^{-1.252} \]

\[P_{50} = 42.7 \left(\text{D.A.} \right)^{0.915} \left(\text{m} \right)^{3.46} \left(\text{storage} \right)^{-2.75} \]

\[P_{100} = 50.9 \left(\text{D.A.} \right)^{0.907} \left(\text{m} \right)^{3.38} \left(\text{storage} \right)^{-2.82} \]

\[P_{25} = 35.60 \left(\text{D.A.} \right)^{0.923} \left(\text{m} \right)^{3.33} \left(\text{storage} \right)^{-2.66} \]

\[P_{500} = 10^{3.69 \log \left(\frac{P_{25}}{P_{10}} \right) + \log P_{10}} \]

Storage of lakes + ponds + 100%

D. A. = Drainage Area \ (\text{mi}^2) \\
\text{m} = \text{slope ft/mi}

\[P_{500} = 10^{3.69 \log \left(\frac{P_{25}}{P_{10}} \right) + \log P_{10}} \]
<table>
<thead>
<tr>
<th>PROJECT</th>
<th>COMP BY</th>
<th>JOB NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Probable Flood - 11111111</td>
<td>MFM</td>
<td>20502 00</td>
</tr>
<tr>
<td>CHK BY</td>
<td>DATE</td>
<td></td>
</tr>
<tr>
<td>BTB</td>
<td>8.9.14</td>
<td></td>
</tr>
</tbody>
</table>

Watershed Area = 2585 sq mi.

Using Figure from:

"Preliminary Guidance For Estimating Maximum Probable Discharges in Phase I Dam Safety Investigations"

\[
MPF = 2100 \text{ cfs/sq mi}
\]

or \[
MPF = 2.58 \times 2100 = 5412.0 \text{ cfs/sq mi}
\]
APPENDIX D

HYDROLOGIC AND HYDRAULIC DETERMINATIONS

Two letter reports concerning the hydrology and hydraulics of Mount Zircon Reservoir Dam were located. The first is a brief report concerning the construction and startup of the reservoir, and the second is a progress report written 13 years after startup. An analysis has been made which includes a hazard determination, estimation of full spillway discharge, and overtopping potential. Tailwater rating curves are not available due to lack of channel configuration data. Flood flow discharges from Mount Zircon Reservoir Dam were calculated by using USGS regional frequency formulas. The hydrologic map of the watershed is reproduced as the location map.
SILT DEPOSITS AT INLET TO RESERVOIR
GATE CONTROL MECHANISM IN GATE HOUSE

SPILLWAY CREST
3
SPILLWAY DISCHARGE CHANNEL

4
1
VIEW OF DAM FROM EAST END

2
CONTROL GATE HOUSE
APPENDIX C

PHOTOGRAPHS

The following are photographs referenced in this report. See sheet B-1.2 for photograph locations and orientations.
\[n_p = 5418 \left(1 - \frac{642}{19}\right) = 5178 \text{ ft} \]
\[q_p = \frac{8}{3} \frac{w_b \sqrt{y}}{y_0^{3/2}} \]

Assume failure in center of dam.

\[W_b = 200' \]

\[y_0 = 20' \text{ (re: slide failure)} \]

\[q_p = \frac{8}{3} \times 200 \left(\frac{\sqrt{9}}{20} \right)^{3/2} = 30,100 \text{ cfs} \]

\[\frac{y_2 q_p T}{12} = 12.15 \]

\[y_0 = 20' \text{ c. use top 20' of surface} \]

\[S = 439 - 75 = 344 \text{ ac-ft} \]

\[T = \frac{12.1 \times (344)(2)}{30,100} = 0.277 \text{ kip} \]

or 16.6 m/s, 58 ft/s.
\[S = \frac{60}{750} = 0.08 \] (Slope too steep for normal depth)

\[\frac{A^2}{g} = \frac{A^3}{B} \] (Critical depth)

WEST

\[V = A x L (L=2150') \]

<table>
<thead>
<tr>
<th>ELEV.</th>
<th>AREA</th>
<th>Q, cfs</th>
<th>V, cfs</th>
<th>STORAGE, V</th>
</tr>
</thead>
<tbody>
<tr>
<td>620</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>625</td>
<td>344</td>
<td>341.0</td>
<td>9.9</td>
<td>17</td>
</tr>
<tr>
<td>630</td>
<td>1125</td>
<td>15140</td>
<td>13.5</td>
<td>55.5</td>
</tr>
<tr>
<td>633</td>
<td>1804</td>
<td>18707</td>
<td></td>
<td>79.0</td>
</tr>
<tr>
<td>634</td>
<td>2865</td>
<td>32906</td>
<td></td>
<td>101.9</td>
</tr>
<tr>
<td>635</td>
<td>3344</td>
<td>37973</td>
<td></td>
<td>113.7</td>
</tr>
</tbody>
</table>
\[Q_{p1} = 30,100 \text{ ft}^3\]

\[Q_{p2} (\text{TRIM}) = Q_{p2} \left(1 - \frac{V}{2}\right)\]

\[= 30,100 \left(1 - \frac{92.7}{344}\right)\]

\[= 21,376\]

\[V_2 = 91.5 \quad \text{AVE} \: V = 95.6\]

\[Q_{p2} = 30,100 \left(1 - \frac{95.6}{344}\right) = 21,700 \text{ ft}^3\]

\[\text{STAGE} = 633.2\]

\[\text{DEPTH} = 13.2'\]
Channel Calculation

- **Slope**: $\frac{11.5}{700} = 0.016$

Elevation vs. Area

<table>
<thead>
<tr>
<th>ELEV</th>
<th>AREA</th>
<th>Q, cfs</th>
<th>V, cu ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>620</td>
<td>1.194</td>
<td>1740</td>
<td>9.0</td>
</tr>
<tr>
<td>625</td>
<td>0.530</td>
<td>41.1</td>
<td>8.0</td>
</tr>
<tr>
<td>621</td>
<td>0.204</td>
<td>871.5</td>
<td>4.3</td>
</tr>
<tr>
<td>622</td>
<td>0.204</td>
<td>871.5</td>
<td>4.3</td>
</tr>
<tr>
<td>623</td>
<td>0.302</td>
<td>1887.1</td>
<td>6.1</td>
</tr>
<tr>
<td>624</td>
<td>0.424</td>
<td>2914.4</td>
<td>6.9</td>
</tr>
</tbody>
</table>

- **Channel**: $n = 0.045$
- **Overbank**: $n = 0.07$

Area and Volume

- $Q = \frac{1.194}{A} \cdot R^{1/5} \cdot L^{1/5}$
- $V = A \cdot H^2$

- **Storage**: $V = 12.3$ cu ft
G_{p2} = 21,700 \text{ cfs}

G_{p3} (prim) = G_{p2} \left(1 - \frac{V_2}{5}\right)

= 21,700 \left(1 - \frac{54.8}{344}\right)

= 18,243 \text{ cfs}

V_2 = 51.7 \quad \text{Ave } U = 53.2

G_{p3} = 21,700 \left(1 - \frac{53.2}{344}\right) \approx 18,300 \text{ cfs}

STAGE = 622.9

\text{Flood flow until } 11 \text{ p.m.} \approx 1850\text{ cfs}

\approx 3 \text{ hours from date}
APPENDIX E

INFORMATION AS CONTAINED IN

THE NATIONAL INVENTORY OF DAMS
<table>
<thead>
<tr>
<th>STATE: ME</th>
<th>DIVISION:</th>
<th>MOUNT ZIRCON RESERVOIR DAM</th>
<th>4430.0</th>
<th>7034.0</th>
<th>160CT78</th>
</tr>
</thead>
<tbody>
<tr>
<td>POPULAR NAME</td>
<td>NAME OF IMPOUNDMENT</td>
<td>MOUNT ZIRCON RESERVOIR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLOW: ZIRCON BROOK</td>
<td>NEAREST DOWNSTREAM CITY-TOWN-VILLAGE</td>
<td>RUMFORD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YEAR: 1974</td>
<td>DOWNSW.</td>
<td>FEDERAL</td>
<td>PRV/FED</td>
<td>STATE</td>
<td></td>
</tr>
<tr>
<td>REGULATORY</td>
<td>DIST</td>
<td>DOWNSW.</td>
<td>FEDERAL</td>
<td>PRV/FED</td>
<td>STATE</td>
</tr>
<tr>
<td>REGULATORY</td>
<td>1974</td>
<td>5</td>
<td>57</td>
<td>52</td>
<td>440</td>
</tr>
<tr>
<td>Remark:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSTALL</td>
<td>MAXIMUM</td>
<td>VOLUME</td>
<td>POWER (\text{MW}^2)</td>
<td>NAVIGATION LOCKS</td>
<td></td>
</tr>
<tr>
<td>MOUTH</td>
<td>DISCHARGE (\text{ft}^3/\text{s})</td>
<td>(\text{ft}^3)</td>
<td>(\text{MW}^2)</td>
<td>LENGTH (\text{ft})</td>
<td>LOCK NO</td>
</tr>
<tr>
<td>2</td>
<td>1720</td>
<td>61000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGINEERING BY</td>
<td>CONSTRUCTION BY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUMFORD WATER DIST.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REGULATORY AGENCY</td>
<td>CONSTRUCTION</td>
<td>Operation</td>
<td>Maintenance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REMARKS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSPECTION BY</td>
<td>INSPECTION DATE</td>
<td>AUTHORITY FOR INSPECTION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TONY J. JORDAN CO., INC.</td>
<td>01 AUG 78</td>
<td>PL 92-367</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>