The reactions of the lithium enolate of acetaldehyde, LiOCH\(\text{CH}_2\), with hexafluorocyclotriphenazene, \(\text{NF}_6\), lead to the series of (vinylfluoro)cyclotriphenazenes, \(\text{NF}_6\)(OCH\(\text{CH}_2\))\(\text{F}\) (n=2-5). The \(^1\)H NMR data shows that throughout the entire series, the substituent is bound through the oxygen end of the ambidentate enolate. The reaction shows a reluctance to go past the trisubstituted stage and the fluorine atom in \(\text{NF}_6\)(OCH\(\text{CH}_2\))\(\text{F}\) cannot be removed even under forcing conditions. Evidence from the \(^1\)H, \(^19\)F and \(^31\)P NMR (continued on reverse).
spectra shows that a non-geminal pathway is exclusively followed. Differences in the reaction patterns with enolate anions followed by $\text{N}_3^+\text{P}_3\text{F}_6^-$ and $\text{N}_3^+\text{F}_3\text{Cl}_6^-$ are discussed.
(Vinyloxy)fluorocyclotriphosphazenes

by

Christopher W. Allen and Randall P. Bright

Accepted for Publication in
Inorganica Chimica Acta

University of Vermont
Department of Chemistry
Burlington, Vermont 05405

October 25, 1984

Reproduction in whole or in part is permitted for any purposes of the United States Government.

This document has been approved for public release and sale; it's distribution is unlimited.
(Vinyloxy)fluorocyclotriphosphazenes.

Christopher W. Allen* and Randall P. Bright
Department of Chemistry, University of Vermont,
Burlington, Vermont 05405, U.S.A.

Received

The reactions of the lithium enolate of acetaldehyde, LiOCHD₂, with hexafluorocyclotriphosphazene, \(N_3P_3F_6\), lead to the series of (vinyloxy)fluorocyclotriphosphazene, \(N_3P_3F_{6-n}(OCH=CH_2)_{n}\) (n=2-5). The \(^1\)H NMR data shows that throughout the entire series, the substituent is bound through the oxygen end of the ambidentate enolate. The reaction shows a reluctance to go past the trisubstituted stage and the fluorine atom in \(N_3P_3F(OCH=CH_2)_{5}\) can not be removed even under forcing conditions. Evidence from the \(^1\)H, \(^19\)F and \(^31\)P NMR spectra shows that a non-geminal pathway is exclusively followed. Differences in the reaction patterns with enolate anions followed by \(N_3P_3F_6\) and \(N_3P_3Cl_6\) are discussed.

Introduction

The reactions of enolate anions with halocyclotriphosphazenes occur exclusively at the oxygen end of the ambidentate nucleophile giving rise to (alkenoxy)phosphazenes [1]. One of these materials, the mono(vinyloxy)penta-chlorotriphosphazene, \(N_3P_3Cl_5OCH=CH_2\), has proven to be a valuable monomer for the synthesis of organofunctional phosphazene polymers[2]. Extensions of the enolate anion reaction have allowed for the preparation of a variety of derivatives of the type \(N_3P_3Cl_4(X)OCR=CH_2\) (X=Cl; R=H, CH₃, C₆H₅; X=CH₃, R=H, CH₃, C₆H₅) [3]. The stereochemical course of the reaction of the enolate anion of acetaldehyde with \(N_3P_3Cl_6\) has been investigated [4]. All possible positional and stereoisomers in the series \(N_3P_3Cl_{6-n}(OCH=CH_2)_{n}\) (n=1-6) have been detected

*Author to whom correspondence should be addressed.
by 31P nmr spectroscopy. Although all the geminal isomers were detected, a predominantly non-geminal reaction pathway was observed. The non-geminal pattern is also observed in the reaction of aryloxides [5], alkoxides [6] and aryloxy steroid salts [7] with $\text{N}_2\text{P}_3\text{C}_6\text{H}_4$. The corresponding fluorophosphazene reactions have received much less attention. Derivatives of $\text{N}_3\text{P}_3\text{F}_6$ include $\text{N}_3\text{P}_3\text{F}_6\text{OR}$ (R=CH$_3$,C$_2$H$_5$) [8], $\text{N}_3\text{P}_3\text{F}_6\text{OCR}=\text{C}$(R=H,C$_6H_5$) [1], $\text{N}_3\text{P}_3\text{F}_6\text{OC}(\text{CH}_2)_2\text{CH}_2$ [1] and 2,4,6-$\text{N}_3\text{P}_3\text{F}_6$(OCH$_2C_3F_7$)$_3$ [9]. The reactions of $\text{N}_3\text{P}_3\text{X}_5\text{N}=\text{P}(\text{C}_6\text{H}_5)_3$(X=Cl,F) with the methoxide anion have recently been investigated [10]. In this paper, we present the synthesis of the series of (vinylxylo)fluorocyclotriphosphazenes, $\text{N}_3\text{P}_3\text{F}_6\cdot\text{n(OCH=CH}_2\text{)}\cdot\text{n (n-2-5)}$. The purpose for undertaking this investigation was to compare the reaction pathway followed by a specific oxygen base with $\text{N}_3\text{P}_3\text{F}_6$ and $\text{N}_3\text{P}_3\text{Cl}_6$ and to expand the range of available organofunctional phosphazenes.

Experimental

Hexachlorocyclotriphosphazene (Firestone Corp.) was converted to hexa-fluorocyclotriphosphazene ($\text{N}_3\text{P}_3\text{F}_6$) by a previously reported procedure [11]. n-Butyl lithium (1.6 M solution in hexane) was obtained from Aldrich. Tetrahydrofuran (THF) (Aldrich) was distilled from sodium-benzophenone ketyl. Hexanes and 35-55°C, benzene** (Fisher) were distilled by standard procedures.

NMR spectra (in CDCl$_3$) were recorded on a Bruker WM250 spectrometer operating at 250.1 MHz (1H), 235.2 (19F) and 101.2 MHz (31P). Tetramethylsilane, Me$_4$Si (for 1H NMR) and fluorotrichloromethane, CFCI$_3$ (for 19F NMR) were used as internal references. For 31P NMR, 85% H$_3$PO$_4$ was used as an external standard. Chemical shifts upfield to the reference are assigned a negative sign. 31P NMR spectra were recorded under conditions of broad band decoupling. Mass spectra were determined on a Finnegan 4610 spectrometer operating at 80 eV. Elemental analyses were performed by Integral Microanalytical Laboratories.

** Benzene is a suspected carcinogen, use only in a well-ventilated hood.
Preparation of \(\text{N}_3\text{P}_3\text{F}_6(\text{OCH} = \text{CH}_2)_2 \). A solution of 40 ml (0.064 mol) of n-butyllithium was added to 80 ml of tetrahydrofuran in an apparatus described elsewhere [12]. The resulting mixture was stirred for 16 hours at room temperature to allow for complete formation of the lithium enolate, \(\text{LiOCH} = \text{CH}_2 \), which was then added directly to 8.00g (0.032 mol) of \(\text{N}_3\text{P}_3\text{F}_6 \) in 100 ml of THF at 0°C. The reaction mixture was heated to reflux. After removal of solvent, the resulting oil was distilled (bp 45-48°C at 0.10 mmHg) to yield 2.75 of crude product. A 2.00g sample of this material was subject to flash chromatography using benzene/hexanes (1/4) as an eluent. A 1.38 g (20.0% of theory) sample of a water-white liquid was obtained. Attempts at chromatographic separation of isomers failed. Anal. Calcd. for \(\text{N}_3\text{P}_3\text{F}_6 \) \(\text{C}_{4} \text{H}_6 \): C, 16.17; H, 2.02; mol. wt. 297. Found: C, 16.67; H, 1.94; mol. wt. 297 (mass spectrum).

Preparation of \(\text{N}_3\text{P}_3\text{F}_6(\text{OCH} = \text{CH}_2)_3 \) and \(\text{N}_3\text{P}_3\text{F}_6(\text{OCH} = \text{CH}_2)_4 \). The lithium enolate, prepared from 100 ml of n-butyllithium (0.160 mol), was added to 10.0 g of \(\text{N}_3\text{P}_3\text{F}_6 \) (0.04 mol) as described above. After removal of the solvent, the resulting oil was distilled (35-42°C at 0.02 mmHg) to give 4.65 g of crude material. A 3.00 g sample of this oil was subject to flash chromatography, as described above, resulting in the isolation of two products: 1.06 g (12.8% of theory) of a water-white liquid which was identified as \(\text{N}_3\text{P}_3\text{F}_6(\text{OCH} = \text{CH}_2)_3 \) was obtained first. Anal. Calcd. for \(\text{N}_3\text{P}_3\text{F}_6(\text{OCH} = \text{CH}_2)_3 \): C, 22.43; H, 2.80; mol. wt. 321. Found: C, 23.14; H, 2.68; mol. wt. 321 (mass spectrum). A second fraction contained 0.98 g (11.0% of theory) of a water-white liquid, which was identified as \(\text{N}_3\text{P}_3\text{F}_6(\text{OCH} = \text{CH}_2)_4 \), was also obtained. Anal. Calcd. for \(\text{N}_3\text{P}_3\text{F}_6(\text{OCH} = \text{CH}_2)_4 \): C, 27.83; H, 3.48; mol. wt. 345. Found: C, 28.54; H, 3.52; mol. wt. 345 (mass spectrum). Attempts at chromatographic separation of isomers for the tris and tetrakis derivatives failed.

Preparation of \(\text{N}_3\text{P}_3\text{F}(\text{OCH} = \text{CH}_2)_5 \). The lithium enolate, prepared from 100
ml of n-butyllithium (0.16 mol), was added to 6.00g (0.024 mol) of N₃PF₆ as described above. The oil remaining after removal of the solvent was distilled (bp 45-50°C at 0.02 mmHg) to give 0.94g of crude product. Chromatographic separation, as described above, gave primarily the tri and tetrasubstituted materials N₃PF₆⁻ₙ(OCH=CH₂)ₙ (n=3,4) along with 0.24g (2.7% of theory) of a water-white liquid which was identified as N₃PF(OCH=CH₂)₅. Anal. Calcd. for N₃PF₅O₅C₁₀H₁₅: mol. wt. 369. Found: Mol. wt. 369 (mass spectrum).

Attempted Preparation of N₃PF(OCH=CH₂)₆ from N₃PF₆. Several reactions were carried out with up to 10 molar equivalents of the enolate anion and reaction times of up to 120 hours. The major product obtained with these reactions was the tetrakis derivative along with small amounts of the tris and pentakis derivatives.

Results and Discussion

Previous studies have shown that attack on the phosphorus atom in formation of the monosubstituted derivatives of N₃PX₆ (X=F[1], Cl[1,3]) and the entire series of N₃P₃Cl₆[4] derivatives occurs at the oxygen end of the ambident enolate anion. These chemical precedents along with the close similarity of the 'H nmr spectra of the series N₃PF₆⁻ₙ(OCH=CH₂)ₙ (n=2-5) (Table I) to the previously reported [1] spectrum of N₃PF₅(OCH=CH₂) indicates that the new materials reported in this study are (vinyloxy)fluorocyclotriphosphazenes.

The 3¹P nmr spectrum (Table II), of the products obtained at the stage of dissubstitution, N₃PF₄(OCH=CH₂)₂, shows a large complex triplet, attributed to the PF₂ center, and a complex doublet, corresponding to the PF(OCH=CH₂) centers. If a geminal isomer were present, a signal corresponding to a P(OCH=CH₂)₂ center would be observed in the high field region of the spectrum, and would not possess a large, one bond phosphorus-fluorine coupling constant. No such signal was observed in the spectrum, thus, at the stage of distribution, the reaction proceeds exclusively by a non-geminal pathway. The ¹⁹F nmr spectrum
(Table II) shows two complex doublets corresponding to the $\text{P}F_2$ and $\text{P}F(O\text{OCH}=\text{CH}_2)$ centers. The relative amounts of cis and trans isomers in $N_3P_3F_4(O\text{OCH}=\text{CH}_2)_2$ is unclear. The triplet in the ^1P nmr spectrum is indicative of either a trans isomer or an equivalence of the $^3\text{J}_{\text{PF}}$ coupling constants in the $\text{P}F_2$ center since the two fluorine atoms in the $\text{P}F_2$ center are inequivalent in the cis isomer. The Hx signals in the ^1H nmr spectrum show a doubling of lines over what is observed in $N_3P_3F_5O\text{OCH}=\text{CH}_2$. This observation combined with the fact that nearly equal amounts of cis and trans-$N_3P_3Cl_4^-$ $(O\text{OCH}=\text{CH}_2)_2$ are obtained in the corresponding reaction with $N_3P_3Cl_6$ $[\text{A}]$ suggests a cis/trans-$N_3P_3F_4(O\text{OCH}=\text{CH}_2)_2$ mixture. The exclusive formation of non-geminal products in the $N_3P_3Cl_6$ reaction is in contrast to the $N_3P_3Cl_6$ reaction where a small amount of the geminal isomer is also observed $[\text{A}]$.

In the trisubstituted derivative, $N_3P_3F_3(O\text{OCH}=\text{CH}_2)_3$, the ^1P NMR spectrum (Table II) shows a complex doublet, which can be assigned to the $\text{P}F(O\text{OCH}=\text{CH}_2)$ centers. No resonance is observed for either a $\text{P}F_2$ or a $\text{P}(O\text{OCH}=\text{CH}_2)_2$ center, which would arise from a geminal (2,2,4-) substitution pattern. The ^1F spectrum (Table II) allows for verification of this observation, and shows only a complex fluorine resonance in the $\text{P}F(O\text{OCH}=\text{CH}_2)$ region. For a geminal isomer to be present, a signal would be present in the $\text{P}F_2$ region of the spectrum. Thus, at the stage of trisubstitution, only the formation of the non-geminal isomers is observed. This is in contrast to the observation of the formation of both the geminal and non-geminal isomers in the corresponding reaction of $N_3P_3Cl_6$ leading to the trisubstituted derivative $N_3P_3Cl_3(O\text{OCH}=\text{CH}_2)_3$ $[\text{A}]$. The complexity of the ^1H, ^1F and ^1P spectra suggest the existence of both cis and trans-$N_3P_3F_3(O\text{OCH}=\text{CH}_2)_3$.

The ^1P spectrum (Table II) of the tetrakis derivative, $N_3P_3F_3^2(O\text{OCH}=\text{CH}_2)_4$, shows two resonances, a complex doublet and complex smaller multiplet. The doublet arises from the $\text{P}F(O\text{OCH}=\text{CH}_2)$ centers, while the small multiplet can be
assigned to the $^{31}\text{P(OCH-CH}_2\text{)}_2$ center. If the geminal tetrakis isomer were present, a signal would occur which would correspond to a $^{31}\text{PF}_2$ center. No such signal is observed. The ^{19}F spectrum of the tetrakis derivative, $\text{N}_3\text{P}_3\text{F}_2^-(\text{OCH=CH}_2)_4$ (Table II), shows a complex doublet in the $^{31}\text{PF(OCH=CH}_2\text{)}$ range arising from the large phosphorus-fluorine coupling. A geminal isomer would show a signal corresponding to a $^{31}\text{PF}_2$ center. Since no such signal is seen, the trend which is observed for the lower members of the series is followed at the stage of tetrakis substitution, i.e., non-geminal isomers are formed exclusively. The $^1\text{H nmr}$ spectrum of the tetrakis derivative, shows extra signals which are due to the presence of a $^{31}\text{P(OCH=CH}_2\text{)}_2$ center in the molecule.

The pentakis derivative, $\text{N}_3\text{P}_3\text{F(OCH=CH}_2\text{)}_5$, exhibits a large doublet and a small multiplet in the ^{31}P nmr spectrum (Table II). Both resonances exhibit extensive coupling and second order effects. The doublet arises from the single $^{31}\text{PF(OCH=CH}_2\text{)}$ resonance, while the singlet corresponds to the two $^{31}\text{P(OCH=CH}_2\text{)}_2$ centers. The spectrum may be more appropriately be viewed as a second-order AB_2X system. The $^{19}\text{F NMR}$ (Table II) consists of a doublet with extensive second order effects. The structure of the molecule is confirmed by the $^1\text{H NMR}$ spectrum (Table VIII), which shows signals corresponding both to the $^{31}\text{P(OCH=CH}_2\text{)}_2$ and the $^{31}\text{PF(OCH=CH}_2\text{)}$ centers. Integration of these regions shows the relative abundance of 4:1 respectively, appropriate for the pentakis derivative.

It should be noted that all attempts to prepare the hexakis derivative, $\text{N}_3\text{P}_3\text{(OCH=CH}_2\text{)}_6$, were unsuccessful. Several reactions were carried out with a 10 molar equivalent of the enolate anion, and reaction times of up to 120 hours. The major product obtained with these reactions was the tetrakis derivative. Small amounts of tris and pentakis were also isolated.

The product distribution observed in the preparation of the vinylfluoro-cyclotriphosphazenes indicates that substitution occurs preferentially at a
rather than a $\text{PF}(\text{OCH}=\text{CH}_2)$ center. Evidence for this assertion is the complete absence of the geminal substitution pathway, the reluctance of the reaction to proceed past the trisubstituted stage and the inability to go past the pentasubstituted material. The decreasing reactivity at higher levels of substitution has been observed in other systems following a non-geminal pathway and has been ascribed to decreased electrophilicity of the phosphorus centers due to electron release to the ring from the substituent [13]. Non-geminal substitution is favored when the substitution is electron releasing relative to the halogen. The availability of the non-geminal pathway in the preparation of $\text{N}_3\text{P}_3\text{Cl}_6$-n(\text{OCH}=\text{CH}_2)_n\ [4]$ but not in $\text{N}_3\text{P}_3\text{F}_6$-n(\text{OCH}=\text{CH}_2)_n$ can be related to the poor leaving group ability of the fluoride ion in phosphazene substitution reactions [14]. If the product distribution is kinetically controlled, then the low yield of geminal products in the chlorophosphazene reaction indicates a higher activation energy for the geminal pathway. The large energy associated with phosphorus-fluorine bond cleavage makes the formation of the geminal isomers energetically prohibitive in the fluorophosphazene reactions.

Acknowledgements

This work was supported, in part, by the Office of Naval Research. We thank Firestone Corporation for a generous gift of $\text{N}_3\text{P}_3\text{Cl}_6$.

References

TABLE I. 1H NMR Chemical Shift Data for $N_3P_3F_{6-n}(OCH=CH_2)_n$ (n=1-5).\(^a\)

<table>
<thead>
<tr>
<th>Compound</th>
<th>δ_{Ha}^b</th>
<th>δ_{Hb}^b</th>
<th>δ_{Hx}^b</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_3P_3F_5OCH=CH_2^c$</td>
<td>5.13</td>
<td>4.85</td>
<td>6.48</td>
</tr>
<tr>
<td>$N_3P_3F_4(OCH=CH_2)_2$</td>
<td>5.09</td>
<td>4.80</td>
<td>6.48</td>
</tr>
<tr>
<td>$N_3P_3F_3(OCH=CH_2)_3$</td>
<td>5.06</td>
<td>4.77</td>
<td>6.49</td>
</tr>
<tr>
<td>$N_3P_3F_2(OCH=CH_2)_4$</td>
<td>5.06</td>
<td>4.73</td>
<td>6.51</td>
</tr>
<tr>
<td>$N_3P_3F(OCH=CH_2)_5$</td>
<td>5.00</td>
<td>4.70</td>
<td>6.48</td>
</tr>
</tbody>
</table>

\(^a\) Chemical shifts in ppm from TMS. \(^b\) Assignments are as follows: ^{19}FOC=CH- c Taken from reference 1.
Table II. 31P and 19F NMR Data for $N_3P_3F_6-n(OCH=CH_2)_n$^a

<table>
<thead>
<tr>
<th>Compound</th>
<th>δ_{19}F</th>
<th>δ_{31}P</th>
<th>$^1J_{PF}$<sup>b</sup></th>
<th>δ_{19}F</th>
<th>δ_{31}P</th>
<th>$^1J_{PF}$<sup>b</sup></th>
<th>δ_{31}P</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_3P_3F_6(OCH=CH_2)$</td>
<td>-69.5</td>
<td>11.0</td>
<td>910.0</td>
<td>-65.6</td>
<td>11.2</td>
<td>887.7</td>
<td></td>
</tr>
<tr>
<td>$N_3P_3F_4(OCH=CH_2)_2$</td>
<td>-69.9</td>
<td>10.3</td>
<td>919.8</td>
<td>-66.1</td>
<td>10.6</td>
<td>895.8</td>
<td></td>
</tr>
<tr>
<td>$N_3P_3F_3(OCH=CH_2)_3$</td>
<td></td>
<td></td>
<td></td>
<td>-65.7</td>
<td>11.0</td>
<td>871.5</td>
<td></td>
</tr>
<tr>
<td>$N_3P_3F_2(OCH=CH_2)_4$</td>
<td>-65.5</td>
<td>12.3</td>
<td>903.0</td>
<td></td>
<td></td>
<td></td>
<td>11.1</td>
</tr>
<tr>
<td>$N_3P_3F(OCH=CH_2)_5$</td>
<td>-65.2</td>
<td>12.2</td>
<td>916.6</td>
<td></td>
<td></td>
<td></td>
<td>11.1</td>
</tr>
</tbody>
</table>

^a Chemical shifts in ppm; coupling constants in Hz.
^b Approximate values from complex spectra.
^c 31P data taken from reference 1.
<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Name and Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Office of Naval Research, 2 copies \nAttn: Code 413 \n800 W. Quincy Street \nArlington, Virginia 22217</td>
</tr>
<tr>
<td>1</td>
<td>Dr. David Young, 1 copy \nCodE 334 \nNORDA \nNSTL, Mississippi 39529</td>
</tr>
<tr>
<td>1</td>
<td>Naval Weapons Center, 1 copy \nAttn: Dr. A. B. Amster \nChemistry Division \nChina Lake, California 93555</td>
</tr>
<tr>
<td>1</td>
<td>Naval Weapons Support Center, 1 copy \nCode 5042 \nCrane, Indiana 47522</td>
</tr>
<tr>
<td>1</td>
<td>Commander, Naval Air Systems Command, 1 copy \nAttn: Code 310C (H. Rosenwasser) \nWashington, D.C. 20360</td>
</tr>
<tr>
<td>1</td>
<td>Scientific Advisor, 1 copy \nCommandant of the Marine Corps \nCode RD-1 \nWashington, D.C. 20380</td>
</tr>
<tr>
<td>1</td>
<td>Naval Civil Engineering Laboratory, 1 copy \nAttn: Dr. R. W. Drisko \nPort Hueneme, California 93401</td>
</tr>
<tr>
<td>1</td>
<td>U.S. Army Research Office, 1 copy \nAttn: CRD-AA-IP \nP.O. Box 12211 \nResearch Triangle Park, NC 27709</td>
</tr>
<tr>
<td>12</td>
<td>Defense Technical Information Center, 12 copies \nBuilding 5, Cameron Station \nAlexandria, Virginia 22314</td>
</tr>
<tr>
<td>1</td>
<td>Mr. John Boyle, 1 copy \nMaterials Branch \nNaval Ship Engineering Center \nPhiladelphia, Pennsylvania 19112</td>
</tr>
<tr>
<td>1</td>
<td>DTNSRDC, 1 copy \nAttn: Dr. G. Bosmajian \nApplied Chemistry Division \nAnnapolis, Maryland 21401</td>
</tr>
<tr>
<td>1</td>
<td>Naval Ocean Systems Center, 1 copy \nAttn: Dr. S. Yamamoto \nMarine Sciences Division \nSan Diego, California 91232</td>
</tr>
<tr>
<td>1</td>
<td>Dr. William Tolles, 1 copy \nSuperintendent \nChemistry Division, Code 6100 \nNaval Research Laboratory \nWashington, D.C. 20375</td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 356C

Professor A. G. MacDiarmid
Department of Chemistry
University of Pennsylvania
Philadelphia, Pennsylvania 19174

Dr. John McGrath
Department of Chemical Engineering
Virginia Polytechnic Institute
Blacksburg, Virginia 24061

Dr. E. Fischer, Code 2853
Naval Ship Research and Development Center
Annapolis, Maryland 21402

Dr. Adolf Amster
Chemistry Division
Naval Weapons Center
China Lake, California 93555

Professor H. Allcock
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Or. E. Fischer, Code
2853

Dr. Adolf Amster
Chemistry Division
Naval Weapons Center
China Lake, California 93555

Professor R. Lenz
Department of Chemistry
University of Massachusetts
Amherst, Massachusetts 01002

Professor T. Katz
Department of Chemistry
Columbia University
New York, New York 10027

Professor M. David Curtis
Department of Chemistry
University of Michigan
Ann Arbor, Michigan 48105

Professor J. Salamone
Department of Chemistry
University of Lowell
Lowell, Massachusetts 01854

Dr. J. Griffith
Naval Research Laboratory
Chemistry Section, Code 6120
Washington, D.C. 20375

Professor J. Chien
Department of Chemistry
University of Massachusetts
Amherst, Massachusetts 01854

Professor G. Wnek
Department of Materials Science and Engineering
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Mr. Samuel Jenneke
Honeywell Corporate Technology Center
10701 Lyndale Avenue South
Bloomington, Minnesota 55420

Mr. William Krigbaum
Department of Chemistry
Duke University
Durham, North Carolina 27706

Dr. Richard M. Laine
SRI International
333 Ravenswood Avenue
Menlo Park, California 94025

Dr. William Tolles
Code 6100
Naval Research Laboratory
Washington, D.C. 20375

Professor William William
Research Laboratory K42/282
5600 Cottle Road
San Jose, California 95193
ABSTRACTS DISTRIBUTION LIST, 356B

Professor T. Marks
Department of Chemistry
Northwestern University
Evanston, Illinois 60201

Professor Malcolm B. Polk
Department of Chemistry
Atlanta University
Atlanta, Georgia 30314

Dr. Kurt Baum
Fluorochem, Inc.
680 S. Ayon Avenue
Azuza, California 91702

Professor H. Ishida
Department of Macromolecular Science
Case Western University
Cleveland, Ohio 44106

Professor Stephen Wallinghoff
Department of Chemical Engineering
University of Minnesota
Minneapolis, Minnesota 55455

Professor G. Whitesides
Department of Chemistry
Harvard University
Cambridge, Massachusetts 02138

Dr. K. Paciorek
Ultrasystems, Inc.
P.O. Box 19605
Irvine, California 92715

Professor H. Hall
Department of Chemistry
University of Arizona
Tucson, Arizona 85721

Professor D. Seyferth
Department of Chemistry
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139