BLACKSTONE RIVER BASIN
WORCESTER, MASSACHUSETTS

CURTIS PONDS DAM
MA 00140

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

DEPARTMENT OF THE ARMY
NEW ENGLAND DIVISION, CORPS OF ENGINEERS
WALTHAM, MASS. 02154

OCTOBER 1978
84 09 28 065

This document has been approved for public release and sale. Its distribution is unlimited.
Curtis Ponds Dam

NATIONAL PROGRAM FOR INSPECTION OF NON-FEDERAL DAMS

Cover program reads: Phase I Inspection Report, National Dam Inspection Program; however, the official title of the program is: National Program for Inspection of Non-Federal Dams; use cover date for date of report.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

DAMS, INSPECTION, DAM SAFETY,
Blackstone River Basin

Curtis Ponds Dam is a 420 foot long, 14 foot high earthfill dam. The dam is in fair condition. It has been placed in "significant" hazard category for the classification of hazard potential. The spillway can discharge 27 percent of the outflow test flood (½ the PMF) which is 9,500 cfs with a pond level at EL 481.0.
Honorable Edward J. King
Governor of the Commonwealth of
Massachusetts
State House
Boston, Massachusetts 02133

Dear Governor King:

I am forwarding to you a copy of the Curtis Ponds Dam Phase I Inspection Report, which was prepared under the National Program for Inspection of Non-Federal Dams. This report is presented for your use and is based upon a visual inspection, a review of the past performance and a brief hydrological study of the dam. A brief assessment is included at the beginning of the report. I have approved the report and support the findings and recommendations described in Section 7 and ask that you keep me informed of the actions taken to implement them. This follow-up action is a vitally important part of this program.

A copy of this report has been forwarded to the Department of Environmental Quality Engineering, the cooperating agency for the Commonwealth of Massachusetts. In addition, a copy of the report has also been furnished the owner, Massachusetts Electric Company, 939 Southbridge Street, Worcester, Massachusetts 01610, ATTN: Mr. Barry Huston, District Superintendent.

Copies of this report will be made available to the public, upon request, by this office under the Freedom of Information Act. In the case of this report the release date will be thirty days from the date of this letter.

I wish to take this opportunity to thank you and the Department of Environmental Quality Engineering for your cooperation in carrying out this program.

Sincerely yours,

[Signature]

JOHN P. CHANDLER
Colonel, Corps of Engineers
Division Engineer
CURTIS PONDS DAM
MA 00140

BLACKSTONE RIVER BASIN
WORCESTER, MASSACHUSETTS

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM
Curtis Ponds Dam is a 420-foot long, 14-foot high earthfill dam built in 1837. The dam has vertical upstream and downstream walls, portions of which are made of concrete and portions are dry-stone masonry. The area immediately downstream of the dam has been filled in nearly to the crest. The spillway is an 80-foot long, broad crested weir with a stepped stone cascade at the southeast abutment of the dam and has a crest at elevation (El) 472.0. There is an abandoned steel framework across the crest which formerly supported a walkway and flashboards. The downstream discharge channel is 70 feet wide and has vertical concrete sidewalls 9 to 13 feet high. At 150 feet downstream of the spillway, the channel intersects a second channel which is 4.6 feet wide and has vertical concrete sidewalls about 6.5 feet high. There is no regulating outlet at the dam. There is a partly demolished gate house and about 12 abandoned and rubble filled intake openings located upstream of the dam near the southeast abutment.

There are deficiencies which must be corrected to assure the continued performance of this dam. This conclusion is based upon the visual inspection at the site, the lack of engineering data, and limited operational and maintenance information. Generally, the dam is in fair condition. It has been placed in the
"significant" hazard category according to the Corps of Engineers guidelines for the classification of hazard potential.

The dam is considered to be a potential hazard because of the lack of a regulating outlet as well as the signs of distress which were observed at the site: erosion of a large area on the crest and downstream of the dam, the steel framework across the crest of the spillway, and debris on the crest of the spillway and in the downstream channel.

Hydraulic analyses indicate that the spillway can discharge a flow of 2,575 cfs (cubic feet per second) when the pond level is at El 477.3, which is the low point on the crest of the dam. The spillway can discharge 27 percent of the outflow test flood (half the probable maximum flood) which is 9,500 cfs with a pond level at El 481.0. The above test flood pool elevation would be modified by a high tailwater and general flooding.

It is recommended that the Owner employ the services of a qualified consultant to design a regulating outlet for the dam. In addition, the Owner should accomplish the following: backfill the eroded area downstream of the dam, remove the steel framework across the crest of the spillway, and clear debris from the spillway and downstream channel. The Owner should also implement a systematic program of inspection and maintenance.

The recommendation and remedial measures outlined above and in Section 7 should be implemented by the Owner within a period of two years after receipt of this Phase I Inspection Report. An alternative to these recommendations would be to drain the pond and breach or remove the dam.

Approved by:

Edward M. Greco, P.E.
Project Manager
Metcalf & Eddy, Inc.

Stephen L. Bishop, P.E.
Vice President
Metcalf & Eddy, Inc.

Connecticut Registration No. 08365
Massachusetts Registration No. 19703
This Phase I Inspection Report on Curtis Ponds Dam has been reviewed by the undersigned Review Board members. In our opinion, the reported findings, conclusions, and recommendations are consistent with the Recommended Guidelines for Safety Inspection of Dams, and with good engineering judgment and practice, and is hereby submitted for approval.

RICHARD F. DOHERTY, MEMBER
Water Control Branch
Engineering Division

CARNEY M. TERZIAN, MEMBER
Design Branch
Engineering Division

JOSEPH A. MCELROY, CHAIRMAN
Chief, NED Materials Testing Lab.
Foundations & Materials Branch
Engineering Division

APPROVAL RECOMMENDED:

JOSE B. FRYAR
Chief, Engineering Division
This report is prepared under guidance contained in Recommended Guidelines for Safety Inspection of Dams, for a Phase I Investigation. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigations, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test Flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRIEF ASSESSMENT</td>
<td></td>
</tr>
<tr>
<td>PREFACE</td>
<td></td>
</tr>
<tr>
<td>OVERVIEW PHOTO</td>
<td>iii</td>
</tr>
<tr>
<td>LOCATION MAP</td>
<td>iv</td>
</tr>
<tr>
<td>REPORT</td>
<td></td>
</tr>
<tr>
<td>SECTION 1 - PROJECT INFORMATION</td>
<td></td>
</tr>
<tr>
<td>1.1 General</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Description of Project</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Pertinent Data</td>
<td>5</td>
</tr>
<tr>
<td>SECTION 2 - ENGINEERING DATA</td>
<td></td>
</tr>
<tr>
<td>2.1 General</td>
<td>9</td>
</tr>
<tr>
<td>2.2 Construction Records</td>
<td>9</td>
</tr>
<tr>
<td>2.3 Operating Records</td>
<td>9</td>
</tr>
<tr>
<td>2.4 Evaluation of Data</td>
<td>9</td>
</tr>
<tr>
<td>SECTION 3 - VISUAL INSPECTION</td>
<td></td>
</tr>
<tr>
<td>3.1 Findings</td>
<td>11</td>
</tr>
<tr>
<td>3.2 Evaluation</td>
<td>12</td>
</tr>
<tr>
<td>SECTION 4 - OPERATING PROCEDURES</td>
<td></td>
</tr>
<tr>
<td>4.1 Procedures</td>
<td>13</td>
</tr>
<tr>
<td>4.2 Maintenance of Dam</td>
<td>13</td>
</tr>
<tr>
<td>4.3 Maintenance of Operating Facilities</td>
<td>13</td>
</tr>
<tr>
<td>4.4 Description of Any Warning System in Effect</td>
<td>13</td>
</tr>
<tr>
<td>4.5 Evaluation</td>
<td>13</td>
</tr>
<tr>
<td>SECTION 5 - HYDRAULIC/HYDROLOGIC</td>
<td></td>
</tr>
<tr>
<td>5.1 Evaluation of Features</td>
<td>14</td>
</tr>
</tbody>
</table>

CURTIS PONDS DAM
TABLE OF CONTENTS (Continued)

<table>
<thead>
<tr>
<th>SECTION 6 - STRUCTURAL STABILITY</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Evaluation of Structural Stability</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECTION 7 - ASSESSMENT, RECOMMENDATIONS, AND REMEDIAL MEASURES</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Dam Assessment</td>
<td>18</td>
</tr>
<tr>
<td>7.2 Recommendations</td>
<td>18</td>
</tr>
<tr>
<td>7.3 Remedial Measures</td>
<td>19</td>
</tr>
<tr>
<td>7.4 Alternatives</td>
<td>19</td>
</tr>
</tbody>
</table>

APPENDIXES

APPENDIX A - PERIODIC INSPECTION CHECKLIST

APPENDIX B - PLAN OF DAM AND PREVIOUS INSPECTION REPORTS

APPENDIX C - PHOTOGRAPHS

APPENDIX D - HYDROLOGIC AND HYDRAULIC COMPUTATIONS

APPENDIX E - INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS

CURTIS PONDS DAM
VIEW OF UPSTREAM FACE OF DAM

Location and Direction of Photographs
Shown on Figure in Appendix B
1.1 General

a. Authority. Public Law 92-367, August 8, 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a national program of dam inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of the dams within the New England region. Metcalf & Eddy, Inc. has been retained by the New England Division to inspect and report on selected dams in the State of Massachusetts. Authorization and notice to proceed was issued to Metcalf & Eddy, Inc. under a letter of July 28, 1978, from Ralph T. Garver, Colonel, Corps of Engineers. Contract No. DACW 33-78-C-0306 has been assigned by the Corps of Engineers for this work.

b. Purpose

(1) Perform technical inspection and evaluation of non-Federal dams to identify conditions which threaten the public safety and thus permit correction in a timely manner by non-Federal interests.

(2) Encourage and assist the States to initiate quickly effective dam safety programs for non-Federal dams.

(3) To update, verify and complete the National Inventory of Dams.
1.2 Description of Project

a. Location. The dam is located on Middle River, a tributary of the Blackstone River, in the City of Worcester, Worcester County, Massachusetts (see Location Map).

b. Description of Dam and Appurtenances. Curtis Ponds Dam is an earthfill dam with vertical walls on the upstream and downstream faces, portions of which are made of concrete and portions are dry-stone masonry (see Figure F-1). The dam has a maximum height of 14 feet and is about 420 feet long, including a stone cascade spillway at the southeast abutment. The crest of the dam is about 22 feet wide, but is obscured by filling of the area downstream of the dam for use as a coal yard. The axis of the embankment forms a bend at about 125 feet northwest of the spillway. The upstream face of the dam is a vertical concrete wall for a distance of 175 feet and is a vertical dry-stone wall for an additional 165 feet to the northwest abutment. Most of the downstream face of the dam is not visible due to subsequent filling of the area. One section which is visible is a vertical, dry-stone masonry wall.

The spillway is an 80-foot long, ungated weir with a stone cascade on the downstream face. The crest is at El 472.0. The vertical, concrete sidewalls are 5.2 feet (north side) and 7.4 feet (south side) high. A steel frame is mounted on the weir and formerly supported a walkway and flashboards. The downstream face is a five-step cascade made of cut stone blocks. The channel below the spillway is about 150 feet long, 70 feet wide, and has vertical, concrete sidewalls about 9 to 13 feet high. Four concrete piers are located in the floor of the channel and formerly supported a railroad trestle. The downstream end of the channel intersects another channel carrying flow from Beaver and Tatnuck Brooks. The second channel is 46 feet wide with vertical, concrete sidewalls about 6.5 feet high. This channel continues southerly and
under a bridge for Webster Street, then on through commercial and industrial areas of Worcester.

A partly demolished gate house is located upstream of the dam near the southeast abutment. It has a concrete deck and foundation with five openings which formerly served as intakes for cooling water for a power plant. Some slide gates are missing, and some intake openings are filled with concrete and building debris. The intakes and slide gates are inoperable. Between the gate house and the spillway is a vertical concrete wall along the pond. The wall has a gate opening leading to remnants of a flume made of steel sheet piling. This reportedly served to return warm water to the pond. Upstream of the gate house, a vertical concrete wall continues along the pond. This wall contains five more abandoned intake openings, some with wooden slide gates in place, but no operating mechanisms.

c. Size Classification. Curtis Ponds Dam is classified in the "small" category since it has a maximum height of 14 feet and a maximum storage capacity of 512 acre-feet.

d. Hazard Classification. Directly downstream of the dam is a heavily developed commercial area of Worcester known as Webster Square. Also, a firehouse is located about 200 feet downstream of the dam immediately east of the Webster Street bridge. Commercial and industrial development also occurs near the abutments of the dam. Two towers for power transmission lines are located at the site, one on the northwest abutment of the dam and one on the filled area downstream of the dam. This power line leads to a nearby downstream substation. However, in the event of failure of the dam, few lives could be lost although excessive property and utility damage could occur. Accordingly, the dam has been placed in the "significant" hazard category.

e. Ownership. The dam is presently owned by Massachusetts Electric Company, 939 Southbridge Street, Worcester, Massachusetts 01610.
Mr. Barry Huston, District Superintendent (617-791-8511), granted permission to enter the property and inspect the dam.

f. Operator. Since there are no operable facilities at this dam, there are no known operators.

g. Purpose of Dam. The dam was originally built to provide cooling water for a fossil fuel power plant. The plant was removed about 10 years ago, and the pond is no longer being used. The site is fenced off to prevent trespassing.

h. Design and Construction History. Curtis Ponds Dam was built in 1837. The dam was originally constructed with a stone wall on the upstream face. A letter from the Owner to the Worcester County Commissioners in 1923 states that the abutments of the spillway are constructed of stone on each side with wood sheeting in the center, then filled with earth. Removable flashboards supported by a steel walkway over the spillway were in use by 1923. The downstream side of the dam was filled and used for a coal yard. In 1923, a flume was constructed for returning water to the pond. The flume cuts through the south wing wall near the right abutment of the dam. By 1938, a concrete wall on the upstream face of the dam had been constructed. In 1955, the dam was overtopped and damaged by flooding. Repairs consisted of gravel fill up to 20 inches thick placed on the crest of the dam directly behind the concrete wall. In 1973, slight spalling was observed on the concrete wall on the south side of the spillway. By 1976, the supports of the steel walkway had become eroded, and it was recommended by the Owner's maintenance personnel to remove the flashboards and abandon the walkway.

i. Normal Operating Procedures. There are no operable structures and no operating procedures at this dam.
1.3 Pertinent Data

a. Drainage Area. Curtis Ponds has a drainage area of approximately 21,327 acres (33.3 square miles). This area includes the drainage basins of Ramshorn Brook, Dark Brook and Kettle Brook (see Watershed Plan, Figure D-1). About 15 dams are located upstream of Curtis Ponds, including five water supply reservoirs. In 1959, a flood control dam and diversion tunnel were constructed about 2.5 miles upstream on Kettle Brook. The tunnel has an overflow intake at El 487 and is designed to carry a maximum flow of 6,000 cfs. This facility is known as the Worcester Diversion.

The drainage area is about 50 percent rural and 50 percent urban. Rural areas are sparsely developed, mostly wooded, and have moderate slopes. Urban areas are thickly developed, mostly paved or grassed, and have flat to moderate slopes.

b. Discharge. Normal discharge is over an ungated, broad crested spillway which is 80 feet long with the crest at El 472.0. Water then drops about 8 feet down a steep stone cascade and into the downstream channel. The channel is about 70 feet wide and 150 feet long, with vertical side walls 9 to 13 feet high. The gradient of the channel is 0.004 (0.4 percent). Water then flows into a second channel which flows southeastward into Tatnuck and Beaver Brooks. Below this intersection, the flow in the channel is called Middle River. The second channel is 46 feet wide and about 6.5 feet deep with vertical concrete sidewalls. At 135 feet downstream of the intersection, there is an arched culvert 7.5 feet high and 46 feet wide with an invert at El 463.0. The channel continues downstream through industrial areas of Worcester.

The maximum flood recorded at the site was during the 1955 hurricane, when the pond level was at about El 480, and the peak flow at Kettle Brook gage, a mile upstream, was

CURTIS PONDS DAM
recorded as 3,970 cfs. Since that time, the Worcester Diversion tunnel was constructed upstream to divert up to 6,000 cfs from Kettle Brook to the Blackstone River south of Worcester. Hydraulic analyses indicate that the spillway can discharge a flow of 2,575 cfs when the pond level is at El 477.3 which is the low point on the crest of the dam. An outflow test flood, which assumes a diversion of 6,000 cfs, of 9,800 cfs will overtop the dam by a maximum of 3.7 feet.

c. Elevation (feet above Mean Sea Level (MSL)). A benchmark at El 472.0 was established at the crest of the spillway. This elevation was taken from a United States Geological Survey (U.S.G.S.) topographic map.

(1) Top dam:	477.3 to 480.0
(2) Test flood pool:	481.0
(3) Design surcharge (original design):	unknown
(4) Full flood control pool:	Not Applicable (N/A)
(5) Recreation pool:	472.0
(6) Spillway crest (ungated):	472.0
(7) Upstream portal invert diversion tunnel:	487.0 Worcester Diversion Tunnel
(8) Streambed at centerline of dam:	453.5
	floor of channel below spillway
(9) Tailwater:	463.9 water surface in channel below spillway

d. Reservoir

(1) Length of maximum pool:	4,200 feet
(2) Length of recreation pool:	4,200 feet
(3) Length of flood control pool:	N/A

CURTIS PONDS DAM
e. **Storage (acre feet)**

(1) Test flood surcharge (net): 715 at El 481
(2) Top of dam: 512
(3) Flood control pool: N/A
(4) Recreation pool: 220 (Approximate)
(5) Spillway crest: 220

f. **Reservoir Surface (acres)**

(1) Top dam: 55
(2) Maximum pool: 55
(3) Flood-control pool: N/A
(4) Recreation pool: 55
(5) Spillway crest: 55

g. **Dam**

(1) Type: earthfill with stone walls
(2) Length: 420 feet
(3) Height: maximum 14 feet
(4) Top width: 22 feet
(5) Side slopes: vertical upstream and downstream
(6) Zoning: Unknown
(7) Impervious core: timber sheeting near abutments to spillway
(8) Cutoff: Unknown
(9) Grout curtain: Unknown

Based on the assumption that the surface area will not significantly increase with changes in reservoir elevation from 472.0 to 477.3.

CURTIS PONDS PAN
1. **Spillway**

 (1) Type: broad crest

 (2) Length of weir: 80 feet

 (3) Crest elevation: 472.0

 (4) Gates: None

 (5) Upstream Channel: None

 (6) Downstream Channel: 70 feet wide and 150 feet long with vertical sidewalls 9 to 13 feet high; leads to second channel 46 feet wide with vertical sidewalls 6.5 feet high

J. Regulating Outlets. There is no regulating outlet at this dam.
SECTION 2
ENGINEERING DATA

2.1 General. There are no plans, specifications, or computations available from the Owner, State, or County offices relative to the design and construction of this dam. The only data available for this evaluation were visual observations made during inspection, review of previous inspection reports, and conversations with local residents, and State and County agencies.

We acknowledge the assistance and cooperation of personnel of the Massachusetts Department of Public Works: Messrs. Willis Regan and Raymond Rochford, and of the Massachusetts Department of Environmental Quality Engineering, Division of Waterways: Messrs. John J. Hannon and Joseph Iagallo.

Also, we acknowledge the cooperation and assistance of personnel from the Worcester County Engineer's Office: Messrs. John O'Toole and Joseph Frazauskas.

In addition, we thank Mr. Barry Huston of Massachusetts Electric Company, who granted permission to enter the property and inspect the dam.

2.2 Construction Records. There are no construction records available.

2.3 Operating Records. No operating records are available, and there is no daily record kept of the elevation of the pool or rainfall at the dam site.

2.4 Evaluation

a. Availability. Due to the age of this dam, there is no engineering data available.

b. Adequacy. The lack of in-depth engineering data did not allow for a definitive review. Therefore the adequacy of this dam could not be assessed from the standpoint of reviewing design and construction data, but is based primarily on visual inspection, past performance history and engineering judgment.

CURTIS PONDS DAM
c. **Validity.** The limited engineering data available is valid.
3.1 Findings

a. General. The Phase I inspection of the dam at Curtis Ponds was performed on September 18, 1978. A copy of the inspection checklist is included in Appendix A. Previous inspections of this dam have been conducted by others since 1925. A partial listing of these inspections is in Appendix B. An inspection was made in 1973 by personnel from the Massachusetts Department of Public Works. A copy of their report is included in Appendix F.

b. Dam. Curtis Ponds Dam is an earthfill dam with vertical, concrete or stone walls on the upstream and downstream faces. The dam is generally in fair condition. No seepage from the embankment was observed, although the area immediately downstream of the dam has been filled in nearly to the crest, which prohibits inspection of the downstream face. The crest of the dam is covered with miscellaneous fill including soil, coal, and some grass. Several signs of distress were observed at the site. There is a large eroded depression which extends from the edge of the spillway channel along the downstream edge of the dam for a distance of about 130 feet (see Figure B-1). The depression is up to 90 feet wide and 6 feet deep. It appears to be due to erosion by surface runoff. There is a moderate growth of brush at the bottom of the upstream wall of the dam, from the bend to the northwest abutment. There is minor cracking of the concrete portion of the wall, and slight staining and spalling along the water line.

c. Appurtenant Structures. The spillway is an ungated, 80-foot long, broad crested weir with a stepped stone cascade on the downstream face. A steel frame is mounted on the crest of the spillway and formerly supported a walkway and flashboards. The framework is rusted and
eroded at the base and is an obstruction to flow over the spillway. Wood debris is scattered on the crest and down the cascade. There is minor cracking and staining of the sidewalls.

There is no operable outlet at this dam. The remnants of a gate house, about 12 intake gates and a flume to return water to the pond are located just upstream of the spillway. These structures have not been used for about 10 years. Some are missing slide gates, some are filled with debris from building demolition, and all are missing operating mechanisms.

d. Reservoir Area. The lower half of the area around Curtis Ponds is thickly developed with commercial and industrial buildings. The area around the upstream half of the pond is occupied by a park and a cemetery. It is unlikely that much more development could occur in the future. The area is cleared and paved or grassed with slopes of 5 to 20 percent.

e. Downstream Channel. Discharge from the spillway flows into a 70-foot wide channel with vertical concrete sidewalls. This channel intersects a second channel at 150 feet downstream, and flow is directed southerly beneath Webster Street. The channel below the spillway contains four concrete piers which formerly supported a railroad trestle. The channel bottom contains scattered debris, mostly at the toe of the spillway. Farther downstream, soil has been deposited in the bottom, and a thick growth of grass covers about half of the channel bottom. The sidewalls are crooked in places and slight staining and spalling occurs along the water line. The channel downstream of the spillway is in good condition, except for a thick growth of grass along the bottom of the southwest sidewalk.

3.2 Evaluation. The above findings indicate that the dam is in fair condition, and there are several deficiencies which require attention. It is evident that the dam is not adequately maintained. Recommended measures to improve these conditions are stated in Section 7.3.
SECTION 4
OPERATING PROCEDURES

4.1 Procedures. There are no operating procedures at this dam. The property around the dam is fenced off, and the gate is kept locked.

4.2 Maintenance of Dam. The dam is not adequately maintained. There is a large depression eroded downstream of the crest, and brush is growing at the bottom of the upstream wall on the northwest half of the dam. Debris is scattered on the crest and downstream face of the spillway. The steel walkway on the crest of the spillway is deteriorating and forms an obstruction to flow.

The most recent maintenance reported at the dam was removal of flashboards and the deck for the walkway over the spillway in about 1976. The last major repair was filling of the crest of the dam with up to 20 inches of gravel after the flooding in 1955.

4.3 Maintenance of Operating Facilities. There is no outlet at this dam to draw down the pond in an emergency. The abandoned gate house and intake structures are partly demolished and inoperable.

4.4 Description of Any Warning Systems in Effect. There is no warning system in effect at this dam.

4.5 Evaluation. There is no regular program of maintenance or warning system in effect at Curtis Ponds Dam. This is undesirable considering the dam is in the "significant" hazard category. A program of inspection and maintenance and a surveillance system for this dam should be implemented as recommended in Section 7.3.
5.1 Evaluation of Features

a. Design Data. Curtis Ponds Dam is about 6,000 feet downstream of Leesville Dam. As part of the Worcester Diversion Studies by the U.S. Army Corps of Engineers, a Probable Maximum Flood (PMF) rate under the W.P.F. was established for Leesville. This value was adjusted for increased drainage area and used for Curtis Ponds Dam. The PMF rate was determined to be 950 cfs per square mile. Applying one-half the PMF to the 33.3 square miles of drainage area results in a calculated peak flood flow of 15,822 cfs. Since the diversion tunnel above Leesville Dam removes 6,000 cfs, a peak flood flow of 9,800 cfs was established as the inflow test flood. By adjusting the inflow test flood for surcharge storage, the maximum discharge rate was established as 9,500 cfs (285 cfs per square mile), with a water surface at EL 481.0.

Flow over the crest of the dam during the test flood is predicted to be 9,800 cfs. Flow through the spillway would be 5,700 cfs. The maximum depth over the crest of the dam would be 3.7 feet with a discharge of 19.8 cfs per foot of width. Depth at critical flow would be at 1.3 feet with a velocity of 8.5 feet per second.

Hydraulic analyses indicate that the existing spillway can discharge 2,575 cfs when the pond level is at EL 477.5, which is the low point on the crest of the dam.

b. Experience Data. Hydraulic records are not available for this dam. The dam was, however, overtopped in the 1950 hurricane. It was reported that the pond level was about 4 feet above the crest of the dam (EL 481), which corresponds closely with topographic maps of the flooded area which show a pond level at about EL 480. Since that event, however, the diversion tunnel has been built upstream, which will decrease the quantity of flow in the future.
c. Visual Observations. Discharge from Curtis Ponds is over an ungated, broad crested weir and down a stepped masonry cascade. The spillway is crossed by a steel structure which formerly supported a walkway and flashboards. This structure could be blocked by trash which could impede flows. A more detailed record of observation is included in Section 3 Visual Inspection.

d. Overtopping Potential. Overtopping of the dam by about 3.7 feet is expected under the outflow test flood of 9,500 cfs. In the event of overtopping, complete failure of the dam could occur, although backwater from the downstream channels will minimize this possibility.

Failure of the dam, combined with spillway discharge at El 477.3, would produce a peak flow of 5,375 cfs. The tailwater depth would increase from 5.0 feet to 9.0 feet.
SECTION 6

STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability

a. Visual Observations. The evaluation of the structural stability of Curtis Ponds Dam is based on the visual inspection conducted on September 18, 1978. As discussed in Section 3, Visual Inspection, the dam is in fair condition. There is a large area of erosion immediately downstream of the dam, and brush is growing on the northwest half of the upstream wall. The concrete on the upstream wall and sidewalls of the spillway is cracked and spalled.

Although no seepage or unusual settlement was observed at the site, the dam is considered to be a potential hazard because of the lack of a regulating outlet, the deficiencies noted above and the abandoned steel walkway structure.

b. Design and Construction Data. The dam at Curtis Ponds was built in 1837. There are no plans, specifications or computations available from the Owner, County or State offices on the design, construction or repair of this dam. A letter from the Owner to the Worcester County Commissioners dated 1923 states that "the dam proper is made of stone" and "the abutments or wing walls are stone on each side with plank piling in the center, then filled with dirt." Information does not appear to exist on the type, shear strength and permeability of the soil and/or rock materials of the embankment.

c. Operating Records. There is no evidence that instrumentation of any type was ever installed in Curtis Ponds Dam. The performance of this dam under prior loading can only be inferred by physical evidence at the site.

d. Post-Construction Changes. There are no as-built drawings available for Curtis Ponds Dam. Information on construction changes is derived from previous inspection reports. Sometime between
1923 and 1938, the concrete wall on the upstream face of the dam was constructed. It appears in the field that the original dry-stone wall was removed to about El 472, and the concrete wall was added on top.

The dam was overtopped by about 4 feet during the hurricane of 1955. Soon afterward, erosion of the crest was repaired by placing up to 20 inches of gravel fill along the upstream concrete wall.

e. Seismic Stability. The dam is located in Seismic Zone No. 2 and in accordance with Phase I "Recommended Guidelines" does not warrant seismic analyses.
SECTION 7
ASSESSMENT, RECOMMENDATION, AND REMEDIAL MEASURES

7.1 Dam Assessment

a. Condition. Curtis Ponds Dam was neither designed nor constructed according to current state-of-the-art procedures. Based upon the visual inspection of the site, the lack of engineering data, and limited operational or maintenance information, there are deficiencies which must be corrected to assure the continued performance of this dam. Generally, the dam is considered to be in fair condition. There is no regulating outlet for the dam. There are also several conditions which require repair at the site: erosion of a large area below the downstream wall of the dam, an abandoned steel structure across the crest of the spillway which collects debris and obstructs flow, and wood and debris scattered on the crest of the spillway and in the downstream channel.

Hydraulic analyses indicate that the spillway can discharge a flow of 2,575 cfs when the pond level is at El 477.3, which is the low point on the crest of the dam. The spillway can discharge 27 percent of the test flood outflow of 9,500 cfs.

b. Adequacy. The lack of in-depth engineering data did not allow for a definitive review. Therefore the adequacy of this dam could not be assessed from the standpoint of reviewing design and construction data, but is based primarily on visual inspection, past performance history and engineering judgment.

c. Urgency. The recommendation and remedial measures outlined below should be implemented by the Owner within two years after receipt of this Phase I Inspection Report.

d. Need for Additional Investigation. Additional investigations to further assess the adequacy of the dam are outlined below in Section 7.2.

CURTIS PONDS DAM
7.2 **Recommendation.** In view of the concerns over the continued performance of the dam, it is recommended that the Owner employ a qualified consultant to design a regulating outlet for the dam.

The recommendations on repairs and maintenance procedures are outlined below under Section 7.3, Remedial Measures.

7.3 **Remedial Measures**

a. **Operating and Maintenance Procedures.** The dam and appurtenant structures are not adequately maintained. It is recommended that the Owner accomplish the following:

1. backfill the large depression eroded along the downstream wall of the dam,
2. remove the steel framework across the crest of the spillway,
3. clear wood and trash from the spillway and downstream channel,
4. implement a systematic program of maintenance inspections. As a minimum, the program should consist of a monthly inspection of the dam and appurtenances, supplemented by additional inspections during and after severe storms. All repairs and maintenance should be undertaken in accordance with all applicable State regulations,
5. institute a definite plan for surveillance and a warning system during periods of unusually heavy rains and/or runoff,
6. conduct technical inspections of this dam on an annual basis.

7.4 **Alternatives.** An alternative to implementing the recommendations and remedial measures listed above would be to drain the pond and breach or remove the dam.
APPENDIX A
PERIODIC INSPECTION CHECKLIST

CURTIS PONDS DAM
PERIODIC INSPECTION
PARTY ORGANIZATION

PROJECT: Curtis Ponds Dam DATE: Sept. 18, 1976

TIME: 1:00 - 5:00 PM
WEATHER: overcast, 65°F

M.C. ELEV. 472.67, 4639.4
*based on assumed benchmark El 472.6
on crest of spillway

PARTY:

1. Ed Greco
2. Carol Sweet
3. Lyle Branagan
4. Dave Cole
5. Frank Sviokla
6. Henry Lord
7.
8.
9.
10.

PROJECT FEATURE

1. Dam

Ed Greco / Carol Sweet

2. Spillway

Lyle Branagan / Ed Greco

3.

4.

5.

6.

7.

8.

9.

10.

REMARKS:
PERIODIC INSPECTION CHECK LIST

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crest Elevation</td>
<td>varies from 471.3 to 480.0</td>
</tr>
<tr>
<td>Current Pool Elevation</td>
<td>472.1</td>
</tr>
<tr>
<td>Maximum Impoundment to Date</td>
<td>approx. El 480 - August 1955</td>
</tr>
<tr>
<td>Surface Cracks</td>
<td>gullies creased in fill downstream of dam</td>
</tr>
<tr>
<td>Pavement Condition</td>
<td>not applicable</td>
</tr>
<tr>
<td>Movement or Settlement of Crest</td>
<td>crest irregular</td>
</tr>
<tr>
<td>Lateral Movement</td>
<td>none visible</td>
</tr>
<tr>
<td>Vertical Alignment</td>
<td>slightly irregular</td>
</tr>
<tr>
<td>Horizontal Alignment</td>
<td>bends upstream at about 125 feet northwest of spillway</td>
</tr>
<tr>
<td>Left Abutment and at</td>
<td></td>
</tr>
<tr>
<td>Complete Structure</td>
<td>Left abutment lies into natural ground</td>
</tr>
<tr>
<td></td>
<td>Right abutment is concrete wall</td>
</tr>
<tr>
<td>Indications of Movement of</td>
<td>none visible</td>
</tr>
<tr>
<td>Structural Items or Slopes</td>
<td></td>
</tr>
<tr>
<td>Spalling or Algae</td>
<td>not apparent</td>
</tr>
<tr>
<td>Erosion or Erosion of Slopes</td>
<td>severe erosion of depression</td>
</tr>
<tr>
<td>or Abutments</td>
<td>downstream of dam</td>
</tr>
<tr>
<td>Rock Slope Protection - Riprap</td>
<td>concrete wall on upstream slope, stem wall on downstream slope</td>
</tr>
<tr>
<td>Failures</td>
<td></td>
</tr>
<tr>
<td>Visual Movement or Cracking at</td>
<td>none visible - area downstream of dam filled in nearly to crest</td>
</tr>
<tr>
<td>or near Ties</td>
<td></td>
</tr>
<tr>
<td>Visual Embankment or Downstream</td>
<td>none visible - area covered with F.I.</td>
</tr>
<tr>
<td>Shear</td>
<td></td>
</tr>
<tr>
<td>Hiking or Hollies</td>
<td>none visible</td>
</tr>
<tr>
<td>Foundation Drainage Features</td>
<td>weep holes in walls of downstream channel</td>
</tr>
<tr>
<td>Toe drains</td>
<td>none visible</td>
</tr>
<tr>
<td>Instrumentation System</td>
<td>none visible</td>
</tr>
</tbody>
</table>
PERIODIC INSPECTION CHECK LIST

PROJECT Curtis Ponds Dam
DATE Sept 18, 1976
PROJECT FEATURE spillway
NAME Kyle Branagan
DISCIPLINE geotechnical
NAME Ed Green

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTLET WORKS - SPILLWAY WEIR, APPROACH AND DISCHARGE CHANNELS</td>
<td></td>
</tr>
<tr>
<td>a. Approach Channel</td>
<td>natural stream bed - 2 wooden piers in bottom</td>
</tr>
<tr>
<td>General Condition</td>
<td>some debris - fair</td>
</tr>
<tr>
<td>Loose Rock Overhanging Channel</td>
<td>none</td>
</tr>
<tr>
<td>Trees Overhanging Channel</td>
<td>none</td>
</tr>
<tr>
<td>Floor of Approach Channel</td>
<td>shallow - some debris</td>
</tr>
<tr>
<td>t. Weir and Training Walls</td>
<td>vertical concrete walls - steel framework across crest</td>
</tr>
<tr>
<td>General Condition of Concrete</td>
<td>fair to good - erosion at water line, cracks in left wall</td>
</tr>
<tr>
<td>Rust or Staining</td>
<td>minor - steel framework cracked at bottom</td>
</tr>
<tr>
<td>Spalling</td>
<td>minor</td>
</tr>
<tr>
<td>Any Visible Reinforcing</td>
<td>none</td>
</tr>
<tr>
<td>Any Seepage or Efflorescence</td>
<td>none</td>
</tr>
<tr>
<td>Drain Holes</td>
<td>none</td>
</tr>
<tr>
<td>Discharge Channel</td>
<td>5-step cascade below spillway - discharge channel w/vertical concrete walls</td>
</tr>
<tr>
<td>General Condition</td>
<td>fair</td>
</tr>
<tr>
<td>Loose Rock Overhanging Channel</td>
<td>none</td>
</tr>
<tr>
<td>Trees Overhanging Channel</td>
<td>none</td>
</tr>
<tr>
<td>Floor of Channel</td>
<td>scattered debris - grass growing on half of floor</td>
</tr>
<tr>
<td>Other Obstructions</td>
<td>4 abandoned concrete piers formerly supported railroad</td>
</tr>
<tr>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Figure B-1, Plan of Dam</td>
<td>B-1</td>
</tr>
<tr>
<td>Figure B-2, Sections of Dam</td>
<td>B-2</td>
</tr>
<tr>
<td>Previous Inspections (Partial Listing)</td>
<td>B-3</td>
</tr>
<tr>
<td>Inspection Reports by Massachusetts Department of Public Works, dated January 26, 1973</td>
<td>B-4</td>
</tr>
</tbody>
</table>

PREVIOUS PAGE IS BLANK
SECTION 1-1

SECTION 2-2

SCALE IN FEET

PREVIOUS PAGE IS BLANK
TOWN OR CITY: Worcester
DEGREE NO.:
LOCATION: Curtis Pond, Webster St.
DESCRIPTION OF DAM:
- **Type:** Stone Abutments & Piling, Earth Fill Wall
- **Height:**
 - Top: 24 ft
 - Bottom:
- **Thickness Top:**
- **Downstream Slope:**
- **Upstream:**
- **Length of Spillway:**
- **Size of Gates:** 2-5' x 6' = 10 x 7'
- **Location of Gates:** South and Dam
- **Flashboards used:** Yes
- **Supported on steel structure:** No
- **Dam designed by:**
- **Constructed by:**
- **Year constructed:** 1837

GENERAL REMARKS:
- Inspected:
 - Aug. 15, 1925 / L. O. Marden
 - Oct. 27, 1925 /
 - Mar. 7, 1929 /
 - Dec. 17, 1931 /
 - Nov. 17, 1938 / L. H. Spofford
 - Dec. 4, 1940 /
 - Dec. 7, 1942 / L. M. S. Co.

DESCRIPTION OF RESERVOIR & WATERSHED:
- **Name of Main Stream:** Tatnuck brook
- **Length of Watershed:**
- **Width:**
- **Is Watershed Cultivated:**
- **Percent In Forests:**
- **Slope of Slope:**
- **Kind of Soil:** Rocky
- **No. of Acres in Watershed:** 32.39
- **Reservoir:** 52
- **Wash:**
- **Max Flow Cu. Ft per Sec:**
- **Head of Flashboards-Low Water:**
- **High:**

PREVIOUS INSPECTIONS (PARTIAL LISTING):
COPY OF INSPECTION CARD ON FILE AT THE MASSACHUSETTS
DEPARTMENT OF PUBLIC WORKS, DISTRICT OFFICE, WORCESTER.
INSPECTION REPORT - DAMS AND RESERVOIRS

1. Location: City/Town Worcester Dam No. 3-1-1-5
 Name of Dam Curtis Pond Dam Inspected by
 Date of Inspection 1-26-1-77

2. Owner/Per: Assessors Prev. Inspection
 Reg. of Deeds Pers. Contact
 Name St. & No. City/Town State Tel. No.
 Name St. & No. City/Town State Tel. No.
 Name St. & No. City/Town State Tel. No.

3. Caretaker (if any) e.g. superintendent, plant manager, appointed by absentee owner, appointed by multi owners.
 Name St. & No.: City/Town: State: Tel. No.:

4. No. of Pictures taken: NONE

5. Degree of Hazard: (if dam should fail completely)
 1. Minor
 2. Moderate ✓
 3. Severe
 4. Disastrous

 * This rating may change as land use changes (future development)

 Operative yes; No.

 Comments:

7. Upstream Face of Dam: Condition:
 1. Good ✓
 2. Minor Repairs
 3. Major Repairs
 4. Urgent Repairs

B-4
8. Downstream Face of Dam:
 Conditions:
 1. Good ☑
 2. Minor Repairs
 3. Major Repairs
 4. Urgent Repairs
 Comments:

9. Emergency Spillway:
 Conditions:
 1. Good
 2. Minor Repairs
 3. Major Repairs
 4. Urgent Repairs
 Comments:

10. Water Level at time of inspection:
 5 ft. above/below top of dam/principal spillway/other

11. Summary of Deficiencies Noted:
 Growth (Trees and Brush) on Embankment
 Animal Burrows and Washouts
 Damage to slopes or top of dam
 Cracked or Damaged Masonry
 Evidence of Seepage
 Evidence of Piping
 Erosion
 Leaks
 Trash and/or debris impeding flow
 Clogged or blocked spillway
 Other
12. Remarks & Recommendations: (Fully Explain)

The Dam and Spillway are in good condition. There is some spalling of a small section of the concrete retaining wall on the right side of the dam. The dam has been used by the Mass Elec. Co. as a water source for cooling purposes. The company is moving this operation and no more will this dam serve for industrial purpose.

13. Overall Condition:

1. Safe

2. Minor repairs needed

3. Conditionally safe - major repairs needed

4. Unsafe

5. Reservoir impoundment no longer exists (explain)

Recommend removal from inspection list
DESCRIPTION OF DAM

Submitted by

Date

City/Town

Name of Dam

1. Location: Topo Sheet No.
 Provide 8 1/2" x 11" in clear copy of topo map with location of Dam clearly indicated.

2. Year built: _______ Year/s of subsequent repairs ________

3. Purpose of Dam: Water Supply _______ Recreational ________
 Irrigation _______ Other ________

4. Drainage Area: ______ sq. mi. ______ acres

5. Normal Ponding Area: ______ acres; Ave. depth ______

6. No. and type of dwellings located adjacent to pond or reservoir
 i.e. summer homes, etc.

7. Dimensions of Dam: Length _______ Max. Height _______
 Upstream Face _______ Max. Height _______
 Downstream Face _______ Max. Height _______
 Width across top _______

8. Classification of Dam by Materials:
 Earth _______ Conc. Masonry _______ Stone Masonry _______
 Timber _______ Rockfill _______ Other _______

9. A. Description of present land usage downstream of dam:
 _______ % rural; _______ % urban.

 B. Is there a storage area or flood plain downstream of dam which could accommodate the impoundment in the event of a complete dam failure? yes _______ no _______
10. Risk to life and property in event of complete failure.

No. of people ___________.
No. of homes ___________.
No. of Businesses ___________.
No. of industries ___________. Type _________.
No. of utilities ___________. Type _________.
Railroads ___________.
Other dams _________.
Other _________.

11. Attach Sketch of dam to this form showing section and plan on 8½" x 11" sheet.

12. How to Locate:

500 ft on right side of Webster St.

Coming from intersection of Webster St.
Cambridge Streets
APPENDIX C

PHOTOGRAPHS

CURTIS PONDS DAM
NO. 1 VIEW OF ABANDONED INTAKE STRUCTURES

NO. 2 VIEW OF SPILLWAY AND NORTH ABUTMENT
NO. 3 VIEW OF SPILLWAY

NO. 4 VIEW OF DOWNSTREAM CHANNEL
NO. 5 VIEW OF CONFLUENCE OF DOWNSTREAM CHANNEL AND MIDDLE RIVER

NO. 6 VIEW OF WEBSTER STREET BRIDGE OVER MIDDLE RIVER
(I) Test Flood, 100 year Storm & Storage Functions:

1. Total Drainage Area - 33.31 mi²

2. Pond(s) Area: 55 acres = 0.086 mi²
 Swamp(s) Area: N/A
 Total Area Pond(s) & Swamp(s): N/A

3. Say Ave. Store = N/A

4. Use Leesville PFR based on studies for diversion tunnel
 Using C of E. Curves for Peak Flow Rates & above guide values the Peak Flow Rate was estimated to be related to Leesville and taken at 950 cfs/mi²
 Size Class: Small Hazard Pot: Significant Spill. Des. Flood: 100 yr to 1/2 PFR
 Use: Test Flood = 1/2 PFR - Dam very low failure minor effects flood

5. Test Flood Inflow = 1/2 (950) (33.31) - 6000 = 9850 cfs

 *6000 cfs removed due to diversion above Leesville

6. Pond Storage
 The pond area is 0.086 sq. mi. at elev. 472.
 Based on a constant pond storage increases at 55 ac. feet per foot of depth increase.
 At pond elev. 471.3, 291 acre feet is storable above the spillway elevation

7. Storage Functions are based on Qout = Qin[1 - Sout / R]
 Sout = Storage Vol. in Reservoir related to final Qout in terms of inches of rain over the drainage area
 \[S(\text{in inches}) = 12 \left(\frac{0.086}{33.31} \right) = 0.31 \text{ in} \]
 \[R = \text{Str. rain - john} \]
 \[D = \text{Storage Depth (above spillway) on reservoir, in feet} \]

8. Storage Function: \(F_{TF} = 9800 - 1034S = 9800 - 32D \)
II Dam Discharge Ratings

A - Spillway (Assume flash board structure remains)

Base Crest - 80' wide - say 79% side contr

\[Q_s = 2.67 H^{1.5} \] [Ref. Vichman: One of many other formulas]

\[Q_s = 211 H^{1.5}, \quad H = 47 \] [Pond El. 472]

Pond El. 472 474 475 476 477 478 479 480 481 482

\[Q_s = 211 597 1092 1688 2359 3101 3908 4774 5677 6672 \]

B - Downstream Control

1 - In 1955 Kettle Brook gage indicated 3970 cfs as its low during storm. Just below Curtis Ponds Dam a firehouse has a 2' cod line at about ele. 480 for the same storm.

2 - Flow @ Curtis in 1955: 3970 (\(\frac{32.5 \text{ mi}^2}{31.5 \text{ mi}^2} \)) = 4150 cfs (about 4300)

Note that this is a lower discharge than the 1955 event would pass with pond ele. 480 & free discharge.

3 - Assume constriction downstream control point ele. from about ele. 480:

\[Q_c = K h^2 \]

\[4150 = K (17)^2 \quad K = 1000 \]

- This is \(Q_c @ Curtis \) relation assumed (Flow from Taunton R.I.

\[h_c = 15' 16' 17' 18' 19' 20' \]

Pond El. 478 479 480 481 482 483

\[Q_c = 3900 4000 4150 4300 4400 4500 \]
C. Crest Flow

Assume all downstream "controls" removed.

Use $q = 2.67 \text{ H}^{1.5}$ [Ref. H. T. Chow, Openchan. Hydro., p. 52]

North of Spillway: 150' @ elev. 477.3 ft, $Q_c = 400 \text{ H}^{1.5}$
South of Spillway: 200' @ elev. 479.3 ft, $Q_c = 532 \text{ H}^{1.5}$

<table>
<thead>
<tr>
<th>Pond El.</th>
<th>478</th>
<th>479</th>
<th>480</th>
<th>481</th>
<th>482</th>
<th>483</th>
<th>484</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_c</td>
<td>234</td>
<td>887</td>
<td>1775</td>
<td>2846</td>
<td>4075</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q_{c2}</td>
<td></td>
<td>313</td>
<td>1184</td>
<td>2369</td>
<td>3800</td>
<td>5241</td>
<td></td>
</tr>
<tr>
<td>Q_e</td>
<td>234</td>
<td>887</td>
<td>2088</td>
<td>4030</td>
<td>6444</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q_{e2}</td>
<td>310</td>
<td>3908</td>
<td>4774</td>
<td>5697</td>
<td>6672</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q_{tot}</td>
<td>3335</td>
<td>4795</td>
<td>6862</td>
<td>9727</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III Summary

A. Crest Flow @ Min Crest Elev.

$Q_c = 2.67(481 - 477.3)^{1.5} = 19 \text{ cfs/ft.}$

Where Critical:

$y_c = 2.24'$, $V_c = 8.5 \text{ fps}$
Failure of Dam

Pond Elevation - 477.3 (Min. Crest Elevation)
Toe Elevation - 463.5

\[y_0 = 15.8 \]

\[W_0 = 40\% (80') = 32' \]

\[Q_p = 1.68 W_0 (y_0)^{1.5} = 1.68 (32')(15.8)^{1.5} = 2800 \text{ cfs} \]

Storage Volume Released:
Storage Above Spillway: \((\text{elev.} 477.3)\) = 291 acre feet
Storage Below Spillway: \(\frac{1}{3} (8.5')(55') = 156 \)
Total Storage = 447 acre feet

Channel Hydraulics: (Use Channel Immediately downstream from dam)

\[L = 70' - 2(5') = 60', S = \frac{0.3}{170'} = 0.00176, n = 0.025 \]

\[V = 2.5 R^{1/3}, R = y \]

\[y \]

\[12' \]

\[10' \]

\[8' \]

\[6' \]

\[4' \]

\[2' \]

\[0' \]

Disch. - cfs

4000
3000
2000
1000
0

Failure assumed to occur under peak spillway discharge of 2575 cfs, without crest flow. Dam failure added to this discharge produces total outflow 5375 cfs. Result is increase in depth of tailwater from 5' to 9', and vel. from 8'fps to 10' fps.

Time to Drain:

\[\frac{43560 (447)}{3600(y_0)(2800)} = 3.86 \text{ hours, or 23.2 minutes} \]

D-6
APPENDIX E

INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS

CURTIS PONDS DAM
INVENTORY OF DAMS IN THE UNITED STATES

<table>
<thead>
<tr>
<th>STATE</th>
<th>ENTITY NUMBER</th>
<th>DIVISION</th>
<th>COUNTY</th>
<th>COORD. DIST.</th>
<th>NAME</th>
<th>LATITUDE (NORTH)</th>
<th>LONGITUDE (WEST)</th>
<th>REPORT DATE DAY</th>
<th>REPORT DATE MON</th>
<th>REPORT DATE YR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA</td>
<td>140-00</td>
<td>00</td>
<td>027</td>
<td>05</td>
<td>CURTIS PONDS DAM</td>
<td>4214.0</td>
<td>7150.1</td>
<td>17NOV78</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POPULAR NAME</th>
<th>NAME OF IMPOUNDMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CURTIS PONDS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REGION/DRAIN</th>
<th>RIVER OR STREAM</th>
<th>NEAREST DOWNSTREAM CITY-TOWN-VILLAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-06</td>
<td>MIDDLE RIVER TH=BLACKSTONE R.</td>
<td>NOLSTEER</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIST FROM DAM (M)</th>
<th>POPULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>172300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE OF DAM</th>
<th>YEAR COMPLETED</th>
<th>PURPOSES</th>
<th>MAXIMUM STORAGE (Ft.)</th>
<th>IMPOUNDING CAPACITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>HELCITPG</td>
<td>1837</td>
<td>S</td>
<td>14</td>
<td>500</td>
</tr>
</tbody>
</table>

REMARKS

<table>
<thead>
<tr>
<th>D/S</th>
<th>MAXIMUM DISCHARGE (ICY)</th>
<th>VOLUME OF DAM (ICY)</th>
<th>POWER CAPACITY</th>
<th>NAVIGATION LOCKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80</td>
<td>2575</td>
<td>5000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OWNER</th>
<th>ENGINEERING BY</th>
<th>CONSTRUCTION BY</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASS ELECTRIC COMPANY</td>
<td>UNKNOWN</td>
<td>UNKNOWN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REGULATORY AGENCY</th>
<th>DESIGN</th>
<th>CONSTRUCTION</th>
<th>OPERATION</th>
<th>MAINTENANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INSPECTION BY</th>
<th>INSPECTION DATE DAY</th>
<th>INSPECTION DATE MON</th>
<th>AUTHORITY FOR INSPECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>METCALF & EDDY, INC.</td>
<td>1857P78</td>
<td>PUBLIC LAW 92-317</td>
<td></td>
</tr>
</tbody>
</table>

REMARKS