QUANTUM MODEL OF DEPHASING-ENHANCED LASER DESORPTION: MASTER EQUATION APPROACH

ROCHESTER UNIV NY DEPT OF CHEMISTRY

J T LIN ET AL. APR 85 ROCHESTER/DC/85/TR-61

UNCLASSIFIED N00014-80-C-0472
Quantum Model of Dephasing-Enhanced Laser Desorption: Master Equation Approach
by
Jui-teng Lin, Xi-Yi Huang and Thomas F. George

Prepared for Publication
in
Journal of Vacuum Science and Technology B

Department of Chemistry
University of Rochester
Rochester, New York 14627

April 1985

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
Quantum Model of Dephasing-Enhanced Laser Desorption: Master Equation Approach

Jui-teng Lin, Xi-Yi Huang and Thomas F. George

Prepared for publication in Journal of Vacuum Science and Technology B

A new model for laser-induced desorption is proposed based on a master equation for the photon population in a closely-coupled subsystem involving the relevant degrees of freedom. The validity of approximations such as the Born and Markovian approximations is discussed in terms of the laser pulse duration and multiple time scales of the adspecies-surface system. The desorption rate is numerically calculated from the photon population and the threshold number of photons absorbed by the adspecies. The effects of anharmonicity, dephasing and laser detuning on the desorption rate are examined. The mechanism of dephasing and the possible direct and indirect desorption channels are discussed.
QUANTUM MODEL OF DEPHASING-ENHANCED LASER DESORPTION:
MASTER EQUATION APPROACH

Jui-teng Lin
Laser Physics Branch
Optical Sciences Division
Naval Research Laboratory
Washington, D.C. 20375

Xi-Yi Huang and Thomas F. George
Department of Chemistry
University of Rochester
Rochester, New York 14627

Abstract

A new model for laser-induced desorption is proposed based on a master equation for the photon population in a closely-coupled subsystem involving the relevant degrees of freedom. The validity of approximations such as the Born and Markovian approximations is discussed in terms of the laser pulse duration and multiple time scales of the adspecies-surface system. The desorption rate is numerically calculated from the photon population and the threshold number of photons absorbed by the adspecies. The effects of anharmonicity, dephasing and laser detuning on the desorption rate are examined. The mechanism of dephasing and the possible direct and indirect desorption channels are discussed.
I. Introduction

Laser-stimulated surface processes (LSSP) have been investigated during the past several years, due both to their academic interest and industrial potential. Recent progress in experimental1 and theoretical2,3 studies and in applications4 of LSSP has been reported. Laser excitation and/or desorption of adspecies have been investigated theoretically by a variety of techniques, including harmonic,5 anharmonic6 and Morse7,8 potential models and master equation approaches,7-16 where attention has been focused on the excitation of the active mode and the population of its vibrational states. The desorption rate is usually overestimated by the harmonic model5, whereas it is underestimated by the one-dimensional Morse potential model.7,8

In the present paper, we propose a new model in which all the degrees of freedom of a closely-coupled subsystem (including the active mode of the adspecies) are treated on an equal footing. The desorption rate is calculated from the photon population and the threshold number of photons absorbed by the adspecies as a whole, rather than from the average excitation of the active mode. In Section II, the generalized master equation is developed within the Born approximation, and a reduced master (rate) equation including the anharmonicity of the adspecies surface potential is investigated within the Markovian approximation. Numerical results are shown in Section III, where dephasing-enhanced desorption is suggested. In Section IV, the mechanism of dephasing and a variety of desorption channels are discussed.

II. Master Equation

Let us first define our model system, which is particularly appropriate for admolecules with very fast intramolecular relaxation. In the frequency domain, the total adspecies-surface system is divided into two subsystems,
S₁ and S₂, where S₁ consists of the active mode (A) and the strongly-coupled modes (B) within the adspecies, and S₂ consists of the remaining lower frequency modes serving as a heat bath (see Fig. 1). From the concept of the energy-gap law, we expect intramode relaxation within S₁ to be much faster than intersystem relaxation, i.e., \(\gamma_{AB}^{-1} \gg \gamma_{BC}^{-1} \gg \gamma_{AC}^{-1} \). When the system is irradiated by a laser field, S₁ will be excited through the active mode and its coupling to the B modes. The excitation rate of S₁, after a short time of \(\gamma_{AB}^{-1} \) is proportional to the absorption cross section of the active mode. We can therefore express the interaction between the laser field and S₁ as

\[
H_{SF}(t) = V(t)(a^+ + a),
\]

where \(V(t) = \gamma_{AB} \mu' E(t) \cos(\omega t) \) is proportional to the derivative of the active-mode dipole moment, \(\mu' \), the coupling factor between A and B, \(\gamma_{AB} \), and the laser field amplitude, \(E(t) \), with a frequency \(\omega \) which is near-resonant to that of the active mode. \(a^+ \) and \(a \) are the ladder operators for S₁ defined in photon space, i.e., \(a^+ |n\rangle = \sqrt{n+1} |n+1\rangle \), where \(|n\rangle \) is a basis function for S₁ as a whole, rather than for just the active mode which reaches steady state in the time \(\gamma_{AB}^{-1} \).

The vibrational Hamiltonian of the system is

\[
H = H_{S1} + H_{S2} + H_S + H_{SF}(t),
\]

where \(H_S \) couples S₁ and S₂ (it is generally time-independent). The density matrix for the total system obeys the Liouville equation

\[
\frac{d\rho}{dt} = -\frac{i}{\hbar} [H, \rho] = -\frac{i}{\hbar} (L_{S1} + L_{S2} + L_S + L_{SF}) \rho.
\]
Within the Born approximation, \(L_S_1 + L_S_2 + L_S \approx L_S_1 + L_S_2 \), and for Markovian processes where the characteristic time of the heat bath \(S_2 \) is much shorter than other time scales of the system, the \(S_2 \) variables may be eliminated. We can then work with a reduced density matrix, \(\bar{\rho} = \text{Tr}_B(\rho) \), which obeys the equation

\[
\frac{d\bar{\rho}}{dt} = -\frac{i}{\hbar} (L_{S_1} L_0 - L_1 + L_{SF}) \bar{\rho},
\]

where the effects of the interaction between \(S_1 \) and \(S_2 \), \(L_S \), are now reduced to a constant frequency shift, \(L_0 \), and a damping factor, \(L_1 \). We now introduce the Markovian approximation for the relaxation associated with \(L_S \) (assumed to be time independent), but retain memory effects due to the off-diagonal matrix elements associated with the laser excitation. For a Hamiltonian such as given by Eq.(1), we obtain a generalized master equation for the diagonal matrix element, \(P_n = [\text{Tr}_B \rho]_{nn} \), as \(^9\) (detailed discussions of the generalized master equation are available in the literature \(^{16-18}\))

\[
\frac{dP_n}{dt} = \gamma_1 [(n+1)P_n -nP_n] \\
+ \int_0^t dt' W_{n,n-1}(t-t')[P_{n-1}(t') - P_n(t')] + W_{n,n+1}(t-t')[P_{n+1}(t') - P_n(t')],
\]

(5)

with the time-dependent photon absorption/emission rates given by

\[
W_{n,n+1}(\tau) = 2(n+1) \Omega(t) \Omega(t') e^{-i\gamma \tau} \cos(\Delta_{n+1} \tau)
\]

(6)

\[
W_{n,n-1}(\tau) = 2n \Omega(t) \Omega(t') e^{-i\gamma \tau} \cos(\Delta_n \tau),
\]

(7)

Here, \(\Omega(t) = V(t)/\cos(\omega t); \tau = t-t'; \Delta_m = \omega_m - \omega = \Delta - 2\epsilon n \), where \(\omega_m \) is the transition frequency between levels \(m \) and \(n \), \(\Delta = \omega_{10} - \omega \) is the laser detuning with respect to the fundamental frequency \(\omega_{10} \), and \(\epsilon \) is the anharmonicity;
and \(\gamma = \gamma_1/2 + \gamma_2 \) is the total damping associated with the off-diagonal matrix elements, where \(\gamma_1 \) and \(\gamma_2 \) denote the energy and (pure) dephasing factors, respectively. We have used the rotating-wave approximation and the dipole transition for the \(n \) dependence of \(W_{m,n} \) (such that \(m = n \pm 1 \)) for absorption (\(m < n \)) and emission (\(m > n \)). Note that \(P_n \) is the probability of the adspecies as a whole (\(S_1 \) subsystem) absorbing \(n \) photons, in which the active-mode state is given by its steady-state excitation, i.e., \(n_A(s.s.) = Y_{AB} \sigma I/\hbar \omega \), where \(\sigma \) is the steady-state absorption cross section.

For a very short laser pulse with duration \(t_p \ll \tau^{-1} \), the transient solution of Eq. (5) contains the memory effects of the population function, and the Markovian approximation may not be applied to this time-dependent excitation. We shall, instead, focus on the case of a long pulse excitation, e.g., a \(\text{CO}_2 \) laser pulse with \(t_p = 10 \) ns which is much longer than the dephasing time \(\tau^{-1} \), such that the population function \(P_n(t) \) and \(\Omega(t) \) are slowly varying and may be factored out of the integrals in Eq. (5). Employing this adiabatic, Markovian approximation, the transition rates \(W_{m,n} \) have no memory effects, although they are still time dependent due to the laser temporal profile \(E(t) \), and a simpler master equation is then obtained: \(^{9,16}\)

\[
\frac{dP_n}{dt} = \gamma_1 \left[(n+1)P_{n+1} - nP_n \right] + 2\Gamma n^2 \left(\frac{n(P_{n-1} - P_n)}{[\alpha - 2\epsilon(n-1)]^2 + \gamma^2} \right) \left(\frac{(n+1)(P_{n+1} - P_n)}{(\alpha - 2\epsilon n)^2 + \gamma^2} \right).
\]

Several features of this equation are: (i) the absorption cross section for the adspecies (\(S_1 \) subsystem) is saturated at a higher photon population due to the anharmonicity; (ii) the first two terms describe the actual energy flow from \(S_1 \) to the surface (\(S_2 \)); (iii) the pure dephasing factor (\(\gamma_2 \)) changes only the intramolecular phase without changing the energy populations; (iv) the multiphonon relaxation factor (\(\gamma_1 \)) is generally strongly temperature dependent and
is a strongly decreasing function of the energy gap between S_1 and S_2; (v) the remaining terms containing the factor Γ indicate that the effect of the applied field is always intimately related to the phase dissipation or broadening mechanisms.

Equation (8) may be referred to as the usual rate equation in which no memory effects are preserved either in the relaxation or the excitation process. For weaker dephasing systems subject to a short pulse excitation, the "most general" form of the generalized master equation is given by Eq.(5) in which the relaxation terms are replaced by \[\frac{2}{h^2} \text{Re} \sum_{m,n} \int dt' (H_S(t)H'_S(t')) - [P_m(t') - P_n(t')]e^{-i(\omega_{mn} + \gamma_{mn})(t-t')} \]
where $\gamma_{mn} = (\gamma_m + \gamma_n)/2 + \gamma_2$ is the total surface-induced damping. Furthermore, for a short-pulsed laser with high intensity, the Born approximation may not be valid. Improvements can be made by performing a trace over the photon(laser)-dressed states of the heat bath (S_2). For the case of strong coupling between S_1 and S_2, H'_S may not be used as a perturbation, and again the Born approximation is questionable. To go beyond this, we may carry out a unitary transformation on S_1 with subsequent laser interaction with the phonon(surface)-dressed states. These improvements allow for both multiphonon (relaxation) and multiphoton (excitation) processes. The absorption cross section for the S_1 subsystem, for example, will be related to the laser intensity by a power law $\sigma = I^n$ for n-photon processes. We also note that a nonlinear power law, $\sigma = I^m$ with $m < 1$, is also possible by anharmonic saturation.

III. Desorption Rate

For a first-order desorption process, the rate constant is related to the inverse of the mean first-passage time, \bar{t}, and is given by
\[K_D = \frac{1}{t} = \left(\sum_{n=0}^{n^*} \int_0^t P_n(t) \right)^{-1}, \]

where \(n^* \) is the desorption threshold number of photons absorbed by the adspecies.

Numerical results are shown in Figs. 2 and 3. From Fig. 2 we see that the desorption rate is a strongly-decreasing function of the anharmonicity.

Dephasing-enhanced desorption is seen in Fig. 3, where an optimal value at \(\gamma_2 = 1.8 \) is found for a maximal desorption rate. This is realized by the fact that the dephasing tends to compensate for anharmonicity "bottleneck" effects. An enhancement factor of about 3 is possible if we tune the dephasing to the optimal value of \(\gamma_2 = 1.8 \), in comparison with \(\gamma_2 = 4 \). We note that the dephasing-enhanced effects caused by the nonlinear behavior are absent in a harmonic model, where \(K_D \) is always a decreasing function of \(\gamma_2 \).

In Fig. 4 we show the time evolution of the desorption probability, defined by

\[P_D(t) = \sum_{n=n^*}^\infty P_n(t). \]

Again, we see the nonlinear behavior of the dephasing effects. For a fixed time, say \(t = 100 \) units, \(P_D \) increases when \(\gamma_2 \) increases from 1 to 5, but it decreases at higher values of \(\gamma_2 \).

IV. Discussion

A. Mechanism of Dephasing

As indicated in the previous section, the dephasing factor changes only the phase of the excited subsystem \(S_1 \) without changing its energy populations. In the language of gas-phase scattering theory, this can be referred to as an "elastic" scattering process. In the presence of a laser field, dephasing can be viewed as energy transfer from the excited subsystem to a
"virtual" state of the field and back to the original excited state. Within the adspecies/surface system itself, the dephasing is due to one or more of the following: \(6,20,21\) (i) dephasing of the active dipole of the adspecies (or dephasing of the laser field itself); (ii) fluctuation of the conformation of the adspecies due to the thermal energy provided by either the initial surface temperature or laser-heating effects; (iii) librational and rotational relaxation within the vibrational manifold of the excited \(S_1\) subsystem; (iv) intramolecular mode-mode coupling within \(S_1\) and intermolecular coupling between \(S_1\) and \(S_2\); (v) lateral motion or migration-induced elastic collisions between adspecies and with the substrate surface; (vi) surface phonon-dispersion-induced level broadening of the vibrational manifold.

We note that the dephasing factor \(\gamma_2\), introduced in Section II, is formally derived from the Liouville equation within the Markovian approximation, where the laser field amplitude is assumed to be generated by a coherent source. However, the field itself may often be only partially coherent and hence will cause additional dephasing of the excited subsystem. To demonstrate this mathematically, we start with the reduced density matrix equation of motion for \(P_{mn} = \langle \text{Tr}\rho_{mn}\rangle\), \(m \neq n\),

\[
\frac{dP_{mn}}{dt} = -i[\omega_{mn} + \overline{\omega}(t)]P_{mn},
\]

where we have introduced a stochastic frequency shift of the system, \(\overline{\omega}(t)\), caused by the partially coherent behavior of the laser field. By assuming a "white noise," \(\langle \omega(t) \rangle = 0\), and a Markovian correlation, \(\langle \overline{\omega}(t)\overline{\omega}(t') \rangle = \gamma_2 \delta(t-t')\), we obtain an ensemble-averaged (over the stochastic variable) equation

\[
< \frac{dP_{mn}}{dt} > = -[i\omega_{mn} + (\gamma_{mn} + \overline{\gamma}_2)]<P_{mn}>,
\]

where \(\overline{\gamma}_2\) is the laser-induced dephasing.\(21\)
B. Mechanism of Desorption

The desorption mechanism, which may involve several channels, depending on the nature of the adspecies (e.g., physisorbed or chemisorbed, adatom or admolecule, and the potential of the adbond), and the associated energy levels of the system are shown in Fig. 5. The desorption may result from direct laser excitation or indirect energy transfer processes. The details of the desorption channels from Type I to Type VI have been discussed previously3,4. As a concluding remark, we note that a complete description of laser-induced desorption should at least include the competing processes, e.g., migration-induced desorption and re-adsorption after the mean first-passage time. Furthermore, for systems with more than one active mode, desorption may occur via a two-stage process: the initial stage of absorbing n^* photons followed by thermal phonon-assisted and/or V-V energy transfer among the excited active modes. This type of process is under investigation in our laboratories.

Acknowledgment

This research was supported in part by the Office of Naval Research and the Air Force Office of Scientific Research (AFSC), United States Air Force, under Grant AFOSR-82-0046. The United States Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation hereon. TFG acknowledges the Camille and Henry Dreyfus Foundation for a Teacher-Scholar Award (1975-86).
References

Figure Captions

1. Schematic diagram for the frequency spectrum of the total system $S_1 + S_2$, where $S_1 = A + B$, with the corresponding relaxation factors indicated.

2. Anharmonicity (ϵ) dependence of the desorption rate K_D in arbitrary units. The parameters used are $(\gamma_1, \gamma_2, \Omega_0, \Delta) = (0.1, 2.0, 0.1, 0.0)$, with a laser pulse duration of $t_p = 10$ ns, where $\Omega(t) = \Omega_0 \sin^2(\pi t/t_p)$. γ_1, γ_2, Ω_0 and Δ are in the unit of 10^{11} s$^{-1}$, and $n^* = 3$ has been used in Eq. (10).

3. Phase-relaxation (γ_2) dependence of K_D. The parameters used are $(\gamma_1, \Omega_0, \epsilon, \Delta, t_p) = (0.5, 0.1, 1.3, 10)$. The envelope function of the laser pulse is the same as in Fig. 2.

4. Time dependence of the desorption probability $P_D(t)$, where $n^* = 3$ has been used in this calculation. A cw laser field has been assumed, and the other parameters are $(\gamma_1, \Omega_0, \epsilon, \Delta) = (0.01, 0.1, 1.5, 3.0)$.

5. Schematic diagrams of adspecies-surface systems and the associated energy levels, where A, B and M represent the adspecies (adatom or admolecule), C represents the substrate (or bath modes), and the laser radiation is indicated by the wiggly lines. Several types of desorption channels are illustrated: (I) direct desorption via active-mode excitation, (II) direct desorption via the quasi-continuum, (III) indirect desorption via tunneling, (IV) indirect desorption via substrate heating, (V) phonon-assisted desorption and (VI) indirect desorption via dynamics.
<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Office of Naval Research</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Attn: Code 413</td>
</tr>
<tr>
<td></td>
<td>Dr. David Young</td>
</tr>
<tr>
<td></td>
<td>Code 334</td>
</tr>
<tr>
<td></td>
<td>NORDA</td>
</tr>
<tr>
<td></td>
<td>NSTL, Mississippi 39529</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Dr. Bernard Doua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td></td>
<td>Attn: Dr. A. B. Amster</td>
</tr>
<tr>
<td></td>
<td>Chemistry Division</td>
</tr>
<tr>
<td></td>
<td>China Lake, California 93555</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Commander, Naval Air Systems Command</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Attn: Code 310C (H. Rosenwasser)</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20360</td>
</tr>
<tr>
<td></td>
<td>Scientific Advisor</td>
</tr>
<tr>
<td></td>
<td>Commandant of the Marine Corps</td>
</tr>
<tr>
<td></td>
<td>Code RD-1</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20380</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Naval Civil Engineering Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Attn: Dr. R. W. Drisko</td>
</tr>
<tr>
<td></td>
<td>Port Hueneme, California 93401</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Research Office</td>
</tr>
<tr>
<td></td>
<td>Attn: CRD-AA-IP</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td></td>
<td>Research Triangle Park, NC 27709</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Defense Technical Information Center</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Building 5, Cameron Station</td>
</tr>
<tr>
<td></td>
<td>Alexandria, Virginia 22314</td>
</tr>
<tr>
<td></td>
<td>Mr. John Boyle</td>
</tr>
<tr>
<td></td>
<td>Materials Branch</td>
</tr>
<tr>
<td></td>
<td>Naval Ship Engineering Center</td>
</tr>
<tr>
<td></td>
<td>Philadelphia, Pennsylvania 19112</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>DTNSRDC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Attn: Dr. G. Bosmajian</td>
</tr>
<tr>
<td></td>
<td>Applied Chemistry Division</td>
</tr>
<tr>
<td></td>
<td>Annapolis, Maryland 21401</td>
</tr>
<tr>
<td></td>
<td>Naval Ocean Systems Center</td>
</tr>
<tr>
<td></td>
<td>Attn: Dr. S. Yamamoto</td>
</tr>
<tr>
<td></td>
<td>Marine Sciences Division</td>
</tr>
<tr>
<td></td>
<td>San Diego, California 91232</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Naval Research Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dr. William Tolles</td>
</tr>
<tr>
<td></td>
<td>Superintendent</td>
</tr>
<tr>
<td></td>
<td>Code 6100</td>
</tr>
<tr>
<td></td>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20375</td>
</tr>
<tr>
<td></td>
<td>Dr. David L. Nelson</td>
</tr>
<tr>
<td></td>
<td>Chemistry Division</td>
</tr>
<tr>
<td></td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td></td>
<td>800 North Quincy Street</td>
</tr>
<tr>
<td></td>
<td>Arlington, Virginia 22217</td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. G. A. Somorjai
Department of Chemistry
University of California
Berkeley, California 94720

Dr. W. Kohn
Department of Physics
University of California, San Diego
La Jolla, California 92037

Dr. J. Murday
Naval Research Laboratory
Surface Chemistry Division (6170)
455 Overlook Avenue, S.W.
Washington, D.C. 20375

Dr. R. L. Park
Director, Center of Materials Research
University of Maryland
College Park, Maryland 20742

Dr. J. B. Hudson
Materials Division
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. W. T. Peria
Electrical Engineering Department
University of Minnesota
Minneapolis, Minnesota 55455

Dr. Theodore E. Madey
Surface Chemistry Section
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234

Dr. Keith H. Johnson
Department of Metallurgy and Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. J. E. Demuth
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. S. Sibener
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. M. G. Lagally
Department of Metallurgical and Mining Engineering
University of Wisconsin
Madison, Wisconsin 53706

Dr. Arold Green
Quantum Surface Dynamics Branch
Code 3817
Naval Weapons Center
China Lake, California 93555

Dr. R. P. Van Duyne
Chemistry Department
Northwestern University
Evanston, Illinois 60637

Dr. A. Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02912

Dr. J. M. White
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. S. L. Bernasek
Department of Chemistry
Princeton University
Princeton, New Jersey 08544

Dr. D. E. Harrison
Department of Physics
Naval Postgraduate School
Monterey, California 93940

Dr. P. Lund
Department of Chemistry
Howard University
Washington, D.C. 20059
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. F. Carter
Code 6132
Naval Research Laboratory
Washington, D.C. 20375

Dr. Richard Colton
Code 6'12
Naval Research Laboratory
Washington, D.C. 20375

Dr. Dan Pierce
National Bureau of Standards
Optical Physics Division
Washington, D.C. 20234

Dr. R. Stanley Williams
Department of Chemistry
University of California
Los Angeles, California 90024

Dr. R. P. Messmer
Materials Characterization Lab.
General Electric Company
Schenectady, New York 22217

Dr. Robert Gomer
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Ronald Lee
R301
Naval Surface Weapons Center
White Oak
Silver Spring, Maryland 20910

Dr. Paul Schoen
Code 5570
Naval Research Laboratory
Washington, D.C. 20375

Dr. John T. Yates
Department of Chemistry
University of Pittsburgh
Pittsburgh, Pennsylvania 15260

Dr. Richard Greene
Code 5230
Naval Research Laboratory
Washington, D.C. 20375

Dr. L. Kesmodel
Department of Physics
Indiana University
Bloomington, Indiana 47403

Dr. K. C. Janda
California Institute of Technology
Division of Chemistry and Chemical Engineering
Pasadena, California 91125

Dr. E. A. Irene
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Martin Fleischmann
Department of Chemistry
Southampton University
Southampton 509 5NH
Hampshire, England

Dr. John W. Wilkins
Cornell University
Laboratory of Atomic and Solid State Physics
Ithaca, New York 14853

Dr. Richard Smardzewski
Code 6130
Naval Research Laboratory
Washington, D.C. 20375

Dr. H. Tachikawa
Chemistry Department
Jackson State University
Jackson, Mississippi 39217
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. R. G. Wallis
Department of Physics
University of California
Irvine, California 92664

Dr. D. Ramaker
Chemistry Department
George Washington University
Washington, D.C. 20052

Dr. J. C. Hemminger
Chemistry Department
University of California
Irvine, California 92717

Dr. T. F. George
Chemistry Department
University of Rochester
Rochester, New York 14627

Dr. G. Rubloff
IBM
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. Horia Metiu
Chemistry Department
University of California
Santa Barbara, California 93106

Captain Lee Myers
AFOSR/NC
Bolling AFB
Washington, D.C. 20332

Dr. R. W. Plummer
Department of Physics
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 44106

Dr. N. Winograd
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Dr. G. D. Stein
Mechanical Engineering Department
Northwestern University
Evanston, Illinois 60201

Dr. A. Steckl
Department of Electrical and Systems Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. G. H. Morrison
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. P. Hansma
Physics Department
University of California
Santa Barbara, California 93106

Dr. J. T. Keiser
Department of Chemistry
University of Richmond
Richmond, Virginia 23173

Dr. J. Baldeschwieler
California Institute of Technology
Division of Chemistry
Pasadena, California 91125

Dr. Roald Hoffmann
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. W. Goddard
California Institute of Technology
Division of Chemistry
Pasadena, California 91125
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Ir. J. E. Jensen
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. W. Knauer
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. J. H. Weaver
Department of Chemical Engineering and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. C. B. Harris
Department of Chemistry
University of California
Berkeley, California 94720