IMMUNOMODULATION WITH SYNTHETIC MOLECULES: MECHANISMS OF ACTIONS AND EFFECTS ON MACROPHAGES. INSTITUTE FOR MEDICAL RESEARCH. SAN JOSE, CA. D. A. STEVENS ET AL.

UNCLASSIFIED
Immunoenhancing drugs are under study both for their general effects on host immunity and their effects on immune interactions with microbial infections. These studies focused preferentially on defined synthetic single molecules, especially synthesized natural biological molecules or their active fragments.

We studied the mechanism of muramyl dipeptide in inducing hyporesponsiveness of spleen cells and hyperresponsiveness of lymph node cells to mitogens defining...
the cell populations and mediators involved in these effects.

In another study, murine macrophages from different anatomic compartments were compared for their fungicidal activity in different in vitro systems. Subsequently, the effect of a lipoidal amine immunomodulator on alveolar macrophage fungicidal activity was examined.

The mechanism of immunological activation of polymorphonuclear neutrophils for fungicidal activity was studied with respect to the oxidative mechanisms involved.

Recombinant gamma interferon was shown to activate macrophages for fungal killing.
Our work on immunomodulation and its mechanisms continues. The principal efforts of the past year, work in progress and future efforts are described below.

I
Earlier in the year we concluded the second phase of our studies on the mechanism of immunomodulation by muramyl dipeptide (MDP). We previously reported that a MDP treatment regimen (200 µg MDP per mouse, days -4, -3, -2, -1) that affords protection given prophylactically against several infectious agents also induces lymph node hyperplasia, and lymph node cell (LNC) hyperresponsiveness to mitogens, whereas spleen cells make depressed responses to mitogens. The purpose of the present work was to extend those studies and delineate cellular mechanisms involved in these phenomena. It was found that hyperresponsiveness of LNC was prolonged (7 days) post treatment; in contrast hyporesponsiveness of spleen cells was transient and rebounded by day 4 post treatment. Hyperresponsiveness of LNC and hyporesponsiveness of spleen cells actively enhanced or depressed normal lymphoid cell responses, respectively, in cell mixing experiments. Hyporesponsiveness of spleen cells was associated with the plastic nonadherent, non-B-cell fraction and nylon wool nonadherent subpopulations. Indomethacin (10⁻⁶M) did not abrogate hyporesponsiveness of spleen cells. These data suggest that splenic suppressor T-cells result from MDP treatment and were responsible for spleen cell hyporesponsiveness. On the other hand, hyperresponsiveness of LNC was associated with the nylon wool adherent cell subpopulations and a higher percentage of nonspecific esterase positive cells. Hyporesponsiveness of spleen cells was associated with deficient production of interleukin-2 (IL-2), but not of interleukin-1 (IL-1). In contrast, hyperresponsiveness of LNC was not explained by enhanced IL-1 or IL-2 production.

II
Because of a need to extend our studies of effector cell function to alveolar macrophages, we performed further studies of alveolar macrophages in our killing systems with fungal targets. These studies extend our observations previously reported with these cells and Candida albicans (Amer. Rev. Resp. Dis. 127:110-112, 1983)

Murine bronchoalveolar macrophage (BAM) fungicidal activity against the yeast form of a virulent strain of Blastomyces dermatitidis was studied in the small volume wells of a Terasaki tray. In a four hour co-culture assay, significant killing (16-33%) of the fungus was demonstrated with resident BAM and with BAM obtained from mice rendered immune to lethal infection with B. dermatitidis. No significant differences between the activity of BAM from these two sources could be identified. Addition of 10% autologous normal or immune serum did not augment macrophage fungicidal activity. Simultaneous experiments with peritoneal macrophages (PM) also gave reproducible killing of the yeast form in wells of the Terasaki tray. However, PM studied in a standard microtiter plate assay showed no statistically significant fungicidal activity. On the other hand, BAM had similar fungicidal activity against B. dermatitidis in Terasaki and microtest plate wells. Modest fungicidal ability of resident BAM in immune mice against B. dermatitidis suggests that the striking resistance of immune mice to respiratory challenge is likely based on some augmentation of this first line of defense.
III
Our studies of the lipoidal amine synthetic immunomodulator UP46665 also continued. Our results with polymorphonuclear neutrophils (PMN) were reported previously. Further studies with BAM were performed, which failed to demonstrate a significant effect, not confirming our earlier promising results. These experiments were done at the apparent optimal dose of 5 mg/kg, in a single dose, 1 day prior to experiment, using Terasaki plates. The control is the diluent for the intravenous injection, intralipid.

TABLE 1

PERCENT KILLING OF CANDIDA

<table>
<thead>
<tr>
<th>Experiment #</th>
<th>Intralipid</th>
<th>CP46665</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>43</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>47</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>5*</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>23</td>
</tr>
</tbody>
</table>

*Utilized log phase C. albicans, others used plateau phase

If we omit experiment 5, which was the only one not identical in technique to others, the data can be analyzed as follows. The means ± S.D. are 16 ± 5% for IL and 30 ± 14% for CP, which (apparently because of the large CP S.D.) is p > 0.05.

We also performed experiments when the dose was given in 2 consecutive days prior to the experiment. These 1 dose and 2 dose regimens, with sampling the effect on cells the following day, appeared optimal in early dose-finding experiments.

TABLE 2

PERCENT KILLING OF CANDIDA

<table>
<thead>
<tr>
<th>Experiment #</th>
<th>IL</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>15</td>
</tr>
</tbody>
</table>

Applying the same analysis, the means ± S.D. are 6 ± 3% and 11 ± 6%. Thus, even though 3 of 4 experiments show an edge for CP, the p is still >0.05.

IV
Recent studies have focused on the mechanism of the interaction between the T-cell mediated immune system and polymorphonuclear leukocytes (PMN) we previously described. We have shown, as previously described, using fungi (three different genera) as the target organisms, that the PMN can be modulated by lymphokines to new or enhanced levels of killing ability.
PMN induced locally in immune mice by intraperitoneal injection of antigen exhibit enhanced fungicidal activity compared to PMN elicited with thioglycollate. The mechanism of the differences in these PMN populations was studied. Sublethal infection was used to produce immunity to B. dermatitidis. A correlation was sought between ability of PMN to kill (or not kill) B. dermatitidis and production of the oxidative burst, as measured by luminol-enhanced chemiluminescence. Although elicited PMN cocultured with C. albicans produced a burst of chemiluminescence and were candidacidal, killing did not occur when the PMN were co-cultured with B. dermatitidis. Lack of killing of B. dermatitidis by elicited PMN correlated with lack of stimulation of a brisk oxidative burst. In contrast to elicited PMN, PMN induced by B. dermatitidis antigen responded to this fungus with a burst of chemiluminescence and a significant reduction of inoculum colony forming units (80%). Furthermore, these PMN when co-cultured with C. albicans produced an enhanced burst of chemiluminescence, and killing was enhanced compared to elicited PMN, e.g. 86 vs. 58%. The chemiluminescence burst and killing of B. dermatitidis by antigen-induced PMN was abrogated in the presence of catalase, implying a critical role for hydrogen peroxide. Partial but significant depression of chemiluminescence and killing in the presence of dimethyl sulfoxide, a hydroxyl radical scavenger, identified hydroxyl radical, or its metabolites, as toxic product(s) responsible for a significant fraction of fungicidal activity. These results indicate that the metabolic activity and microbicidal activity of PMN can be altered (enhanced) at the site of an immunological reaction, and thus could constitute an important factor in resistance.

V

Although our earlier reported studies indicated no beneficial effect of recombinant alpha-interferon on macrophages with respect to fungal targets, and in some instances a deleterious effect (these studies included human IF, C. albicans, human PMN and monocytes, and phagocytosis and killing), further studies with gamma interferon were indicated.

Recombinant murine gamma-interferon (IF) and supernatants from concanavalin A (ConA) stimulated mouse spleen cells (ConA-Sup) were tested for their ability to activate resident murine PM (peritoneal macrophages) (90% esterase positive) for fungicidal activity. PM monolayers pulsed overnight with IF had significantly enhanced fungicidal activity against C. albicans. (44 ± 12% vs. 0.0%, mean ± SD of 3 experiments) and B. dermatitidis (34 ± 1% vs. 3 ± 3%). The effect was dose dependent; however, less IF (10 U/ml) was required to optimally activate PM to kill phagocytizable C. albicans than for nonphagocytizable B. dermatitidis (10,000 U/ml). ConA alone (5-10 mcg/ml) enabled PM to kill C. albicans but not B. dermatitidis. ConA-Sup activated PM for fungicidal activity against B. dermatitidis. ConA-Sup collected at 24 hrs. best activated PM for killing (30 ± 3%) compared to those at 48 or 72 hrs. Capacity to activate PM for killing C. albicans or B. dermatitidis was abrogated when IF was incubated with anti-mouse IF monoclonal antibody. C. albicans killing was still induced after neutralizing ConA in ConA-Sup by absorption with Sephadex G-10 or incubation with alpha-methyl mannoside. Lipopolysaccharide (0.001-10 mcg/ml) failed to consistently activate PM for fungal killing. These data show that IF can have an immunoregulatory role in macrophage defense against these fungal pathogens, and may have therapeutic potential.

Future studies planned. With respect to section I above, these may include (a) further definition of the cell subsets affected by MDP, and (b) determining the mechanism of MDP protection against Blastomyces infection in vivo, by assaying humoral immunity and cell-mediated immunity (including macrophage) function in our model after in vivo MDP administration. With respect to section III, we will be completing some in vivo studies with CP 46665. With respect to section IV, the studies will progress in the following way. One avenue of research will pursue the biochemical mechanisms in the PMN consequent to immune activation of PMN's via lymphokines that result in
increased or new killing power. The second will be to characterize the lymphokine involved. The third avenue will attempt to define biological modifiers, produced by recombinant DNA or hybridoma techniques, which may produce the same effect. Prime candidates are gamma interferon and interleukin-2. If this is uncovered, it could lead to a therapeutic approach to defense against fungal pathogens. The last avenue will be to explore the effect of other eliciting agents, which may cause release in vivo of inflammatory mediators that could result in enhanced killing compared to the results with thioglycollate, and metabolic effects and killing power comparable to elicitation in immune animals with antigen, as we have described. With respect to section V, we are interested in the biochemical mechanisms in the macrophage that correlate with the enhanced fungicidal activity following gamma interferon treatment.

Publications

Annual, Final and Technical Reports (one copy each except as noted)

Dr. Jeannine A. Majde, Code 441CB
Scientific Officer, Immunology Program
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217

Administrator (2 copies)
Defense Technical Information Center
Building 5, Cameron Station
Alexandria, VA 22314

Annual and Final Reports Only (one copy each)

Commanding Officer
Naval Medical Command
Washington, DC 20372

Commanding Officer
Naval Medical Research & Development Command
National Naval Medical Center
Bethesda, MD 20814

Director, Infectious Diseases Program Center
Naval Medical Research Institute
National Naval Medical Center
Bethesda, MD 20814

Commander
Chemical and Biological Sciences Division
Army Research Office, P. O. Box 12211
Research Triangle Park, NC 27709

Commander
U.S. Army Research and Development Command
Attn: SGRD-PLA
Fort Detrick
Frederick, MD 21701

Commander
USAMRIID
Fort Detrick
Frederick, MD 21701

Directorate of Life Sciences
Air Force Office of Scientific Research
Bolling Air Force Base
Washington, DC 20332

Mr. Robin A. Simpson
Representative - Stanford; Administrative Contracting Officer
Office of Naval Research Resident
Room 165, Durand Building
Stanford, CA 94305

Final and Technical Reports Only

Director, Naval Research Laboratory (6 copies)
Attn: Technical Division, Code 2627
Washington, DC
DISTRIBUTION LIST

Immunological Defense Program

Annual, Final and Technical Reports (one copy each except as noted)

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fritz H. Bach, M.D.</td>
<td>Director, Immunology Research Center University of Minnesota Box 724, Mayo Memorial Bldg. 420 Delaware St., SE Minneapolis, MN 55455</td>
</tr>
<tr>
<td>Francis A. Ennis, M.D.</td>
<td>Department of Medicine University of Massachusetts Medical School 55 Lake Avenue Worcester, MA 01605</td>
</tr>
<tr>
<td>Fred D. Finkelman, M.D.</td>
<td>Department of Medicine Uniformed Services University of the Health Sciences 4301 Jones Bridge Road Bethesda, MD 20814</td>
</tr>
<tr>
<td>Dr. Matthew J. Kluger</td>
<td>Department of Physiology University of Michigan Med. School 7620 Medical Science II Bldg. Ann Arbor, MI 48109</td>
</tr>
<tr>
<td>Dr. Vijaya Manohar</td>
<td>Borriston Laboratories, Inc. 5050 Beech Place Temple Hills, MD 20748</td>
</tr>
<tr>
<td>Dr. Ernest D. Marquez</td>
<td>Bioassay Systems Corporation 225 Wildwood Avenue Woburn, MA 01801</td>
</tr>
<tr>
<td>James J. Mond, M.D.</td>
<td>Department of Medicine Uniformed Services University of the Health Sciences 4301 Jones Bridge Road Bethesda, MD 20814</td>
</tr>
<tr>
<td>Dr. Donna S. Sieckmann</td>
<td>Infectious Diseases Program Center Naval Medical Research Inst. National Naval Medical Center Bethesda, MD 20814</td>
</tr>
<tr>
<td>Dr. John D. Clements</td>
<td>Department of Microbiology and Immunology Tulane University Medical Ctr. 1430 Tulane Avenue New Orleans, LA 70112</td>
</tr>
<tr>
<td>Dr. Edward A. Havell</td>
<td>Trudeau Institute P.O. Box 59 Saranac Lake, NY 12983</td>
</tr>
<tr>
<td>Dr. Arthur G. Johnson</td>
<td>Department of Medical Microbiology and Immunology University of Minnesota School of Medicine 2205 East 5th Street Duluth, MN 55812</td>
</tr>
<tr>
<td>Dr. Philip Lake</td>
<td>Immunologic Oncology Division Lombardy Cancer Center Georgetown Univ. School of Med Washington, DC 20007</td>
</tr>
<tr>
<td>W. John Martin, M.D., Ph.D.</td>
<td>Laboratory, Dept. of Medicine Naval Hospital National Naval Medical Center Bethesda, MD 20814</td>
</tr>
<tr>
<td>Dr. Robert I. Mishell</td>
<td>Dept. of Microbiology & Immunology Univ. of California, Berkeley Berkeley, CA 94720</td>
</tr>
<tr>
<td>Dr. Page S. Morahan</td>
<td>Department of Microbiology Medical College of Pennsylvania 3300 Henry Avenue Philadelphia, PA 19129</td>
</tr>
<tr>
<td>Dr. Alan L. Schmaljohn</td>
<td>Department of Microbiology University of Maryland School of Medicine 660 W Redwood Street Baltimore, MD 21201</td>
</tr>
</tbody>
</table>
Annual, Final and Technical Reports (Cont.)

David A. Stevens, M.D.
Department of Medicine
Santa Clara Valley Medical Center
Stanford University
751 S. Bascom Avenue
San Jose, CA 95128

Dr. Barnet M. Sultzer
Department of Microbiology & Immunology
Downstate Medical Center
450 Clarkson Avenue
Brooklyn, NY 11203

Dr. Alvin L. Winters
Department of Microbiology
University of Alabama
University, AL 35486

Dr. Phyllis R. Strauss
Department of Biology
Northeastern University
360 Huntington Avenue
Boston, MA 02115

G. Jeanette Thorbecke, M.D.
Department of Pathology
New York University School of Medicine
550 First Avenue
New York, NY 10016

Lyn Yaffe, M.D.
Research Support Center
Naval Medical Research Inst.
National Naval Medical Center
Bethesda, MD 20814
END

FILMED

1-85

DTIC