Snow characterization measurements acquired during SNOW-TWO/Smoke Week VI are presented. A summary of data for 8 days in January 1984 is given. These data consist of fall velocity, snow structure, and snowrate as recorded by Laboratory prototype equipment. A new concept of back lighting on the fall velocity indicator is discussed and data examples shown. Snowrate plots, fall velocity and crystal type information are presented for selected periods.
SNOW CHARACTERIZATION MEASUREMENTS FROM SNOW-TWO/SMOKE WEEK VI

Barbara A. Main
Robert O. Barthel

Cloud Physics Branch (LYC)
Atmospheric Sciences Division
Air Force Geophysics Laboratory
Hanscom AFB, MA 01731

ABSTRACT

Snow characterization measurements acquired during SNOW-TWO/Smoke Week VI are presented. A summary of data for eight days in January 1984 is given. These data consist of fall velocity, snow structure, and snow rate as recorded by laboratory prototype equipment. A new concept of backlighting on the fall velocity indicator is discussed and data examples shown. Snow rate plots, fall velocity and crystal type information are presented for selected periods.

1. Introduction

Air Force Geophysics Laboratory (AFGL) measurements recording the characteristics of naturally falling snow were made at Camp Grayling, MI during January 1984, in support of SNOW-TWO/Smoke Week VI. Other related experiments were held previosuly in the winter 1961-1962 at Camp Ethan Allen, Jericho, VT in support of SNOW-ONE-A, and at Camp Grayling, MI during December 1982, in support of SNOW-ONE-B. The sponsoring organization for these three experiments was the U.S. Army Cold Regions Research and Engineering Laboratory (WFI) to measure fall velocity, the snow structure recorder (SSR) for crystal identification, and the snow rate meter (SRM) to measure snowfall rate. These instruments are described and operational methods employed are discussed in previous reports, SNOW-ONE-A, Data Report (Barthel, 1962); SNOW-ONE-B, Data Report (Barthel, et al., 1963); at Snow Symposium II (Barthel, et al., 1962); SPIE Symposium (Flank, et. al., 1963); in an AFGL Report (Gibbons, et. al., 1983); and at Snow Symposium III (Barthel, et al., 1983). This paper is concerned primarily with the presentation of data recorded by the three AFGL prototype instruments and analyzed for future comparisons with results of other test participants. Instrument modifications are presented.

2. Instruments

The fall velocity indicator (FVI) and the snow structure recorder (SSR) were modified for use at SNOW-TWO/Smoke Week VI.

One problem with the FVI has persisted since instrument conception, that of weak or faded video images. In the front lighting configuration used for SNOW-ONE-A and SNOW-ONE-B, strobed light was reflected from the particle into the camera. The amount of reflected light varied with crystal size, shape, structure, and spatial configuration. This variation combined with limited video resolution and image magnification made it difficult for the analyst to identify salient features on which to base measurements. This problem was compounded when a particle tumbled or oscillated as it fell, and resulted in a broad scattering of fall velocity determinations.

To enhance particle definition, it was decided to modify the FVI to a backlighting concept. A strobe lamp was mounted at the rear of the smoke chamber behind a ground-glass screen such that the diffused light would enter the camera directly. This configuration provides a shadow image of the falling particle with better contrast and definition. Further, this method has permitted
SNOW CHARACTERIZATION MEASUREMENTS FROM SNOW-TMD/SMOKE WEEK VI

Barbara A. Main
Robert O. Barthel

Cloud Physics Branch (LYC)
Atmospheric Sciences Division
Air Force Geophysics Laboratory
Hanscom AFB, MA 01731

ABSTRACT

Snow characterization measurements acquired during SNOW-TMD/Smoke Week VI are presented. A summary of data for eight days in January 1984 is given. These data consist of fall velocity, snow structure, and snow rate as recorded by laboratory prototype equipment. A new concept of back lighting on the fall velocity indicator is discussed and data examples shown. Snow rate plots, fall velocity and crystal type information are presented for selected periods.

1. Introduction

Air Force Geophysics Laboratory (AFGL) measurements recording the characteristics of naturally falling snow were made at Camp Grayling, MI during January 1984, in support of SNOW-TMD/Smoke Week VI. Other related experiments were held previously in the winter 1981-1982 at Camp Ethan Allen, Jericho, VT in support of SNOW-ONE-A, and at Camp Grayling, MI during December 1982, in support of SNOW-ONE-B. The sponsoring organization for these three experiments was the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL).

AFGL interests lay in three directions: fall velocity measurements, crystal identification, and snow rate measurements. The needed information was gathered by three AFGL prototype instruments: the fall velocity indicator (SSI) to measure snowfall rate. These instruments are described and operational methods employed are discussed in previous reports, SNOW-ONE-A, Data Report (Barthel, 1982); SNOW-ONE-B, Data Report (Barthel, et al., 1983); at Snow Symposium II (Barthel, et al., 1982); SNZS Symposium (Plank, et al., 1983); in an AFGL Report (Gibbons, et al., 1983); and at Snow Symposium III (Barthel, et al., 1983). This paper is concerned primarily with the presentation of data recorded by the three AFGL prototype instruments and analyzed for future comparisons with results of other test participants. Instrument modifications are presented.

2. Instruments

The fall velocity indicator (FVI) and the snow structure recorder (SSR) were modified for use at SNOW-TMD/Smoke Week VI.

One problem with the FVI has persisted since instrument conception, that of weak or faded video images. In the front lighting configuration used for SNOW-ONE-A and SNOW-ONE-B, strobed light was reflected from the particle into the camera. The amount of reflected light varied with crystal size, shape, structure, and spatial configuration. This variation combined with limited video resolution and image magnification made it difficult for the analyst to identify salient features on which to base measurements. This problem was compounded when a particle tumbled or oscillated as it fell, and resulted in a broad scattering of fall velocity determinations.

To enhance particle definition, it was decided to modify the FVI to a back lighting concept. A strobe lamp was mounted at the rear of the sample chamber behind a ground-glass screen such that the diffused light would enter the camera directly. This configuration provides a shadow image of the falling particle with better contrast and definition. Further, this method has permitted a large reduction in the instrument's physical size. The only drawback to this method is that a mirror used to determine the third dimension of particles is now useless. As the FVI was not designed with particle identification as a prime function, this limitation is acceptable. Image comparison photos
The sharper image is evident. The FVI has been modified since January 84 to increase the volume of snow entering the instrument and further improvements in both definition and collection capabilities are being planned. Consideration is being given to digitizing the video for future operations.

The snow structure recorder (SSR) had some minor changes made prior to the January tests. To increase the number of particles available for analysis, the 'stop/go' mechanism was stepped down from 1 1/2" to 3/4" to decrease belt movement, thus doubling the amount of time of each sample.

![Figure 1. Image comparison showing a reflected image on the left and a shadow image on the right.](image)

<table>
<thead>
<tr>
<th>Date</th>
<th>FVI</th>
<th>SSR</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Jan (84-01)</td>
<td>1022-1535</td>
<td>NONE</td>
<td>OOS15-0336(10th) Occasional very light snow - mostly dendrites</td>
</tr>
<tr>
<td>12 Jan (84-03)</td>
<td>0724-0757</td>
<td>NONE</td>
<td>0705-0100(13th) one period of light snow 1-2 mm stellar, some needles</td>
</tr>
<tr>
<td>13 Jan (84-04)</td>
<td>0845-1200</td>
<td>0845-1200</td>
<td>0835-0100(14th) sporadic light snow - stellar, aggregates of stellar and dendrites to 3mm</td>
</tr>
<tr>
<td>16 Jan (84-05)</td>
<td>0730-23400</td>
<td>0730-2400</td>
<td>0747-0836(17th) periods of light to moderate snow-needles < 1 mm, dendrites stellar, and aggregates to 3mm</td>
</tr>
<tr>
<td>17 Jan (84-06)</td>
<td>0936-1165</td>
<td>0936-1165</td>
<td>0947-0912(18th) two periods of very light snow dendrites < .5mm, aggregates of dendrites < 1 mm</td>
</tr>
<tr>
<td>22 Jan (84-11)</td>
<td>0830-09200</td>
<td>0830-09200</td>
<td>0930-09200 Periods of light snow and dendrites mostly stellar 3-5mm</td>
</tr>
<tr>
<td>23 Jan (84-12)</td>
<td>1405-0945</td>
<td>1405-0949</td>
<td>1405-04200(34th) Periods of light and moderate snow- stellar, dendrites.</td>
</tr>
</tbody>
</table>
Figure 1. Image comparison showing a reflected image on the left and a shadow image on the right.

<table>
<thead>
<tr>
<th>Date</th>
<th>FNI</th>
<th>SSR</th>
<th>SEM</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Jan</td>
<td>1022-1335</td>
<td>HOME</td>
<td>0815-0930 (10th)</td>
<td>Occasional very light snow - mostly dendrites</td>
</tr>
<tr>
<td>12 Jan</td>
<td>0724-0757</td>
<td>HOME</td>
<td>0705-0100 (13th)</td>
<td>One period of light snow 1-2 mm, stellars, same needles</td>
</tr>
<tr>
<td>13 Jan</td>
<td>0845-1200</td>
<td>0845-1200</td>
<td>0835-0100 (14th)</td>
<td>Occasional light snow - stellars, aggregates of stellars and dendrites to 3 mm</td>
</tr>
<tr>
<td>16 Jan</td>
<td>0750-23400</td>
<td>0750-2400</td>
<td>0747-0850 (17th)</td>
<td>Periods of light to moderate snow, needles < 1 mm, dendrites stellars, and aggregates to 3 mm</td>
</tr>
<tr>
<td>17 Jan</td>
<td>0901-1105</td>
<td>0901-1105</td>
<td>0847-0813 (18th)</td>
<td>Two periods of very light snow dendrites < 3 mm, aggregates of dendrites < 3 mm</td>
</tr>
<tr>
<td>22 Jan</td>
<td>0050-0528</td>
<td>0050-0528</td>
<td>0033-0530</td>
<td>Periods of light snow and slight, mostly stellars 2-3 mm</td>
</tr>
<tr>
<td></td>
<td>1529-1730</td>
<td>1529-1730</td>
<td>1551-1751</td>
<td>Periods of light snow and moderate stellars, dendrites, snowflakes, snow pellets 2-3 mm</td>
</tr>
<tr>
<td>23 Jan</td>
<td>1409-2043</td>
<td>1409-2043</td>
<td>1432-0400 (24th)</td>
<td>Periods of light snow and moderate snow, stellars, dendrites, aggregates, snow pellets 2-3 mm</td>
</tr>
<tr>
<td>24 Jan</td>
<td>1804-1208</td>
<td>1804-1208</td>
<td>0934-0354</td>
<td>Occasional very light snow - snow pellets < 2 mm</td>
</tr>
</tbody>
</table>

TABLE 1: DATA SUMMARY
Since the sampling area is essentially a slot, collection efficiency is dependent upon instrument position with respect to wind direction. The instrument has been mounted on a manually rotated table that allows it to be faced into the wind. Current plans are to mechanize this table and considerations are being made to similarly configure the FVI. The differences in the numbers of particles seen on the SSR during the recent experiments are significantly greater when compared to the numbers seen of the FVI.

The snow rate meter was essentially the same as that used in SNOW-TWO-B. As no fault with the SSR has been defined at this time, we presume the current readings to be correct. There are still concerns regarding air flow around the instruments, particularly the SSR, and smoke tracking studies are being conducted.

3. SNOW TWO/Smoke Week VI Data

The availability of personnel and budget restrictions prevented our participation in the first half of the SNOW-TWO/Smoke Week IV field exercise. Our Winnebago arrived on site after the Christmas recess and the instruments were in operation from January 8th thru January 24th. Snowfall measurements were made on eight (8) separate days. Table 1 shows those periods of operation and indicates snow intensities and observed crystal types. Of these days only two, 16 and 23 January, had sufficient snow falling into all three instruments to warrant further analyses.

For the other six days, very light snowfall was recorded by the SSR with very little data obtained by the FVI and SSR.

The periods of study for the 16th and 23rd were determined by the number of particles seen on the fall velocity indicator (FVI). Because of the time consuming lab work involved, the studies were limited to the first fifty free falling particles of each half hour period of comparatively heavy snowfall. In addition, crystal type and fall characteristics were documented with as much accuracy as the limitations of the snow rate data for those times were obtained.

4. 16 January 1984

On the 16th of January 1984, five study periods were selected: 2000, 2030, 2100, 2200, and 2230. All AFGL instruments were operating during these periods of relatively good snowfall. During these periods the first fifty free falling particles seen on the FVI were measured for largest dimension and for fall velocity. These measurements are shown in Figure 2, fall velocity vs size plots, with the largest physical dimension. The solid lines in the figures are the least square regression lines and the dashed lines show plus or minus one standard deviation. The dots are individual particles. The size range on this day is broad with largest dimensions from .3 mm to 16.6 mm and fall velocities from .3 m sec\(^{-1}\) to 95 m sec\(^{-1}\). Snow types seen on the fall velocity indicator are many: stellar, stellar dendrites, aggregates of dendrites and group-like snow in the first and fourth cases; dendrites added in the 2030 sample; rimed dendrites and snow pellets during the 2100 sample; and rimed plates during the 2230 samples. Particles less than .3 mm are not visible on the FVI because of the limited video resolution. There appears to be some relationship between particle size and fall velocity. Similarities do exist between current analyses and those performed on SNOW-TWO-A and SNOW-TWO-B data as reported in SNOW-TWO-A and B Characterization Measurements and Data Analysis (Borthel et al, 1983). The snow structure recorder (SSR) data was examined for the same five periods and particle types determined. Much the same particle variety observed on the FVI is seen on the SSR. Samples of the study periods are seen in Figure 3. The ability to "see" the instrument to date since the studies has quite a significant change in the amount of data obtained. The comparison work between this period and past results. Summary for the five time periods are shown in Figure 4. The snow rate meter (SSR)
rotated table that allows it to be face into the wind. Current plans are to
each this table and considerations are being made to similarly configure
the FVI. The differences in the numbers of particles seen on the SSR during
the recent experiments are significantly greater when compared to the numbers
seen of the FVI.

The snow rate meter was essentially
the same as that used in SNOW-ONE-A.
As no fault with the SSR has been defined at
this time, we presume the current
readings to be correct. There are still
questions regarding air flow around the
instruments, particularly the SSR, and
smoke tracking studies are being conducted.

3. SNOW TMD/Smoke Week VI Data

The availability of personnel and
budget restrictions prevented our
participation in the first half of the
SNOW-TMD/Smoke Week IV field exercise.
Our Winnebago arrived on site after the
Christmas recess and the instruments
were in operation from January 8th thru
January 24th. Snowfall measurements
were made on eight (8) separate days.
Table 1 shows these periods of operation
and indicates snow intensities and ob-
served crystal types. Of these days
only two, 16 and 23 January, had suf-
ficient snow falling into all three
instruments to warrant further analyses.
For the other six days, very light
snowfall was recorded by the SSR with
very little data obtained by the FVI
and SSR.

The periods of study for the 16th
and 23rd were determined by the number of
particles seen on the fall velocity
indicator (FVI). Because of the time
consuming labor involved, the studies
were limited to the first fifty free
falling particles of each half hour
period of comparatively heavy snowfall.
In addition, crystal type and fall
characteristics were determined with as
much accuracy as the limitations of the
video system allows. These measure-
ments may not be fully representative
of the natural snowfall distribution
because of the small sample volume and
analytical subjectivity. The snow struc-
ture recorder (SSR) was used to type
particles at corresponding times. Detailed

On the 16th of January 1984, five
study periods were selected: 2000,
2030, 2100, 2200, and 2230. All APGL
instruments were operating during
these periods of relatively good snow-
fall. During these periods the first
fifty free falling particles seen on the
FVI were measured for largest dimen-
sion and for fall velocity. These
measurements are shown in Figure 2, fall
velocity vs. size plots, with the largest
physical dimension. The solid
lines in the figures are the least square
regression lines and the dashed lines
show plus or minus one standard devia-
tion. The dots are individual particles.
The size range on this day is broad with
largest dimensions from .3 mm to 16.6
mm and fall velocities from .3 m sec⁻¹
to .95 m sec⁻¹. Snow types seen on
the fall velocity indicator are many:
stellars, stellar dendrites, aggregates
of dendrites and graupellike snow in
the first and fourth cases; dendrites
added in the 2030 sample; rimed dendrites
and snow pellets during the 2100 sample;
and rimed plates during the 2230 samples.
Particles less than .3 mm are not
visible on the FVI because of the limited
video resolution. There appears to be
some relationship between particle size
and fall velocity. Similarities do
exist between current analyses and those
published in SNOW-ONE-A and SNOW-ONE-B
data as reported in SNOW-ONE-A and B
Characterization Measurements and Data
Analysis (Berghel, et al, 1983). The
snow structure recorder (SSR) data was
examined for the same five periods and
particle types determined. Much the
same particle variety observed as the
FVI is seen on the SSR. Samples of
the study periods are shown in Figure 3.
The ability to move the instrument to
face into the storm has made a signifi-
cant change in the amount of data
recorded. The current configuration
continues to give good results. Samples
for the five time periods are shown in
Figure 4. The snow rate meter (SSR)
functioned well on the 16th, much data
are available but the snowfall was
light. This instrument operated from
0747:30 on the 16th to 0930 on the
17th. During that period only light
snow and snow showers occurred.
Equivalent snow rates of <.1 m hr⁻¹ were
Figure 2. 16 January 1994 fall velocity vs largest dimension plots.

Figure 3. Fall velocity indicator particle images on 16 January 1994.
Figure 4. 16 January 1984 snow structure recorder samples.
Figure 4. 16 January 1984 snow structure recorder samples.

Figure 5. 16 January snow rate plots.
recorded for much of the day with the heaviest period recording ~ .3 mm hr\(^{-1}\) from 2000 - 2300. Figure 5 shows the snow rate plots.

5. 23 January 1964

The 23rd of January data was analyzed in the same fashion as the 16th. While the snow was more intense than on the 16th, it was so only for short periods. Three periods of relatively good snow were selected: 1430, 1500 and 1630. The first fifty free falling particles were measured for fall velocity and maximum dimension. These measurements are shown in Figure 6 fall velocity vs size plots with 1 the largest physical dimension. The solid line is the least squares regression line and the dashed lines show plus or minus one standard deviation. The dots are individual particles. On this day the largest physical dimensions vary from .3 to 8.6 mm, considerably smaller than the 16.6 mm particles seen in the 16th Jan data. The fall velocities varied from .27 m sec\(^{-1}\) to 1.16 m sec\(^{-1}\), a broader range than seen on the 16th. Crystal types seen on the PVI were varied. The first study period included aggregates of stellars, capped columns, rimed plates, spatial dendrites, graupellike snow; the second, rimed dendrites, stellars, aggregates of plates, columns, and graupellike snow; the third, aggregates of dendrites, rimed dendrites, graupellike snow, plates, and columns. Samples from these periods are shown in Figure 7. The snow structure recorder shows a similar variety with bullet rosettes added in the 1430 period, and hexagonal graupel in the third. Samples are shown in Figure 8. The snow rate meter equivalency plots for these and surround-
5. 23 January 1984

The 23rd of January data was analyzed in the same fashion as the 16th. While the snow was more intense than on the 16th, it was so only for short periods. Three periods of relatively good snow were selected: 1430, 1500 and 1630. The first fifty free falling particles were measured for fall velocity and maximum dimension. These measurements are shown in Figure 6 fall velocity vs size plots with & the largest physical dimension. The solid line is the least squares regression line and the dashed lines show plus or minus one standard deviation. The dots are individual par-

The fall velocities varied from 0.27 m sec\(^{-1}\) to 1.16 m sec\(^{-1}\), a broader range than seen on the 16th. Crystal types seen on the PVI were varied. The first study period included aggregates of stellar, capped columns, rimed plates, spatial dendrites, graupellike snow; the second, rimed dendrites, stellar, aggregates of plates, column, and graupellike snow; the third, aggregates of dendrites, rimed dendrites, graupellike snow, plates, and columns. Samples from these periods are shown in Figure 7. The snow structure recorder shows a similar variety with bullet rosettes added in the 1430 period, and hexagonal graupel in the third. Samples are shown in Figure 8. The snow rate meter equivalency plots for these and surround-

![Figure 6](image-url)
ing periods are seen in Figure 9. The largest snow rate recorded was 2.2 mm hr$^{-1}$, while the three study periods show maximum rates between 1.3 - 1.5 mm hr$^{-1}$.

Figure 7. Full velocity indicator particle images on 23 January 1984.

Figure 8. 23 January 1984 snow structure recorder samples.
Figure 7. Full velocity indicator particle images on 23 January 1984.

Figure 8. 23 January 1984 snow structure recorder samples.
Conclusions

We have compared the fall velocity relationships from SNOW-TWO/Smoke Week IV with those of SNOW-ONE-A and B (Berthel et al., 1963). The equations derived from the 23 January 1964 data generally match those from SNOW-ONE-B.

The equations' coefficients conform with those obtained on 16 January 1964, although the slopes from the 16th's data are generally smaller. The most obvious difference is seen in the coefficients from SNOW-ONE-A's 31 January 1962 storms. These coefficients were approximately forty percent higher.

The data gathered thus far in the SNOW projects are the beginning of a data base. We feel that the refinements made in both instrument performance and data reduction techniques will enable us to expand this base greatly. It is hoped that by sampling a wide variety of particle sizes that we will be able to derive equations that will be applicable to broad categories of crystal types.

Recommendations

While the instrument modifications made following SNOW-ONE-B proved use-
Conclusions

We have compared the fall velocity relationships from SNOW-TWO/Smoke Week IV with those of SNOW-ONE-A and B (Berthel et al., 1983). The equations derived from the 23 January 1984 data generally match those from SNOW-ONE-B. The equation coefficients conform with those obtained on 16 January 1984, although the slopes from the 16th's data are generally smaller. The most obvious difference is seen in the coefficients from SNOW-ONE-A's 31 January 1982 storm. These coefficients were approximately forty percent higher. These comparisons may indicate that the particle mix on 23 January 1984 and 12 December 1982 were somewhat similar to 16 January 1984, having slow falling flakes in the Large size category. The equation from 31 January 1982 could be explained by the presence of particles of higher densities; however, at this point, that is pure speculation.

The data gathered thus far in the SNOW projects are the beginning of a data base. We feel that the refinements made in both instrument performance and data reduction techniques will enable us to expand this base greatly. It is hoped that by sampling a wide variety of particle mixes that we will be able to derive equations that will be applicable to broad categories of crystal types.

Recommendations

While the instrument modifications made following SNOW-ONE-B proved successful, as demonstrated by the better definition in FWI data, we feel that further changes may be indicated. Studies are currently taking place in the laboratory on the feasibility of using polarized light to enhance our ability to see and measure the smaller particles through better definition. The sampling volume of the FWI has been increased and...
proper focal length adjustments made. This should increase greatly the number of particles available for study. The possibility of digitising the image is being explored, as well. Although the addition of a rotary table to improve collecting efficiency did not receive an indepth test because of very scant snow fall and horizontal wind problems, it does appear to have had some success and plans are being made to mechanize the table for easier use. A snow volume recorder should be completed by the fall of 1984 and in operation for next winter. Work is being started on the development of an APCL ASCME along the lines of those being used currently by CHREL. We hope to have this available in the near future. The data gathered in SHOW TWO/Smoke Week VI still leaves unanswered questions regarding wind effects and accuracy of small samples. Preliminary airflow studies have been conducted but further studies are necessary before full assessment can be made. It is expected that these studies will be conducted by fall 84. We have defined no fault in the SNOM operating in light snow and assume the recorded data to be correct. Further studies will be performed on comparison data becomes available.

Acknowledgements

A special thanks to Anthony Matthews, Norton Glass, C/Sgt Donald MacDonald, S/Sgt Dennis LeGroux, and David Wallis (Ophir) for the on-site installation and operation of the equipment. The authors wish to thank Susan Bedosky and Donald McLeod for their assistance in processing the data. Many thanks also to Carolyn Fadden for typing this paper.

References

being explored, as well. Although the addition of a rotary table to improve collecting efficiency did not receive an in-depth test because of very scant snow fall and horizontal wind problems, it does appear to have had some success and plans are being made to mechanize the table for easier use. A snow volume recorder should be completed by the fall of 1984 and in operation for next winter. Work is being started on the development of an APGL ASCHE along the lines of those being used currently by CHREL. We hope to have this available in the near future. The data gathered in SHOW TM4/Smoke Week VI still leaves unanswered questions regarding wind effects and accuracy of small samples. Preliminary airflow studies have been conducted but further studies are necessary before full assessment can be made. It is expected that these studies will be conducted by fall 84. We have defined no fault in the SRN operating in light snow and assume the recorded data to be correct. Further studies will be performed as comparison data becomes available.

Acknowledgements

A special thanks to Anthony Matthews, Morton Glass, SSgt Donald MacDonald, SSgt Dennis LeGros, and David Malita (Ophir) for the on-site installation and operation of the equipment. The authors wish to thank Susan Sadofsky and Donald McLeod for their assistance in processing the data. Many thanks also to Carolyn Fadden for typing this paper.

References

