<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>B2</td>
<td>B3</td>
</tr>
<tr>
<td>C1</td>
<td>C2</td>
<td>C3</td>
</tr>
<tr>
<td>D1</td>
<td>D2</td>
<td>D3</td>
</tr>
<tr>
<td>E1</td>
<td>E2</td>
<td>E3</td>
</tr>
</tbody>
</table>

Figure 13/13 NL

END DATE FEB 88
<table>
<thead>
<tr>
<th>1.0</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>1.8</td>
</tr>
<tr>
<td>2.2</td>
<td>1.8</td>
</tr>
<tr>
<td>2.0</td>
<td>1.6</td>
</tr>
</tbody>
</table>

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-4
PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

DEPARTMENT OF THE ARMY
NEW ENGLAND DIVISION, CORPS OF ENGINEERS
WALTHAM, MASS. 02154

DISTRIBUTION STATEMENT A
Approved for public release; Distribution Unlimited

MARCH 1980
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
Schnecks Pond Dam

NATIONAL PROGRAM FOR INSPECTION OF NON-FEDERAL DAMS

U.S. ARMY CORPS OF ENGINEERS
NEW ENGLAND DIVISION

DEPT. OF THE ARMY, CORPS OF ENGINEERS
NEW ENGLAND DIVISION, NEDED
424 TRAPELO ROAD, WALTHAM, MA 02254

ECOLOGY, DAMS, INSPECTION, DAM SAFETY. Massachusetts Coastal Area Weston, Massachusetts Seaverns Brook

The dam is a 1200 ft. long, 225 ft. high earth embankment structure. There were no indepth engineering data provided. The dam was judged to be in generally fair condition. It is small in size and has a hazard classification of high. It is recommended that the owner engage a qualified engineer to develop means of removing trees and roots from the dam and select acceptable backfill for holes caused by root removal, as well as other remedial measures.
Schencks Pond Dam is a 1,200 foot long, 22+ foot high, earth embankment structure containing a 35+ foot long emergency spillway and a stone and concrete masonry intake structure. It impounds waters from a 28 acre natural drainage area and any overflow or released water from Norumbega Reservoir and Hultman Aqueduct (which are a part of the Commonwealth of Massachusetts Metropolitan District Commission Water Supply System). See Norumbega Reservoir Dam and Dike Report MA 00782, MA 01208, MA 01209. Schencks Pond Dam has been owned and operated by the MDC since its completion in 1940.

There were no indepth engineering data provided. Therefore, the adequacy of the dam was primarily evaluated by the visual inspection, past performance history, the available as-built drawings and sound engineering judgement. The visual inspection indicated the dam to be in generally fair condition. There was a large wet area, believed to be caused by seepage beneath the dam observed at the downstream toe area to the left of the intake structure. Excessive brush growth and trees on the downstream slope were also observed.
There are no records of the dam being overtopped by storm water runoff. The dam has a small size classification and a high hazard classification. Based upon Corps Guidelines the test flood analyzed was the full PMF. The PMF inflow is 280 cfs and the resulting outflow is 202 cfs. The spillway has a capacity of 130 cfs or 64 percent of the test flood outflow. The combined discharge capacity of the spillway and intake structure is 190 cfs or 94 percent of the outflow. The top of the dam would be overtopped by 0.1 foot.

The dam is in generally fair condition. It is recommended that the Owner engage a qualified registered professional engineer to investigate seepage at the downstream toe; develop means of removing trees and roots from the dam and select acceptable backfill for holes caused by root removal; and perform a seismic stability investigation of the dam. Remedial measures include: removal of brush growth and trees from the dam and discharge channel of the outlet works; debris and silt inside the 18 inch outlet pipe and its outlet channel should be removed; the rotted wooden access stairway at the outlet pipe should be removed and replaced; establishment of a formal downstream warning system, repointing intake structure granite block joints and yearly dam inspection including observation and documentation of seepage at both high and low reservoir levels.

These recommendations and remedial measures should be implemented by the Owner within one year after receipt of this Phase I Inspection Report.

Ronald H. Cheney, P.E.
Vice President
Hayden, Harding & Buchanan, Inc.
Boston, Massachusetts

Schencks Pond Dam
This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to
assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

The Phase I Investigation does not include an assessment of the need for fences, gates, no-trespassing signs, repairs to existing fences and railings and other items which may be needed to minimize trespass and provide greater security for the facility and safety to the public. An evaluation of the project for compliance with OSHA rules and regulations is also excluded.
TABLE OF CONTENTS

Section Page
Letter of Transmittal i
Brief Assessment
Review Board Page
Preface
Table of Contents iii-v
Overview Photo vi
Location Map vii

REPORT

1. PROJECT INFORMATION 1
 1.1 General 1
 a. Authority 1
 b. Purpose 1
 1.2 Description of Project 2
 a. Location 2
 b. Description of Dam and Appurtenances 2
 c. Size Classification 3
 d. Hazard Classification 3
 e. Ownership 4
 f. Operator 4
 g. Purpose of Dam 4
 h. Design and Construction History 4
 i. Normal Operational Procedure 4
 1.3 Pertinent Data 5

2. ENGINEERING DATA 10
 2.1 Design Data 10
 2.2 Construction Data 10
 2.3 Operation Data 10
 2.4 Evaluation of Data 10

Schencks Pond Dam
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. VISUAL INSPECTION</td>
<td></td>
</tr>
<tr>
<td>3.1 Findings</td>
<td></td>
</tr>
<tr>
<td>a. General</td>
<td>12</td>
</tr>
<tr>
<td>b. Dam</td>
<td>12</td>
</tr>
<tr>
<td>c. Appurtenant Structures</td>
<td>13</td>
</tr>
<tr>
<td>d. Reservoir Area</td>
<td>13</td>
</tr>
<tr>
<td>e. Downstream Channel</td>
<td>13</td>
</tr>
<tr>
<td>3.2 Evaluation</td>
<td>14</td>
</tr>
<tr>
<td>4. OPERATIONAL AND MAINTENANCE PROCEDURES</td>
<td></td>
</tr>
<tr>
<td>4.1 Operational Procedures</td>
<td></td>
</tr>
<tr>
<td>a. General</td>
<td>15</td>
</tr>
<tr>
<td>b. Description of Warning Systems</td>
<td>15</td>
</tr>
<tr>
<td>4.2 Maintenance Procedures</td>
<td></td>
</tr>
<tr>
<td>a. General</td>
<td>15</td>
</tr>
<tr>
<td>b. Operating Facilities</td>
<td>15</td>
</tr>
<tr>
<td>4.3 Evaluation</td>
<td>16</td>
</tr>
<tr>
<td>5. EVALUATION OF HYDRAULIC/HYDROLOGIC FEATURES</td>
<td></td>
</tr>
<tr>
<td>5.1 General</td>
<td>17</td>
</tr>
<tr>
<td>5.2 Design Data</td>
<td>17</td>
</tr>
<tr>
<td>5.3 Experience Data</td>
<td>17</td>
</tr>
<tr>
<td>5.4 Test Flood Analysis</td>
<td>18</td>
</tr>
<tr>
<td>5.5 Dam Failure Analysis</td>
<td>18</td>
</tr>
<tr>
<td>6. EVALUATION OF STRUCTURAL STABILITY</td>
<td></td>
</tr>
<tr>
<td>6.1 Visual Observation</td>
<td>20</td>
</tr>
<tr>
<td>6.2 Design and Construction Data</td>
<td>20</td>
</tr>
<tr>
<td>6.3 Post-Construction Changes</td>
<td>20</td>
</tr>
<tr>
<td>6.4 Seismic Stability</td>
<td>21</td>
</tr>
</tbody>
</table>
Section 7. ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES 22

7.1 Dam Assessment 22
 a. Condition 22
 b. Adequacy of Information 22
 c. Urgency 22

7.2 Recommendations 22

7.3 Remedial Measures 22
 a. Operation and Maintenance Procedures 22

7.4 Alternatives 22

APPENDIXES

APPENDIX A - INSPECTION CHECKLIST A-1
APPENDIX B - ENGINEERING DATA B-1
APPENDIX C - PHOTOGRAPHS C-1
APPENDIX D - HYDROLOGIC AND HYDRAULIC COMPUTATIONS D-1
APPENDIX E - INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS E-1
PHASE I
NATIONAL DAM INSPECTION PROGRAM

SECTION 1
PROJECT INFORMATION

1.1 General

a. Authority

Public Law 92-367, August 8, 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a national program of dam inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. Hayden, Harding & Buchanan, Inc. has been retained by the New England Division to inspect and report on selected dams in the State of Massachusetts. Authorization and notice to proceed was issued Hayden, Harding & Buchanan, Inc. under a letter of 24 October 1979 from William E. Hodgson Jr., Colonel, Corps of Engineers. Contract No. DACW 33-80-C-0006 has been assigned by the Corps of Engineers for this work.

b. Purpose

(1) Perform technical inspection and evaluation of non-Federal dams to identify conditions which threaten the public safety and thus permit correction in a timely manner by non-Federal interests.

(2) Encourage and assist the States to initiate quickly effective dam safety programs for non-Federal dams.

(3) To update, verify and complete the National Inventory of Dams.

Schenck's Pond Dam
1.2 Description of Project

a. Location

Schencks Pond Dam is located in the Town of Weston in Middlesex County, Massachusetts. The dam is located off Oak Street approximately 300 feet southwest of where Oak Street crosses the Massachusetts Turnpike. Directly south of the dam is the MDC Norumbega Reservoir (MA 00782). Schencks Pond Dam is shown on the Natick, Massachusetts Quadrangle having the approximate coordinates of North 42°20'11", West 71°17'37".

b. Description of Dam and Appurtenances

Schencks Pond Dam is comprised of a 22 foot high, 1,200+ foot long earth embankment, a 35+ foot long emergency spillway, a stone masonry intake structure and a concrete outlet headwall. Schencks Pond is connected to the MDC Norumbega Reservoir-Hultman Aqueduct system. It is not part of the water supply system as no water is drawn from Schencks Pond by the MDC. Schencks Pond and its outlet brook (Seaverns Brook) existed prior to the construction of Norumbega Reservoir. The MDC must maintain Schencks Pond and a minimum base flow in Seaverns Brook. Schencks Pond provides a discharge area for overflow from Norumbega Reservoir and Hultman Aqueduct and also provides a reservoir used in maintaining Seaverns Brook. The MDC discharges water into Schencks Pond, from Norumbega Reservoir, to maintain the water level in the pond. Water inlets through a gated sluice at the gatehouse, and discharges into Schencks Pond through a 4 by 5 foot concrete conduit. Water from the aqueduct will also outlet into Schencks Pond when the level of the aqueduct becomes higher than the overflow weir at the Norumbega Reservoir gatehouse set at elevation 269. See drawings in Appendix B and Norumbega Reservoir Report (MA 00782).
According to plans provided by the MDC, the embankment has an impervious core, a semi-impervious transition section and a consolidated pervious shell. The upstream slope is riprapped on a 2H:1V slope and is underlaid by a 12 inch crushed stone or screened gravel layer. The downstream slope is turf lined and sloped at 2H:1V. The embankment is founded on bedrock having a concrete cut-off and grout holes, the embankment has a maximum hydraulic height of approximately 22 feet.

The intake structure is a 7 foot by 10 foot stone and concrete masonry structure as shown by photograph 1. It has an 18 inch concrete intake pipe and headwall located 30 feet upstream of the intake structure. The intake structure contains a concrete weir having a top elevation of 246. When the level of Schencks Pond exceeds this elevation, water inside the intake structure will spill over the weir. Water would then discharge through an 18 inch concrete pipe to the concrete headwall outlet structure located 45+ feet downstream, photograph 9. Normally the level of Schencks Pond is below elevation 246. In order to maintain the outlet brook, water is siphoned through a 2 inch line, into the 18 inch reinforced concrete outlet pipe.

c. **Size Classification**

The dam is classified as small based on its maximum hydraulic height of 22 feet and storage capacity of about 66 acre-feet.

d. **Hazard Classification**

The dam has a high hazard potential classification due to the potential for loss of life should the dam fail. Based upon
Corps Guidelines, the assumed peak failure outflow is 13,480 cfs. Prior to failure, the total project discharge (base flow) is 180 cfs. This causes minor flooding, and possible minor damage. Dam failure flood stage varies from about 3 to 11 feet deep (including base flood stage). Twenty-five homes and four roads receive dam failure flood damage.

e. Ownership
The dam has always been owned by the MDC.

f. Operator
The dam is maintained and operated by the MDC. Mr. Charles Demeo is the designated caretaker. The address is Oak Street, Weston, Massachusetts 02193. (Telephone 617-235-2707).

g. Purpose of Dam
Schencks Pond and its outlet brook existed prior to the construction of the MDC Norumbega Reservoir. The MDC is required to maintain the pond and outlet brook. When the MDC built Norumbega Reservoir, Schencks Pond Dam was modified to provide a discharge area for overflow from Norumbega Reservoir and the Hultman Aqueduct. It also provides a reservoir for the outlet brook to draw from.

h. Design and Construction History
Design of the dam was completed in the late 1930's. Construction was completed in the early 1940's. There are no indications of post construction changes.

i. Normal Operational Procedure
Schencks Pond is maintained by the MDC to assure flow is maintained in the downstream outlet, Seaverns Brook. MDC personnel
take daily water readings of the pond. When the level of the pond drops below the operational level, water is fed into Schencks from Norumbega. When the water level of Norumbega (or the aqueduct) exceeds elevation 269, water will spill over a weir in the Norumbega Reservoir gatehouse and outlet into Schencks Pond through the 4 by 5 foot concrete culvert.

1.3 Pertinent Data

a. Drainage Area

The present drainage area 0.04 s.m. (28 acres) is wooded, undeveloped land that is owned by the MDC. The pond's surface area 16.6 acres (at top of dam), is included in that of the drainage area. The small amount of natural runoff into the pond is supplemented periodically by flow from Norumbega Reservoir. This supplemental flow assures a minimum base flow will discharge into Seaverns Brook.

The original Schencks Pond was at this same location. Its surface area was about 8 acres. Its original drainage area, prior to the construction of Norumbega Reservoir, was about 91 acres in size. See Appendixes B, C and D for drawings, photographs and hydraulic calculations.

b. Discharge at Damsite

1. Outlet Works

The outlet works consist of a concrete intake structure with an overflow weir. The inlet and two outlets are 18 inch diameter concrete pipes. The inlet pipe invert is at elevation 228.75. It is connected to the weir chamber where the outlet pipe, at elevation 228.6+, is kept closed with a manually operated sluice gate. Water must rise inside this chamber to overflow a weir before entering the outlet side of the chamber.
and then discharge into the outlet pipe. The two 18 inch outlet pipes combine into one 18 inch pipe which outlets approximately 45 feet downstream of the intake structure. The weir and outlet pipe have a maximum capacity of 60 cfs with water at elevation 250.5, top of dam.

2. **Maximum Known Flood at Damsite**

 There are no available records of maximum flooding conditions at the damsite. According to MDC personnel the dam has not been overtopped. Past records of daily reservoir readings are filed at the MDC Sudbury office. The U.S. Weather Bureau records indicate that between 10 to 12 inches of rainfall occurred near the project location from August 17 to 20, 1955.

3. **Ungated Spillway Capacity at Top of Dam**

 The spillway has no provisions for gates, flashboards or stoplogs. Its crest and top of dam elevation are 249.0 and 250.5, respectively. Its capacity with water to elevation 250.5 is 125+ cfs.

4. **Ungated Spillway Capacity at Test Flood Elevation**

 At the test flood elevation of 250.6 the spillway capacity is 130+ cfs.

5. **Total Project Discharge at Top of Dam**

 With the water level at elevation 250.5, top of dam, the total project discharge is 180+ cfs.

6. **Total Project Discharge at Test Flood Elevation**

 At the test flood elevation of 250.6, the total project discharge is 202+ cfs.
7. **Project Discharge at Normal Pool Elevation**

The normal pool elevation is about 246. There is no spillway discharge, as its crest elevation is 249. The weir at the intake structure, with stoplogs, is at elevation 248, thus it has no discharge. A small 2 inch diameter siphon pipe provides a minimal base flow into Seaverns Brook.

c. **Elevation (ft. above NGVD - approximate only)**

 (1) Streambed at toe of dam ----------------------- 228.5
 (2) Bottom of cutoff ---------------------------- 219+
 (3) Maximum tailwater -------------------------- less than 1 foot deep
 (4) Normal Pool ------------------------------- 246+
 (5) Full flood control pool --------------------- N/A
 (6) Spillway crest ------------------------------- 249.0
 (7) Design surcharge (Original Design)--------- Unknown
 (8) Top of dam --------------------------------- 250.5
 (9) Test flood surcharge ------------------------ 250.6

d. **Reservoir (Length in Feet)**

 (1) Normal pool ------------------------------- 900+
 (2) Spillway crest pool ------------------------ 905+
 (3) Top of dam ------------------------------- 910+
 (4) Test flood pool ---------------------------- 910+
 (5) Flood control pool ------------------------- N/A

e. **Storage (acre-feet)**

 (1) Normal pool ------------------------------- 66
 (2) Spillway crest pool ------------------------ 111
 (3) Top of dam ------------------------------- 133
 (4) Test flood pool ---------------------------- 133
 (5) Flood control pool ------------------------- N/A

Schenck's Pond Dam
f. Reservoir Surface (acres)
(1) Normal pool ------------------------------ 13
(2) Flood control pool ----------------------- N/A
(3) Spillway crest --------------------------- 15.4
(4) Test flood pool -------------------------- 16.6
(5) Top of dam ------------------------------ 16.6

g. Dam
(1) Type --------------------- gravity, earth embankment
(2) Length ------------------------------- 1200' +
(3) Height ----------------------------- 22' + (hydraulic)
(4) Top width ---------------------------- 12'
(5) Side slopes -------------------------- 2H:1V u.s. & d.s.
(6) Zoning - consolidated pervious, rolled semi-impervious and rolled impervious embankment
(7) Impervious core -- rolled impervious embankment
(8) Cutoff ------------------------------- concrete to rock
(9) Grout curtain ---------------------- shallow grout holes

h. Diversion and Regulation Tunnel
None at this project.

i. Spillway
(1) Type ------------------------------- broad crested
(2) Length of weir ------------------------- 35' +
(3) Crest elevation (no flashboards) ------- 249.0
(4) Gates ----------------------------------- None
(5) U/S Channel -- opens directly into Schencks Pond
(6) D/S Channel ----- stone paving on d.s. slope of embankment then open earth channel
j. **Regulating Outlets**

Regulating outlets are in the weir chamber. Here, the 18 inch pipe has a manually operated sluice gate, at elevation 228.6. The weir, at elevation 246, has provisions for two feet of stoplogs, to reach elevation 248.
SECTION 2
ENGINEERING DATA

2.1 Design Data
The dam was designed in the late 1930's. No design calculations were located.

2.2 Construction Data
Construction of the dam was completed in the early 1940's. As-built plans dated 1945 were made available by the MDC.

2.3 Operation Data
The dam is maintained and operated by the MDC. Flow in the aqueduct is regulated by the upstream Southborough station based on periodic monitoring of the water level at Norumbega Reservoir. Daily water level readings of Schencks Pond are taken to assure that flow in the outlet channel is maintained. No formal operations manual for this project was made available.

2.4 Evaluation of Data
a. Availability
As-built plans were made available at the MDC Water Division Office at 20 Somerset Street, Boston, Massachusetts. A State Inspection Report dated 1974, was made available at the Department of Environmental Quality Engineering, Division of Waterways, Boston Office.

b. Adequacy
Indepth engineering data was not provided and does not allow for a definitive review. Therefore, the adequacy of this dam, structurally and hydraulically, cannot be assessed from the
standpoint of review of design calculations, but must be based primarily on the visual inspection, past performance history, the available as-built drawings, and sound engineering judgement.

c. Validity

The visual inspection of this facility showed no reason to question the validity of the information supplied by the M.D.C.

The January 14, 1974, inspection report from the State indicates no risk to life or property in the event of dam failure. Our field investigation and subsequent analysis indicate a high hazard potential due to dam failure and a high potential for loss of life.
SECTION 3
VISUAL INSPECTION

3.1 Findings

a. General
At the time of inspection, the water in the reservoir was about 5 feet below the top of the dam.

b. Dam
The dam is a zoned earth embankment about 1200+ feet in length and about 22 feet in height with an emergency spillway and an intake structure.

The upstream slope is covered with riprap which is in good condition. In several locations small brush has grown through the riprap near the waterline, photograph 2.

The crest of the dam is about 10 feet wide and is grass covered. The grass has been worn due to maintenance traffic, photographs 3 and 4. No evidence of cracking or misalignment of the crest that could be attributed to embankment movement was observed.

The downstream slope is covered with brush and trees, which in most areas are very dense, photograph 4 and 5. A large wet area, believed to be caused by seepage from beneath the dam, was observed downstream of the toe of the dam starting near the outlet works and extending about 170 feet left of the outlet works. A seep was observed from around a boulder and tree root located about 160 feet left of the outlet works and about 85 feet from the crest of Schencks Pond Dam.
the dam, photograph 6. The water emerging from the seep was clear and no silt or fine sand was found deposited around the seep. A \(\frac{1}{4} \) inch diameter stick could be pushed 18 inches into the ground in the wet area about 35 feet left of the outlet works.

Several large rock outcrops were observed on the upstream and downstream slopes of the dam.

c. Appurtenant Structures

The spillway of the dam is excavated into bedrock and is in good condition, photograph 7. The discharge channel of the spillway, shown in photograph 8, has a floor consisting of rock, concrete, and mortared stone.

The visible portion of the intake structure is in generally good condition as shown in photograph 1. The mortar joints of the granite blocks need repointing.

The visible portion of the outlet structure on the downstream side of the dam is shown in photograph 9. The discharge channel of the outlet structure is heavily vegetated and lined with trees. The stoplogs and sluice gate are reportedly in operable condition. The wood access stairway from the dam crest to the outlet pipes' headwall was rotted and unsafe.

d. Reservoir Area

There are no indications of instability along the banks of the reservoir in the vicinity of the dam.

e. Downstream Channel

The downstream channel is Seaverns Brook. No significant obstructions were observed in the channel, however, it is thickly vegetated. The outlet channel and pipes need to be cleaned.
3.2 Evaluation

Visual inspection indicates the dam is in generally fair condition.

A large wet area, believed to be caused by seepage beneath the dam, was observed downstream of the downstream toe of the dam left of the outlet works. Seepage was observed exiting from the base of a tree root located about 85 feet downstream of the crest of the dam. This condition if left unattended could lead to instability of the dam.
4.1 Operational Procedures

a. General

Schencks Pond Dam is a component of the high level storage facility used to compensate flow through the MDC Hultman Aqueduct. Water is fed from Norumbega Reservoir into Schencks Pond when the level of Schencks is too low to maintain flow in the outlet channel or when the level of Norumbega Reservoir exceeds elevation 269. Periodic water level readings are taken at Norumbega Reservoir and Schencks Pond.

b. Description of Warning System

There is no warning system to notify the impact area in the event of an emergency. However, the upstream Norumbega Reservoir gatehouse is manned 24 hours per day.

4.2 Maintenance Procedures

a. General

The MDC is responsible for the maintenance of the facility. There is no formal maintenance schedule. MDC personnel at the Norumbega gatehouse perform periodic maintenance as required.

b. Operating Facilities

The gatehouse at Norumbega Reservoir is manned 24 hours per day. MDC personnel can assess the condition of the intake structure during the daily water readings. The direct outlet from Norumbega Reservoir into Schencks Pond is used when the caretaker determines it is necessary.
4.3 Evaluation

Maintenance of the facility is periodically performed by the MDC. Brush growth and trees should be cut as part of routine maintenance. Trees and their root systems should be removed and the resulting holes backfilled with a filter material.

The project should be inspected every year by a qualified registered professional engineer who can identify conditions of concern which if left unchecked could jeopardize the safety of the dam.
SECTION 5
EVALUATION OF HYDRAULIC/HYDROLOGIC FEATURES

5.1 General

Schencks Pond is located in the Town of Weston, Massachusetts, about 200 feet south of the Massachusetts Turnpike. The pond is controlled by the MDC.

The pond was reconstructed, at its original location as a part of the Norumbega-Hultman Aqueduct project, in the early 1940's. It presently has a surface area of 16.6 acres. A small drainage area of 11.4 acres, surrounds the pond. Water is occasionally released from Norumbega Reservoir to maintain the pond's water level, and a minimal base flow in Seaverns Brook.

5.2 Design Data

The existing Schencks Pond and Dam were designed in the late 1930's as a part of the MDC Norumbega Reservoir-Hultman Aqueduct project. Original design data was not located for inclusion in this report. Original construction plans were obtained from the MDC. Schencks Pond is not part of the MDC water supply system.

5.3 Experience Data

There are no available records at the gatehouse of the dam ever being overtopped or past flooding experience. According to MDC personnel the dam has never been overtopped. Past records of daily reservoir readings are kept at the MDC Sudbury office. The small size of the pond's drainage area would limit the amount of runoff even from the largest storms.

U.S. Weather Bureau records indicate that from August 17 to 20, 1955, about 10 to 12 inches of rainfall occurred near the project location.
5.4 Test Flood Analysis

Schencks Pond has a small size classification and a high hazard potential. Based upon Corps Guidelines, the test flood would be in the \(\frac{1}{2} \) PMF to full PMF range. The full PMF was used for the test flood due to the amount of residential structures within the dam failure impact area. The test flood inflow from the 0.04 s.m. drainage area is 130 cfs. The spillway discharge from Norumbega Reservoir, 150 cfs, was added to the drainage area inflow of 130 cfs to arrive at a peak inflow of 280 cfs at Schencks Pond.

Assuming that the initial water level were at elevation 249, spillway crest, the test flood inflow would surcharge the pond to elevation 250.6. The resulting test flood outflow is 202 cfs. The combined spillway and weir chamber discharge would be 190 cfs or 94 percent of the test flood outflow. Since the top of the dam is at elevation 250.5, the test flood overtops the dam by 0.1 foot. The total discharge capacity with water at elevation 250.5, top of dam, is 180 cfs, or 89 percent of the 202 cfs test flood outflow.

With the initial water level at elevation 246, normal pool level the test flood outflow would be 145 cfs at elevation 250.4, 0.1 foot below the top of dam. The test flood analysis indicated that for normal operating conditions, the total project storage and discharge capacity is adequate and the dam is not overtopped. Further hydrologic/hydraulic analysis should not be necessary.

5.5 Dam Failure Analysis

Dam failure analysis was performed assuming the initial water level was at the top of dam, elevation 250.5. The dam has a maximum hydraulic height of 22 feet. Forty percent of a 190 foot long
section was assumed to have failed. The peak failure discharge is 13,480 cfs. Just prior to failure, the spillway and weir chamber would be discharging a base flow of 180 cfs.

The base flow will cause minor flooding damage along Seaverns Brook. The base flow and failure flow were combined, 13,660 cfs, and routed to determine failure flood stage and damage.

The first impact area is between stations 5+00 to 12+00. Dam failure flood stage (including base flow stage) is about three to four feet. Nine homes and one road are flooded.

At station 15+00 dam failure flood stage increases to about nine feet. One house is damaged by about nine feet of water and another by two feet of water. Another road is also flooded at this area.

The Massachusetts Turnpike, station 21+00, is flooded by four feet of water. Flood stage is about eleven feet deep. The flood stage increases to allow water to overflow the highway embankment.

From station 26+00 to 49+00 dam failure flood stage is about four to five feet deep. Nine houses and two roads receive about four to five feet of flood water damage. Five other homes receive about two feet of flood water damage.

Beyond station 49+00, additional damage could occur as the remaining 4,528 cfs continues to flow towards the Massachusetts Turnpike, Route 128 and the Charles River.

The potential for loss of life due to the failure of Schencks Pond Dam is high.

-19-

Schencks Pond Dam
SECTION 6
EVALUATION OF STRUCTURAL STABILITY

6.1 Visual Observation

The visual observations disclosed a large wet area at the toe of the dam and seepage exiting from the base of a tree root about 85 ft from the centerline of the dam. If left unattended this seepage could lead to instability of the dam in the future.

6.2 Design and Construction Data

Design drawings by the Commonwealth of Massachusetts Metropolitan District Water Supply Commission dated 1944 were reviewed. The dam was constructed around 1940.

The following geotechnical information was obtained from a drawing of typical cross sections through the dam:

a. The upstream and downstream slopes are 2H:1V

b. The dam is zoned embankment with a core consisting of "rolled impervious" soil.

c. The dam is founded on earth with the exception of the core which is founded on bedrock.

d. The rock beneath the core was grouted through shallow drill holes.

The plan drawings indicate numerous bedrock outcrops along the centerline of the dam.

6.3 Post Construction Changes

No significant post construction changes to the dam are known.

-Schencks Pond Dam-
6.4 **Seismic Stability**

The dam is located near the boundary of Seismic Zones 2 and 3 and considering its height, a seismic stability investigation should be conducted as recommended in Section 7.
SECTION 7

ASSESSMENT, RECOMMENDATIONS & REMEDIAL MEASURES

7.1 Dam Assessment
a. Condition
 On the basis of the visual inspection and available records, the dam is judged to be in fair condition.
b. Adequacy of Information
 The information made available and the visual inspection are adequate for a Phase I level of investigation.
c. Urgency
 The recommendations and remedial measures presented in Sections 7.2 and 7.3 should be implemented within one year after receipt of this Phase I report by the owner.

7.2 Recommendations
The Owner should engage a qualified registered professional engineer to investigate and design required remedial measures for:
 a. Means of removing trees and roots from the dam and selecting acceptable backfill for holes caused by root removal.
 b. The seismic stability of the dam in accordance with recommended Phase I Guidelines.
 3. The source of seepage found at the downstream toe of the dam.

7.3 Remedial Measures
a. Operating and Maintenance Procedures
 1. Brush growth on the upstream and downstream slopes and trees on the downstream slope should be cut as part of routine annual maintenance.
2. Brush growth in the discharge channel of the outlet works should be cut as a part of routine maintenance. Debris and silt inside the 18 inch outlet pipe and its outlet channel should be removed.

3. The rotted wooden access stairway located on the downstream slope near the outlet pipe should be removed, and a new, durable stairway constructed to facilitate maintenance.

4. The dam should be inspected every year by qualified registered professional engineers who can identify areas of concern which, if left unchecked, could jeopardize the safety of the dam. This inspection should include observation and documentation of seepage so that significant changes in flow can be detected. This inspection should be performed at both high and low reservoir level.

5. The mortar joints of the granite blocks at the intake structure should be repointed.

6. The Owner should establish a formal warning system to notify downstream areas in the event of an emergency.

7.4 Alternatives

There are no practical alternatives for these recommendations.
APPENDIX A

INSPECTION CHECKLIST

A-1

Schencks Pond Dam
VISUAL INSPECTION CHECKLIST
PARTY ORGANIZATION

PROJECT: SCHENCKS POND DAM

DATE: October 30, 1980

TIME: 10:30 A.M.

WEATHER: 40°F, Sunny

U.S. ELEV.: 245+ U.S. ON S.

PARTY:
1. R. Cheney HNB
2. D. Vine HNB
3. D. LaGatta GEI
4. T. Keller GEI
5.

PROJECT FEATURE

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

INSPECTED BY

REMARDS

A-2
PERIODIC INSPECTION CHECKLIST

PROJECT SCHENCKS POND DAM DATE 10/30/79
PROJECT FEATURE Embankment Dam NAME D. LaGatta
DISCIPLINE Geotechnical Engineer NAME R. Cheney
 Structural Engineer

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crest Elevation</td>
<td>250.5+</td>
</tr>
<tr>
<td>Current Pool Elevation</td>
<td>245+</td>
</tr>
<tr>
<td>Maximum Impoundment to Date</td>
<td>Unknown</td>
</tr>
<tr>
<td>Surface Cracks</td>
<td>None of significance</td>
</tr>
<tr>
<td>Pavement Condition</td>
<td>No pavement</td>
</tr>
<tr>
<td>Movement or Settlement of Crest</td>
<td>None of significance</td>
</tr>
<tr>
<td>Lateral Movement</td>
<td>None of significance</td>
</tr>
<tr>
<td>Vertical Alignment</td>
<td>No vertical misalignment observed</td>
</tr>
<tr>
<td>Horizontal Alignment</td>
<td>No horizontal misalignment observed</td>
</tr>
<tr>
<td>Condition at Abutment and at Concrete Structures</td>
<td>Good</td>
</tr>
<tr>
<td>Indications of Movement of Structural Items on Slopes</td>
<td>None</td>
</tr>
<tr>
<td>Trespassing on Slopes</td>
<td>None of significance</td>
</tr>
<tr>
<td>Slauging or Erosion of Slopes or Abutments</td>
<td>None of significance</td>
</tr>
<tr>
<td>Rock Slope Protection - Riprap Failures</td>
<td>Riprap in good condition</td>
</tr>
<tr>
<td>Unusual Movement or Cracking at or Near Toe</td>
<td>None observed</td>
</tr>
<tr>
<td>Unusual Embankment or Downstream Seepage</td>
<td>Wet area downstream of dam between left abutment and outlet structure (See text)</td>
</tr>
<tr>
<td>Mining or Bovis</td>
<td>None observed</td>
</tr>
<tr>
<td>Foundation Drainage Features</td>
<td>None observed</td>
</tr>
<tr>
<td>Toe Drains</td>
<td>None</td>
</tr>
<tr>
<td>Instrumentation System</td>
<td>None</td>
</tr>
<tr>
<td>Vegetation</td>
<td>Brush and trees (Up to 12" dia) on downstream slope; slight vegetation on upstream slope.</td>
</tr>
</tbody>
</table>
PERIODIC INSPECTION CHECKLIST

<table>
<thead>
<tr>
<th>PROJECT</th>
<th>SCHENCKS POND DAM</th>
<th>DATE</th>
<th>10/10/79</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROJECT FEATURE</td>
<td>Intake Structure</td>
<td>NAME</td>
<td>D. LaGatta</td>
</tr>
<tr>
<td>DISCIPLINE</td>
<td>Geotechnical Engineer</td>
<td>NAME</td>
<td>R. Cheney</td>
</tr>
<tr>
<td>Structural Engineer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTLET WORKS - INTAKE CHANNEL AND INTAKE STRUCTURE</td>
<td>Approach channel is reservoir</td>
</tr>
<tr>
<td>a. Approach Channel</td>
<td></td>
</tr>
<tr>
<td>Stone Conditions</td>
<td></td>
</tr>
<tr>
<td>Bottom Conditions</td>
<td></td>
</tr>
<tr>
<td>Rock Slides or Falls</td>
<td></td>
</tr>
<tr>
<td>Lon Boom</td>
<td></td>
</tr>
<tr>
<td>Debris</td>
<td></td>
</tr>
<tr>
<td>Condition of Concrete Lining</td>
<td></td>
</tr>
<tr>
<td>Drains or Weep Holes</td>
<td></td>
</tr>
<tr>
<td>b. Intake Structure</td>
<td>The stone masonry intake structure is in generally good condition.</td>
</tr>
<tr>
<td>Condition of Concrete</td>
<td>The joints in the granite blocks need repointing.</td>
</tr>
<tr>
<td>Stone Logs and Slots</td>
<td></td>
</tr>
<tr>
<td>AREA EVALUATED</td>
<td>CONDITION</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>OUTLET WORKS - CONTROL TOWER.</td>
<td>There is no control tower.</td>
</tr>
<tr>
<td>a. Concrete and Structural</td>
<td></td>
</tr>
<tr>
<td>General Condition</td>
<td></td>
</tr>
<tr>
<td>Condition of Joints</td>
<td></td>
</tr>
<tr>
<td>Spalling</td>
<td></td>
</tr>
<tr>
<td>Visible Reinforcing</td>
<td></td>
</tr>
<tr>
<td>Rusting or Staining of Concrete</td>
<td></td>
</tr>
<tr>
<td>Any Seepage or Efflorescence</td>
<td></td>
</tr>
<tr>
<td>Joint Alignment</td>
<td></td>
</tr>
<tr>
<td>Unusual Seepage or Leaks in Gate Chamber</td>
<td></td>
</tr>
<tr>
<td>Cracks</td>
<td></td>
</tr>
<tr>
<td>Rusting or Corrosion of Steel</td>
<td></td>
</tr>
<tr>
<td>b. Mechanical and Electrical</td>
<td></td>
</tr>
<tr>
<td>Air Vents</td>
<td></td>
</tr>
<tr>
<td>Float Wells</td>
<td></td>
</tr>
<tr>
<td>Crane Hoist</td>
<td></td>
</tr>
<tr>
<td>Elevator</td>
<td></td>
</tr>
<tr>
<td>Hydraulic System</td>
<td></td>
</tr>
<tr>
<td>Service Gates</td>
<td></td>
</tr>
<tr>
<td>Emergency Gates</td>
<td></td>
</tr>
<tr>
<td>Lightning Protection System</td>
<td></td>
</tr>
<tr>
<td>Emergency Power System</td>
<td></td>
</tr>
<tr>
<td>Visitor and Lighting System</td>
<td></td>
</tr>
</tbody>
</table>

A-5
<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlet Works - Transition and Conduit</td>
<td>There is no transition or conduit.</td>
</tr>
<tr>
<td>AREA EVALUATED</td>
<td>CONDITION</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Outlet Works - Outlet Structure and Outlet Channel</td>
<td></td>
</tr>
<tr>
<td>General Condition of Concrete</td>
<td>The general condition of the concrete headwall is good.</td>
</tr>
<tr>
<td>Rust or Staining</td>
<td></td>
</tr>
<tr>
<td>Spalling</td>
<td></td>
</tr>
<tr>
<td>Erosion or Cavitation</td>
<td></td>
</tr>
<tr>
<td>Visible Reinforcing</td>
<td></td>
</tr>
<tr>
<td>Any Seepage or Efflorescence</td>
<td></td>
</tr>
<tr>
<td>Condition at Joints</td>
<td></td>
</tr>
<tr>
<td>Drain holes</td>
<td>None observed</td>
</tr>
<tr>
<td>Channel</td>
<td>Trees line channel sides</td>
</tr>
<tr>
<td>Loose Rock or Trees Overhanging Channel</td>
<td></td>
</tr>
<tr>
<td>Condition of Discharge Channel</td>
<td>Fair - much vegetation</td>
</tr>
</tbody>
</table>
PERIODIC INSPECTION CHECKLIST

<table>
<thead>
<tr>
<th>PROJECT FEATURE</th>
<th>Date</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schenck's Pond Dam</td>
<td>10/30/79</td>
<td>D. LaGatta</td>
</tr>
</tbody>
</table>

Project Feature: Spillway

<table>
<thead>
<tr>
<th>DISCIPLINE</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geotechnical Engineer</td>
<td>R. Cheney</td>
</tr>
<tr>
<td>Structural Engineer</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlet Works - Spillway Weir, Approach and Discharge Channels</td>
<td></td>
</tr>
<tr>
<td>a. Approach Channel</td>
<td></td>
</tr>
<tr>
<td>General Condition</td>
<td>Good</td>
</tr>
<tr>
<td>Loose Rock Overhanging Channel</td>
<td>None</td>
</tr>
<tr>
<td>Trees Overhanging Channel</td>
<td>None</td>
</tr>
<tr>
<td>Floor of Approach Channel</td>
<td>Combination bedrock and mortared stone.</td>
</tr>
<tr>
<td>b. Weir and Training Walls</td>
<td></td>
</tr>
<tr>
<td>General Condition of Concrete</td>
<td></td>
</tr>
<tr>
<td>Rust or Staining</td>
<td>None</td>
</tr>
<tr>
<td>Spalling</td>
<td>None</td>
</tr>
<tr>
<td>Any Visible Reinforcing</td>
<td>None</td>
</tr>
<tr>
<td>Any Seepage or Efflorescence</td>
<td>None observed</td>
</tr>
<tr>
<td>Drain Holes</td>
<td>None</td>
</tr>
<tr>
<td>c. Discharge Channel</td>
<td></td>
</tr>
<tr>
<td>General Condition</td>
<td>Good</td>
</tr>
<tr>
<td>Loose Rock Overhanging Channel</td>
<td>None</td>
</tr>
<tr>
<td>Trees Overhanging Channel</td>
<td>None of significance</td>
</tr>
<tr>
<td>Floor of Channel</td>
<td>Combination bedrock and mortared stone</td>
</tr>
<tr>
<td>Other Obstructions</td>
<td>None</td>
</tr>
<tr>
<td>AREA EVALUATED</td>
<td>CONDITION</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>OUTLET WORKS - SERVICE BRIDGE</td>
<td></td>
</tr>
<tr>
<td>a. Super Structure</td>
<td>There is no service bridge.</td>
</tr>
<tr>
<td>1. Bearings</td>
<td></td>
</tr>
<tr>
<td>2. Anchor Bolts</td>
<td></td>
</tr>
<tr>
<td>3. Bridge Seat</td>
<td></td>
</tr>
<tr>
<td>4. Longitudinal Members</td>
<td></td>
</tr>
<tr>
<td>5. Underside of Deck</td>
<td></td>
</tr>
<tr>
<td>6. Secondary Bracing</td>
<td></td>
</tr>
<tr>
<td>7. Deck</td>
<td></td>
</tr>
<tr>
<td>8. Drainage System</td>
<td></td>
</tr>
<tr>
<td>9. Railings</td>
<td></td>
</tr>
<tr>
<td>10. Expansion Joints</td>
<td></td>
</tr>
<tr>
<td>11. Paint</td>
<td></td>
</tr>
<tr>
<td>b. Abutment & Piers</td>
<td></td>
</tr>
<tr>
<td>12. General Condition of Concrete</td>
<td></td>
</tr>
<tr>
<td>13. Alignment of Abutment</td>
<td></td>
</tr>
<tr>
<td>14. Approach to Bridge</td>
<td></td>
</tr>
<tr>
<td>15. Condition of Seat & Backwall</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX B

ENGINEERING DATA

B-1

Schencks Pond Dam
LIST OF ENGINEERING DATA

1. As-built plans dated 1944 were made available at the MDC Water Division Office at 20 Somerset Street, Boston, Massachusetts.

2. A State Inspection Report dated 1974, was made available at the Department of Environmental Quality Engineering, Division of Waterways, Boston Office.
NOTE:
TAKEN FROM METR DISTR WATER SUPPLY COMM DWG DATED MA
ELEVATION SHOWN ARE NGVD

PERMANENT FENCE

EMERGENCY SPILLWAY

PRESSURE AQUEDUCT

NORUMBEGA RESERVOIR
EL. 269.0

SPOIL AREA

DIKE NO. 8

DIKE NO. 4

CONCRETE CULVERT

GATE HOUSE

FLOW LINE EL 266.0

NORUMBEGA RESERVOIR

UPPER BASIN INTAKE

MAIN DAM

CHLORINE STORAGE HOUSE

THORNTON HOUSE

EITHER HOUSE

FLOODED ROAD

EAST DIKE

NOTE:
TAKEN FROM METR DISTR WATER SUPPLY COMM DWG DATED MA
ELEVATION SHOWN ARE NGVD
NOTE:
TAKEN FROM N.E.T.R. DISTR. WATER SUPPLY COMM. DWG DATED FEB. 1, 1944
ELEVATION SHOWN ARE BOSTON CITY BASE

SCHENCKS POND DAM
TYPICAL CROSS SECTION
NOTE:
TAKEN FROM METR DISTR. WATER SUPPLY COMM. DWG. DATED FEB. 1, 1944
ELEVATION SHOWN ARE BOSTON CITY BASE

SCHENCKS POND DAM
SECTION AT OUTLET CHAMBER

WESTON

MASSACHUSETTS

SCALE NOT TO SCALE
DATE FEBRUARY 1980
DESCRIPTION OF DAM

DISTRICT

<table>
<thead>
<tr>
<th>Submitted by:</th>
<th>D. Kilpatrick</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
<td>Jan 14, 1974</td>
</tr>
<tr>
<td>Dam No.:</td>
<td>L-9-333-3</td>
</tr>
<tr>
<td>Name of Dam:</td>
<td>POND DAM</td>
</tr>
<tr>
<td>Town:</td>
<td>LACONIA</td>
</tr>
<tr>
<td>Date of Town:</td>
<td>1-20-72</td>
</tr>
<tr>
<td>Name of Town:</td>
<td>LACONIA</td>
</tr>
</tbody>
</table>

1. **Location:** Topo Sheet No. 24A-0
 Provide 8½" x 11" in clear copy of topo map with location of Dam clearly indicated.

2. **Year built:** 1940
 Year/s of subsequent repairs:

3. **Purpose of Dam:**
 - Water Supply
 - Recreational
 - Irrigation
 - Other

4. **Drainage Area:** 135 Sq. mi.
 96.5 acres.

5. **Normal Ponding Area:**
 - 130 acres; Ave Depth 10 feet
 - Volume: 3,375,000 gal. 138 acre ft.

6. **No. and type of dwellings located adjacent to pond or reservoir:**
 - no.
 - house

7. **Storage House:**
 - Length: 950'
 - Max. Height: 25'
 - Slope: Upstream Face 2:1
 - Downstream Face: 2:1
 - Width across top: 150'

8. **Classification of Dam by Material:**
 - Earthen
 - Concrete Masonry
 - Stone Masonry
 - Timber
 - Rockfill
 - Other

9. **Guidelines for prudent land usage downstream of dam:**
 - 90% rural
 - 10% urban

10. **Is there a storage area or flood plain downstream of dam which could accommodate the impoundment in the event of a complete dam failure:**
 - Yes

| B-7 |
10. Risk to life and property in event of complete failure.

<table>
<thead>
<tr>
<th>No. of people</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of homes</td>
<td>0</td>
</tr>
<tr>
<td>No. of business</td>
<td>0</td>
</tr>
<tr>
<td>No. of industries</td>
<td>0</td>
</tr>
<tr>
<td>No. of utilities</td>
<td>0</td>
</tr>
<tr>
<td>Railroads</td>
<td>0</td>
</tr>
<tr>
<td>Other dams</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
</tr>
</tbody>
</table>

III. Attach sketch of dam to a form showing section and plan 8½ x 11” Sheet.
INSPECTION REPORT - DAMS AND RESERVOIRS

(1.) Location: City/Town: Weston
Date: 4-9-73

Owner(s):

Prev. Inspection:

Reg. of Deeds:

Para. Contact:

1. M.O.C. 33 Hall St. Framingham, MA 01701

2. Fane

3. Fane

Caretaker: (if any) e.g. superintendent, plant manager, appointed by absentee owner.

Francis Birmingham, 57 Oak St. Weston - Foreman

No. of Pictures taken:

Degree of Hazard: (if dam should fail completely)

1. Minor

2. Moderate

3. Severe

4. Disastrous

Note: This rating may change as land use changes (future development)

Outlet Controls: Automatic

Operative

Manual

Comments: Overflow spillway through 12" valve.

Rip to drainage ditch in adjacent field

(7.) Upstream Face of Dam:

Conditions:

1. Good

2. Minor Repairs

3. Major Repairs

4. Urgent Repairs

Comments:
DAM NO. 4-9-373-J

3: Downstream Face of Dam: Condition:

1. Good
2. Minor Repairs
3. Major Repairs

Comments:

4: Emergency Spillway: Condition:

1. Good
2. Minor Repairs
3. Major Repairs
4. Urgent Repairs

Comments:

5: Water level & time of inspection:

6: ft. above
7: Below

Top of dam
Principal spillway
Other

11: Summary of Deficiencies Noted:

Growth: Trees and Brush on Embankment
Animal Burrows and Washouts
Damage to slopes or top of dam
Cracked or Damaged Masonry
Evidence of Seepage
Evidence of Piping
Erosion
Leak
Trash and/or debris invading flow
Clogged or blocked spillway
Other

B-10
DAM IN C-000 CONDITION.

Overall Condition:
1. Safe
2. Minor repairs needed
3. Conditionally safe - major repairs needed
4. Unsafe
5. Required investment to bring safety (example: Foundation repair from inspection data)
APPENDIX C

PHOTOGRAPHS

Schencks Pond Dam
NOTE:
TAKEN FROM METR DISTR WATER SUPPLY COMM. DWG. DATED
ELEVATIONS SHOWN ARE NSVD
PHOTO NO. 1 - Right side of intake structure.

PHOTO NO. 2 - Upstream slope between the spillway and intake structure.
PHOTO NO. 3 - Crest of Dam as viewed from left abutment area.

PHOTO NO. 4 - Crest of Dam as viewed from right abutment area.
PHOTO NO. 5 - Downstream slope on the left side of the spillway showing trees and brush.

PHOTO NO. 6 - Wet area downstream of Dam about 160 feet left of outlet works and 85 feet from centerline of crest. Seep was observed exiting from around boulder and tree root at location of clipboard.
PHOTO NO. 7 - Spillway floor as viewed from a point near the reservoir water line.

PHOTO NO. 8 - Spillway discharge channel as viewed from the spillway floor.
PHOTO NO. 9 - Headwall of Outlet Pipe located at downstream toe. The 18 inch discharge pipe and outlet channel are filled with water and silt.
APPENDIX D

HYDROLOGIC AND HYDRAULIC COMPUTATIONS
Schenck's Pond Dam - built 1940-1941

Height of Main Dam: 22' hydraulic

Discharge into Schenck's Pond controlled by inflow allow from Norumbega. Pond not used for significant water supply storage. Level is generally allowed to remain fairly constant. Pond maintained to fulfill agreement (when Norumbega Res. built) to provide some flow to Severn's Brook. Draw down for Pond located at outlet structure - 18" RCP

Storage Capacity: 133 acre-ft (Top of Dam)
Size Class: Small (by Storage & Height)
Drainage Area: 0.043 s.m. = 28 ± acres

Hazard Potential: High

Test Flood: For Small Size & High Hazard, 1/2 to 1 x PMF Use Full PMF

\[\text{Inflow} = 3000 \, \text{cfs} \times 0.043 \, \text{s.m} \times 1.0 = 130 \, \text{cfs} \]

Outlet Structure & emergency spillway could pass entire PMF with water level below top of dam (rise 250 ft)

Flows = USGS (NGVD) not BOB
Storage Capacity

<table>
<thead>
<tr>
<th>Elev. (ft)</th>
<th>Area (acres)</th>
<th>Ave Area (acres)</th>
<th>D (ft)</th>
<th>Storage (ac-ft)</th>
<th>Accum Storage (ac-ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>9.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>246</td>
<td>12.9</td>
<td>11.05</td>
<td>-</td>
<td>66.3</td>
<td>66.3</td>
</tr>
<tr>
<td>250.5</td>
<td>16.6</td>
<td>14.15</td>
<td>4.5</td>
<td>66.4</td>
<td>132.7</td>
</tr>
</tbody>
</table>

Note: USGS = BCB = 5.5±ft

Test Flood - Full PMF

- **Have high hazard and small size**
- **Test Flood Range = 1/2 to Full PMF**
- **Number of homes downstream**
 - **Dmy so will use Full PMF**

\[
Q_{PMF} = 3000 \text{cfs} \times 0.0433 \text{m} \times 1 = 130 \pm \text{cfs}
\]

\[
V_{PMF} = 19 \text{ in} \times \frac{1 \text{ ft}}{12 \text{ in}} \times 27.5 \text{ ac} = 44.2 \pm \text{ac-ft}
\]

Also will get inflow from Norumbega Reservoir (from spillway)

- **From Norumbega sales for PMF inflow get outflow of 150 cfs**

\[
\text{Total Inflow} = 130 + 150 = 280 \text{ cfs}
\]

Now determine discharge capacity of outlets & Test Flood Storage Routing
Outlet Structure - see photos #17, 18, 19

Assume spillway weir - broad crested, 15" (1.25") wide
with 2' stop logs in place

\[Q = C L H^{1.5} \]

<table>
<thead>
<tr>
<th>(H)</th>
<th>(H^{1.5})</th>
<th>(C)</th>
<th>(L)</th>
<th>(Q)</th>
<th>Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>2.02</td>
<td>4.5</td>
<td>13</td>
<td>249</td>
</tr>
<tr>
<td>2.0</td>
<td>2.63</td>
<td>3.12</td>
<td>4.5</td>
<td>40</td>
<td>250</td>
</tr>
<tr>
<td>2.5</td>
<td>3.95</td>
<td>3.36</td>
<td>4.5</td>
<td>59</td>
<td>250.5</td>
</tr>
</tbody>
</table>

Outflow: 18" R.C. outlet pipe

\(Q \) Assume Inlet Control use HEC-5 Chart #2

<table>
<thead>
<tr>
<th>(H)</th>
<th>(HW/D)</th>
<th>(Q)</th>
<th>(H)</th>
<th>(HW/D)</th>
<th>(Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>1.0</td>
<td>6</td>
<td>7.5</td>
<td>5.0</td>
<td>23</td>
</tr>
<tr>
<td>3.0</td>
<td>2.0</td>
<td>13</td>
<td>9.0</td>
<td>6.0</td>
<td>26</td>
</tr>
<tr>
<td>4.5</td>
<td>3.0</td>
<td>16</td>
<td>15.0</td>
<td>10.0</td>
<td>40t</td>
</tr>
<tr>
<td>6.0</td>
<td>4.0</td>
<td>20</td>
<td>22.5</td>
<td>15.0</td>
<td>55t</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>23.0</td>
<td>15.3</td>
<td>56t</td>
</tr>
</tbody>
</table>
Flow through structure controlled by weir (with 2' stop logs in place), as weir flow < pipe capacity up to elev. 150.5' top of dam where weir flow = pipe capacity.

Emergency Spillway - see photo #15

\[Q = C L H^{3/2} \]

<table>
<thead>
<tr>
<th>H (ft)</th>
<th>H^{3/2}</th>
<th>C</th>
<th>L (rove)</th>
<th>Q</th>
<th>Elev. (USGS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.35</td>
<td>263</td>
<td>22</td>
<td>20</td>
<td>249.5</td>
</tr>
<tr>
<td>100</td>
<td>1.0</td>
<td>24</td>
<td>63</td>
<td>250.0</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>1.84</td>
<td>26</td>
<td>125</td>
<td>250.5</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>2.83</td>
<td>26</td>
<td>193</td>
<td>251.0</td>
<td></td>
</tr>
</tbody>
</table>
Flow over top of dam - assume \(L = 200' \), \(f = C = 2.63 \)

Elev.	H, ft	\(H^{3/2} \)	L, ft	C	Q, cfs	\(Q_{\text{Total}} = Q_{\text{Top}} + Q_{\text{Perco}} + Q_{\text{Over}} \)
251.0 | 0.5 | 0.35 | 200 | 2.63 | 186 | 435 cfs
250.7 | 0.2 | 0.09 | " | " | 47 | 254 cfs
250.8 | 0.3 | 0.16 | " | " | 86 | 306 cfs

PMF Storage Routing: Assume initial reservoir elev. = 249.0

\(\text{Vol. Aver. Runoff Volume} = \frac{(\text{Avg. Runoff}) \times \text{Reservoir Area}}{\text{Combined Area}} \)

\(V = \frac{(63 \times 9.47)}{91} + \frac{(128 \times 9.1)}{91} = 12.4 \text{ in.} \)

\(Q_{P_1} = 280 \text{ cfs} \quad \text{Elev.} = 250.8' \)

\(\text{Stor} = 138 - 110 = 28 \text{ cfs} \quad \text{3.7 in.} \quad (91 \text{ acres}) \)

\(Q_{P_2} = 280 \left(1 - \frac{3.7}{12.4}\right) = 196 \text{ cfs} \quad \text{Elev.} = 250.55' \)

\(\text{Stor}_2 = 134 - 110 = 24 \text{ cfs} \quad \text{or} \quad 3.2 \text{ in.} \)

\(\text{Stor}_{\text{ave}} = \frac{3.7 + 3.2}{2} = 3.45 \text{ in.} \)

\(Q_{P_3} = 280 \left(1 - \frac{3.45}{12.4}\right) = 202 \text{ cfs} \quad \text{Elev.} = 250.6' \)

\(Q_{\text{Out}} = 202 \text{ cfs} \quad \text{Elev.} = 250.6' \pm \)

Dam overtopped by 0.1 ft ±

Outlet + Spillway can handle 90% PMF outflow
Check Storage Routing for 1/2 PMF

\[Q_1 = \frac{1}{2} \times 130 + 65 \quad \text{(From Noturnose)} \]

\[Q_2 = 65 + 65 = 65 \text{ cfs.} \]

\[\text{wt. \ runof \ vol.} = \frac{(63 \times 9.07) + (26 \times 9.5)}{91} = 5.74 \text{ in.} \]

\[Q_{p1} = 130 \text{ cfs} \quad \text{Elev}_1 = 150.2 \]

\[\text{Stor}_1 = 129. - 110. = 19 \text{ ft.} \text{ or } 2.5 \text{ in.} \]

\[Q_{p2} = 130 \left(1 - \frac{2.5}{5.74}\right) = 73 \text{ cfs.} \quad \text{Elev}_2 = 149.7 \]

\[\text{Stor}_2 = 122.0 - 110. = 12 \text{ ac-ft} = 1.6" \]

\[\text{Storage} = \frac{2.5 + 1.6}{2} = 2.1" \]

\[Q_{p3} = 130 \left(1 - \frac{2.1}{5.74}\right) = 83 \text{ cfs.} \]

\[Q_{out} = 83 \text{ cfs.} \quad \text{Elev} = 249.8 \]

PMF Test Flood Analysis with initial pool level \(\text{Elev.} 246. \) (See B5) "normal pool elev."

\[Q_{p1} = 280 \text{ cfs} \quad \text{El}_1 = 250.8 \quad \text{Str} = 138.0 - 65 = 73.4 \text{ ft.} \text{ or } 9.6" \]

\[Q_{p2} = 280\left(1 - \frac{9.6}{14}\right) = 138 \text{ cfs} \quad \text{El}_2 = 250.4 \]

\[\text{Str}_2 = 138.0 - 65 = 66 \text{ ft.} \text{ or } 87" \]

\[\text{Strave} = \frac{9.6 + 8.7}{2} = 9.15" \]

\[Q_{p3} = 280\left(1 - \frac{9.15}{14}\right) = 145 \text{ cfs} \quad \text{El}_3 = 250.4 \]

no over topping
Elevation & Discharge for Outlet Structure

Elevation vs. Discharge for Emergency Spillway

Top of Dam Elevation = 250.5 ft
Invert Emergency Spillway = 249.0 ft
Top of weir inlet to 1" RCP = 248 ft
Invert 18" RCP = 228 ft.
Combined Rating Curves

Elevation vs. Discharge

Discharge x cfs

- Top of Dam
- Collector Structure Spillway
- Elevation if NELD

Discharge x cfs

- Top of Dam
- Elevation if NELD

Elevation if NELD
Stage - Storage

Storage, ac-ft

Note

\[USGS = RCB + 5.5' \pm \]
Failure Discharge

\[Q_p = \frac{8}{27} \times (0.4 \times 190) \left(\sqrt{\frac{2}{g}} \right) (22)^{3/2} \]

\[Q_c = 13,480^{\text{cfs}} \]

190' section is at natural stream location
Assume Dam fails with water @ top of embankment.

Total Storage (before failure) = 140 ac-ft.
Base outflow just prior to failure = 180^{cfs}

Total Combined flow = 13,660^{cfs}

Sta. 5+00 below Scheneck Reservoir (Oak St.)
Assume culverts through Oak St. embankment blocked (or are small 1/8" - typical)

\[S = 0.025' \quad n = 0.10 \]
\[V = P'R_0 \quad P' = \frac{1.496}{0.025}^{1/2} = 2.35 \]

<table>
<thead>
<tr>
<th>D (ft)</th>
<th>WP (ft)</th>
<th>A (sq ft)</th>
<th>R^2 (\text{A})</th>
<th>F'</th>
<th>V</th>
<th>Q (cfs)</th>
<th>Elev. (MSL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1150</td>
<td>7550</td>
<td>2.53</td>
<td>2.35</td>
<td>8.29</td>
<td>62,600</td>
<td>240</td>
</tr>
<tr>
<td>5</td>
<td>775</td>
<td>2938</td>
<td>2.44</td>
<td>5.74</td>
<td>16,950</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>625</td>
<td>1534</td>
<td>2.33</td>
<td>5.30</td>
<td>6,608</td>
<td>233</td>
<td></td>
</tr>
</tbody>
</table>
Discharge, x 1000 cfs.

\[Q_{P1} = 13,660 \text{ cfs} \quad d_1 = 4.2' \]

\[\text{Vol}_1 = \frac{1920 + 2342}{2} \times \frac{500}{43,580} = 24.5 \text{ ac-ft} \]

\[Q_{P2} = 13,660 \left(1 - \frac{24.5}{140}\right) = 11,273 \text{ cfs} \quad d_2 = 3.8' \]

\[\text{Vol}_2 = \frac{1920 + 2042}{2} \times \frac{500}{43,580} = 22.9 \text{ ac-ft} \]

\[\text{Vol}_{ave} = 23.7 \text{ ac-ft} \]

\[Q_{P2} = 13,660 \left(1 - \frac{23.7}{140}\right) = 11,348 \text{ cfs} \quad d_2 = 3.62' \text{ ok} \]

\[Q_{out} = 11,348 \text{ cfs} \quad \text{Elev} = 233.8' \]

Sta 9+00 below Schenck's Reservoir

\[S = 0.075' \quad H = 0.06 \]

\[V = P' \frac{R^2}{2} \quad P' = \frac{1956}{0.06} (0.075)^2 = 6.78 \]

<table>
<thead>
<tr>
<th>D</th>
<th>WP</th>
<th>A</th>
<th>(R^2)</th>
<th>(P')</th>
<th>(V)</th>
<th>Q</th>
<th>Elev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>262.5</td>
<td>116.3</td>
<td>2.70</td>
<td>1.78</td>
<td>18.3</td>
<td>21,172</td>
<td>205</td>
</tr>
<tr>
<td>2</td>
<td>225</td>
<td>425</td>
<td>1.53</td>
<td></td>
<td>10.38</td>
<td>4412</td>
<td>202</td>
</tr>
</tbody>
</table>
Sta 15+00 below Schenck's Reservoir

\[S = 0.0167 \quad n = 0.08 \]

\[V = F_1 R^{2/3} \quad F_1 = \frac{986}{0.08} (0.0167)^{1/2} = 2.40 \]

<table>
<thead>
<tr>
<th>D (ft)</th>
<th>WP (ft)</th>
<th>A (sf)</th>
<th>(R^{2/3})</th>
<th>(F_1)</th>
<th>V (fps)</th>
<th>Q (cfs)</th>
<th>Elev (MSL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>250</td>
<td>1000</td>
<td>2.53</td>
<td>2.40</td>
<td>6.08</td>
<td>6,076</td>
<td>190</td>
</tr>
<tr>
<td>11</td>
<td>295</td>
<td>1818</td>
<td>3.36</td>
<td>N</td>
<td>8.11</td>
<td>14,753</td>
<td>193</td>
</tr>
</tbody>
</table>
Q_{P1} = 10,254 \text{ cfs}, \quad d_1 = 9.4' \\
\text{Vol}_1 = \frac{740 + 1365}{2} \times \frac{600}{43,560} = 14.50 \text{ c.f.}

Q_{P2} = 10,254 \left(1 - \frac{14.5}{140}\right) = 9,192 \text{ cfs}, \quad d_2 = 9.1' \\
\text{Vol}_2 = \frac{740 \times 1284}{2} \times \frac{600}{43,560} = 13.92 \text{ c.f.} \quad \text{Vol}_{total} = \frac{14.5 + 13.92}{2} = 14.2 \\
Q_{out} = 9,214 \text{ cfs}, \quad E_{lev} = 191.1' \\

Sta. 21+00 \quad \text{below Schenck's Reservoir (Mass Pike)}

Choose any culverts through Mass Pike embankment blocked or are small

Have weir flow over roadway: \(Q = C \cdot L \cdot H^{3/2} \)

<table>
<thead>
<tr>
<th>(H)</th>
<th>(H^{3/2})</th>
<th>(C)</th>
<th>(L)</th>
<th>(Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5.2</td>
<td>263</td>
<td>400</td>
<td>5466</td>
</tr>
<tr>
<td>5</td>
<td>11.18</td>
<td>2.63</td>
<td>400</td>
<td>11,762</td>
</tr>
</tbody>
</table>
Sta. 26+00 cont

\[Q_{p1} = 7,305 \text{ cfs}, \quad d_1 = 5.15' \]

\[V_{ol1} = \frac{2,960 + 663}{2} \times \frac{500}{43560} = 20.8 \text{ ac-ft} \]

\[Q_{p2} = 7305 \left(1 - \frac{20.8}{140}\right) = 6220 \text{ cfs}, \quad d_2 = 4.85' \]

\[V_{ol2} = \frac{2,960 + 588}{2} \times \frac{500}{43560} = 20.4 \text{ ac-ft}, \quad V_{ume} = \frac{20.8 + 20.4}{2} = 20.6. \]

\[Q_{out} = 6230 \text{ cfs} \quad E_{lev} = 157.9' \]

Sta. 33+00 below Schenecty Reservoir

\[S = 0.047', \quad h = 0.06 \]

\[V = f' R^{3/2} \quad F' = \frac{1.46}{0.06} \left(0.047\right)^{3/2} = 5.38 \]

<table>
<thead>
<tr>
<th>D</th>
<th>WP</th>
<th>A</th>
<th>R^{3/2}</th>
<th>F'</th>
<th>V</th>
<th>Q</th>
<th>Elev (MSL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ft</td>
<td>ft^2</td>
<td>ft</td>
<td></td>
<td></td>
<td>ft</td>
<td>ft^2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>350</td>
<td>875</td>
<td>1.85</td>
<td>5.38</td>
<td>9.94</td>
<td>8698</td>
<td>125</td>
</tr>
<tr>
<td>3</td>
<td>210</td>
<td>315</td>
<td>1.31</td>
<td></td>
<td>7.06</td>
<td>2224</td>
<td>123</td>
</tr>
</tbody>
</table>
\[Q_p_1 = 6,230 \text{ cfs} \quad d_1 = 4.25' \]
\[V_1 = \frac{625 + 632}{2} \times \frac{700}{43,580} = 10.1 \text{ ac.-ft} \]
\[Q_p_2 = 6,230 \left(1 - \frac{10.1}{140} \right) = 5,781 \text{ cfs} \quad d_2 = 4.1' \]
\[V_{12} = \frac{625 + 585}{2} \times \frac{700}{43,580} = 9.75 \text{ ac.-ft} \]
\[Vol_{12} = \frac{10.1 + 9.75}{2} = 9.93 \text{ ac.-ft} \]
\[Q_p_2 = 6,230 \left(1 - \frac{9.93}{140} \right) = 5,788 \text{ cfs} \quad d_2 = 4.1' \]
\[Q_{out} = 5,788 \text{ cfs} \quad E_{lev} = 124.1' \]

Station 49+00 below Schenck Reservoir

\[S = 0.00938', \quad h = 0.06 \]
\[V = f'R^2 \quad f' = \frac{4.86}{0.06} \left(\frac{0.00938}{2} \right)^2 = 2.40 \]

<table>
<thead>
<tr>
<th>(D)</th>
<th>WP</th>
<th>A</th>
<th>(R^2)</th>
<th>(f')</th>
<th>(V)</th>
<th>(Q)</th>
<th>Elev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>450</td>
<td>1625</td>
<td>2.36</td>
<td>2.40</td>
<td>5.67</td>
<td>9219</td>
<td>110</td>
</tr>
<tr>
<td>3</td>
<td>350</td>
<td>825</td>
<td>1.79</td>
<td></td>
<td>4.26</td>
<td>3517</td>
<td>108</td>
</tr>
</tbody>
</table>
Sta 49+00 Continued

\[Q_{P1} = 5,788 \text{ cfs} \quad d_1 = 3.5' \]

\[\text{Vol}_1 = \frac{610 + 131}{2} \times \frac{1600}{73560} = 31.8 \text{ cu ft} \]

\[Q_{P2} = 5788 \left(1 - \frac{31.6}{140}\right) = 4474 \text{ cfs} \quad d_2 = 3.35' \]

\[\text{Vol}_2 = \frac{610 + 951}{2} \times \frac{1600}{43560} = 28.7 \text{ cu ft} \]

\[\text{Vol}_{ave} = \frac{31.8 + 28.7}{2} = 30.25 \text{ cu ft} \]

\[Q_{P2} = 5788 \left(1 - \frac{30.25}{140}\right) = 4528 \text{ cfs} \quad d_2 = 3.4' \]

\[Q_{out} = 4528 \text{ cfs} \quad \text{Elev.} = 108.4' \]
<table>
<thead>
<tr>
<th>Std Elev</th>
<th>Base Elev</th>
<th>Failure Elev</th>
<th>Damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>250.5</td>
<td>250.5</td>
<td>Dam</td>
</tr>
<tr>
<td>5+</td>
<td>230</td>
<td>231</td>
<td>234</td>
</tr>
<tr>
<td>9+</td>
<td>200</td>
<td>201</td>
<td>203</td>
</tr>
<tr>
<td>15+</td>
<td>182</td>
<td>183</td>
<td>191</td>
</tr>
<tr>
<td>21+</td>
<td>173</td>
<td>181</td>
<td>184</td>
</tr>
<tr>
<td>26+</td>
<td>153</td>
<td>154</td>
<td>158</td>
</tr>
<tr>
<td>33+</td>
<td>120</td>
<td>121</td>
<td>124</td>
</tr>
<tr>
<td>44+</td>
<td>105</td>
<td>106</td>
<td>109</td>
</tr>
</tbody>
</table>

Road 4', 3 houses 4', 1 house 3', 1 house 4', 1 house 5', 2 houses 4', 4 houses 4', 5 houses 2', 3'
Cross Section - Failure of Main Dam

Cross Sections looking upstream

Sta. 5+00 below Schenck's Reservoir
(Taken along Oak St.)

Elev. Area Channel Slope = \(\frac{10}{400} = 0.025 \frac{ft}{ft} \)

<table>
<thead>
<tr>
<th>Elev. (ft)</th>
<th>Area (sq ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>7750</td>
</tr>
<tr>
<td>250</td>
<td>24500</td>
</tr>
</tbody>
</table>

Sta. 9+00 below Schenck's Reservoir

Channel Slope = \(\frac{30}{400} = 0.075 \frac{ft}{ft} \)

<table>
<thead>
<tr>
<th>Elev. (ft)</th>
<th>Area (sq ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>2625</td>
</tr>
<tr>
<td>220</td>
<td>6500</td>
</tr>
<tr>
<td>230</td>
<td>11750</td>
</tr>
<tr>
<td>240</td>
<td>14000</td>
</tr>
</tbody>
</table>

n = 0.10 (heavy brush & trees)
n = 0.06
Cross Sections - Failure of Main Dam

Cross Sections looking Upstream
Sta. 15+00 below Schenck's Reservoir

<table>
<thead>
<tr>
<th>Elev. (MSL)</th>
<th>Area (sf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>1000</td>
</tr>
<tr>
<td>200</td>
<td>4250</td>
</tr>
<tr>
<td>210</td>
<td>9750</td>
</tr>
</tbody>
</table>

channel slope = \frac{10}{600} = 0.0167; \quad n = 0.08

Sta. 21+00 below Schenck's Reservoir (Mass. Pike)

<table>
<thead>
<tr>
<th>Elev. (MSL)</th>
<th>Area (sf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>1,400</td>
</tr>
<tr>
<td>190</td>
<td>7,150</td>
</tr>
<tr>
<td>200</td>
<td>15,900</td>
</tr>
</tbody>
</table>

Assume culverts blocked.

Sta. 26+00 below Schenck's Reservoir

<table>
<thead>
<tr>
<th>Elev. (MSL)</th>
<th>Area (sf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>1225</td>
</tr>
<tr>
<td>170</td>
<td>5475</td>
</tr>
</tbody>
</table>

channel slope = \frac{20}{500} = 0.040; \quad n = 0.06
Sta. 33+00 below Schenck's Reservoir

Elev. Area
(MSL) sf
130 3500

Channel slope = \(\frac{33}{700} = 0.047 \) \(n = 0.06 \)

Sta. 49+00 below Schenck's Reservoir

Elev. Area
(MSL) sf
110 1625
115 4125

Channel slope = \(\frac{15}{1500} = 0.0098 \) \(n = 0.06 \)
APPENDIX E

INFORMATION AS CONTAINED IN THE
NATIONAL INVENTORY OF DAMS